Registration Desk: Registration Wed 24 Jul 08:30 a.m.
Invited Talk: Vukosi Marivate
Bio :
Affinity Workshop: Women in Machine Learning (WiML) Symposium at ICML 2024 Wed 24 Jul 09:00 a.m.
The Women in Machine Learning (WiML) workshop was founded in 2006 to forge connections within the relatively small community of women working in machine learning, to encourage mentorship and exchange of ideas, and to promote communication. This year, we aim to focus particularly on the elements that have driven high participant interaction and networking based on our experience from past WiML events, while keeping the program shorter. Instead of the participant-led breakout sessions, the invited speakers and/or panelists will lead a Q&A/breakout session, occurring in parallel to each other in a 1-hour time-slot. The idea is that after participants have heard about a topic from the respective talk, there will be more questions and engagements. In addition to the short talks and parallel Q&A sessions, the program will include mentoring and career roundtables and panel discussions.To indicate the change to a shorter program and emphasize the more interactive format, we are planning to rebrand the next iteration of this workshop. We would like to organize the first “WiML Symposium” at the ICML 2024 conference.
Oral 3F Causality Wed 24 Jul 10:30 a.m.
[ Lehar 1-4 ]

Abstract
Causal effect estimation under networked interference is an important but challenging problem. Available parametric methods are limited in their model space, while previous semiparametric methods, e.g., leveraging neural networks to fit only one single nuisance function, may still encounter misspecification problems under networked interference without appropriate assumptions on the data generation process. To mitigate bias stemming from misspecification, we propose a novel doubly robust causal effect estimator under networked interference, by adapting the targeted learning technique to the training of neural networks. Specifically, we generalize the targeted learning technique into the networked interference setting and establish the condition under which an estimator achieves double robustness. Based on the condition, we devise an end-to-end causal effect estimator by transforming the identified theoretical condition into a targeted loss. Moreover, we provide a theoretical analysis of our designed estimator, revealing a faster convergence rate compared to a single nuisance model. Extensive experimental results on two real-world networks with semisynthetic data demonstrate the effectiveness of our proposed estimators.
[ Lehar 1-4 ]
Abstract
Hybrid models composing mechanistic ODE-based dynamics with flexible and expressive neural network components have grown rapidly in popularity, especially in scientific domains where such ODE-based modeling offers important interpretability and validated causal grounding (e.g., for counterfactual reasoning). The incorporation of mechanistic models also provides inductive bias in standard blackbox modeling approaches, critical when learning from small datasets or partially observed, complex systems. Unfortunately, as the hybrid models become more flexible, the causal grounding provided by the mechanistic model can quickly be lost. We address this problem by leveraging another common source of domain knowledge: ranking of treatment effects for a set of interventions, even if the precise treatment effect is unknown. We encode this information in a causal loss that we combine with the standard predictive loss to arrive at a hybrid loss that biases our learning towards causally valid hybrid models. We demonstrate our ability to achieve a win-win, state-of-the-art predictive performance and causal validity, in the challenging task of modeling glucose dynamics post-exercise in individuals with type 1 diabetes.
[ Lehar 1-4 ]

Abstract
We study inference on the long-term causal effect of a continual exposure to a novel intervention, which we term a long-term treatment, based on an experiment involving only short-term observations. Key examples include the long-term health effects of regularly-taken medicine or of environmental hazards and the long-term effects on users of changes to an online platform. This stands in contrast to short-term treatments or "shocks," whose long-term effect can reasonably be mediated by short-term observations, enabling the use of surrogate methods. Long-term treatments by definition have direct effects on long-term outcomes via continual exposure, so surrogacy conditions cannot reasonably hold. We connect the problem with offline reinforcement learning, leveraging doubly-robust estimators to estimate long-term causal effects for long-term treatments and construct confidence intervals.
[ Lehar 1-4 ]

Abstract
The varying significance of distinct primitive behaviors during the policy learning process has been overlooked by prior model-free RL algorithms. Leveraging this insight, we explore the causal relationship between different action dimensions and rewards to evaluate the significance of various primitive behaviors during training. We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration. Furthermore, to prevent excessive focus on specific primitive behaviors, we analyze the gradient dormancy phenomenon and introduce a dormancy-guided reset mechanism to further enhance the efficacy of our method. Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks spanning 7 domains compared to model-free RL baselines, which underscores the effectiveness, versatility, and efficient sample efficiency of our approach. Benchmark results and videos are available at https://ace-rl.github.io/.
Oral 3D Probabilistic Inference Wed 24 Jul 10:30 a.m.
[ Hall A8 ]
Abstract
Inspired by the concept of active learning, we propose active inference---a methodology for statistical inference with machine-learning-assisted data collection. Assuming a budget on the number of labels that can be collected, the methodology uses a machine learning model to identify which data points would be most beneficial to label, thus effectively utilizing the budget. It operates on a simple yet powerful intuition: prioritize the collection of labels for data points where the model exhibits uncertainty, and rely on the model's predictions where it is confident. Active inference constructs valid confidence intervals and hypothesis tests while leveraging any black-box machine learning model and handling any data distribution. The key point is that it achieves the same level of accuracy with far fewer samples than existing baselines relying on non-adaptively-collected data. This means that for the same number of collected samples, active inference enables smaller confidence intervals and more powerful tests. We evaluate active inference on datasets from public opinion research, census analysis, and proteomics.
[ Hall A8 ]

Abstract
Deep Gaussian processes (DGPs) provide a robust paradigm in Bayesian deep learning. In DGPs, a set of sparse integration locations called inducing points are selected to approximate the posterior distribution of the model. This is done to reduce computational complexity and improve model efficiency. However, inferring the posterior distribution of inducing points is not straightforward. Traditional variational inference techniques methods to approximate the posterior often leads to significant bias. To address this issue, we propose an alternative named Denoising Diffusion Variational Inference (DDVI) that utilizes a denoising diffusion stochastic differential equation (SDE) for generating posterior samples of inducing variables. We refer to the score matching method in the denoising diffusion model to approximate challenging score functions using a neural network. Furthermore, by combining classical mathematical theory of SDE with the minimization of KL divergence between the approximate and true processes, we propose a novel explicit variational lower bound for the marginal likelihood function of DGP. Through extensive experiments on various datasets and comparisons with baseline methods, we empirically demonstrate the effectiveness of the DDVI method in posterior inference of inducing points for DGP models.
[ Hall A8 ]

Abstract
Zhang et al. (ICML 2021, PLMR 139, pp. 12447–12457) introduced probabilistic generating circuits (PGCs) as a probabilistic model to unify probabilistic circuits (PCs) and determinantal point processes (DPPs). At a first glance, PGCs store a distribution in a very different way, they compute the probability generating polynomial instead of the probability mass function and it seems that this is the main reason why PGCs are more powerful than PCs or DPPs. However, PGCs also allow for negative weights, whereas classical PCs assume that all weights are nonnegative. One main insight of this work is that the negative weights are the cause for the power of PGCs and not the different representation. PGCs are PCs in disguise: we show how to transform any PGC on binary variables into a PC with negative weights with only polynomial blowup. PGCs were defined by Zhang et al. only for binary random variables. As our second main result, we show that there is a good reason for this: we prove that PGCs for categorical variables with larger image size do not support tractable marginalization unless NP=P. On the other hand, we show that we can model categorical variables with larger image size as PC with …
[ Hall A8 ]

Abstract
Numerous capability and safety techniques of Large Language Models (LLMs), including RLHF, automated red-teaming, prompt engineering, and infilling, can be cast as sampling from an unnormalized target distribution defined by a given reward or potential function over the full sequence. In this work, we leverage the rich toolkit of Sequential Monte Carlo (SMC) for these probabilistic inference problems. In particular, we use learned twist functions to estimate the expected future value of the potential at each timestep, which enables us to focus inference-time computation on promising partial sequences. We propose a novel contrastive method for learning the twist functions, and establish connections with the rich literature of soft reinforcement learning. As a complementary application of our twisted SMC framework, we present methods for evaluating the accuracy of language model inference techniques using novel bidirectional SMC bounds on the log partition function. These bounds can be used to estimate the KL divergence between the inference and target distributions in both directions. We apply our inference evaluation techniques to show that twisted SMC is effective for sampling undesirable outputs from a pretrained model (a useful component of harmlessness training and automated red-teaming), generating reviews with varied sentiment, and performing infilling tasks.
Oral 3B Diffusion Models Wed 24 Jul 10:30 a.m.
[ Hall A1 ]
Abstract
[ Hall A1 ]
Abstract
In this paper, we introduce a new class of score-based generative models (SGMs) designed to handle high-cardinality data distributions by leveraging concepts from mean-field theory. We present mean-field chaos diffusion models (MF-CDMs), which address the curse of dimensionality inherent in high-cardinality data by utilizing the propagation of chaos property of interacting particles. By treating high-cardinality data as a large stochastic system of interacting particles, we develop a novel score-matching method for infinite-dimensional chaotic particle systems and propose an approximation scheme that employs a subdivision strategy for efficient training. Our theoretical and empirical results demonstrate the scalability and effectiveness of MF-CDMs for managing large high-cardinality data structures, such as 3D point clouds.
[ Hall A1 ]

Abstract
While recent large-scale text-to-speech (TTS) models have achieved significant progress, they still fall shorts in speech quality, similarity, and prosody. Considering that speech intricately encompasses various attributes (e.g., content, prosody, timbre, and acoustic details) that pose significant challenges for generation, a natural idea is to factorize speech into individual subspaces representing different attributes and generate them individually. Motivated by it, we propose a TTS system with novel factorized diffusion models to generate natural speech in a zero-shot way. Specifically, 1) we design a neural codec with factorized vector quantization (FVQ) to disentangle speech waveform into subspaces of content, prosody, timbre, and acoustic details; 2) we propose a factorized diffusion model, which generates attributes in each subspace following its corresponding prompt. With this factorization design, our method can effectively and efficiently model the intricate speech with disentangled subspaces in a divide-and-conquer way. Experimental results show that our method outperforms the state-of-the-art TTS systems on quality, similarity, prosody, and intelligibility.
[ Hall A1 ]
Abstract
Diffusion models create data from noise by inverting the forward paths of data towards noise and have emerged as a powerful generative modeling technique for high-dimensional, perceptual data such as images and videos. Rectified flow is a recent generative model formulation that connects data and noise in a straight line. Despite its better theoretical properties and conceptual simplicity, it is not yet decisively established as standard practice. In this work, we improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales. Through a large-scale study, we demonstrate the superior performance of this approach compared to established diffusion formulations for high-resolution text-to-image synthesis. Additionally, we present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities and enables a bidirectional flow of information between image and text tokens, improving text comprehension, typography, and human preference ratings. We demonstrate that this architecture follows predictable scaling trends and correlates lower validation loss to improved text-to-image synthesis as measured by various metrics and human evaluations. Our largest models outperform state-of-the-art models. Stability AI is considering making experimental data, code, and model weights publicly available.
Oral 3C LLMs: Code and Arithmetic Wed 24 Jul 10:30 a.m.
[ Hall A2 ]

Abstract
Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter – we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for semantic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detectsarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they not only write code, but also selectively "emulate" the interpreter by generating the expected output of "detectsarcasm(string)". In this work, we propose Chain of Code (CoC), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format semantic sub-tasks in a program as flexible pseudocode that the interpreter can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other …
[ Hall A2 ]
Abstract
This paper introduces SceneCraft, a Large Language Model (LLM) Agent converting text descriptions into Blender-executable Python scripts which render complex scenes with up to a hundred 3D assets. This process requires complex spatial planning and arrangement. We tackle these challenges through a combination of advanced abstraction, strategic planning, and library learning. SceneCraft first models a scene graph as a blueprint, detailing the spatial relationships among assets in the scene. SceneCraft then writes Python scripts based on this graph, translating relationships into numerical constraints for asset layout. Next, SceneCraft leverages the perceptual strengths of vision-language foundation models like GPT-V to analyze rendered images and iteratively refine the scene. On top of this process, SceneCraft features a library learning mechanism that compiles common script functions into a reusable library, facilitating continuous self-improvement without expensive LLM parameter tuning. Our evaluation demonstrates that SceneCraft surpasses existing LLM-based agents in rendering complex scenes, as shown by its adherence to constraints and favorable human assessments. We also showcase the broader application potential of SceneCraft by reconstructing detailed 3D scenes from the Sintel movie and guiding a video generative model with generated scenes as intermediary control signal.
[ Hall A2 ]

Abstract
Large language models (LLMs) have demonstrated remarkable potential across numerous applications and have shown an emergent ability to tackle complex reasoning tasks, such as mathematical computations. However, even for the simplest arithmetic calculations, the intrinsic mechanisms behind LLMs remains mysterious, making it challenging to ensure reliability. In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations. Through comprehensive experiments, we find that LLMs frequently involve a small fraction (<5%) of attention heads, which play a pivotal role in focusing on operands and operators during calculation processes. Subsequently, the information from these operands is processed through multi-layer perceptrons (MLPs), progressively leading to the final solution. These pivotal heads/MLPs, though identified on a specific dataset, exhibit transferability across different datasets and even distinct tasks. This insight prompted us to investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance. We empirically find that such precise tuning can yield notable enhancements on mathematical prowess, without compromising the performance on non-mathematical tasks. Our work serves as a preliminary exploration into the arithmetic calculation abilities inherent in LLMs, laying a solid foundation to reveal more intricate mathematical tasks.
[ Hall A2 ]
Abstract
We introduce Syntax-Aware Fill-in-the-Middle (SAFIM), a new benchmark for evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM) task. This benchmark focuses on syntax-aware completions of program structures such as code blocks and conditional expressions, and includes 17,720 examples from multiple programming languages, sourced from recent code submissions after April 2022 to minimize data contamination. SAFIM provides a robust framework with various prompt designs and novel syntax-aware post-processing techniques, facilitating accurate and fair comparisons across LLMs. Our comprehensive evaluation of 15 LLMs shows that FIM pretraining not only enhances FIM proficiency but also improves Left-to-Right (L2R) inference using LLMs. Our findings challenge conventional beliefs and suggest that pretraining methods and data quality have more impact than model size. SAFIM thus serves as a foundational platform for future research in effective pretraining strategies for code LLMs. The evaluation toolkit and dataset are available at https://github.com/gonglinyuan/safim, and the leaderboard is available at https://safimbenchmark.com.
Oral 3A Reinforcement Learning 1 Wed 24 Jul 10:30 a.m.
[ Hall C 1-3 ]

Abstract
Many roboticists dream of presenting a robot with a task in the evening and returning the next morning to find the robot capable of solving the task. What is preventing us from achieving this? Sim-to-real reinforcement learning (RL) has achieved impressive performance on challenging robotics tasks, but requires substantial human effort to set up the task in a way that is amenable to RL. It's our position that algorithmic improvements in policy optimization and other ideas should be guided towards resolving the primary bottleneck of shaping the training environment, i.e., designing observations, actions, rewards and simulation dynamics. Most practitioners don't tune the RL algorithm, but other environment parameters to obtain a desirable controller. We posit that scaling RL to diverse robotic tasks will only be achieved if the community focuses on automating environment shaping procedures.
[ Hall C 1-3 ]

Abstract
Real-time inference is a challenge of real-world reinforcement learning due to temporal differences in time-varying environments: the system collects data from the past, updates the decision model in the present, and deploys it in the future. We tackle a common belief that continually updating the decision is optimal to minimize the temporal gap. We propose forecasting an online reinforcement learning framework and show that strategically pausing decision updates yields better overall performance by effectively managing aleatoric uncertainty. Theoretically, we compute an optimal ratio between policy update and hold duration, and show that a non-zero policy hold duration provides a sharper upper bound on the dynamic regret. Our experimental evaluations on three different environments also reveal that a non-zero policy hold duration yields higher rewards compared to continuous decision updates.
[ Hall C 1-3 ]
Abstract
Training reinforcement learning policies using environment interaction data collected from varying policies or dynamics presents a fundamental challenge. Existing works often overlook the distribution discrepancies induced by policy or dynamics shifts, or rely on specialized algorithms with task priors, thus often resulting in suboptimal policy performances and high learning variances. In this paper, we identify a unified strategy for online RL policy learning under diverse settings of policy and dynamics shifts: transition occupancy matching. In light of this, we introduce a surrogate policy learning objective by considering the transition occupancy discrepancies and then cast it into a tractable min-max optimization problem through dual reformulation. Our method, dubbed Occupancy-Matching Policy Optimization (OMPO), features a specialized actor-critic structure equipped with a distribution discriminator and a small-size local buffer. We conduct extensive experiments based on the OpenAI Gym, Meta-World, and Panda Robots environments, encompassing policy shifts under stationary and non-stationary dynamics, as well as domain adaption. The results demonstrate that OMPO outperforms the specialized baselines from different categories in all settings. We also find that OMPO exhibits particularly strong performance when combined with domain randomization, highlighting its potential in RL-based robotics applications.
[ Hall C 1-3 ]
Abstract
Oral 3E Data and Society Wed 24 Jul 10:30 a.m.
[ Straus 1-3 ]
Abstract
Machine learning (ML) datasets, often perceived as neutral, inherently encapsulate abstract and disputed social constructs. Dataset curators frequently employ value-laden terms such as diversity, bias, and quality to characterize datasets. Despite their prevalence, these terms lack clear definitions and validation. Our research explores the implications of this issue by analyzing "diversity" across 135 image and text datasets. Drawing from social sciences, we apply principles from measurement theory to identify considerations and offer recommendations for conceptualizing, operationalizing, and evaluating diversity in datasets. Our findings have broader implications for ML research, advocating for a more nuanced and precise approach to handling value-laden properties in dataset construction.
[ Straus 1-3 ]
Abstract
Data Shapley provides a principled approach to data valuation and plays a crucial role in data-centric machine learning (ML) research. Data selection is considered a standard application of Data Shapley. However, its data selection performance has shown to be inconsistent across settings in the literature. This study aims to deepen our understanding of this phenomenon. We introduce a hypothesis testing framework and show that Data Shapley's performance can be no better than random selection without specific constraints on utility functions. We identify a class of utility functions, monotonically transformed modular functions, within which Data Shapley optimally selects data. Based on this insight, we propose a heuristic for predicting Data Shapley’s effectiveness in data selection tasks. Our experiments corroborate these findings, adding new insights into when Data Shapley may or may not succeed.
[ Straus 1-3 ]

Abstract
We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-written and AI-generated reference texts to accurately and efficiently examine real-world LLM-use at the corpus level. We apply this approach to a case study of scientific peer review in AI conferences that took place after the release of ChatGPT: ICLR 2024, NeurIPS 2023, CoRL 2023 and EMNLP 2023. Our results suggest that between 6.5% and 16.9% of text submitted as peer reviews to these conferences could have been substantially modified by LLMs, i.e. beyond spell-checking or minor writing updates. The circumstances in which generated text occurs offer insight into user behavior: the estimated fraction of LLM-generated text is higher in reviews which report lower confidence, were submitted close to the deadline, and from reviewers who are less likely to respond to author rebuttals. We also observe corpus-level trends in generated text which may be too subtle to detect at the individual level, and discuss the implications of such trends on peer review. We call for future interdisciplinary work to examine how LLM use is changing our …
[ Straus 1-3 ]

Abstract
Unsupervised data representation and visualization using tools from topology is an active and growing field of Topological Data Analysis (TDA) and data science. Its most prominent line of work is based on the so-called Mapper graph, which is a combinatorial graph whose topological structures (connected components, branches, loops) are in correspondence with those of the data itself. While highly generic and applicable, its use has been hampered so far by the manual tuning of its many parameters—among these, a crucial one is the so-called filter: it is a continuous function whose variations on the data set are the main ingredient for both building the Mapper representation and assessing the presence and sizes of its topological structures. However, while a few parameter tuning methods have already been investigated for the other Mapper parameters (i.e., resolution, gain, clustering), there is currently no method for tuning the filter itself. In this work, we build on a recently proposed optimization framework incorporating topology to provide the first filter optimization scheme for Mapper graphs. In order to achieve this, we propose a relaxed and more general version of the Mapper graph, whose convergence properties are investigated. Finally, we demonstrate the usefulness of our approach by …
Poster Session 3 Wed 24 Jul 11:30 a.m.
[ Hall C 4-9 ]

Abstract
The Segment Anything Model (SAM), a foundation model pretrained on millions of images and segmentation masks, has significantly advanced semantic segmentation, a fundamental task in computer vision. Despite its strengths, SAM encounters two major challenges. Firstly, it struggles with segmenting specific objects autonomously, as it relies on users to manually input prompts like points or bounding boxes to identify targeted objects. Secondly, SAM faces challenges in excelling at specific downstream tasks, like medical imaging, due to a disparity between the distribution of its pretraining data, which predominantly consists of general-domain images, and the data used in downstream tasks. Current solutions to these problems, which involve finetuning SAM, often lead to overfitting, a notable issue in scenarios with very limited data, like in medical imaging. To overcome these limitations, we introduce BLO-SAM, which finetunes SAM based on bi-level optimization (BLO). Our approach allows for automatic image segmentation without the need for manual prompts, by optimizing a learnable prompt embedding. Furthermore, it significantly reduces the risk of overfitting by training the model's weight parameters and the prompt embedding on two separate subsets of the training dataset, each at a different level of optimization. We apply BLO-SAM to diverse semantic segmentation tasks in …
[ Hall C 4-9 ]

Abstract
This paper tackles the challenge of teaching code semantics to Large Language Models (LLMs) for program analysis by incorporating code symmetries into the model architecture. We introduce a group-theoretic framework that defines code symmetries as semantics-preserving transformations, where forming a code symmetry group enables precise and efficient reasoning of code semantics. Our solution, SymC, develops a novel variant of self-attention that is provably equivariant to code symmetries from the permutation group defined over the program dependence graph. SymC obtains superior performance on five program analysis tasks, outperforming state-of-the-art code models, including GPT-4, without any pre-training. Our results suggest that code LLMs that encode the code structural prior via the code symmetry group generalize better and faster.
[ Hall C 4-9 ]

Abstract
Deep Neural Networks (DNNs) are vulnerable to Adversarial Examples (AEs), hindering their use in safety-critical systems. In this paper, we present BEYOND, an innovative AE detection framework designed for reliable predictions. BEYOND identifies AEs by distinguishing the AE’s abnormal relation with its augmented versions, i.e. neighbors, from two prospects: representation similarity and label consistency. An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the label for its highly informative representation capacity compared to supervised learning models. We found clean samples maintain a high degree of representation similarity and label consistency relative to their neighbors, in contrast to AEs which exhibit significant discrepancies. We explain this observation and show that leveraging this discrepancy BEYOND can accurately detect AEs. Additionally, we develop a rigorous justification for the effectiveness of BEYOND. Furthermore, as a plug-and-play model, BEYOND can easily cooperate with the Adversarial Trained Classifier (ATC), achieving state-of-the-art (SOTA) robustness accuracy. Experimental results show that BEYOND outperforms baselines by a large margin, especially under adaptive attacks. Empowered by the robust relationship built on SSL, we found that BEYOND outperforms baselines in terms of both detection ability and speed. Project page: https://huggingface.co/spaces/allenhzy/Be-Your-Own-Neighborhood.
[ Hall C 4-9 ]

Abstract
Ensemble of deep neural networks has achieved great success in hedging against single-model failure under distribution shift. However, existing techniques suffer from producing redundant models, limiting predictive diversity and yielding compromised generalization performance. Existing ensemble pruning methods can only guarantee predictive diversity for in-distribution data, which may not transfer well to out-of-distribution (OoD) data. To address this gap, we propose a principled optimization framework for ensemble pruning under distribution shifts. Since the annotations of test data are not available, we explore relationships between prediction distributions of the models, encapsulated in a topology graph. By incorporating this topology into a combinatorial optimization framework, complementary models with high predictive diversity are selected with theoretical guarantees. Our approach is model-agnostic and can be applied on top of a broad spectrum of off-the-shelf ensembling methods for improved generalization performance. Experiments on common benchmarks demonstrate the superiority of our approach in both multi- and single-source OoD generalization. The source codes are publicly available at: https://github.com/joffery/TEP.
[ Hall C 4-9 ]

Abstract
Detection of periodic patterns of interest within noisy time series data plays a critical role in various tasks, spanning from health monitoring to behavior analysis. Existing learning techniques often rely on labels or clean versions of signals for detecting the periodicity, and those employing self-supervised methods are required to apply proper augmentations, which is already challenging for time series and can result in collapse—all representations collapse to a single point due to strong augmentation. In this work, we propose a novel method to detect the periodicity in time series without the need for any labels or requiring tailored positive or negative data generation mechanisms. We mitigate the collapse issue by ensuring the learned representations retain information from the original samples without imposing any variance constraints on the batch. Our experiments in three time-series tasks against state-of-the-art learning methods show that the proposed approach consistently outperforms prior works, achieving performance improvements of more than 45--50%, showing its effectiveness.
[ Hall C 4-9 ]

Abstract
Anomaly detection is vital in many domains, such as finance, healthcare, and cybersecurity. In this paper, we propose a novel deep anomaly detection method for tabular data that leverages Non-Parametric Transformers (NPTs), a model initially proposed for supervised tasks, to capture both feature-feature and sample-sample dependencies. In a reconstruction-based framework, we train an NPT to reconstruct masked features of normal samples. In a non-parametric fashion, we leverage the whole training set during inference and use the model's ability to reconstruct the masked features to generate an anomaly score. To the best of our knowledge, this is the first work to successfully combine feature-feature and sample-sample dependencies for anomaly detection on tabular datasets. Through extensive experiments on 31 benchmark tabular datasets, we demonstrate that our method achieves state-of-the-art performance, outperforming existing methods by 2.4% and 1.2% in terms of F1-score and AUROC, respectively. Our ablation study further proves that modeling both types of dependencies is crucial for anomaly detection on tabular data.
[ Hall C 4-9 ]

Abstract
Deep neural networks for image super-resolution (ISR) have shown significant advantages over traditional approaches like the interpolation. However, they are often criticized as 'black boxes' compared to traditional approaches with solid mathematical foundations. In this paper, we attempt to interpret the behavior of deep neural networks in ISR using theories from the field of signal processing. First, we report an intriguing phenomenon, referred to as `the sinc phenomenon.' It occurs when an impulse input is fed to a neural network. Then, building on this observation, we propose a method named Hybrid Response Analysis (HyRA) to analyze the behavior of neural networks in ISR tasks. Specifically, HyRA decomposes a neural network into a parallel connection of a linear system and a non-linear system and demonstrates that the linear system functions as a low-pass filter while the non-linear system injects high-frequency information. Finally, to quantify the injected high-frequency information, we introduce a metric for image-to-image tasks called Frequency Spectrum Distribution Similarity (FSDS). FSDS reflects the distribution similarity of different frequency components and can capture nuances that traditional metrics may overlook. Code, videos and raw experimental results for this paper can be found in: https://github.com/RisingEntropy/LPFInISR.
[ Hall C 4-9 ]

Abstract
Handling the substantial communication burden in federated learning (FL) still remains a significant challenge. Although recent studies have attempted to compress the local gradients to address this issue, they typically perform compression only within the original parameter space, which may potentially limit the fundamental compression rate of the gradient. In this paper, instead of restricting our scope to a fixed traditional space, we consider an alternative space that provides an improved compressibility of the gradient. To this end, we utilize the structures of input activation and output gradient in designing our mapping function to a new space, which enables lossless gradient sparsification, i.e., mapping the gradient to our new space induces a greater number of near-zero elements without any loss of information. In light of this attribute, employing sparsification-based compressors in our new space allows for more aggressive compression with minimal information loss than the baselines. More surprisingly, our model even reaches higher accuracies than the full gradient uploading strategy in some cases, an extra benefit for utilizing the new space. We also theoretically confirm that our approach does not alter the existing, best known convergence rate of FL thanks to the orthogonal transformation properties of our mapping.
[ Hall C 4-9 ]

Abstract
In this manuscript, we investigate the problem of how two-layer neural networks learn features from data, and improve over the kernel regime, after being trained with a single gradient descent step. Leveraging the insight from (Ba et al., 2022), we model the trained network by a spiked Random Features (sRF) model. Further building on recent progress on Gaussian universality (Dandi et al., 2023), we provide an exact asymptotic description of the generalization error of the sRF in the high-dimensional limit where the number of samples, the width, and the input dimension grow at a proportional rate. The resulting characterization for sRFs also captures closely the learning curves of the original network model. This enables us to understand how adapting to the data is crucial for the network to efficiently learn non-linear functions in the direction of the gradient - where at initialization it can only express linear functions in this regime.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
This paper tackles the emerging challenge of training generative models within a self-consuming loop, wherein successive generations of models are recursively trained on mixtures of real and synthetic data from previous generations. We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models, including parametric and non-parametric models. Specifically, we derive bounds on the total variation (TV) distance between the synthetic data distributions produced by future models and the original real data distribution under various mixed training scenarios for diffusion models with a one-hidden-layer neural network score function. Our analysis demonstrates that this distance can be effectively controlled under the condition that mixed training dataset sizes or proportions of real data are large enough. Interestingly, we further unveil a phase transition induced by expanding synthetic data amounts, proving theoretically that while the TV distance exhibits an initial ascent, it declines beyond a threshold point. Finally, we present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
[ Hall C 4-9 ]

Abstract
In this work, we propose MagicPose, a diffusion-based model for 2D human pose and facial expression retargeting. Specifically, given a reference image, we aim to generate a person's new images by controlling the poses and facial expressions while keeping the identity unchanged. To this end, we propose a two-stage training strategy to disentangle human motions and appearance (e.g., facial expressions, skin tone, and dressing), consisting of (1) the pre-training of an appearance-control block and (2) learning appearance-disentangled pose control. Our novel design enables robust appearance control over generated human images, including body, facial attributes, and even background. By leveraging the prior knowledge of image diffusion models, MagicPose generalizes well to unseen human identities and complex poses without the need for additional fine-tuning. Moreover, the proposed model is easy to use and can be considered as a plug-in module/extension to Stable Diffusion. The project website is here. The code is available here.
[ Hall C 4-9 ]

Abstract
We investigate the training dynamics of two-layer neural networks when learning multi-index target functions. We focus on multi-pass gradient descent (GD) that reuses the batches multiple times and show that it significantly changes the conclusion about which functions are learnable compared to single-pass gradient descent. In particular, multi-pass GD with finite stepsize is found to overcome the limitations of gradient flow and single-pass GD given by the information exponent (Ben Arous et al., 2021) and leap exponent (Abbe et al., 2023) of the target function. We show that upon re-using batches, the network achieves in just two time steps an overlap with the target subspace even for functions not satisfying the staircase property (Abbe et al., 2021). We characterize the (broad) class of functions efficiently learned in finite time. The proof of our results is based on the analysis of the Dynamical Mean-Field Theory (DMFT). We further provide a closed-form description of the dynamical process of the low-dimensional projections of the weights, and numerical experiments illustrating the theory.
[ Hall C 4-9 ]

Abstract
In this paper, we first present an explanation regarding the common occurrence of spikes in the training loss when neural networks are trained with stochastic gradient descent (SGD). We provide evidence that the spikes in the training loss of SGD are "catapults", an optimization phenomenon originally observed in GD with large learning rates in Lewkowycz et al. (2020). We empirically show that these catapults occur in a low-dimensional subspace spanned by the top eigenvectors of the tangent kernel, for both GD and SGD. Second, we posit an explanation for how catapults lead to better generalization by demonstrating that catapults increase feature learning by increasing alignment with the Average Gradient Outer Product (AGOP) of the true predictor. Furthermore, we demonstrate that a smaller batch size in SGD induces a larger number of catapults, thereby improving AGOP alignment and test performance.
[ Hall C 4-9 ]

Abstract
Deep learning models are known to overfit and memorize spurious features in the training dataset. While numerous empirical studies have aimed at understanding this phenomenon, a rigorous theoretical framework to quantify it is still missing. In this paper, we consider spurious features that are uncorrelated with the learning task, and we provide a precise characterization of how they are memorized via two separate terms: (i) the stability of the model with respect to individual training samples, and (ii) the feature alignment between the spurious pattern and the full sample. While the first term is well established in learning theory and it is connected to the generalization error in classical work, the second one is, to the best of our knowledge, novel. Our key technical result gives a precise characterization of the feature alignment for the two prototypical settings of random features (RF) and neural tangent kernel (NTK) regression. We prove that the memorization of spurious features weakens as the generalization capability increases and, through the analysis of the feature alignment, we unveil the role of the model and of its activation function. Numerical experiments show the predictive power of our theory on standard datasets (MNIST, CIFAR-10).
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Many, if not most, systems of interest in science are naturally described as nonlinear dynamical systems. Empirically, we commonly access these systems through time series measurements. Often such time series may consist of discrete random variables rather than continuous measurements, or may be composed of measurements from multiple data modalities observed simultaneously. For instance, in neuroscience we may have behavioral labels in addition to spike counts and continuous physiological recordings. While by now there is a burgeoning literature on deep learning for dynamical systems reconstruction (DSR), multimodal data integration has hardly been considered in this context. Here we provide such an efficient and flexible algorithmic framework that rests on a multimodal variational autoencoder for generating a sparse teacher signal that guides training of a reconstruction model, exploiting recent advances in DSR training techniques. It enables to combine various sources of information for optimal reconstruction, even allows for reconstruction from symbolic data (class labels) alone, and connects different types of observations within a common latent dynamics space. In contrast to previous multimodal data integration techniques for scientific applications, our framework is fully generative, producing, after training, trajectories with the same geometrical and temporal structure as those of the ground truth system.
[ Hall C 4-9 ]

Abstract
We present a novel perspective on temporal point processes (TPPs) by reformulating their intensity processes as solutions to stochastic differential equations (SDEs). In particular, we first prove the equivalent SDE formulations of several classical TPPs, including Poisson processes, Hawkes processes, and self-correcting processes. Based on these proofs, we introduce a unified TPP framework called Neural Jump-Diffusion Temporal Point Process (NJDTPP), whose intensity process is governed by a neural jump-diffusion SDE (NJDSDE) where the drift, diffusion, and jump coefficient functions are parameterized by neural networks. Compared to previous works, NJDTPP exhibits model flexibility in capturing intensity dynamics without relying on any specific functional form, and provides theoretical guarantees regarding the existence and uniqueness of the solution to the proposed NJDSDE. Experiments on both synthetic and real-world datasets demonstrate that NJDTPP is capable of capturing the dynamics of intensity processes in different scenarios and significantly outperforms the state-of-the-art TPP models in prediction tasks.
[ Hall C 4-9 ]

Abstract
Given a set of synchronous time series, each associated with a sensor-point in space and characterized by inter-series relationships, the problem of spatiotemporal forecasting consists of predicting future observations for each point. Spatiotemporal graph neural networks achieve striking results by representing the relationships across time series as a graph. Nonetheless, most existing methods rely on the often unrealistic assumption that inputs are always available and fail to capture hidden spatiotemporal dynamics when part of the data is missing. In this work, we tackle this problem through hierarchical spatiotemporal downsampling. The input time series are progressively coarsened over time and space, obtaining a pool of representations that capture heterogeneous temporal and spatial dynamics. Conditioned on observations and missing data patterns, such representations are combined by an interpretable attention mechanism to generate the forecasts. Our approach outperforms state-of-the-art methods on synthetic and real-world benchmarks under different missing data distributions, particularly in the presence of contiguous blocks of missing values.
[ Hall C 4-9 ]
Abstract
Hybrid dynamical systems are prevalent in science and engineering to express complex systems with continuous and discrete states. To learn laws of systems, all previous methods for equation discovery in hybrid systems follow a two-stage paradigm, i.e. they first group time series into small cluster fragments and then discover equations in each fragment separately through methods in non-hybrid systems. Although effective, performance is then limited because these methods ignore the commonalities in the shared dynamics of fragments that are driven by the same equations. Besides, the two-stage paradigm breaks the interdependence between categorizing and representing dynamics that jointly form hybrid systems. In this paper, we reformulate the problem and propose an end-to-end learning framework, i.e. Amortized Equation Discovery (AMORE), to jointly categorize modes and discover equations characterizing motion dynamics of each mode by all segments of the mode. Experiments on four hybrid and six non-hybrid systems demonstrate the superior performance of our method against previous methods on equation discovery, segmentation, and forecasting.
[ Hall C 4-9 ]
Abstract
In computer vision, keypoint detection is a fundamental task, with applications spanning from robotics to image retrieval; however, existing learning-based methods suffer from scale dependency, and lack flexibility. This paper introduces a novel approach that leverages Morse theory and persistent homology, powerful tools rooted in algebraic topology. We propose a novel loss function based on the recent introduction of a notion of subgradient in persistent homology, paving the way towards topological learning. Our detector, MorseDet, is the first topology-based learning model for feature detection, which achieves competitive performance in keypoint repeatability and introduces a principled and theoretically robust approach to the problem.
[ Hall C 4-9 ]

Abstract
Significant progress has been achieved on the improvement and downstream usages of the Contrastive Language-Image Pre-training (CLIP) vision-language model, while less attention is paid to the interpretation of CLIP. We propose a Gradient-based visual Explanation method for CLIP (Grad-ECLIP), which interprets the matching result of CLIP for specific input image-text pair. By decomposing the architecture of the encoder and discovering the relationship between the matching similarity and intermediate spatial features, Grad-ECLIP produces effective heat maps that show the influence of image regions or words on the CLIP results. Different from the previous Transformer interpretation methods that focus on the utilization of self-attention maps, which are typically extremely sparse in CLIP, we produce high-quality visual explanations by applying channel and spatial weights on token features. Qualitative and quantitative evaluations verify the superiority of Grad-ECLIP compared with the state-of-the-art methods. A series of analysis are conducted based on our visual explanation results, from which we explore the working mechanism of image-text matching, and the strengths and limitations in attribution identification of CLIP. Codes are available here: https://github.com/Cyang-Zhao/Grad-Eclip.
[ Hall C 4-9 ]
Abstract
Event-based vision has drawn increasing attention due to its unique characteristics, such as high temporal resolution and high dynamic range. It has been used in video super-resolution (VSR) recently to enhance the flow estimation and temporal alignment. Rather than for motion learning, we propose in this paper the first VSR method that utilizes event signals for texture enhancement. Our method, called EvTexture, leverages high-frequency details of events to better recover texture regions in VSR. In our EvTexture, a new texture enhancement branch is presented. We further introduce an iterative texture enhancement module to progressively explore the high-temporal-resolution event information for texture restoration. This allows for gradual refinement of texture regions across multiple iterations, leading to more accurate and rich high-resolution details. Experimental results show that our EvTexture achieves state-of-the-art performance on four datasets. For the Vid4 dataset with rich textures, our method can get up to 4.67dB gain compared with recent event-based methods. Code: https://github.com/DachunKai/EvTexture.
[ Hall C 4-9 ]

Abstract
Vision-language models (VLMs), such as CLIP, have demonstrated impressive zero-shot capabilities for various downstream tasks. Their performance can be further enhanced through few-shot prompt tuning methods. However, current studies evaluate the performance of learned prompts separately on base and new classes. This evaluation lacks practicality for real-world applications since downstream tasks cannot determine whether the data belongs to base or new classes in advance. In this paper, we explore a problem setting called Open-world Prompt Tuning (OPT), which involves tuning prompts on base classes and evaluating on a combination of base and new classes. By introducing Decomposed Prompt Tuning framework (DePT), we theoretically demonstrate that OPT can be solved by incorporating out-of-distribution detection into prompt tuning, thereby enhancing the base-to-new discriminability. Based on DePT, we present a novel prompt tuning approach, namely, Decomposed Context Optimization (DeCoOp), which introduces new-class detectors and sub-classifiers to further enhance the base-class and new-class discriminability. Experimental results on 11 benchmark datasets validate the effectiveness of DePT and demonstrate that DeCoOp outperforms current state-of-the-art methods, providing a significant 2% average accuracy improvement.
[ Hall C 4-9 ]

Abstract
Fine-tuning pre-trained vision-language models (VLMs), e.g., CLIP, for the open-world generalization has gained increasing popularity due to its practical value. However, performance advancements are limited when relying solely on intricate algorithmic designs for a single model, even one exhibiting strong performance, e.g., CLIP-ViT-B/16. This paper, for the first time, explores the collaborative potential of leveraging much weaker VLMs to enhance the generalization of a robust single model. The affirmative findings motivate us to address the generalization problem from a novel perspective, i.e., ensemble of pre-trained VLMs. We introduce three customized ensemble strategies, each tailored to one specific scenario. Firstly, we introduce the zero-shot ensemble, automatically adjusting the logits of different models based on their confidence when only pre-trained VLMs are available. Furthermore, for scenarios with extra few-shot samples, we propose the training-free and tuning ensemble, offering flexibility based on the availability of computing resources. The code is available at https://github.com/zhiheLu/Ensemble_VLM.git.
[ Hall C 4-9 ]

Abstract
Existing OCR engines or document image analysis systems typically rely on training separate models for text detection in varying scenarios and granularities, leading to significant computational complexity and resource demands. In this paper, we introduce "Detect Any Text" (DAT), an advanced paradigm that seamlessly unifies scene text detection, layout analysis, and document page detection into a cohesive, end-to-end model. This design enables DAT to efficiently manage text instances at different granularities, including word, line, paragraph and page. A pivotal innovation in DAT is the across-granularity interactive attention module, which significantly enhances the representation learning of text instances at varying granularities by correlating structural information across different text queries. As a result, it enables the model to achieve mutually beneficial detection performances across multiple text granularities. Additionally, a prompt-based segmentation module refines detection outcomes for texts of arbitrary curvature and complex layouts, thereby improving DAT's accuracy and expanding its real-world applicability. Experimental results demonstrate that DAT achieves state-of-the-art performances across a variety of text-related benchmarks, including multi-oriented/arbitrarily-shaped scene text detection, document layout analysis and page detection tasks.
[ Hall C 4-9 ]

Abstract
Multi-instance point cloud registration is the problem of estimating multiple rigid transformations between two point clouds. Existing solutions rely on global spatial consistency of ambiguity and the time-consuming clustering of highdimensional correspondence features, making it difficult to handle registration scenarios where multiple instances overlap. To address these problems, we propose a maximal clique based multiinstance point cloud registration framework called PointMC. The key idea is to search for maximal cliques on the correspondence compatibility graph to estimate multiple transformations, and cluster these transformations into clusters corresponding to different instances to efficiently and accurately estimate all poses. PointMC leverages a correspondence embedding module that relies on local spatial consistency to effectively eliminate outliers, and the extracted discriminative features empower the network to circumvent missed pose detection in scenarios involving multiple overlapping instances. We conduct comprehensive experiments on both synthetic and real-world datasets, and the results show that the proposed PointMC yields remarkable performance improvements.
[ Hall C 4-9 ]
Abstract
Fragment-based drug discovery is an effective strategy for discovering drug candidates in the vast chemical space, and has been widely employed in molecular generative models. However, many existing fragment extraction methods in such models do not take the target chemical properties into account or rely on heuristic rules. Additionally, the existing fragment-based generative models cannot update the fragment vocabulary with goal-aware fragments newly discovered during the generation. To this end, we propose a molecular generative framework for drug discovery, named Goal-aware fragment Extraction, Assembly, and Modification (GEAM). GEAM consists of three modules, each responsible for goal-aware fragment extraction, fragment assembly, and fragment modification. The fragment extraction module identifies important fragments contributing to the desired target properties with the information bottleneck principle, thereby constructing an effective goal-aware fragment vocabulary. Moreover, GEAM can explore beyond the initial vocabulary with the fragment modification module, and the exploration is further enhanced through the dynamic goal-aware vocabulary update. We experimentally demonstrate that GEAM effectively discovers drug candidates through the generative cycle of the three modules in various drug discovery tasks. Our code is available at https://github.com/SeulLee05/GEAM.
[ Hall C 4-9 ]

Abstract
Combining discrete and continuous data is an important capability for generative models. We present Discrete Flow Models (DFMs), a new flow-based model of discrete data that provides the missing link in enabling flow-based generative models to be applied to multimodal continuous and discrete data problems. Our key insight is that the discrete equivalent of continuous space flow matching can be realized using Continuous Time Markov Chains. DFMs benefit from a simple derivation that includes discrete diffusion models as a specific instance while allowing improved performance over existing diffusion-based approaches. We utilize our DFMs method to build a multimodal flow-based modeling framework. We apply this capability to the task of protein co-design, wherein we learn a model for jointly generating protein structure and sequence. Our approach achieves state-of-the-art co-design performance while allowing the same multimodal model to be used for flexible generation of the sequence or structure.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Many machine learning applications are naturally formulated as optimization problems on Riemannian manifolds. The main idea behind Riemannian optimization is to maintain the feasibility of the variables while moving along a descent direction on the manifold. This results in updating all the variables at every iteration. In this work, we provide a general framework for developing computationally efficient coordinate descent (CD) algorithms on matrix manifolds that allows updating only a few variables at every iteration while adhering to the manifold constraint. In particular, we propose CD algorithms for various manifolds such as Stiefel, Grassmann, (generalized) hyperbolic, symplectic, and symmetric positive (semi)definite. While the cost per iteration of the proposed CD algorithms is low, we further develop a more efficient variant via a first-order approximation of the objective function. We analyze their convergence and complexity, and empirically illustrate their efficacy in several applications.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
We study the problem of symmetric positive semi-definite low-rank matrix completion (MC) with deterministic entry-dependent sampling. In particular, we consider rectified linear unit (ReLU) sampling, where only positive entries are observed, as well as a generalization to threshold-based sampling. We first empirically demonstrate that the landscape of this MC problem is not globally benign: Gradient descent (GD) with random initialization will generally converge to stationary points that are not globally optimal. Nevertheless, we prove that when the matrix factor with a small rank satisfies mild assumptions, the nonconvex objective function is geodesically strongly convex on the quotient manifold in a neighborhood of a planted low-rank matrix. Moreover, we show that our assumptions are satisfied by a matrix factor with i.i.d. Gaussian entries. Finally, we develop a tailor-designed initialization for GD to solve our studied formulation, which empirically always achieves convergence to the global minima. We also conduct extensive experiments and compare MC methods, investigating convergence and completion performance with respect to initialization, noise level, dimension, and rank.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
The performance of optimization methods is often tied to the spectrum of the objective Hessian. Yet, conventional assumptions, such as smoothness, do often not enable us to make finely-grained convergence statements—particularly not for non-convex problems. Striving for a more intricate characterization of complexity, we introduce a unique concept termed graded non-convexity. This allows to partition the class of non-convex problems into a nested chain of subclasses. Interestingly, many traditional non-convex objectives, including partially convex problems, matrix factorizations, and neural networks, fall within these subclasses. As a second contribution, we propose gradient methods with spectral preconditioning, which employ inexact top eigenvectors of the Hessian to address the ill-conditioning of the problem, contingent on the grade. Our analysis reveals that these new methods provide provably superior convergence rates compared to basic gradient descent on applicable problem classes, particularly when large gaps exist between the top eigenvalues of the Hessian. Our theory is validated by numerical experiments executed on multiple practical machine learning problems.
[ Hall C 4-9 ]

Abstract
Following the introduction of Adam, several novel adaptive optimizers for deep learning have been proposed. These optimizers typically excel in some tasks but may not outperform Adam uniformly across all tasks. In this work, we introduce Meta-Adaptive Optimizers (MADA), a unified optimizer framework that can generalize several known optimizers and dynamically learn the most suitable one during training. The key idea in MADA is to parameterize the space of optimizers and dynamically search through it using hyper-gradient descent during training. We empirically compare MADA to other popular optimizers on vision and language tasks, and find that MADA consistently outperforms Adam and other popular optimizers, and is robust against sub-optimally tuned hyper-parameters. MADA achieves a greater validation performance improvement over Adam compared to other popular optimizers during GPT-2 training and fine-tuning. We also propose AVGrad, a modification of AMSGrad that replaces the maximum operator with averaging, which is more suitable for hyper-gradient optimization. Finally, we provide a convergence analysis to show that parameterized interpolations of optimizers can improve their error bounds (up to constants), hinting at an advantage for meta-optimizers.
[ Hall C 4-9 ]

Abstract
Bayesian optimization (BO) is a popular method to optimize costly black-box functions, and meta-learning has emerged as a way to leverage knowledge from related tasks to optimize new tasks faster. However, existing meta-learning methods for BO rely on surrogate models that are not scalable or are sensitive to varying input scales and noise types across tasks. Moreover, they often overlook the uncertainty associated with task similarity, leading to unreliable task adaptation when a new task differs significantly or has not been sufficiently explored yet. We propose a novel meta-learning BO approach that bypasses the surrogate model and directly learns the utility of queries across tasks. It explicitly models task uncertainty and includes an auxiliary model to enable robust adaptation to new tasks. Extensive experiments show that our method achieves strong performance and outperforms multiple meta-learning BO methods across various benchmarks.
[ Hall C 4-9 ]
Abstract
Generating ligand molecules that bind to specific protein targets via generative models holds substantial promise for advancing structure-based drug design. Existing methods generate molecules from scratch without reference or template ligands, which poses challenges in model optimization and may yield suboptimal outcomes. To address this problem, we propose an innovative interaction-based retrieval-augmented diffusion model named IRDiff to facilitate target-aware molecule generation. IRDiff leverages a curated set of ligand references, i.e., those with desired properties such as high binding affinity, to steer the diffusion model towards synthesizing ligands that satisfy design criteria. Specifically, we utilize a protein-molecule interaction network (PMINet), which is pretrained with binding affinity signals to: (i) retrieve target-aware ligand molecules with high binding affinity to serve as references, and (ii) incorporate essential protein-ligand binding structures for steering molecular diffusion generation with two effective augmentation mechanisms, i.e., retrieval augmentation and self augmentation. Empirical studies on CrossDocked2020 dataset show IRDiff can generate molecules with more realistic 3D structures and achieve state-of-the-art binding affinities towards the protein targets, while maintaining proper molecular properties. The codes and models are available at https://github.com/YangLing0818/IRDiff
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Maximizing monotone submodular functions under cardinality constraints is a classic optimization task with several applications in data mining and machine learning. In this paper, we study this problem in a dynamic environment with consistency constraints: elements arrive in a streaming fashion, and the goal is maintaining a constant approximation to the optimal solution while having a stable solution (i.e., the number of changes between two consecutive solutions is bounded). In this setting, we provide algorithms with different trade-offs between consistency and approximation quality. We also complement our theoretical results with an experimental analysis showing the effectiveness of our algorithms in real-world instances.
[ Hall C 4-9 ]
Abstract
Embedding parameterized optimization problems as layers into machine learning architectures serves as a powerful inductive bias. Training such architectures with stochastic gradient descent requires care, as degenerate derivatives of the embedded optimization problem often render the gradients uninformative. We propose Lagrangian Proximal Gradient Descent (LPGD), a flexible framework for training architectures with embedded optimization layers that seamlessly integrates into automatic differentiation libraries. LPGD efficiently computes meaningful replacements of the degenerate optimization layer derivatives by re-running the forward solver oracle on a perturbed input. LPGD captures various previously proposed methods as special cases, while fostering deep links to traditional optimization methods. We theoretically analyze our method and demonstrate on historical and synthetic data that LPGD converges faster than gradient descent even in a differentiable setup.
[ Hall C 4-9 ]

Abstract
Unsupervised data representation and visualization using tools from topology is an active and growing field of Topological Data Analysis (TDA) and data science. Its most prominent line of work is based on the so-called Mapper graph, which is a combinatorial graph whose topological structures (connected components, branches, loops) are in correspondence with those of the data itself. While highly generic and applicable, its use has been hampered so far by the manual tuning of its many parameters—among these, a crucial one is the so-called filter: it is a continuous function whose variations on the data set are the main ingredient for both building the Mapper representation and assessing the presence and sizes of its topological structures. However, while a few parameter tuning methods have already been investigated for the other Mapper parameters (i.e., resolution, gain, clustering), there is currently no method for tuning the filter itself. In this work, we build on a recently proposed optimization framework incorporating topology to provide the first filter optimization scheme for Mapper graphs. In order to achieve this, we propose a relaxed and more general version of the Mapper graph, whose convergence properties are investigated. Finally, we demonstrate the usefulness of our approach by …
[ Hall C 4-9 ]
Abstract
This work focuses on the training dynamics of one associative memory module storing outer products of token embeddings. We reduce this problem to the study of a system of particles, which interact according to properties of the data distribution and correlations between embeddings. Through theory and experiments, we provide several insights. In overparameterized regimes, we obtain logarithmic growth of the ``classification margins.'' Yet, we show that imbalance in token frequencies and memory interferences due to correlated embeddings lead to oscillatory transitory regimes. The oscillations are more pronounced with large step sizes, which can create benign loss spikes, although these learning rates speed up the dynamics and accelerate the asymptotic convergence. We also find that underparameterized regimes lead to suboptimal memorization schemes. Finally, we assess the validity of our findings on small Transformer models.
[ Hall C 4-9 ]
Abstract
Over the past few years, as large language models have ushered in an era of intelligence emergence, there has been an intensified focus on scaling networks. Although Neural Architecture Search (NAS) methods have been proposed to automate this process, they suffer from low search efficiency. This study introduces Differentiable Model Scaling (DMS), increasing the efficiency for searching optimal width and depth in networks. DMS can model both width and depth in a direct and fully differentiable way, making it easy to optimize. We have evaluated our DMS across diverse tasks, ranging from vision tasks to NLP tasks and various network architectures, including CNNs and Transformers. Results consistently indicate that our DMS can find improved structures and outperforms state-of-the-art NAS methods. Specifically, for image classification on ImageNet, our DMS improves the top-1 accuracy of EfficientNet-B0 and Deit-Tiny by 1.4% and 0.6%, respectively, and outperforms the state-of-the-art zero-shot NAS method, ZiCo, by 1.3% while requiring only 0.4 GPU days for searching. For object detection on COCO, DMS improves the mAP of Yolo-v8-n by 2.0%. For language modeling, our pruned Llama-7B outperforms the prior method with lower perplexity and higher zero-shot classification accuracy. Our code is available at https://github.com/LKJacky/Differentiable-Model-Scaling.
[ Hall C 4-9 ]

Abstract
Neural Radiance Fields (NeRFs) have emerged as powerful tools for capturing detailed 3D scenes through continuous volumetric representations. Recent NeRFs utilize feature grids to improve rendering quality and speed; however, these representations introduce significant storage overhead. This paper presents a novel method for efficiently compressing a grid-based NeRF model, addressing the storage overhead concern. Our approach is based on the non-linear transform coding paradigm, employing neural compression for compressing the model's feature grids. Due to the lack of training data involving many i.i.d scenes, we design an encoder-free, end-to-end optimized approach for individual scenes, using lightweight decoders. To leverage the spatial inhomogeneity of the latent feature grids, we introduce an importance-weighted rate-distortion objective and a sparse entropy model employing a masking mechanism. Our experimental results validate that our proposed method surpasses existing works in terms of grid-based NeRF compression efficacy and reconstruction quality.
[ Hall C 4-9 ]
Abstract
Pre-trained vision transformers have revolutionized few-shot image classification, and it has been recently demonstrated that the previous common practice of meta-learning in synergy with these pre-trained transformers still holds significance. In this work, we design a new framework centered exclusively on self-attention, called MetaFormer, which extends the vision transformers beyond patch token interactions to encompass relationships between samples and tasks simultaneously for further advancing their downstream task performance. Leveraging the intrinsical property of ViTs in handling local patch relationships, we propose Masked Sample Attention (MSA) to efficiently embed the sample relationships into the network, where an adaptive mask is attached for enhancing task-specific feature consistency and providing flexibility in switching between few-shot learning setups. To encapsulate task relationships while filtering out background noise, Patch-grained Task Attention (PTA) is designed to maintain a dynamic knowledge pool consolidating diverse patterns from historical tasks. MetaFormer demonstrates coherence and compatibility with off-the-shelf pre-trained vision transformers and shows significant improvements in both inductive and transductive few-shot learning scenarios, outperforming state-of-the-art methods by up to 8.77% and 6.25% on 12 in-domain and 10 cross-domain datasets, respectively.
[ Hall C 4-9 ]
Abstract
In addressing the challenge of Crystal Structure Prediction (CSP), symmetry-aware deep learning models, particularly diffusion models, have been extensively studied, which treat CSP as a conditional generation task. However, ensuring permutation, rotation, and periodic translation equivariance during diffusion process remains incompletely addressed. In this work, we propose EquiCSP, a novel equivariant diffusion-based generative model. We not only address the overlooked issue of lattice permutation equivariance in existing models, but also develop a unique noising algorithm that rigorously maintains periodic translation equivariance throughout both training and inference processes. Our experiments indicate that EquiCSP significantly surpasses existing models in terms of generating accurate structures and demonstrates faster convergence during the training process.
[ Hall C 4-9 ]
Abstract
Despite the striking success of general protein folding models such as AlphaFold2 (AF2), the accurate computational modeling of antibody-antigen complexes remains a challenging task. In this paper, we first analyze AF2's primary loss function, known as the Frame Aligned Point Error (FAPE), and raise a previously overlooked issue that FAPE tends to face gradient vanishing problem on high-rotational-error targets. To address this fundamental limitation, we propose a novel geodesic loss called Frame Aligned Frame Error (FAFE, denoted as F2E to distinguish from FAPE), which enables the model to better optimize both the rotational and translational errors between two frames. We then prove that F2E can be reformulated as a group-aware geodesic loss, which translates the optimization of the residue-to-residue error to optimizing group-to-group geodesic frame distance. By fine-tuning AF2 with our proposed new loss function, we attain a correct rate of 52.3% (DockQ > 0.23) on an evaluation set and 43.8% correct rate on a subset with low homology, with improvement over AF2 by 182% and 100% respectively.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Large-scale recommendation systems are characterized by their reliance on high cardinality, heterogeneous features and the need to handle tens of billions of user actions on a daily basis. Despite being trained on huge volume of data with thousands of features, most Deep Learning Recommendation Models (DLRMs) in industry fail to scale with compute. Inspired by success achieved by Transformers in language and vision domains, we revisit fundamental design choices in recommendation systems. We reformulate recommendation problems as sequential transduction tasks within a generative modeling framework (``Generative Recommenders''), and propose a new architecture, HSTU, designed for high cardinality, non-stationary streaming recommendation data. HSTU outperforms baselines over synthetic and public datasets by up to 65.8% in NDCG, and is 5.3x to 15.2x faster than FlashAttention2-based Transformers on 8192 length sequences. HSTU-based Generative Recommenders, with 1.5 trillion parameters, improve metrics in online A/B tests by 12.4% and have been deployed on multiple surfaces of a large internet platform with billions of users. More importantly, the model quality of Generative Recommenders empirically scales as a power-law of training compute across three orders of magnitude, up to GPT-3/LLaMa-2 scale, which reduces carbon footprint needed for future model developments, and further paves the way for the …
[ Hall C 4-9 ]
Abstract
Flexible sensors hold promise for human motion capture (MoCap), offering advantages such as wearability, privacy preservation, and minimal constraints on natural movement. However, existing flexible sensor-based MoCap methods rely on deep learning and necessitate large and diverse labeled datasets for training. These data typically need to be collected in MoCap studios with specialized equipment and substantial manual labor, making them difficult and expensive to obtain at scale. Thanks to the high-linearity of flexible sensors, we address this challenge by proposing a novel Sim2Real solution for hinge joint tracking based on domain adaptation, eliminating the need for labeled data yet achieving comparable accuracy to supervised learning. Our solution relies on a novel Support-based Domain Adaptation method, namely SuDA, which aligns the supports of the predictive functions rather than the instance-dependent distributions between the source and target domains. Extensive experimental results demonstrate the effectiveness of our method and its superiority overstate-of-the-art distribution-based domain adaptation methods in our task.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Offline optimization aims to maximize a black-box objective function with a static dataset and has wide applications. In addition to the objective function being black-box and expensive to evaluate, numerous complex real-world problems entail optimizing multiple conflicting objectives, i.e., multi-objective optimization (MOO). Nevertheless, offline MOO has not progressed as much as offline single-objective optimization (SOO), mainly due to the lack of benchmarks like Design-Bench for SOO. To bridge this gap, we propose a first benchmark for offline MOO, covering a range of problems from synthetic to real-world tasks. This benchmark provides tasks, datasets, and open-source examples, which can serve as a foundation for method comparisons and advancements in offline MOO. Furthermore, we analyze how the current related methods can be adapted to offline MOO from four fundamental perspectives, including data, model architecture, learning algorithm, and search algorithm. Empirical results show improvements over the best value of the training set, demonstrating the effectiveness of offline MOO methods. As no particular method stands out significantly, there is still an open challenge in further enhancing the effectiveness of offline MOO. We finally discuss future challenges for offline MOO, with the hope of shedding some light on this emerging field. Our code is available …
[ Hall C 4-9 ]

Abstract
In the evolving landscape of natural language processing (NLP), fine-tuning pre-trained Large Language Models (LLMs) with first-order (FO) optimizers like SGD and Adam has become standard. Yet, as LLMs grow in size, the substantial memory overhead from back-propagation (BP) for FO gradient computation presents a significant challenge. Addressing this issue is crucial, especially for applications like on-device training where memory efficiency is paramount. This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during LLM fine-tuning, building on the initial concept introduced by (Malladi et al., 2023). Unlike traditional ZO-SGD methods, ou让work expands the exploration to a wider array of ZO optimization techniques, through a comprehensive, first-of-its-kind benchmarking study across five LLM families, three task complexities, and five fine-tuning schemes. Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance. We further introduce novel enhancements to ZO optimization, including block-wise descent, hybrid training, and gradient sparsity. Our study offers a promising direction for achieving further memory-efficient LLM fine-tuning. Codes to reproduce all our experiments will be made public.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Bayesian optimization is a powerful framework for optimizing functions that are expensive or time-consuming to evaluate. Recent work has considered Bayesian optimization of function networks (BOFN), where the objective function is given by a network of functions, each taking as input the output of previous nodes in the network as well as additional parameters. Leveraging this network structure has been shown to yield significant performance improvements. Existing BOFN algorithms for general-purpose networks evaluate the full network at each iteration. However, many real-world applications allow for evaluating nodes individually. To exploit this, we propose a novel knowledge gradient acquisition function that chooses which node and corresponding inputs to evaluate in a cost-aware manner, thereby reducing query costs by evaluating only on a part of the network at each step. We provide an efficient approach to optimizing our acquisition function and show that it outperforms existing BOFN methods and other benchmarks across several synthetic and real-world problems. Our acquisition function is the first to enable cost-aware optimization of a broad class of function networks.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Federated learning (FL) has emerged as a widely adopted training paradigm for privacy-preserving machine learning. While the SGD-based FL algorithms have demonstrated considerable success in the past, there is a growing trend towards adopting adaptive federated optimization methods, particularly for the training of large-scale models. However, the conventional synchronous aggregation design poses a significant challenge to the practical deployment of those adaptive federated optimization methods, particularly in the presence of straggler clients. To fill this research gap, this paper introduces federated adaptive asynchronous optimization, named FADAS, a novel method that incorporates asynchronous updates into adaptive federated optimization with provable guarantees. To further enhance the efficiency and resilience of our proposed method in scenarios with significant asynchronous delays, we also extend FADAS with a delay-adaptive learning adjustment strategy. We rigorously establish the convergence rate of the proposed algorithms and empirical results demonstrate the superior performance of FADAS over other asynchronous FL baselines.
[ Hall C 4-9 ]

Abstract
Distributed execution of deep learning training involves a dynamic interplay between hardware accelerator architecture and device placement strategy. This is the first work to explore the co-optimization of determining the optimal architecture and device placement strategy through novel algorithms, improving the balance of computational resources, memory usage, and data distribution. Our architecture search leverages tensor and vector units, determining their quantity and dimensionality, and on-chip and off-chip memory configurations. It also determines the microbatch size and decides whether to recompute or stash activations, balancing the memory footprint of training and storage size. For each explored architecture configuration, we use an Integer Linear Program (ILP) to find the optimal schedule for executing operators on the accelerator. The ILP results then integrate with a dynamic programming solution to identify the most effective device placement strategy, combining data, pipeline, and tensor model parallelism across multiple accelerators. Our approach achieves higher throughput on large language models compared to the state-of-the-art TPUv4 and the Spotlight accelerator search framework. The entire source code of PHAZE is available at https://github.com/msr-fiddle/phaze.
[ Hall C 4-9 ]

Abstract
Federated learning (FL) has enabled distributed learning of a model across multiple clients in a privacy-preserving manner. One of the main challenges of FL is to accommodate clients with varying hardware capacities; clients have differing compute and memory requirements. To tackle this challenge, recent state-of-the-art approaches leverage the use of early exits. Nonetheless, these approaches fall short of mitigating the challenges of joint learning multiple exit classifiers, often relying on hand-picked heuristic solutions for knowledge distillation among classifiers and/or utilizing additional layers for weaker classifiers. In this work, instead of utilizing multiple classifiers, we propose a recurrent early exit approach named ReeFL that fuses features from different sub-models into a single shared classifier. Specifically, we use a transformer-based early-exit module shared among sub-models to i) better exploit multi-layer feature representations for task-specific prediction and ii) modulate the feature representation of the backbone model for subsequent predictions. We additionally present a per-client self-distillation approach where the best sub-model is automatically selected as the teacher of the other sub-models at each client. Our experiments on standard image and speech classification benchmarks across various emerging federated fine-tuning baselines demonstrate ReeFL effectiveness over previous works.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
The varying significance of distinct primitive behaviors during the policy learning process has been overlooked by prior model-free RL algorithms. Leveraging this insight, we explore the causal relationship between different action dimensions and rewards to evaluate the significance of various primitive behaviors during training. We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration. Furthermore, to prevent excessive focus on specific primitive behaviors, we analyze the gradient dormancy phenomenon and introduce a dormancy-guided reset mechanism to further enhance the efficacy of our method. Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks spanning 7 domains compared to model-free RL baselines, which underscores the effectiveness, versatility, and efficient sample efficiency of our approach. Benchmark results and videos are available at https://ace-rl.github.io/.
[ Hall C 4-9 ]
Abstract
This paper proposes a step toward approximate Bayesian inference in on-policy actor-critic deep reinforcement learning. It is implemented through three changes to the Asynchronous Advantage Actor-Critic (A3C) algorithm: (1) applying a ReLU function to advantage estimates, (2) spectral normalization of actor-critic weights, and (3) incorporating dropout as a Bayesian approximation. We prove under standard assumptions that restricting policy updates to positive advantages optimizes for value by maximizing a lower bound on the value function plus an additive term. We show that the additive term is bounded proportional to the Lipschitz constant of the value function, which offers theoretical grounding for spectral normalization of critic weights. Finally, our application of dropout corresponds to approximate Bayesian inference over both the actor and critic parameters, which enables adaptive state-aware exploration around the modes of the actor via Thompson sampling. We demonstrate significant improvements for median and interquartile mean metrics over A3C, PPO, SAC, and TD3 on the MuJoCo continuous control benchmark and improvement over PPO in the challenging ProcGen generalization benchmark.
[ Hall C 4-9 ]

Abstract
We propose a distributional framework for benchmarking socio-technical risks of foundation models with quantified statistical significance. Our approach hinges on a new statistical relative testing based on first and second order stochastic dominance of real random variables. We show that the second order statistics in this test are linked to mean-risk models commonly used in econometrics and mathematical finance to balance risk and utility when choosing between alternatives. Using this framework, we formally develop a risk-aware approach for foundation model selection given guardrails quantified by specified metrics. Inspired by portfolio optimization and selection theory in mathematical finance, we define a metrics portfolio for each model as a means to aggregate a collection of metrics, and perform model selection based on the stochastic dominance of these portfolios. The statistical significance of our tests is backed theoretically by an asymptotic analysis via central limit theorems instantiated in practice via a bootstrap variance estimate. We use our framework to compare various large language models regarding risks related to drifting from instructions and outputting toxic content.
[ Hall C 4-9 ]
Abstract
Reinforcement learning (RL) is a powerful approach for acquiring a good-performing policy. However, learning diverse skills is challenging in RL due to the commonly used Gaussian policy parameterization. We propose Diverse Skill Learning (Di-SkilL), an RL method for learning diverse skills using Mixture of Experts, where each expert formalizes a skill as a contextual motion primitive. Di-SkilL optimizes each expert and its associate context distribution to a maximum entropy objective that incentivizes learning diverse skills in similar contexts. The per-expert context distribution enables automatic curricula learning, allowing each expert to focus on its best-performing sub-region of the context space. To overcome hard discontinuities and multi-modalities without any prior knowledge of the environment's unknown context probability space, we leverage energy-based models to represent the per-expert context distributions and demonstrate how we can efficiently train them using the standard policy gradient objective. We show on challenging robot simulation tasks that Di-SkilL can learn diverse and performant skills.
[ Hall C 4-9 ]

Abstract
Sample-efficiency and reliability remain major bottlenecks toward wide adoption of reinforcement learning algorithms in continuous settings with high-dimensional perceptual inputs. Toward addressing these challenges, we introduce a new theoretical framework, RichCLD (“Rich-Observation RL with Continuous Latent Dynamics”), in which the agent performs control based on high-dimensional observations, but the environment is governed by low-dimensional latent states and Lipschitz continuous dynamics. Our main contribution is a new algorithm for this setting that is provably statistically and computationally efficient. The core of our algorithm is a new representation learning objective; we show that prior representation learning schemes tailored to discrete dynamics do not naturally extend to the continuous setting. Our new objective is amenable to practical implementation, and empirically, we find that it compares favorably to prior schemes in a standard evaluation protocol. We further provide several insights into the statistical complexity of the RichCLD framework, in particular proving that certain notions of Lipschitzness that admit sample-efficient learning in the absence of rich observations are insufficient in the rich-observation setting.
[ Hall C 4-9 ]

Abstract
Causal dynamics models (CDMs) have demonstrated significant potential in addressing various challenges in reinforcement learning. To learn CDMs, recent studies have performed causal discovery to capture the causal dependencies among environmental variables. However, the learning of CDMs is still confined to small-scale environments due to computational complexity and sample efficiency constraints. This paper aims to extend CDMs to large-scale object-oriented environments, which consist of a multitude of objects classified into different categories. We introduce the Object-Oriented CDM (OOCDM) that shares causalities and parameters among objects belonging to the same class. Furthermore, we propose a learning method for OOCDM that enables it to adapt to a varying number of objects. Experiments on large-scale tasks indicate that OOCDM outperforms existing CDMs in terms of causal discovery, prediction accuracy, generalization, and computational efficiency.
[ Hall C 4-9 ]

Abstract
In this paper we adopt a representation-centric perspective on exploration in reinforcement learning, viewing exploration fundamentally as a density estimation problem. We investigate the effectiveness of clustering representations for exploration in 3-D environments, based on the observation that the importance of pixel changes between transitions is less pronounced in 3-D environments compared to 2-D environments, where pixel changes between transitions are typically distinct and significant. We propose a method that performs episodic and global clustering on random representations and on pre-trained DINO representations to count states, i.e, estimate pseudo-counts. Surprisingly, even random features can be clustered effectively to count states in 3-D environments, however when these become visually more complex, pre-trained DINO representations are more effective thanks to the pre-trained inductive biases in the representations. Overall, this presents a pathway for integrating pre-trained biases into exploration. We evaluate our approach on the VizDoom and Habitat environments, demonstrating that our method surpasses other well-known exploration methods in these settings.
[ Hall C 4-9 ]

Abstract
Vision-language models (VLMs) have tremendous potential for grounding language, and thus enabling language-conditioned agents (LCAs) to perform diverse tasks specified with text. This has motivated the study of LCAs based on reinforcement learning (RL) with rewards given by rendering images of an environment and evaluating those images with VLMs. If single-task RL is employed, such approaches are limited by the cost and time required to train a policy for each new task. Multi-task RL (MTRL) is a natural alternative, but requires a carefully designed corpus of training tasks and does not always generalize reliably to new tasks. Therefore, this paper introduces a novel decomposition of the problem of building an LCA: first find an environment configuration that has a high VLM score for text describing a task; then use a (pretrained) goal-conditioned policy to reach that configuration. We also explore several enhancements to the speed and quality of VLM-based LCAs, notably, the use of distilled models, and the evaluation of configurations from multiple viewpoints to resolve the ambiguities inherent in a single 2D view. We demonstrate our approach on the Humanoid environment, showing that it results in LCAs that outperform MTRL baselines in zero-shot generalization, without requiring any textual task …
[ Hall C 4-9 ]

Abstract
An open challenge in reinforcement learning (RL) is the effective deployment of a trained policy to new or slightly different situations as well as semantically-similar environments. We introduce Symmetry-Invariant Transformer (SiT), a scalable vision transformer (ViT) that leverages both local and global data patterns in a self-supervised manner to improve generalisation. Central to our approach is Graph Symmetric Attention, which refines the traditional self-attention mechanism to preserve graph symmetries, resulting in invariant and equivariant latent representations. We showcase SiT's superior generalization over ViTs on MiniGrid and Procgen RL benchmarks, and its sample efficiency on Atari 100k and CIFAR10.
[ Hall C 4-9 ]

Abstract
Recently, various pre-training methods have been introduced in vision-based Reinforcement Learning (RL). However, their generalization ability remains unclear due to evaluations being limited to in-distribution environments and non-unified experimental setups. To address this, we introduce the Atari Pre-training Benchmark (Atari-PB), which pre-trains a ResNet-50 model on 10 million transitions from 50 Atari games and evaluates it across diverse environment distributions. Our experiments show that pre-training objectives focused on learning task-agnostic features (e.g., identifying objects and understanding temporal dynamics) enhance generalization across different environments. In contrast, objectives focused on learning task-specific knowledge (e.g., identifying agents and fitting reward functions) improve performance in environments similar to the pre-training dataset but not in varied ones. We publicize our codes, datasets, and model checkpoints at https://github.com/dojeon-ai/Atari-PB.
[ Hall C 4-9 ]

Abstract
Dyna-style model-based reinforcement learning (MBRL) combines model-free agents with predictive transition models through model-based rollouts. This combination raises a critical question: “When to trust your model?”; i.e., which rollout length results in the model providing useful data? Janner et al. (2019) address this question by gradually increasing rollout lengths throughout the training. While theoretically tempting, uniform model accuracy is a fallacy that collapses at the latest when extrapolating. Instead, we propose asking the question “Where to trust your model?”. Using inherent model uncertainty to consider local accuracy, we obtain the Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption (MACURA) algorithm. We propose an easy-to-tune rollout mechanism and demonstrate substantial improvements in data efficiency and performance compared to state-of-the-art deep MBRL methods on the MuJoCo benchmark.
[ Hall C 4-9 ]

Abstract
Graph-based planners have gained significant attention for goal-conditioned reinforcement learning (RL), where they construct a graph consisting of confident transitions between subgoals as edges and run shortest path algorithms to exploit the confident edges. Meanwhile, identifying and avoiding unattainable transitions are also crucial yet overlooked by the previous graph-based planners, leading to wasting an excessive number of attempts at unattainable subgoals. To address this oversight, we propose a graph construction method that efficiently manages all the achieved and unattained subgoals on a grid graph adaptively discretizing the goal space. This enables a breadth-first exploration strategy, grounded in the local adaptive grid refinement, that prioritizes broad probing of subgoals on a coarse grid over meticulous one on a dense grid. We conducted a theoretical analysis and demonstrated the effectiveness of our approach through empirical evidence, showing that only BEAG succeeds in complex environments under the proposed fixed-goal setting.
[ Hall C 4-9 ]
Abstract
In offline reinforcement learning (RL), updating the value function with the discrete-time Bellman Equation often encounters challenges due to the limited scope of available data. This limitation stems from the Bellman Equation, which cannot accurately predict the value of unvisited states. To address this issue, we have introduced an innovative solution that bridges the continuous- and discrete-time RL methods, capitalizing on their advantages. Our method uses a discrete-time RL algorithm to derive the value function from a dataset while ensuring that the function's first derivative aligns with the local characteristics of states and actions, as defined by the Hamilton-Jacobi-Bellman equation in continuous RL. We provide practical algorithms for both deterministic policy gradient methods and stochastic policy gradient methods. Experiments on the D4RL dataset show that incorporating the first-order information significantly improves policy performance for offline RL problems.
[ Hall C 4-9 ]

Abstract
This paper studies policy evaluation with multiple data sources, especially in scenarios that involve one experimental dataset with two arms, complemented by a historical dataset generated under a single control arm. We propose novel data integration methods that linearly integrate base policy value estimators constructed based on the experimental and historical data, with weights optimized to minimize the mean square error (MSE) of the resulting combined estimator. We further apply the pessimistic principle to obtain more robust estimators, and extend these developments to sequential decision making. Theoretically, we establish non-asymptotic error bounds for the MSEs of our proposed estimators, and derive their oracle, efficiency and robustness properties across a broad spectrum of reward shift scenarios. Numerical experiments and real-data-based analyses from a ridesharing company demonstrate the superior performance of the proposed estimators.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
We prove that the combination of a target network and over-parameterized linear function approximation establishes a weaker convergence condition for bootstrapped value estimation in certain cases, even with off-policy data. Our condition is naturally satisfied for expected updates over the entire state-action space or learning with a batch of complete trajectories from episodic Markov decision processes. Notably, using only a target network or an over-parameterized model does not provide such a convergence guarantee. Additionally, we extend our results to learning with truncated trajectories, showing that convergence is achievable for all tasks with minor modifications, akin to value truncation for the final states in trajectories. Our primary result focuses on temporal difference estimation for prediction, providing high-probability value estimation error bounds and empirical analysis on Baird's counterexample and a Four-room task. Furthermore, we explore the control setting, demonstrating that similar convergence conditions apply to Q-learning.
[ Hall C 4-9 ]

Abstract
Policy optimization from batch data, i.e., offline reinforcement learning (RL) is important when collecting data from a current policy is not possible. This setting incurs distribution mismatch between batch training data and trajectories from the current policy. Pessimistic offsets estimate mismatch using concentration bounds, which possess strong theoretical guarantees and simplicity of implementation. Mismatch may be conservative in sparse data regions and less so otherwise, which can result in under-performing their no-penalty variants in practice. We derive a new pessimistic penalty as the distance between the data and the true distribution using an evaluable one-sample test known as Stein Discrepancy that requires minimal smoothness conditions, and noticeably, allows a mixture family representation of distribution over next states. This entity forms a quantifier of information in offline data, which justifies calling this approach information-directed pessimism (IDP) for offline RL. We further establish that this new penalty based on discrete Stein discrepancy yields practical gains in performance while generalizing the regret of prior art to multimodal distributions.
[ Hall C 4-9 ]

Abstract
Despite the recent advancements in offline RL, no unified algorithm could achieve superior performance across a broad range of tasks. Offline value function learning, in particular, struggles with sparse-reward, long-horizon tasks due to the difficulty of solving credit assignment and extrapolation errors that accumulates as the horizon of the task grows. On the other hand, models that can perform well in long-horizon tasks are designed specifically for goal-conditioned tasks, which commonly perform worse than value function learning methods on short-horizon, dense-reward scenarios. To bridge this gap, we propose a hierarchical planner designed for offline RL called PlanDQ. PlanDQ incorporates a diffusion-based planner at the high level, named D-Conductor, which guides the low-level policy through sub-goals. At the low level, we used a Q-learning based approach called the Q-Performer to accomplish these sub-goals. Our experimental results suggest that PlanDQ can achieve superior or competitive performance on D4RL continuous control benchmark tasks as well as AntMaze, Kitchen, and Calvin as long-horizon tasks.
[ Hall C 4-9 ]
Abstract
In this paper, we propose an off-policy deep reinforcement learning (DRL) method utilizing the average reward criterion. While most existing DRL methods employ the discounted reward criterion, this can potentially lead to a discrepancy between the training objective and performance metrics in continuing tasks, making the average reward criterion a recommended alternative. We introduce RVI-SAC, an extension of the state-of-the-art off-policy DRL method, Soft Actor-Critic (SAC), to the average reward criterion. Our proposal consists of (1) Critic updates based on RVI Q-learning, (2) Actor updates introduced by the average reward soft policy improvement theorem, and (3) automatic adjustment of Reset Cost enabling the average reward reinforcement learning to be applied to tasks with termination. We apply our method to the Gymnasium's Mujoco tasks, a subset of locomotion tasks, and demonstrate that RVI-SAC shows competitive performance compared to existing methods.
[ Hall C 4-9 ]

Abstract
Real-time inference is a challenge of real-world reinforcement learning due to temporal differences in time-varying environments: the system collects data from the past, updates the decision model in the present, and deploys it in the future. We tackle a common belief that continually updating the decision is optimal to minimize the temporal gap. We propose forecasting an online reinforcement learning framework and show that strategically pausing decision updates yields better overall performance by effectively managing aleatoric uncertainty. Theoretically, we compute an optimal ratio between policy update and hold duration, and show that a non-zero policy hold duration provides a sharper upper bound on the dynamic regret. Our experimental evaluations on three different environments also reveal that a non-zero policy hold duration yields higher rewards compared to continuous decision updates.
[ Hall C 4-9 ]

Abstract
The goal-reaching tasks with safety constraints are common control problems in real world, such as intelligent driving and robot manipulation. The difficulty of this kind of problem comes from the exploration termination caused by safety constraints and the sparse rewards caused by goals. The existing safe RL avoids unsafe exploration by restricting the search space to a feasible region, the essence of which is the pruning of the search space. However, there are still many ineffective explorations in the feasible region because of the ignorance of the goals. Our approach considers both safety and goals; the policy space pruning is achieved by a function called feasible reachable function, which describes whether there is a policy to make the agent safely reach the goals in the finite time domain. This function naturally satisfies the self-consistent condition and the risky Bellman equation, which can be solved by the fixed point iteration method. On this basis, we propose feasible reachable policy iteration (FRPI), which is divided into three steps: policy evaluation, region expansion, and policy improvement. In the region expansion step, by using the information of agent to reach the goals, the convergence of the feasible region is accelerated, and simultaneously a smaller …
[ Hall C 4-9 ]
Abstract
We propose a novel algorithmic framework for distributional reinforcement learning, based on learning finite-dimensional mean embeddings of return distributions. The framework reveals a wide variety of new algorithms for dynamic programming and temporal-difference algorithms that rely on the sketch Bellman operator, which updates mean embeddings with simple linear-algebraic computations. We provide asymptotic convergence theory, and examine the empirical performance of the algorithms on a suite of tabular tasks. Further, we show that this approach can be straightforwardly combined with deep reinforcement learning.
[ Hall C 4-9 ]

Abstract
Many roboticists dream of presenting a robot with a task in the evening and returning the next morning to find the robot capable of solving the task. What is preventing us from achieving this? Sim-to-real reinforcement learning (RL) has achieved impressive performance on challenging robotics tasks, but requires substantial human effort to set up the task in a way that is amenable to RL. It's our position that algorithmic improvements in policy optimization and other ideas should be guided towards resolving the primary bottleneck of shaping the training environment, i.e., designing observations, actions, rewards and simulation dynamics. Most practitioners don't tune the RL algorithm, but other environment parameters to obtain a desirable controller. We posit that scaling RL to diverse robotic tasks will only be achieved if the community focuses on automating environment shaping procedures.
[ Hall C 4-9 ]
Abstract
Training reinforcement learning policies using environment interaction data collected from varying policies or dynamics presents a fundamental challenge. Existing works often overlook the distribution discrepancies induced by policy or dynamics shifts, or rely on specialized algorithms with task priors, thus often resulting in suboptimal policy performances and high learning variances. In this paper, we identify a unified strategy for online RL policy learning under diverse settings of policy and dynamics shifts: transition occupancy matching. In light of this, we introduce a surrogate policy learning objective by considering the transition occupancy discrepancies and then cast it into a tractable min-max optimization problem through dual reformulation. Our method, dubbed Occupancy-Matching Policy Optimization (OMPO), features a specialized actor-critic structure equipped with a distribution discriminator and a small-size local buffer. We conduct extensive experiments based on the OpenAI Gym, Meta-World, and Panda Robots environments, encompassing policy shifts under stationary and non-stationary dynamics, as well as domain adaption. The results demonstrate that OMPO outperforms the specialized baselines from different categories in all settings. We also find that OMPO exhibits particularly strong performance when combined with domain randomization, highlighting its potential in RL-based robotics applications.
[ Hall C 4-9 ]

Abstract
In this paper, we study offline-to-online Imitation Learning (IL) that pretrains an imitation policy from static demonstration data, followed by fast finetuning with minimal environmental interaction. We find the naive combination of existing offline IL and online IL methods tends to behave poorly in this context, because the initial discriminator (often used in online IL) operates randomly and discordantly against the policy initialization, leading to misguided policy optimization and unlearning of pretraining knowledge. To overcome this challenge, we propose a principled offline-to-online IL method, named OLLIE, that simultaneously learns a near-expert policy initialization along with an aligned discriminator initialization, which can be seamlessly integrated into online IL, achieving smooth and fast finetuning. Empirically, OLLIE consistently and significantly outperforms the baseline methods in 20 challenging tasks, from continuous control to vision-based domains, in terms of performance, demonstration efficiency, and convergence speed. This work may serve as a foundation for further exploration of pretraining and finetuning in the context of IL.
[ Hall C 4-9 ]

Abstract
Model-based reinforcement learning (MBRL) holds the promise of sample-efficient learning by utilizing a world model, which models how the environment works and typically encompasses components for two tasks: observation modeling and reward modeling. In this paper, through a dedicated empirical investigation, we gain a deeper understanding of the role each task plays in world models and uncover the overlooked potential of sample-efficient MBRL by mitigating the domination of either observation or reward modeling. Our key insight is that while prevalent approaches of explicit MBRL attempt to restore abundant details of the environment via observation models, it is difficult due to the environment's complexity and limited model capacity. On the other hand, reward models, while dominating implicit MBRL and adept at learning compact task-centric dynamics, are inadequate for sample-efficient learning without richer learning signals. Motivated by these insights and discoveries, we propose a simple yet effective approach, HarmonyDream, which automatically adjusts loss coefficients to maintain task harmonization, i.e. a dynamic equilibrium between the two tasks in world model learning. Our experiments show that the base MBRL method equipped with HarmonyDream gains 10%-69% absolute performance boosts on visual robotic tasks and sets a new state-of-the-art result on the Atari 100K benchmark. Code …
[ Hall C 4-9 ]

Abstract
Imitation learning mimics high-quality policies from expert data for sequential decision-making tasks. However, its efficacy is hindered in scenarios where optimal demonstrations are unavailable, and only imperfect demonstrations are present. To address this issue, introducing additional limited human preferences is a suitable approach as it can be obtained in a human-friendly manner, offering a promising way to learn the policy that exceeds the performance of imperfect demonstrations. In this paper, we propose a novel imitation learning (IL) algorithm, Preference Aided Imitation Learning from imperfect demonstrations (PAIL). Specifically, PAIL learns a preference reward by querying experts for limited preferences from imperfect demonstrations. This serves two purposes during training: 1) Reweighting imperfect demonstrations with the preference reward for higher quality. 2) Selecting explored trajectories with high cumulative preference rewards to augment imperfect demonstrations. The dataset with continuously improving quality empowers the performance of PAIL to transcend the initial demonstrations. Comprehensive empirical results across a synthetic task and two locomotion benchmarks show that PAIL surpasses baselines by 73.2% and breaks through the performance bottleneck of imperfect demonstrations.
[ Hall C 4-9 ]

Abstract
Graph representation has gained widespread application across various machine learning domains, attributed to its ability to discern correlations among input nodes. In the realm of Multi- agent Reinforcement Learning (MARL), agents are tasked with observing other entities within their environment to determine their behavior. Conventional MARL methodologies often suffer from training difficulties if Permutation Invariant (PI) and Permutation Equivariant (PE) properties are not considered during training. The adoption of graph representation offers a solution to these challenges by conceptualizing observed entities as a graph. In this context, we introduce the Hyper Graphical Attention Policy (HGAP) Network, which employs a graph attention mechanism to fulfill the PI and PE properties, while also understanding inter-entity interactions for decision-making. HGAP is assessed across various MARL benchmarks to confirm its effectiveness and efficiency. In addition, a series of ablation studies are provided to demonstrate its adaptability, transferability, and the capability to alleviate the complexities introduced by the POMDP constraint.
[ Hall C 4-9 ]

Abstract
Despite the recent successes of multi-agent reinforcement learning (MARL) algorithms, efficiently adapting to co-players in mixed-motive environments remains a significant challenge. One feasible approach is to hierarchically model co-players' behavior based on inferring their characteristics. However, these methods often encounter difficulties in efficient reasoning and utilization of inferred information. To address these issues, we propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm that enables few-shot adaptation to unseen policies in mixed-motive environments. HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies, and a planning module that employs Monte Carlo Tree Search (MCTS) to identify the best response. Our approach improves efficiency by updating beliefs about others' goals both across and within episodes and by using information from the opponent modeling module to guide planning. Experimental results demonstrate that in mixed-motive environments, HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios. Furthermore, the emergence of social intelligence during our experiments underscores the potential of our approach in complex multi-agent environments.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
The popularity of multiagent reinforcement learning (MARL) is growing rapidly with the demand for real-world tasks that require swarm intelligence. However, a noticeable drawback of MARL is its low sample efficiency, which leads to a huge amount of interactions with the environment. Surprisingly, few MARL works focus on this practical problem especially in the parallel environment setting, which greatly hampers the application of MARL into the real world. In response to this gap, in this paper, we propose Multiagent Reinforcement Learning with Reset Replay (MARR) to greatly improve the sample efficiency of MARL by enabling MARL training at a high replay ratio in the parallel environment setting for the first time. To achieve this, first, a reset strategy is introduced for maintaining the network plasticity to ensure that MARL continually learns with a high replay ratio. Second, MARR incorporates a data augmentation technique to boost the sample efficiency further. Extensive experiments in SMAC and MPE show that MARR significantly improves the performance of various MARL approaches with much fewer environment interactions.
[ Hall C 4-9 ]

Abstract
Towards energy-efficient artificial intelligence similar to the human brain, the bio-inspired spiking neural networks (SNNs) have advantages of biological plausibility, event-driven sparsity, and binary activation. Recently, large-scale language models exhibit promising generalization capability, making it a valuable issue to explore more general spike-driven models. However, the binary spikes in existing SNNs fail to encode adequate semantic information, placing technological challenges for generalization. This work proposes the first fully spiking mechanism for general language tasks, including both discriminative and generative ones. Different from previous spikes with 0,1 levels, we propose a more general spike formulation with bi-directional, elastic amplitude, and elastic frequency encoding, while still maintaining the addition nature of SNNs. In a single time step, the spike is enhanced by direction and amplitude information; in spike frequency, a strategy to control spike firing rate is well designed. We plug this elastic bi-spiking mechanism in language modeling, named SpikeLM. It is the first time to handle general language tasks with fully spike-driven models, which achieve much higher accuracy than previously possible. SpikeLM also greatly bridges the performance gap between SNNs and ANNs in language modeling. Our code is available at https://github.com/Xingrun-Xing/SpikeLM.
[ Hall C 4-9 ]
Abstract
Constrained Markov decision processes (CMDPs) are a common way to model safety constraints in reinforcement learning. State-of-the-art methods for efficiently solving CMDPs are based on primal-dual algorithms. For these algorithms, all currently known regret bounds allow for error cancellations --- one can compensate for a constraint violation in one round with a strict constraint satisfaction in another. This makes the online learning process unsafe since it only guarantees safety for the final (mixture) policy but not during learning. As Efroni et al. (2020) pointed out, it is an open question whether primal-dual algorithms can provably achieve sublinear regret if we do not allow error cancellations. In this paper, we give the first affirmative answer. We first generalize a result on last-iterate convergence of regularized primal-dual schemes to CMDPs with multiple constraints. Building upon this insight, we propose a model-based primal-dual algorithm to learn in an unknown CMDP. We prove that our algorithm achieves sublinear regret without error cancellations.
[ Hall C 4-9 ]
Abstract
Novel reinforcement learning algorithms, or improvements on existing ones, are commonly justified by evaluating their performance on benchmark environments and are compared to an ever-changing set of standard algorithms. However, despite numerous calls for improvements, experimental practices continue to produce misleading or unsupported claims. One reason for the ongoing substandard practices is that conducting rigorous benchmarking experiments requires substantial computational time. This work investigates the sources of increased computation costs in rigorous experiment designs. We show that conducting rigorous performance benchmarks will likely have computational costs that are often prohibitive. As a result, we argue for using an additional experimentation paradigm to overcome the limitations of benchmarking.
[ Hall C 4-9 ]
Abstract
We introduce Sequential Neural Posterior Score Estimation (SNPSE), a score-based method for Bayesian inference in simulator-based models. Our method, inspired by the remarkable success of score-based methods in generative modelling, leverages conditional score-based diffusion models to generate samples from the posterior distribution of interest. The model is trained using an objective function which directly estimates the score of the posterior. We embed the model into a sequential training procedure, which guides simulations using the current approximation of the posterior at the observation of interest, thereby reducing the simulation cost. We also introduce several alternative sequential approaches, and discuss their relative merits. We then validate our method, as well as its amortised, non-sequential, variant on several numerical examples, demonstrating comparable or superior performance to existing state-of-the-art methods such as Sequential Neural Posterior Estimation (SNPE).
[ Hall C 4-9 ]
Abstract
GFlowNets are probabilistic models that sequentially generate compositional structures through a stochastic policy. Among GFlowNets, temperature-conditional GFlowNets can introduce temperature-based controllability for exploration and exploitation. We propose Logit-scaling GFlowNets (Logit-GFN), a novel architectural design that greatly accelerates the training of temperature-conditional GFlowNets. It is based on the idea that previously proposed approaches introduced numerical challenges in the deep network training, since different temperatures may give rise to very different gradient profiles as well as magnitudes of the policy's logits. We find that the challenge is greatly reduced if a learned function of the temperature is used to scale the policy's logits directly. Also, using Logit-GFN, GFlowNets can be improved by having better generalization capabilities in offline learning and mode discovery capabilities in online learning, which is empirically verified in various biological and chemical tasks. Our code is available at https://github.com/dbsxodud-11/logit-gfn
[ Hall C 4-9 ]
Abstract
We develop two density ratio estimation (DRE) methods with robustness to outliers. These are based on the divergence with a weight function to weaken the adverse effects of outliers. One is based on the Unnormalized Kullback-Leibler divergence, called Weighted DRE, and its optimization is a convex problem. The other is based on the γ-divergence, called γ-DRE, which improves a normalizing term problem of Weighted DRE. Its optimization is a DC (Difference of Convex functions) problem and needs more computation than a convex problem. These methods have doubly strong robustness, which means robustness to the heavy contamination of both the reference and target distributions. Numerical experiments show that our proposals are more robust than the previous methods.
[ Hall C 4-9 ]
Abstract
How do we infer a 3D scene from a single image in the presence of corruptions like rain, snow or fog? Straightforward domain randomization relies on knowing the family of corruptions ahead of time. Here, we propose a Bayesian approach---dubbed robust inverse graphics (RIG)---that relies on a strong scene prior and an uninformative uniform corruption prior, making it applicable to a wide range of corruptions. Given a single image, RIG performs posterior inference jointly over the scene and the corruption. We demonstrate this idea by training a neural radiance field (NeRF) scene prior and using a secondary NeRF to represent the corruptions over which we place an uninformative prior. RIG, trained only on clean data, outperforms depth estimators and alternative NeRF approaches that perform point estimation instead of full inference. The results hold for a number of scene prior architectures based on normalizing flows and diffusion models. For the latter, we develop reconstruction-guidance with auxiliary latents (ReGAL)---a diffusion conditioning algorithm that is applicable in the presence of auxiliary latent variables such as the corruption. RIG demonstrates how scene priors can be used beyond generation tasks.
[ Hall C 4-9 ]

Abstract
Deep Gaussian processes (DGPs) provide a robust paradigm in Bayesian deep learning. In DGPs, a set of sparse integration locations called inducing points are selected to approximate the posterior distribution of the model. This is done to reduce computational complexity and improve model efficiency. However, inferring the posterior distribution of inducing points is not straightforward. Traditional variational inference techniques methods to approximate the posterior often leads to significant bias. To address this issue, we propose an alternative named Denoising Diffusion Variational Inference (DDVI) that utilizes a denoising diffusion stochastic differential equation (SDE) for generating posterior samples of inducing variables. We refer to the score matching method in the denoising diffusion model to approximate challenging score functions using a neural network. Furthermore, by combining classical mathematical theory of SDE with the minimization of KL divergence between the approximate and true processes, we propose a novel explicit variational lower bound for the marginal likelihood function of DGP. Through extensive experiments on various datasets and comparisons with baseline methods, we empirically demonstrate the effectiveness of the DDVI method in posterior inference of inducing points for DGP models.
[ Hall C 4-9 ]

Abstract
In this paper, we present Partially Stochastic Infinitely Deep Bayesian Neural Networks, a novel family of architectures that integrates partial stochasticity into the framework of infinitely deep neural networks. Our new class of architectures is designed to improve the computational efficiency of existing architectures at training and inference time. To do this, we leverage the advantages of partial stochasticity in the infinite-depth limit which include the benefits of full stochasticity e.g. robustness, uncertainty quantification, and memory efficiency, whilst improving their limitations around computational complexity. We present a variety of architectural configurations, offering flexibility in network design including different methods for weight partition. We also provide mathematical guarantees on the expressivity of our models by establishing that our network family qualifies as Universal Conditional Distribution Approximators. Lastly, empirical evaluations across multiple tasks show that our proposed architectures achieve better downstream task performance and uncertainty quantification than their counterparts while being significantly more efficient. The code can be found at https://github.com/Sergio20f/partstochinf_deep
[ Hall C 4-9 ]

Abstract
In recent years, denoising problems have become intertwined with the development of deep generative models. In particular, diffusion models are trained like denoisers, and the distribution they model coincide with denoising priors in the Bayesian picture. However, denoising through diffusion-based posterior sampling requires the noise level and covariance to be known, preventing blind denoising. We overcome this limitation by introducing Gibbs Diffusion (GDiff), a general methodology addressing posterior sampling of both the signal and the noise parameters. Assuming arbitrary parametric Gaussian noise, we develop a Gibbs algorithm that alternates sampling steps from a conditional diffusion model trained to map the signal prior to the class of noise distributions, and a Monte Carlo sampler to infer the noise parameters. Our theoretical analysis highlights potential pitfalls, guides diagnostic usage, and quantifies errors in the Gibbs stationary distribution caused by the diffusion model. We showcase our method for 1) blind denoising of natural images involving colored noises with unknown amplitude and exponent, and 2) a cosmology problem, namely the analysis of cosmic microwave background data, where Bayesian inference of "noise" parameters means constraining models of the evolution of the Universe.
[ Hall C 4-9 ]
Abstract
Many scientific models are composed of multiple discrete components, and scientists often make heuristic decisions about which components to include. Bayesian inference provides a mathematical framework for systematically selecting model components, but defining prior distributions over model components and developing associated inference schemes has been challenging. We approach this problem in a simulation-based inference framework: We define model priors over candidate components and, from model simulations, train neural networks to infer joint probability distributions over both model components and associated parameters. Our method, simulation-based model inference (SBMI), represents distributions over model components as a conditional mixture of multivariate binary distributions in the Grassmann formalism. SBMI can be applied to any compositional stochastic simulator without requiring likelihood evaluations. We evaluate SBMI on a simple time series model and on two scientific models from neuroscience, and show that it can discover multiple data-consistent model configurations, and that it reveals non-identifiable model components and parameters. SBMI provides a powerful tool for data-driven scientific inquiry which will allow scientists to identify essential model components and make uncertainty-informed modelling decisions.
[ Hall C 4-9 ]
Abstract
Representing uncertainty in causal discovery is a crucial component for experimental design, and more broadly, for safe and reliable causal decision making. Bayesian Causal Discovery (BCD) offers a principled approach to encapsulating this uncertainty. Unlike non-Bayesian causal discovery, which relies on a single estimated causal graph and model parameters for assessment, evaluating BCD presents challenges due to the nature of its inferred quantity – the posterior distribution. As a result, the research community has proposed various metrics to assess the quality of the approximate posterior. However, there is, to date, no consensus on the most suitable metric(s) for evaluation. In this work, we reexamine this question by dissecting various metrics and understanding their limitations. Through extensive empirical evaluation, we find that many existing metrics fail to exhibit a strong correlation with the quality of approximation to the true posterior, especially in scenarios with low sample sizes where BCD is most desirable. We highlight the suitability (or lack thereof) of these metrics under two distinct factors: the identifiability of the underlying causal model and the quantity of available data. Both factors affect the entropy of the true posterior, indicating that the current metrics are less fitting in settings of higher entropy. …
[ Hall C 4-9 ]
Abstract
Inferring causal relationships as directed acyclic graphs (DAGs) is an important but challenging problem. Differentiable Causal Discovery (DCD) is a promising approach to this problem, framing the search as a continuous optimization. But existing DCD methods are numerically unstable, with poor performance beyond tens of variables. In this paper, we propose Stable Differentiable Causal Discovery (SDCD), a new method that improves previous DCD methods in two ways: (1) It employs an alternative constraint for acyclicity; this constraint is more stable, both theoretically and empirically, and fast to compute. (2) It uses a training procedure tailored for sparse causal graphs, which are common in real-world scenarios. We first derive SDCD and prove its stability and correctness. We then evaluate it with both observational and interventional data and in both small-scale and large-scale settings. We find that SDCD outperforms existing methods in convergence speed and accuracy, and can scale to thousands of variables.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
The performance of Markov chain Monte Carlo samplers strongly depends on the properties of the target distribution such as its covariance structure, the location of its probability mass and its tail behavior. We explore the use of bijective affine transformations of the sample space to improve the properties of the target distribution and thereby the performance of samplers running in the transformed space. In particular, we propose a flexible and user-friendly scheme for adaptively learning the affine transformation during sampling. Moreover, the combination of our scheme with Gibbsian polar slice sampling is shown to produce samples of high quality at comparatively low computational cost in several settings based on real-world data.
[ Hall C 4-9 ]

Abstract
The widespread use of artificial intelligence requires finding energy-efficient paradigms for the field. We propose to reduce the energy consumption of Gaussian process regression using low-precision floating-point representations. We explore how low-precision representations impact the results of Gaussian process regression and how data set properties, implementation approach, model performance, and energy consumption interact. Our findings show that a well-conditioned kernel matrix allows reducing the energy consumption by up to 89.01% for 98.08% of arithmetic operations with little to no impact on model performance. Our findings are relevant whenever one needs to invert a symmetric full-rank matrix.
[ Hall C 4-9 ]
Abstract
Deep kernel learning (DKL) marries the uncertainty quantification of Gaussian processes (GPs) and the representational power of deep neural networks. However, training DKL is challenging and often leads to overfitting. Most notably, DKL often learns “non-local” kernels — incurring spurious correlations. To remedy this issue, we propose using amortized inducing points and a parameter-sharing scheme, which ties together the amortization and DKL networks. This design imposes an explicit dependency between the ELBO’s model fit and capacity terms. In turn, this prevents the former from dominating the optimization procedure and incurring the aforementioned spurious correlations. Extensive experiments show that our resulting method, amortized varitional DKL (AVDKL), i) consistently outperforms DKL and standard GPs for tabular data; ii) achieves significantly higher accuracy than DKL in node classification tasks; and iii) leads to substantially better accuracy and negative log-likelihood than DKL on CIFAR100.
[ Hall C 4-9 ]

Abstract
To enable closed form conditioning, a common assumption in Gaussian process (GP) regression is independent and identically distributed Gaussian observation noise. This strong and simplistic assumption is often violated in practice, which leads to unreliable inferences and uncertainty quantification. Unfortunately, existing methods for robustifying GPs break closed-form conditioning, which makes them less attractive to practitioners and significantly more computationally expensive. In this paper, we demonstrate how to perform provably robust and conjugate Gaussian process (RCGP) regression at virtually no additional cost using generalised Bayesian inference. RCGP is particularly versatile as it enables exact conjugate closed form updates in all settings where standard GPs admit them. To demonstrate its strong empirical performance, we deploy RCGP for problems ranging from Bayesian optimisation to sparse variational Gaussian processes.
[ Hall C 4-9 ]
Abstract
Gaussian process latent variable models (GPLVMs) are a versatile family of unsupervised learning models commonly used for dimensionality reduction. However, common challenges in modeling data with GPLVMs include inadequate kernel flexibility and improper selection of the projection noise, leading to a type of model collapse characterized by vague latent representations that do not reflect the underlying data structure. This paper addresses these issues by, first, theoretically examining the impact of projection variance on model collapse through the lens of a linear GPLVM. Second, we tackle model collapse due to inadequate kernel flexibility by integrating the spectral mixture (SM) kernel and a differentiable random Fourier feature (RFF) kernel approximation, which ensures computational scalability and efficiency through off-the-shelf automatic differentiation tools for learning the kernel hyperparameters, projection variance, and latent representations within the variational inference framework. The proposed GPLVM, named advisedRFLVM, is evaluated across diverse datasets and consistently outperforms various salient competing models, including state-of-the-art variational autoencoders (VAEs) and other GPLVM variants, in terms of informative latent representations and missing data imputation.
[ Hall C 4-9 ]

Abstract
Physics-informed machine learning (PIML) has established itself as a new scientific paradigm which enables the seamless integration of observational data with partial differential equation (PDE) based physics models. A powerful tool for the analysis, reduction and solution of PDEs is the Lie symmetry method. Nevertheless, only recently has the integration of such symmetries into PIML frameworks begun to be explored. The present work adds to this growing literature by introducing an approach for incorporating a Lie symmetry into a physics-informed Gaussian process (GP) model. The symmetry is introduced as a constraint on the GP; either in a soft manner via virtual observations of an induced PDE called the invariant surface condition, or explicitly through the design of the kernel. Experimental results demonstrate that the use of symmetry constraints improves the performance of the GP for both forward and inverse problems, and that our approach offers competitive performance with neural networks in the low-data environment.
[ Hall C 4-9 ]
Abstract
We propose the stochastic optimal path which solves the classical optimal path problem by a probability-softening solution. This unified approach transforms a wide range of DP problems into directed acyclic graphs in which all paths follow a Gibbs distribution. We show the equivalence of the Gibbs distribution to a message-passing algorithm by the properties of the Gumbel distribution and give all the ingredients required for variational Bayesian inference of a latent path, namely Bayesian dynamic programming (BDP). We demonstrate the usage of BDP in the latent space of variational autoencoders (VAEs) and propose the BDP-VAE which captures structured sparse optimal paths as latent variables. This enables end-to-end training for generative tasks in which models rely on unobserved structural information. At last, we validate the behavior of our approach and showcase its applicability in two real-world applications: text-to-speech and singing voice synthesis. Our implementation code is available at https://github.com/XinleiNIU/LatentOptimalPathsBayesianDP.
[ Hall C 4-9 ]
Abstract
Monte Carlo methods, Variational Inference, and their combinations play a pivotal role in sampling from intractable probability distributions. However, current studies lack a unified evaluation framework, relying on disparate performance measures and limited method comparisons across diverse tasks, complicating the assessment of progress and hindering the decision-making of practitioners. In response to these challenges, our work introduces a benchmark that evaluates sampling methods using a standardized task suite and a broad range of performance criteria. Moreover, we study existing metrics for quantifying mode collapse and introduce novel metrics for this purpose. Our findings provide insights into strengths and weaknesses of existing sampling methods, serving as a valuable reference for future developments.
[ Hall C 4-9 ]

Abstract
DreamCoder is an inductive program synthesis system that, whilst solving problems, learns to simplify search in an iterative wake-sleep procedure. The cost of search is amortized by training a neural search policy, reducing search breadth and effectively "compiling" useful information to compose program solutions across tasks. Additionally, a library of program components is learnt to compress and express discovered solutions in fewer components, reducing search depth. We present a novel approach for library learning that directly leverages the neural search policy, effectively "decompiling" its amortized knowledge to extract relevant program components. This provides stronger amortized inference: the amortized knowledge learnt to reduce search breadth is now also used to reduce search depth. We integrate our approach with DreamCoder and demonstrate faster domain proficiency with improved generalization on a range of domains, particularly when fewer example solutions are available.
[ Hall C 4-9 ]

Abstract
Graph clustering is a central topic in unsupervised learning with a multitude of practical applications. In recent years, multi-view graph clustering has gained a lot of attention for its applicability to real-world instances where one often has access to multiple data sources. In this paper we formalize a new family of models, called multi-view stochastic block models that capture this setting. For this model, we first study efficient algorithms that naively work on the union of multiple graphs. Then, we introduce a new efficient algorithm that provably outperforms previous approaches by analyzing the structure of each graph separately. Finally, we complement our results with an information-theoretic lower bound studying the limits of what can be done in this model.
[ Hall C 4-9 ]

Abstract
Generative models, like large language models, are becoming increasingly relevant in our daily lives, yet a theoretical framework to assess their generalization behavior and uncertainty does not exist. Particularly, the problem of uncertainty estimation is commonly solved in an ad-hoc and task-dependent manner. For example, natural language approaches cannot be transferred to image generation. In this paper, we introduce the first bias-variance-covariance decomposition for kernel scores. This decomposition represents a theoretical framework from which we derive a kernel-based variance and entropy for uncertainty estimation. We propose unbiased and consistent estimators for each quantity which only require generated samples but not the underlying model itself. Based on the wide applicability of kernels, we demonstrate our framework via generalization and uncertainty experiments for image, audio, and language generation. Specifically, kernel entropy for uncertainty estimation is more predictive of performance on CoQA and TriviaQA question answering datasets than existing baselines and can also be applied to closed-source models.
[ Hall C 4-9 ]
Abstract
One-shot imitation learning (OSIL) is to learn an imitator agent that can execute multiple tasks with only a single demonstration. In real-world scenario, the environment is dynamic, e.g., unexpected changes can occur after demonstration. Thus, achieving generalization of the imitator agent is crucial as agents would inevitably face situations unseen in the provided demonstrations. While traditional OSIL methods excel in relatively stationary settings, their adaptability to such unforeseen changes, which asking for a higher level of generalization ability for the imitator agents, is limited and rarely discussed. In this work, we present a new algorithm called Deep Demonstration Tracing (DDT). In DDT, we propose a demonstration transformer architecture to encourage agents to adaptively trace suitable states in demonstrations. Besides, it integrates OSIL into a meta-reinforcement-learning training paradigm, providing regularization for policies in unexpected situations. We evaluate DDT on a new navigation task suite and robotics tasks, demonstrating its superior performance over existing OSIL methods across all evaluated tasks in dynamic environments with unforeseen changes. The project page is in https://osil-ddt.github.io.
[ Hall C 4-9 ]

Abstract
Neural Network-based active learning (NAL) is a cost-effective data selection technique that utilizes neural networks to select and train on a small subset of samples. While existing work successfully develops various effective or theory-justified NAL algorithms, the understanding of the two commonly used query criteria of NAL: uncertainty-based and diversity-based, remains in its infancy. In this work, we try to move one step forward by offering a unified explanation for the success of both query criteria-based NAL from a feature learning view. Specifically, we consider a feature-noise data model comprising easy-to-learn or hard-to-learn features disrupted by noise, and conduct analysis over 2-layer NN-based NALs in the pool-based scenario. We provably show that both uncertainty-based and diversity-based NAL are inherently amenable to one and the same principle, i.e., striving to prioritize samples that contain yet-to-be-learned features. We further prove that this shared principle is the key to their success-achieve small test error within a small labeled set. Contrastingly, the strategy-free passive learning exhibits a large test error due to the inadequate learning of yet-to-be-learned features, necessitating resort to a significantly larger label complexity for a sufficient test error reduction. Experimental results validate our findings.
[ Hall C 4-9 ]

Abstract
We study inductive bias in Transformers in the infinitely over-parameterized Gaussian process limit and argue transformers tend to be biased towards more permutation symmetric functions in sequence space. We show that the representation theory of the symmetric group can be used to give quantitative analytical predictions when the dataset is symmetric to permutations between tokens. We present a simplified transformer block and solve the model at the limit, including accurate predictions for the learning curves and network outputs. We show that in common setups, one can derive tight bounds in the form of a scaling law for the learnability as a function of the context length. Finally, we argue WikiText dataset, does indeed possess a degree of permutation symmetry.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Many machine learning tasks can be formulated as a stochastic compositional optimization (SCO) problem such as reinforcement learning, AUC maximization and meta-learning, where the objective function involves a nested composition associated with an expectation. Although many studies have been devoted to studying the convergence behavior of SCO algorithms, there is little work on understanding their generalization, that is, how these learning algorithms built from training data would behave on future test examples. In this paper, we provide the stability and generalization analysis of stochastic compositional gradient descent algorithms in the framework of statistical learning theory. Firstly, we introduce a stability concept called compositional uniform stability and establish its quantitative relation with generalization for SCO problems. Then, we establish the compositional uniform stability results for two notable stochastic compositional gradient descent algorithms, namely SCGD and SCSC. Finally, we derive dimension-independent excess risk bounds for SCGD and SCSC by balancing stability results and optimization errors. To the best of our knowledge, these are the first-ever known results on stability and generalization analysis of stochastic compositional gradient descent algorithms.
[ Hall C 4-9 ]

Abstract
In this work, we consider the notion of "criterion collapse," in which optimization of one metric implies optimality in another, with a particular focus on conditions for collapse into error probability minimizers under a wide variety of learning criteria, ranging from DRO and OCE risks (CVaR, tilted ERM) to non-monotonic criteria underlying recent ascent-descent algorithms explored in the literature (Flooding, SoftAD). We show how collapse in the context of losses with a Bernoulli distribution goes far beyond existing results for CVaR and DRO, then expand our scope to include surrogate losses, showing conditions where monotonic criteria such as tilted ERM cannot avoid collapse, whereas non-monotonic alternatives can.
[ Hall C 4-9 ]

Abstract
The implicit bias of gradient-based training algorithms has been considered mostly beneficial as it leads to trained networks that often generalize well. However, Frei et al. (2023) show that such implicit bias can harm adversarial robustness. Specifically, they show that if the data consists of clusters with small inter-cluster correlation, a shallow (two-layer) ReLU network trained by gradient flow generalizes well, but it is not robust to adversarial attacks of small radius. Moreover, this phenomenon occurs despite the existence of a much more robust classifier that can be explicitly constructed from a shallow network. In this paper, we extend recent analyses of neuron alignment to show that a shallow network with a polynomial ReLU activation (pReLU) trained by gradient flow not only generalizes well but is also robust to adversarial attacks. Our results highlight the importance of the interplay between data structure and architecture design in the implicit bias and robustness of trained networks.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
A wide range of empirical and theoretical works have shown that overparameterisation can amplify the performance of neural networks. According to the lottery ticket hypothesis, overparameterised networks have an increased chance of containing a sub-network that is well-initialised to solve the task at hand. A more parsimonious approach, inspired by animal learning, consists in guiding the learner towards solving the task by curating the order of the examples, ie. providing a curriculum. However, this learning strategy seems to be hardly beneficial in deep learning applications. In this work, we propose a theoretical analysis that connects curriculum learning and overparameterisation. In particular, we investigate their interplay in the online learning setting for a 2-layer network in the XOR-like Gaussian Mixture problem. Our results show that a high degree of overparameterisation---while simplifying the problem---can limit the benefit from curricula, providing a theoretical account of the ineffectiveness of curricula in deep learning.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Modern language models can contain billions of parameters, raising the question of whether they can generalize beyond the training data or simply parrot their training corpora. We provide the first non-vacuous generalization bounds for pretrained large language models (LLMs), indicating that language models are capable of discovering regularities that generalize to unseen data. In particular, we derive a compression bound that is valid for the unbounded log-likelihood loss using prediction smoothing, and we extend the bound to handle subsampling, making bound computation 900 times faster on massive datasets. To achieve the extreme level of compression required for non-vacuous bounds, we devise SubLoRA, a simple low-dimensional nonlinear parameterization that leads to non-vacuous generalization bounds for very large models with up to 849 million parameters. Finally, we use our bounds to understand LLM generalization and find that larger models have better generalization bounds and are more compressible than smaller models.
[ Hall C 4-9 ]

Abstract
Data augmentation (DA) is a powerful workhorse for bolstering performance in modern machine learning. Specific augmentations like translations and scaling in computer vision are traditionally believed to improve generalization by generating new (artificial) data from the same distribution. However, this traditional viewpoint does not explain the success of prevalent augmentations in modern machine learning (e.g. randomized masking, cutout, mixup), that greatly alter the training data distribution. In this work, we develop a new theoretical framework to characterize the impact of a general class of DA on underparameterized and overparameterized linear model generalization. Our framework reveals that DA induces implicit spectral regularization through a combination of two distinct effects: a) manipulating the relative proportion of eigenvalues of the data covariance matrix in a training-data-dependent manner, and b) uniformly boosting the entire spectrum of the data covariance matrix through ridge regression. These effects, when applied to popular augmentations, give rise to a wide variety of phenomena, including discrepancies in generalization between overparameterized and underparameterized regimes and differences between regression and classification tasks. Our framework highlights the nuanced and sometimes surprising impacts of DA on generalization, and serves as a testbed for novel augmentation design.
[ Hall C 4-9 ]

Abstract
We investigate the accuracy of prediction in deterministic learning dynamics of zero-sum games with random initializations, specifically focusing on observer uncertainty and its relationship to the evolution of covariances. Zero-sum games are a prominent field of interest in machine learning due to their various applications. Concurrently, the accuracy of prediction in dynamical systems from mechanics has long been a classic subject of investigation since the discovery of the Heisenberg Uncertainty Principle. This principle employs covariance and standard deviation of particle states to measure prediction accuracy. In this study, we bring these two approaches together to analyze the Follow-the-Regularized-Leader (FTRL) algorithm in two-player zero-sum games. We provide growth rates of covariance information for continuous-time FTRL, as well as its two canonical discretization methods (Euler and Symplectic). A Heisenberg-type inequality is established for FTRL. Our analysis and experiments also show that employing Symplectic discretization enhances the accuracy of prediction in learning dynamics.
[ Hall C 4-9 ]
Abstract
This paper studies kernel ridge regression in high dimensions under covariate shifts and analyzes the role of importance re-weighting. We first derive the asymptotic expansion of high dimensional kernels under covariate shifts. By a bias-variance decomposition, we theoretically demonstrate that the re-weighting strategy allows for decreasing the variance. For bias, we analyze the regularization of the arbitrary or well-chosen scale, showing that the bias can behave very differently under different regularization scales. In our analysis, the bias and variance can be characterized by the spectral decay of a data-dependent regularized kernel: the original kernel matrix associated with an additional re-weighting matrix, and thus the re-weighting strategy can be regarded as a data-dependent regularization for better understanding. Besides, our analysis provides asymptotic expansion of kernel functions/vectors under covariate shift, which has its own interest.
[ Hall C 4-9 ]

Abstract
This paper presents an efficient and scalable incomplete multi-view clustering method, referred to as Enhanced Dictionary-Induced tenSorized incomplete multi-view clustering with Gaussian errOr raNk minimization (EDISON). Specifically, EDISON employs an enhanced dictionary representation strategy as the foundation for inferring missing data and constructing anchor graphs, ensuring robustness to less-than-ideal data and maintaining high computational efficiency. Additionally, we introduce Gaussian error rank as a concise approximation of the true tensor rank, facilitating a comprehensive exploration of the diverse information encapsulated by various singular values in tensor data. Additionally, we integrate a hyper-anchor graph Laplacian manifold regularization into the tensor representation, allowing for the simultaneous utilization of inter-view high-order correlations and intra-view local correlations. Extensive experiments demonstrate the superiority of the EDISON model in both effectiveness and efficiency compared to SOTA methods.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
We study online learning in episodic constrained Markov decision processes (CMDPs), where the learner aims at collecting as much reward as possible over the episodes, while satisfying some long-term constraints during the learning process. Rewards and constraints can be selected either stochastically or adversarially, and the transition function is not known to the learner. While online learning in classical (unconstrained) MDPs has received considerable attention over the last years, the setting of CMDPs is still largely unexplored. This is surprising, since in real-world applications, such as, e.g., autonomous driving, automated bidding, and recommender systems, there are usually additional constraints and specifications that an agent has to obey during the learning process. In this paper, we provide the first best-of-both-worlds algorithm for CMDPs with long-term constraints, in the flavor of Balseiro et al. (2023). Our algorithm is capable of handling settings in which rewards and constraints are selected either stochastically or adversarially, without requiring any knowledge of the underling process. Moreover, our algorithm matches state-of-the-art regret and constraint violation bounds for settings in which constraints are selected stochastically, while it is the first to provide guarantees in the case in which they are chosen adversarially.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Reinforcement learning with multiple, potentially conflicting objectives is pervasive in real-world applications, while this problem remains theoretically under-explored. This paper tackles the multi-objective reinforcement learning (MORL) problem and introduces an innovative actor-critic algorithm named MOAC which finds a policy by iteratively making trade-offs among conflicting reward signals. Notably, we provide the first analysis of finite-time Pareto-stationary convergence and corresponding sample complexity in both discounted and average reward settings. Our approach has two salient features: (a) MOAC mitigates the cumulative estimation bias resulting from finding an optimal common gradient descent direction out of stochastic samples. This enables provable convergence rate and sample complexity guarantees independent of the number of objectives; (b) With proper momentum coefficient, MOAC initializes the weights of individual policy gradients using samples from the environment, instead of manual initialization. This enhances the practicality and robustness of our algorithm. Finally, experiments conducted on a real-world dataset validate the effectiveness of our proposed method.
[ Hall C 4-9 ]

Abstract
Random probabilities are a key component to many nonparametric methods in Statistics and Machine Learning. To quantify comparisons between different laws of random probabilities several works are starting to use the elegant Wasserstein over Wasserstein distance. In this paper we prove that the infinite dimensionality of the space of probabilities drastically deteriorates its sample complexity, which is slower than any polynomial rate in the sample size. We propose a new distance that preserves many desirable properties of the former while achieving a parametric rate of convergence. In particular, our distance 1) metrizes weak convergence; 2) can be estimated numerically through samples with low complexity; 3) can be bounded analytically from above and below. The main ingredient are integral probability metrics, which lead to the name hierarchical IPM.
[ Hall C 4-9 ]

Abstract
Zhang et al. (ICML 2021, PLMR 139, pp. 12447–12457) introduced probabilistic generating circuits (PGCs) as a probabilistic model to unify probabilistic circuits (PCs) and determinantal point processes (DPPs). At a first glance, PGCs store a distribution in a very different way, they compute the probability generating polynomial instead of the probability mass function and it seems that this is the main reason why PGCs are more powerful than PCs or DPPs. However, PGCs also allow for negative weights, whereas classical PCs assume that all weights are nonnegative. One main insight of this work is that the negative weights are the cause for the power of PGCs and not the different representation. PGCs are PCs in disguise: we show how to transform any PGC on binary variables into a PC with negative weights with only polynomial blowup. PGCs were defined by Zhang et al. only for binary random variables. As our second main result, we show that there is a good reason for this: we prove that PGCs for categorical variables with larger image size do not support tractable marginalization unless NP=P. On the other hand, we show that we can model categorical variables with larger image size as PC with …
[ Hall C 4-9 ]

Abstract
In this work, we develop a new theory and method for sufficient dimension reduction (SDR) in single-index models, where SDR is a sub-field of supervised dimension reduction based on conditional independence. Our work is primarily motivated by the recent introduction of the Hellinger correlation as a dependency measure. Utilizing this measure, we have developed a method capable of effectively detecting the dimension reduction subspace, complete with theoretical justification. Through extensive numerical experiments, we demonstrate that our proposed method significantly enhances and outperforms existing SDR methods. This improvement is largely attributed to our proposed method's deeper understanding of data dependencies and the refinement of existing SDR techniques.
[ Hall C 4-9 ]

Abstract
In the face of uncertainty, the need for probabilistic assessments has long been recognized in the literature on forecasting. In classification, however, comparative evaluation of classifiers often focuses on predictions specifying a single class through the use of simple accuracy measures, which disregard any probabilistic uncertainty quantification. I propose probabilistic top lists as a novel type of prediction in classification, which bridges the gap between single-class predictions and predictive distributions. The probabilistic top list functional is elicitable through the use of strictly consistent evaluation metrics. The proposed evaluation metrics are based on symmetric proper scoring rules and admit comparison of various types of predictions ranging from single-class point predictions to fully specified predictive distributions. The Brier score yields a metric that is particularly well suited for this kind of comparison.
[ Hall C 4-9 ]
Abstract
A fundamental approach to semi-supervised learning is to leverage the structure of the sample space to diffuse label information from annotated examples to unlabeled points. Traditional methods model the input data points as a graph and rely on fast algorithms for solving Laplacian systems of equations, such as those defining PageRank. However, previous work has demonstrated that graph-based models fail to capture higher-order relations, such as group membership, which are better modeled by hypergraphs. Unfortunately, the scalable application of hypergraph models has been hampered by the non-linearity of the hypergraph Laplacian. In this paper, we present highly scalable algorithms for hypergraph primitives, such as hypergraph PageRank vectors and hypergraph Laplacian systems, over general families of hypergraphs. In addition to giving strong theoretical guarantees, we empirically showcase the speed of our algorithms on benchmark instances of semi-supervised learning on categorical data. We exploit their generality to improve semi-supervised manifold clustering via hypergraph models. By providing significant speed-ups on fundamental hypergraph tasks, our algorithms enable the deployment of hypergraph models on a massive scale.
[ Hall C 4-9 ]
Abstract
Recently various optimization problems, such as Mixed Integer Linear Programming Problems (MILPs), have undergone comprehensive investigation, leveraging the capabilities of machine learning. This work focuses on learning-based solutions for efficiently solving the Quadratic Assignment Problem (QAPs), which stands as a formidable challenge in combinatorial optimization. While many instances of simpler problems admit fully polynomial-time approximate solution (FPTAS), QAP is shown to be strongly NPhard. Even finding a FPTAS for QAP is difficult, in the sense that the existence of a FPTAS implies P = NP. Current research on QAPs suffer from limited scale and computational inefficiency. To attack the aforementioned issues, we here propose the first solution of its kind for QAP in the learn-to-improve category. This work encodes facility and location nodes separately, instead of forming computationally intensive association graphs prevalent in current approaches. This design choice enables scalability to larger problem sizes. Furthermore, a Solution AWare Transformer (SAWT) architecture integrates the incumbent solution matrix with the attention score to effectively capture higher-order information of the QAPs. Our model’s effectiveness is validated through extensive experiments on self-generated QAP instances of varying sizes and the QAPLIB benchmark.
[ Hall C 4-9 ]
Abstract
We investigate online Linear Quadratic Regulator (LQR) with bandit feedback and semi-adversarial disturbances. Previous works assume costs with homogeneous curvatures (i.e., with a uniform strong convexity lower bound), which can be hard to satisfy in many real scenarios and prohibits adapting to true curvatures for better performance. In this paper, we initiate the study of bandit LQR control with heterogeneous cost curvatures, aiming to strengthen the algorithm's adaptivity. To achieve this, we reduce the problem to bandit convex optimization with memory via a ``with-history'' reduction to avoid hard-to-control truncation errors. Then we provide a novel analysis for an important stability term that appeared in both regret and memory, using Newton decrement developed in interior-point methods. The analysis enables us to guarantee memory-related terms introduced in the reduction and also provide a simplified analysis for handling heterogeneous curvatures in bandit convex optimization. Finally, we achieve interpolated guarantees that can not only recover existing bounds for convex and quadratic costs but also attain new implications for cases of corrupted and decaying quadraticity.
[ Hall C 4-9 ]
Abstract
We consider Bayesian optimization using Gaussian Process models, also referred to as kernel-based bandit optimization. We study the methodology of exploring the domain using random samples drawn from a distribution. We show that this random exploration approach achieves the optimal error rates. Our analysis is based on novel concentration bounds in an infinite dimensional Hilbert space established in this work, which may be of independent interest. We further develop an algorithm based on random exploration with domain shrinking and establish its order-optimal regret guarantees under both noise-free and noisy settings. In the noise-free setting, our analysis closes the existing gap in regret performance under a mild assumption on the underlying function and thereby partially resolves a COLT open problem. The proposed algorithm also enjoys a computational advantage over prevailing methods due to the random exploration that obviates the expensive optimization of a non-convex acquisition function for choosing the query points at each iteration.
[ Hall C 4-9 ]

Abstract
We introduce the Continuum Physical Dataset (ContPhy), a novel benchmark for assessing machine physical commonsense. ContPhy complements existing physical reasoning benchmarks by encompassing the inference of diverse physical properties, such as mass and density, across various scenarios and predicting corresponding dynamics. We evaluated a range of AI models and found that they still struggle to achieve satisfactory performance on ContPhy, which shows that current AI models still lack physical commonsense for the continuum, especially soft-bodies, and illustrates the value of the proposed dataset. We also introduce an oracle model (ContPRO) that marries the particle-based physical dynamic models with the recent large language models, which enjoy the advantages of both models, precise dynamic predictions, and interpretable reasoning. ContPhy aims to spur progress in perception and reasoning within diverse physical settings, narrowing the divide between human and machine intelligence in understanding the physical world.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
This paper studies the challenging black-box adversarial attack that aims to generate adversarial examples against a black-box model by only using output feedback of the model to input queries. Some previous methods improve the query efficiency by incorporating the gradient of a surrogate white-box model into query-based attacks due to the adversarial transferability. However, the localized gradient is not informative enough, making these methods still query-intensive. In this paper, we propose a Prior-guided Bayesian Optimization (P-BO) algorithm that leverages the surrogate model as a global function prior in black-box adversarial attacks. As the surrogate model contains rich prior information of the black-box one, P-BO models the attack objective with a Gaussian process whose mean function is initialized as the surrogate model's loss. Our theoretical analysis on the regret bound indicates that the performance of P-BO may be affected by a bad prior. Therefore, we further propose an adaptive integration strategy to automatically adjust a coefficient on the function prior by minimizing the regret bound. Extensive experiments on image classifiers and large vision-language models demonstrate the superiority of the proposed algorithm in reducing queries and improving attack success rates compared with the state-of-the-art black-box attacks. Code is available at https://github.com/yibo-miao/PBO-Attack.
[ Hall C 4-9 ]

Abstract
In many real-world applications, it is hard to provide a reward signal in each step of a Reinforcement Learning (RL) process and more natural to give feedback when an episode ends. To this end, we study the recently proposed model of RL with Aggregate Bandit Feedback (RL-ABF), where the agent only observes the sum of rewards at the end of an episode instead of each reward individually. Prior work studied RL-ABF only in tabular settings, where the number of states is assumed to be small. In this paper, we extend ABF to linear function approximation and develop two efficient algorithms with near-optimal regret guarantees: a value-based optimistic algorithm built on a new randomization technique with a Q-functions ensemble, and a policy optimization algorithm that uses a novel hedging scheme over the ensemble.
[ Hall C 4-9 ]
Abstract
In this paper, we prove that Distributional Reinforcement Learning (DistRL), which learns the return distribution, can obtain second-order bounds in both online and offline RL in general settings with function approximation. Second-order bounds are instance-dependent bounds that scale with the variance of return, which we prove are tighter than the previously known small-loss bounds of distributional RL. To the best of our knowledge, our results are the first second-order bounds for low-rank MDPs and for offline RL. When specializing to contextual bandits (one-step RL problem), we show that a distributional learning based optimism algorithm achieves a second-order worst-case regret bound, and a second-order gap dependent bound, simultaneously. We also empirically demonstrate the benefit of DistRL in contextual bandits on real-world datasets. We highlight that our analysis with DistRL is relatively simple, follows the general framework of optimism in the face of uncertainty and does not require weighted regression. Our results suggest that DistRL is a promising framework for obtaining second-order bounds in general RL settings, thus further reinforcing the benefits of DistRL.
[ Hall C 4-9 ]

Abstract
We study how to best spend a budget of noisy labels to compare the accuracy of two binary classifiers. It’s common practice to collect and aggregate multiple noisy labels for a given data point into a less noisy label via a majority vote. We prove a theorem that runs counter to conventional wisdom. If the goal is to identify the better of two classifiers, we show it’s best to spend the budget on collecting a single label for more samples. Our result follows from a non-trivial application of Cramér’s theorem, a staple in the theory of large deviations. We discuss the implications of our work for the design of machine learning benchmarks, where they overturn some time-honored recommendations. In addition, our results provide sample size bounds superior to what follows from Hoeffding’s bound.
[ Hall C 4-9 ]

Abstract
Evidential deep learning (EDL) has shown remarkable success in uncertainty estimation. However, there is still room for improvement, particularly in out-of-distribution (OOD) detection and classification tasks. The limited OOD detection performance of EDL arises from its inability to reflect the distance between the testing example and training data when quantifying uncertainty, while its limited classification performance stems from its parameterization of the concentration parameters. To address these limitations, we propose a novel method called Density Aware Evidential Deep Learning (DAEDL). DAEDL integrates the feature space density of the testing example with the output of EDL during the prediction stage, while using a novel parameterization that resolves the issues in the conventional parameterization. We prove that DAEDL enjoys a number of favorable theoretical properties. DAEDL demonstrates state-of-the-art performance across diverse downstream tasks related to uncertainty estimation and classification.
[ Hall C 4-9 ]

Abstract
Discovering causal relationships from observational data, particularly in the presence of latent variables, poses a challenging problem. While current local structure learning methods have proven effective and efficient when the focus lies solely on the local relationships of a target variable, they operate under the assumption of causal sufficiency. This assumption implies that all the common causes of the measured variables are observed, leaving no room for latent variables. Such a premise can be easily violated in various real-world applications, resulting in inaccurate structures that may adversely impact downstream tasks. In light of this, our paper delves into the primary investigation of locally identifying potential parents and children of a target from observational data that may include latent variables. Specifically, we harness the causal information from m-separation and V-structures to derive theoretical consistency results, effectively bridging the gap between global and local structure learning. Together with the newly developed stop rules, we present a principled method for determining whether a variable is a direct cause or effect of a target. Further, we theoretically demonstrate the correctness of our approach under the standard causal Markov and faithfulness conditions, with infinite samples. Experimental results on both synthetic and real-world data validate the …
[ Hall C 4-9 ]

Abstract
Causal inference on networks faces challenges posed in part by violations of standard identification assumptions due to dependencies between treatment units. Although graph geometry fundamentally influences such dependencies, the potential of geometric tools for causal inference on networked treatment units is yet to be unlocked. Moreover, despite significant progress utilizing graph neural networks (GNNs) for causal inference on networks, methods for evaluating their achievable reliability without ground truth are lacking. In this work we establish for the first time a theoretical link between network geometry, the graph Ricci curvature in particular, and causal inference, formalizing the intrinsic challenges that negative curvature poses to estimating causal parameters. The Ricci curvature can then be used to assess the reliability of causal estimates in structured data, as we empirically demonstrate. Informed by this finding, we propose a method using the geometric Ricci flow to reduce causal effect estimation error in networked data, showcasing how this newfound connection between graph geometry and causal inference could improve GNN-based causal inference. Bridging graph geometry and causal inference, this paper opens the door to geometric techniques for improving causal estimation on networks.
[ Hall C 4-9 ]
Abstract
People grasp flexible visual concepts from a few examples. We explore a neurosymbolic system that learns how to infer programs that capture visual concepts in a domain-general fashion. We introduce Template Programs: programmatic expressions from a domain-specific language that specify structural and parametric patterns common to an input concept. Our framework supports multiple concept-related tasks, including few-shot generation and co-segmentation through parsing. We develop a learning paradigm that allows us to train networks that infer Template Programs directly from visual datasets that contain concept groupings. We run experiments across multiple visual domains: 2D layouts, Omniglot characters, and 3D shapes. We find that our method outperforms task-specific alternatives, and performs competitively against domain-specific approaches for the limited domains where they exist.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
In this work, we aimed at forecasting the number of SARS-CoV-2 hospitalized patients at 14 days to help anticipate the bed requirements of a large scale hospital using public data and electronic health records data. Previous attempts led to mitigated performance in this high-dimension setting; we introduce a novel approach to time series forecasting by providing an alternative to conventional methods to deal with high number of potential features of interest (409 predictors). We integrate Reservoir Computing (RC) with feature selection using a genetic algorithm (GA) to gather optimal non-linear combinations of inputs to improve prediction in sample-efficient context. We illustrate that the RC-GA combination exhibits excellent performance in forecasting SARS-CoV-2 hospitalizations. This approach outperformed the use of RC alone and other conventional methods: LSTM, Transformers, Elastic-Net, XGBoost. Notably, this work marks the pioneering use of RC (along with GA) in the realm of short and high-dimensional time series, positioning it as a competitive and innovative approach in comparison to standard methods.
[ Hall C 4-9 ]

Abstract
Electrocardiograms (ECGs) are non-invasive diagnostic tools crucial for detecting cardiac arrhythmic diseases in clinical practice. While ECG Self-supervised Learning (eSSL) methods show promise in representation learning from unannotated ECG data, they often overlook the clinical knowledge that can be found in reports. This oversight and the requirement for annotated samples for downstream tasks limit eSSL's versatility. In this work, we address these issues with the Multimodal ECG Representation Learning (MERL) framework. Through multimodal learning on ECG records and associated reports, MERL is capable of performing zero-shot ECG classification with text prompts, eliminating the need for training data in downstream tasks. At test time, we propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach, which uses Large Language Models (LLMs) to exploit external expert-verified clinical knowledge databases, generating more descriptive prompts and reducing hallucinations in LLM-generated content to boost zero-shot classification. Based on MERL, we perform the first benchmark across six public ECG datasets, showing the superior performance of MERL compared against eSSL methods. Notably, MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods …
[ Hall C 4-9 ]

Abstract
In contemporary radiotherapy planning (RTP), a key module leaf sequencing is predominantly addressed by optimization-based approaches. In this paper, we propose a novel deep reinforcement learning (DRL) model termed as Reinforced Leaf Sequencer (RLS) in a multi-agent framework for leaf sequencing. The RLS model offers improvements to time-consuming iterative optimization steps via large-scale training and can control movement patterns through the design of reward mechanisms. We have conducted experiments on four datasets with four metrics and compared our model with a leading optimization sequencer. Our findings reveal that the proposed RLS model can achieve reduced fluence reconstruction errors, and potential faster convergence when integrated in an optimization planner. Additionally, RLS has shown promising results in a full artificial intelligence RTP pipeline. We hope this pioneer multi-agent RL leaf sequencer can foster future research on machine learning for RTP.
[ Hall C 4-9 ]

Abstract
For partial differential equations on domains of arbitrary shapes, existing works of neural operators attempt to learn a mapping from geometries to solutions. It often requires a large dataset of geometry-solution pairs in order to obtain a sufficiently accurate neural operator. However, for many industrial applications, e.g., engineering design optimization, it can be prohibitive to satisfy the requirement since even a single simulation may take hours or days of computation. To address this issue, we propose reference neural operators (RNO), a novel way of implementing neural operators, i.e., to learn the smooth dependence of solutions on geometric deformations. Specifically, given a reference solution, RNO can predict solutions corresponding to arbitrary deformations of the referred geometry. This approach turns out to be much more data efficient. Through extensive experiments, we show that RNO can learn the dependence across various types and different numbers of geometry objects with relatively small datasets. RNO outperforms baseline models in accuracy by a large lead and achieves up to 80% error reduction.
[ Hall C 4-9 ]
Abstract
Surrogate neural network-based partial differential equation (PDE) solvers have the potential to solve PDEs in an accelerated manner, but they are largely limited to systems featuring fixed domain sizes, geometric layouts, and boundary conditions. We propose Specialized Neural Accelerator-Powered Domain Decomposition Methods (SNAP-DDM), a DDM-based approach to PDE solving in which subdomain problems containing arbitrary boundary conditions and geometric parameters are accurately solved using an ensemble of specialized neural operators. We tailor SNAP-DDM to 2D electromagnetics and fluidic flow problems and show how innovations in network architecture and loss function engineering can produce specialized surrogate subdomain solvers with near unity accuracy. We utilize these solvers with standard DDM algorithms to accurately solve freeform electromagnetics and fluids problems featuring a wide range of domain sizes.
[ Hall C 4-9 ]

Abstract
We introduce a neural-preconditioned iterative solver for Poisson equations with mixed boundary conditions. Typical Poisson discretizations yield large, ill-conditioned linear systems. Iterative solvers can be effective for these problems, but only when equipped with powerful preconditioners. Unfortunately, effective preconditioners like multigrid require costly setup phases that must be re-executed every time domain shapes or boundary conditions change, forming a severe bottleneck for problems with evolving boundaries. In contrast, we present a neural preconditioner trained to efficiently approximate the inverse of the discrete Laplacian in the presence of such changes. Our approach generalizes to domain shapes, boundary conditions, and grid sizes outside the training set. The key to our preconditioner's success is a novel, lightweight neural network architecture featuring spatially varying convolution kernels and supporting fast inference. We demonstrate that our solver outperforms state-of-the-art methods like algebraic multigrid as well as recently proposed neural preconditioners on challenging test cases arising from incompressible fluid simulations.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Partial differential equations (PDEs) are instrumental for modeling dynamical systems in science and engineering. The advent of neural networks has initiated a significant shift in tackling these complexities though challenges in accuracy persist, especially for initial value problems. In this paper, we introduce the Time-Evolving Natural Gradient (TENG), generalizing time-dependent variational principles and optimization-based time integration, leveraging natural gradient optimization to obtain high accuracy in neural-network-based PDE solutions. Our comprehensive development includes algorithms like TENG-Euler and its high-order variants, such as TENG-Heun, tailored for enhanced precision and efficiency. TENG's effectiveness is further validated through its performance, surpassing current leading methods and achieving machine precision in step-by-step optimizations across a spectrum of PDEs, including the heat equation, Allen-Cahn equation, and Burgers' equation.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Generative models inspired by dynamical transport of measure -- such as flows and diffusions -- construct a continuous-time map between two probability densities. Conventionally, one of these is the target density, only accessible through samples, while the other is taken as a simple base density that is data-agnostic. In this work, using the framework of stochastic interpolants, we formalize how to couple the base and the target densities, whereby samples from the base are computed conditionally given samples from the target in a way that is different from (but does not preclude) incorporating information about class labels or continuous embeddings. This enables us to construct dynamical transport maps that serve as conditional generative models. We show that these transport maps can be learned by solving a simple square loss regression problem analogous to the standard independent setting. We demonstrate the usefulness of constructing dependent couplings in practice through experiments in super-resolution and in-painting. The code is available at https://github.com/interpolants/couplings.
[ Hall C 4-9 ]

Abstract
Machine learning often aims to produce latent embeddings of inputs which lie in a larger, abstract mathematical space. For example, in the field of 3D modeling, subsets of Euclidean space can be embedded as vectors using implicit neural representations. Such subsets also have a natural algebraic structure including operations (e.g., union) and corresponding laws (e.g., associativity). How can we learn to "union" two sets using only their latent embeddings while respecting associativity? We propose a general procedure for parameterizing latent space operations that are provably consistent with the laws on the input space. This is achieved by learning a bijection from the latent space to a carefully designed mirrored algebra which is constructed on Euclidean space in accordance with desired laws. We evaluate these structural transport nets for a range of mirrored algebras against baselines that operate directly on the latent space. Our experiments provide strong evidence that respecting the underlying algebraic structure of the input space is key for learning accurate and self-consistent operations.
[ Hall C 4-9 ]
Abstract
It is by now well-established that modern over-parameterized models seem to elude the bias-variance tradeoff and generalize well despite overfitting noise. Many recent works attempt to analyze this phenomenon in the relatively tractable setting of kernel regression. However, as we argue in detail, most past works on this topic either make unrealistic assumptions, or focus on a narrow problem setup. This work aims to provide a unified theory to upper bound the excess risk of kernel regression for nearly all common and realistic settings. When applied to common kernels, our results imply benign overfitting in high input dimensions, nearly tempered overfitting in fixed dimensions, and explicit convergence rates for regularized regression. As a by-product, we obtain time-dependent bounds for neural networks trained in the kernel regime. Our results rely on new relative perturbation bounds for the eigenvalues of kernel matrices, which may be of independent interest. These reveal a self-regularization phenomenon, whereby a heavy tail in the eigendecomposition of the kernel implicitly leads to good generalization.
[ Hall C 4-9 ]

Abstract
Offline optimization is an important task in numerous material engineering domains where online experimentation to collect data is too expensive and needs to be replaced by an in silico maximization of a surrogate of the black-box function. Although such a surrogate can be learned from offline data, its prediction might not be reliable outside the offline data regime, which happens when the surrogate has narrow prediction margin and is (therefore) sensitive to small perturbations of its parameterization. This raises the following questions: (1) how to regulate the sensitivity of a surrogate model; and (2) whether conditioning an offline optimizer with such less sensitive surrogate will lead to better optimization performance. To address these questions, we develop an optimizable sensitivity measurement for the surrogate model, which then inspires a sensitivity-informed regularizer that is applicable to a wide range of offline optimizers. This development is both orthogonal and synergistic to prior research on offline optimization, which is demonstrated in our extensive experiment benchmark.
[ Hall C 4-9 ]

Abstract
Tensor networks are efficient for extremely high-dimensional representation, but their model selection, known as tensor network structure search (TN-SS), is a challenging problem. Although several works have targeted TN-SS, most existing algorithms are manually crafted heuristics with poor performance, suffering from the curse of dimensionality and local convergence. In this work, we jump out of the box, studying how to harness large language models (LLMs) to automatically discover new TN-SS algorithms, replacing the involvement of human experts. By observing how human experts innovate in research, we model their common workflow and propose an automatic algorithm discovery framework called tnGPS. The proposed framework is an elaborate prompting pipeline that instruct LLMs to generate new TN-SS algorithms through iterative refinement and enhancement. The experimental results demonstrate that the algorithms discovered by tnGPS exhibit superior performance in benchmarks compared to the current state-of-the-art methods. Our code is available at https://github.com/ChaoLiAtRIKEN/tngps.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
The anomaly detection literature is abundant with offline methods, which require repeated access to data in memory, and impose impractical assumptions when applied to a streaming context. Existing online anomaly detection methods also generally fail to address these constraints, resorting to periodic retraining to adapt to the online context. We propose Online-iForest, a novel method explicitly designed for streaming conditions that seamlessly tracks the data generating process as it evolves over time. Experimental validation on real-world datasets demonstrated that Online-iForest is on par with online alternatives and closely rivals state-of-the-art offline anomaly detection techniques that undergo periodic retraining. Notably, Online-iForest consistently outperforms all competitors in terms of efficiency, making it a promising solution in applications where fast identification of anomalies is of primary importance such as cybersecurity, fraud and fault detection.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
We study inference on the long-term causal effect of a continual exposure to a novel intervention, which we term a long-term treatment, based on an experiment involving only short-term observations. Key examples include the long-term health effects of regularly-taken medicine or of environmental hazards and the long-term effects on users of changes to an online platform. This stands in contrast to short-term treatments or "shocks," whose long-term effect can reasonably be mediated by short-term observations, enabling the use of surrogate methods. Long-term treatments by definition have direct effects on long-term outcomes via continual exposure, so surrogacy conditions cannot reasonably hold. We connect the problem with offline reinforcement learning, leveraging doubly-robust estimators to estimate long-term causal effects for long-term treatments and construct confidence intervals.
[ Hall C 4-9 ]

Abstract
Scientific computing is an essential tool for scientific discovery and engineering design, and its computational cost is always a main concern in practice. To accelerate scientific computing, it is a promising approach to use machine learning (especially meta-learning) techniques for selecting hyperparameters of traditional numerical methods. There have been numerous proposals to this direction, but many of them require automatic-differentiable numerical methods. However, in reality, many practical applications still depend on well-established but non-automatic-differentiable legacy codes, which prevents practitioners from applying the state-of-the-art research to their own problems. To resolve this problem, we propose a non-intrusive methodology with a novel gradient estimation technique to combine machine learning and legacy numerical codes without any modification. We theoretically and numerically show the advantage of the proposed method over other baselines and present applications of accelerating established non-automatic-differentiable numerical solvers implemented in PETSc, a widely used open-source numerical software library.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Sound and complete algorithms have been proposed to compute identifiable causal queries using the causal structure and data. However, most of these algorithms assume accurate estimation of the data distribution, which is impractical for high-dimensional variables such as images. On the other hand, modern deep generative architectures can be trained to sample from high-dimensional distributions. However, training these networks are typically very costly. Thus, it is desirable to leverage pre-trained models to answer causal queries using such high-dimensional data. To address this, we propose modular training of deep causal generative models that not only makes learning more efficient, but also allows us to utilize large, pre-trained conditional generative models. To the best of our knowledge, our algorithm, Modular-DCM is the first algorithm that, given the causal structure, uses adversarial training to learn the network weights, and can make use of pre-trained models to provably sample from any identifiable causal query in the presence of latent confounders. With extensive experiments on the Colored-MNIST dataset, we demonstrate that our algorithm outperforms the baselines. We also show our algorithm's convergence on the COVIDx dataset and its utility with a causal invariant prediction problem on CelebA-HQ.
[ Hall C 4-9 ]
Abstract
Instrumental variables (IVs) are widely used for estimating causal effects. There are two main challenges when using instrumental variables. First of all, using IV without additional assumptions such as linearity, the causal effect may still not be identifiable. Second, when selecting an IV, the validity of the selected IV is typically not testable since the causal graph is not identifiable from observational data. In this paper, we propose a method for bounding the causal effect with instrumental variables under weak confounding. In addition, we present a novel criterion to falsify the IV with side information about the confounder. We demonstrate the utility of the proposed method with simulated and real-world datasets.
[ Hall C 4-9 ]
Abstract
Many questions in science center around the fundamental problem of understanding causal relationships. However, most constraint-based causal discovery algorithms, including the well-celebrated PC algorithm, often incur an exponential number of conditional independence (CI) tests, posing limitations in various applications. Addressing this, our work focuses on characterizing what can be learned about the underlying causal graph with a reduced number of CI tests. We show that it is possible to a learn a coarser representation of the hidden causal graph with a polynomial number of tests. This coarser representation, named Causal Consistent Partition Graph (CCPG), comprises of a partition of the vertices and a directed graph defined over its components. CCPG satisfies consistency of orientations and additional constraints which favor finer partitions. Furthermore, it reduces to the underlying causal graph when the causal graph is identifiable. As a consequence, our results offer the first efficient algorithm for recovering the true causal graph with a polynomial number of tests, in special cases where the causal graph is fully identifiable through observational data and potentially additional interventions.
[ Hall C 4-9 ]
Abstract
Hybrid models composing mechanistic ODE-based dynamics with flexible and expressive neural network components have grown rapidly in popularity, especially in scientific domains where such ODE-based modeling offers important interpretability and validated causal grounding (e.g., for counterfactual reasoning). The incorporation of mechanistic models also provides inductive bias in standard blackbox modeling approaches, critical when learning from small datasets or partially observed, complex systems. Unfortunately, as the hybrid models become more flexible, the causal grounding provided by the mechanistic model can quickly be lost. We address this problem by leveraging another common source of domain knowledge: ranking of treatment effects for a set of interventions, even if the precise treatment effect is unknown. We encode this information in a causal loss that we combine with the standard predictive loss to arrive at a hybrid loss that biases our learning towards causally valid hybrid models. We demonstrate our ability to achieve a win-win, state-of-the-art predictive performance and causal validity, in the challenging task of modeling glucose dynamics post-exercise in individuals with type 1 diabetes.
[ Hall C 4-9 ]

Abstract
We propose Deep Longitudinal Targeted Minimum Loss-based Estimation (Deep LTMLE), a novel approach to estimate the counterfactual mean of outcome under dynamic treatment policies in longitudinal problem settings. Our approach utilizes a transformer architecture with heterogeneous type embedding trained using temporal-difference learning. After obtaining an initial estimate using the transformer, following the targeted minimum loss-based likelihood estimation (TMLE) framework, we statistically corrected for the bias commonly associated with machine learning algorithms. Furthermore, our method also facilitates statistical inference by enabling the provision of 95% confidence intervals grounded in asymptotic statistical theory. Simulation results demonstrate our method's superior performance over existing approaches, particularly in complex, long time-horizon scenarios. It remains effective in small-sample, short-duration contexts, matching the performance of asymptotically efficient estimators. To demonstrate our method in practice, we applied our method to estimate counterfactual mean outcomes for standard versus intensive blood pressure management strategies in a real-world cardiovascular epidemiology cohort study.
[ Hall C 4-9 ]

Abstract
While overparameterization in machine learning models offers great benefits in terms of optimization and generalization, it also leads to increased computational requirements as model sizes grow. In this work, we show that by leveraging the inherent low-dimensional structures of data and compressible dynamics within the model parameters, we can reap the benefits of overparameterization without the computational burdens. In practice, we demonstrate the effectiveness of this approach for deep low-rank matrix completion as well as fine-tuning language models. Our approach is grounded in theoretical findings for deep overparameterized low-rank matrix recovery, where we show that the learning dynamics of each weight matrix are confined to an invariant low-dimensional subspace. Consequently, we can construct and train compact, highly compressed factorizations possessing the same benefits as their overparameterized counterparts. In the context of deep matrix completion, our technique substantially improves training efficiency while retaining the advantages of overparameterization. For language model fine-tuning, we propose a method called "Deep LoRA", which improves the existing low-rank adaptation (LoRA) technique, leading to reduced overfitting and a simplified hyperparameter setup, while maintaining comparable efficiency. We validate the effectiveness of Deep LoRA on natural language tasks, particularly when fine-tuning with limited data.
[ Hall C 4-9 ]

Abstract
Training a unified model to take multiple targets into account is a trend towards artificial general intelligence. However, how to efficiently mitigate the training conflicts among heterogeneous data collected from different domains or tasks remains under-explored. In this study, we explore to leverage Mixture of Low-rank Adapters (MoLA) to mitigate conflicts in heterogeneous data training, which requires to jointly train the multiple low-rank adapters and their shared backbone. Specifically, we introduce two variants of MoLA, namely, MoLA-Grad and MoLA-Router, to respectively handle the target-aware and target-agnostic scenarios during inference. The former uses task identifiers to assign personalized low-rank adapters to each task, disentangling task-specific knowledge towards their adapters, thereby mitigating heterogeneity conflicts. The latter uses a novel Task-wise Decorrelation (TwD) loss to intervene the router to learn oriented weight combinations of adapters to homogeneous tasks, achieving similar effects. We conduct comprehensive experiments to verify the superiority of MoLA over previous state-of-the-art methods and present in-depth analysis on its working mechanism. Source code is available at: https://github.com/MediaBrain-SJTU/MoLA
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Acquiring a multi-task imitation policy in 3D manipulation poses challenges in terms of scene understanding and action prediction. Current methods employ both 3D representation and multi-view 2D representation to predict the poses of the robot’s end-effector. However, they still require a considerable amount of high-quality robot trajectories, and suffer from limited generalization in unseen tasks and inefficient execution in long-horizon reasoning. In this paper, we propose SAM-E, a novel architecture for robot manipulation by leveraging a vision-foundation model for generalizable scene understanding and sequence imitation for long-term action reasoning. Specifically, we adopt Segment Anything (SAM) pre-trained on a huge number of images and promptable masks as the foundation model for extracting task-relevant features, and employ parameter-efficient fine-tuning on robot data for a better understanding of embodied scenarios. To address long-horizon reasoning, we develop a novel multi-channel heatmap that enables the prediction of the action sequence in a single pass, notably enhancing execution efficiency. Experimental results from various instruction-following tasks demonstrate that SAM-E achieves superior performance with higher execution efficiency compared to the baselines, and also significantly improves generalization in few-shot adaptation to new tasks.
[ Hall C 4-9 ]

Abstract
Pedestrian trajectory prediction aims to predict future trajectories based on observed trajectories. Current state-of-the-art methods often assume that the observed sequences of agents are complete, which is a strong assumption that overlooks inherent uncertainties. Understanding pedestrian behavior when dealing with missing values in the observed sequence is crucial for enhancing the performance of predictive models. In this work, we propose the MultiScale hypergraph for Trajectory Imputation and Prediction (MS-TIP), a novel approach that simultaneously addresses the imputation of missing observations and the prediction of future trajectories. Specifically, we leverage transformers with diagonal masked self-attention to impute incomplete observations. Further, our approach promotes complex interaction modeling through multi-scale hypergraphs, optimizing our trajectory prediction module to capture different types of interactions. With the inclusion of scenic attention, we learn contextual scene information, instead of sole reliance on coordinates. Additionally, our approach utilizes an intermediate control point and refinement module to infer future trajectories accurately. Extensive experiments validate the efficacy of MS-TIP in precisely predicting pedestrian future trajectories. Code is publicly available at https://github.com/Pranav-chib/MS-TIP.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Time series data, characterized by its intrinsic long and short-range dependencies, poses a unique challenge across analytical applications. While Transformer-based models excel at capturing long-range dependencies, they face limitations in noise sensitivity, computational efficiency, and overfitting with smaller datasets. In response, we introduce a novel Time Series Lightweight Adaptive Network (TSLANet), as a universal convolutional model for diverse time series tasks. Specifically, we propose an Adaptive Spectral Block, harnessing Fourier analysis to enhance feature representation and to capture both long-term and short-term interactions while mitigating noise via adaptive thresholding. Additionally, we introduce an Interactive Convolution Block and leverage self-supervised learning to refine the capacity of TSLANet for decoding complex temporal patterns and improve its robustness on different datasets. Our comprehensive experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection, showcasing its resilience and adaptability across a spectrum of noise levels and data sizes. The code is available at https://github.com/emadeldeen24/TSLANet.
[ Hall C 4-9 ]

Abstract
The emergence of vision-language models, such as CLIP, has spurred a significant research effort towards their application for downstream supervised learning tasks. Although some previous studies have explored the unsupervised fine-tuning of CLIP, they often rely on prior knowledge in the form of class names associated with ground truth labels. This paper explores a realistic unsupervised fine-tuning scenario, considering the presence of out-of-distribution samples from unknown classes within the unlabeled data. In particular, we focus on simultaneously enhancing out-of-distribution detection and the recognition of instances associated with known classes. To tackle this problem, we present a simple, efficient, and effective approach called Universal Entropy Optimization (UEO). UEO leverages sample-level confidence to approximately minimize the conditional entropy of confident instances and maximize the marginal entropy of less confident instances. Apart from optimizing the textual prompt, UEO incorporates optimization of channel-wise affine transformations within the visual branch of CLIP. Extensive experiments across 15 domains and 4 different types of prior knowledge validate the effectiveness of UEO compared to baseline methods. The code is at https://github.com/tim-learn/UEO.
[ Hall C 4-9 ]
Abstract
Conformal prediction is a distribution-free method that wraps a given machine learning model and returns a set of plausible labels that contain the true label with a prescribed coverage rate. In practice, the empirical coverage achieved highly relies on fully observed label information from data both in the training phase for model fitting and the calibration phase for quantile estimation. This dependency poses a challenge in the context of online learning with bandit feedback, where a learner only has access to the correctness of actions (i.e., pulled an arm) but not the full information of the true label. In particular, when the pulled arm is incorrect, the learner only knows that the pulled one is not the true class label, but does not know which label is true. Additionally, bandit feedback further results in a smaller labeled dataset for calibration, limited to instances with correct actions, thereby affecting the accuracy of quantile estimation. To address these limitations, we propose Bandit Class-specific Conformal Prediction (BCCP), offering coverage guarantees on a class-specific granularity. Using an unbiased estimation of an estimand involving the true label, BCCP trains the model and makes set-valued inferences through stochastic gradient descent. Our approach overcomes the challenges of …
[ Hall C 4-9 ]
Abstract
Experimental design techniques such as active search and Bayesian optimization are widely used in the natural sciences for data collection and discovery. However, existing techniques tend to favor exploitation over exploration of the search space, which causes them to get stuck in local optima. This collapse problem prevents experimental design algorithms from yielding diverse high-quality data. In this paper, we extend the Vendi scores—a family of interpretable similarity-based diversity metrics—to account for quality. We then leverage these quality-weighted Vendi scores to tackle experimental design problems across various applications, including drug discovery, materials discovery, and reinforcement learning. We found that quality-weighted Vendi scores allow us to construct policies for experimental design that flexibly balance quality and diversity, and ultimately assemble rich and diverse sets of high-performing data points. Our algorithms led to a 70%–170% increase in the number of effective discoveries compared to baselines.
[ Hall C 4-9 ]

Abstract
In this paper, we investigate a Multi-Armed Bandit (MAB) setting where an arm exits the game if the algorithm continuously neglects it. This setup is motivated by real-world scenarios, such as online advertising and crowdsourcing, where arms only gain benefits after being pulled by the algorithm. We identify the intrinsic hardness of this problem and limitations in existing approaches. We propose FC-SE algorithm with expected regret upper bounds as our solution to this problem. As an extension, we even allow new arms to enter after the game starts and design FC-Entry algorithm with performance guarantees for this setup. Finally, we conduct experiments to validate our theoretical results.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Conventional community detection methods often categorize all nodes into clusters. However, the presumed community structure of interest may only be valid for a subset of nodes (named as `tight nodes'), while the rest of the network may consist of noninformative ``scattered nodes''. For example, a protein-protein network often contains proteins that do not belong to specific biological functional modules but are involved in more general processes, or act as bridges between different functional modules. Forcing each of these proteins into a single cluster introduces unwanted biases and obscures the underlying biological implication. To address this issue, we propose a tight community detection (TCD) method to identify tight communities excluding scattered nodes. The algorithm enjoys a strong theoretical guarantee of tight node identification accuracy and is scalable for large networks. The superiority of the proposed method is demonstrated by various synthetic and real experiments.
[ Hall C 4-9 ]

Abstract
Meta-learning has emerged as a powerful approach to train neural networks to learn new tasks quickly from limited data by pre-training them on a broad set of tasks. But, what are the limits of meta-learning? In this work, we explore the potential of amortizing the most powerful universal predictor, namely Solomonoff Induction (SI), into neural networks via leveraging (memory-based) meta-learning to its limits. We use Universal Turing Machines (UTMs) to generate training data used to expose networks to a broad range of patterns. We provide theoretical analysis of the UTM data generation processes and meta-training protocols. We conduct comprehensive experiments with neural architectures (e.g. LSTMs, Transformers) and algorithmic data generators of varying complexity and universality. Our results suggest that UTM data is a valuable resource for meta-learning, and that it can be used to train neural networks capable of learning universal prediction strategies.
[ Hall C 4-9 ]

Abstract
Single domain generalization (single DG) aims at learning a robust model generalizable to unseen domains from only one training domain, making it a highly ambitious and challenging task. State-of-the-art approaches have mostly relied on data augmentations, such as adversarial perturbation and style enhancement, to synthesize new data and thus increase robustness. Nevertheless, they have largely overlooked the underlying coherence between the augmented domains, which in turn leads to inferior results in real-world scenarios. In this paper, we propose a simple yet effective scheme, termed as StyDeSty, to explicitly account for the alignment of the source and pseudo domains in the process of data augmentation, enabling them to interact with each other in a self-consistent manner and further giving rise to a latent domain with strong generalization power. The heart of StyDeSty lies in the interaction between a stylization module for generating novel stylized samples using the source domain, and a destylization module for transferring stylized and source samples to a latent domain to learn content-invariant features. The stylization and destylization modules work adversarially and reinforce each other. During inference, the destylization module transforms the input sample with an arbitrary style shift to the latent domain, in which the downstream …
[ Hall C 4-9 ]

Abstract
Mutual transfer learning aims to improve prediction with knowledge from related domains. Recently, federated learning is applied in this field to address the communication and privacy concerns. However, previous clustered federated learning (CFL) solutions lack theoretical guarantee of learnability recovery and require time-consuming hyper-parameter tuning, while centralized mutual transfer learning methods lack adaptability to concept drifts. In this paper, we propose the Adaptive Group Personalization method (AdaGrP) to overcome these challenges. We adaptively decide the recovery threshold with a nonparametric method, adaptive threshold correction, for tuning-free solution with relaxed condition. Theoretical results guarantee the perfect learnability recovery with the corrected threshold. Empirical results show AdaGrP achieves 16.9% average improvement in learnability structure recovery compared with state-of-the-art CFL baselines.
[ Hall C 4-9 ]

Abstract
Neuro-symbolic learning (NSL) models complex symbolic rule patterns into latent variable distributions by neural networks, which reduces rule search space and generates unseen rules to improve downstream task performance. Centralized NSL learning involves directly acquiring data from downstream tasks, which is not feasible for federated learning (FL). To address this limitation, we shift the focus from such a one-to-one interactive neuro-symbolic paradigm to one-to-many Federated Neuro-Symbolic Learning framework (FedNSL) with latent variables as the FL communication medium. Built on the basis of our novel reformulation of the NSL theory, FedNSL is capable of identifying and addressing rule distribution heterogeneity through a simple and effective Kullback-Leibler (KL) divergence constraint on rule distribution applicable under the FL setting. It further theoretically adjusts variational expectation maximization (V-EM) to reduce the rule search space across domains. This is the first incorporation of distribution-coupled bilevel optimization into FL. Extensive experiments based on both synthetic and real-world data demonstrate significant advantages of FedNSL compared to five state-of-the-art methods. It outperforms the best baseline by 17% and 29% in terms of unbalanced average training accuracy and unseen average testing accuracy, respectively.
[ Hall C 4-9 ]

Abstract
In Federated Continual Learning (FCL), the challenge lies in effectively facilitating knowledge transfer and enhancing the performance across various tasks on different clients. Current FCL methods predominantly focus on avoiding interference between tasks, thereby overlooking the potential for positive knowledge transfer across tasks learned by different clients at separate time intervals. To address this issue, we introduce a Prompt-based knowledge transfer FCL algorithm, called Powder, designed to effectively foster the transfer of knowledge encapsulated in prompts between various sequentially learned tasks and clients. Furthermore, we have devised a unique approach for prompt generation and aggregation, intending to alleviate privacy protection concerns and communication overhead, while still promoting knowledge transfer. Comprehensive experimental results demonstrate the superiority of our method in terms of reduction in communication costs, and enhancement of knowledge transfer. Code is available at https://github.com/piaohongming/Powder.
[ Hall C 4-9 ]
Abstract
Recent successes suggest that parameter-efficient fine-tuning of foundation models is becoming the state-of-the-art method for transfer learning in vision, gradually replacing the rich literature of alternatives such as meta-learning. In trying to harness the best of both worlds, meta-tuning introduces a subsequent optimization stage of foundation models but has so far only shown limited success and crucially tends to underperform on out-of-distribution (OOD) tasks. In this paper, we introduce Sparse MetA-Tuning (SMAT), a method inspired by sparse mixture-of-experts approaches and trained to isolate subsets of pre-trained parameters automatically for meta-tuning on each task. SMAT successfully overcomes OOD sensitivity and delivers on the promise of enhancing the transfer abilities of vision foundation models beyond parameter-efficient finetuning. We establish new state-of-the-art results on a challenging combination of Meta-Dataset augmented with additional OOD tasks in both zero-shot and gradient-based adaptation settings. In addition, we provide a thorough analysis of the superiority of learned over hand-designed sparsity patterns for sparse expert methods and the pivotal importance of the sparsity level in balancing between in-distribution and out-of-distribution generalization. Our code and models are publicly available.
[ Hall C 4-9 ]

Abstract
Transferring knowledge across diverse data modalities is receiving increasing attention in machine learning. This paper tackles the task of leveraging expert-derived, yet expensive, tabular data to enhance image-based predictions when tabular data is unavailable during inference. The primary challenges stem from the inherent complexity of accurately mapping diverse tabular data to visual contexts, coupled with the necessity to devise distinct strategies for numerical and categorical tabular attributes. We propose CHannel tAbulaR alignment with optiMal tranSport (Charms), which establishes an alignment between image channels and tabular attributes, enabling selective knowledge transfer that is pertinent to visual features. Specifically, Charms measures similarity distributions across modalities to effectively differentiate and transfer relevant tabular features, with a focus on morphological characteristics, enhancing the capabilities of visual classifiers. By maximizing the mutual information between image channels and tabular features, knowledge from both numerical and categorical tabular attributes are extracted. Experimental results demonstrate that Charms not only enhances the performance of image classifiers but also improves their interpretability by effectively utilizing tabular knowledge.
[ Hall C 4-9 ]
Abstract
Machine learning (ML) datasets, often perceived as neutral, inherently encapsulate abstract and disputed social constructs. Dataset curators frequently employ value-laden terms such as diversity, bias, and quality to characterize datasets. Despite their prevalence, these terms lack clear definitions and validation. Our research explores the implications of this issue by analyzing "diversity" across 135 image and text datasets. Drawing from social sciences, we apply principles from measurement theory to identify considerations and offer recommendations for conceptualizing, operationalizing, and evaluating diversity in datasets. Our findings have broader implications for ML research, advocating for a more nuanced and precise approach to handling value-laden properties in dataset construction.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Algorithmic predictions are increasingly used to inform the allocations of goods and interventions in the public sphere. In these domains, predictions serve as a means to an end. They provide stakeholders with insights into likelihood of future events as a means to improve decision making quality, and enhance social welfare. However, if maximizing welfare is the ultimate goal, prediction is only a small piece of the puzzle. There are various other policy levers a social planner might pursue in order to improve bottom-line outcomes, such as expanding access to available goods, or increasing the effect sizes of interventions. Given this broad range of design decisions, a basic question to ask is: What is the relative value of prediction in algorithmic decision making? How do the improvements in welfare arising from better predictions compare to those of other policy levers? The goal of our work is to initiate the formal study of these questions. Our main results are theoretical in nature. We identify simple, sharp conditions determining the relative value of prediction vis-à-vis expanding access, within several statistical models that are popular amongst quantitative social scientists. Furthermore, we illustrate how these theoretical insights can guide the design of algorithmic decision making …
[ Hall C 4-9 ]

Abstract
Public models offer predictions to a variety of downstream tasks and have played a crucial role in various AI applications, showcasing their proficiency in accurate predictions. However, the exclusive emphasis on prediction accuracy may not align with the diverse end objectives of downstream agents. Recognizing the public model's predictions as a service, we advocate for integrating the objectives of downstream agents into the optimization process. Concretely, to address performance disparities and foster fairness among heterogeneous agents in training, we propose a novel Equitable Objective. This objective, coupled with a policy gradient algorithm, is crafted to train the public model to produce a more equitable/uniform performance distribution across downstream agents, each with their unique concerns. Both theoretical analysis and empirical case studies have proven the effectiveness of our method in advancing performance equity across diverse downstream agents utilizing the public model for their decision-making. Codes and datasets are released at https://github.com/Ren-Research/Socially-Equitable-Public-Models.
[ Hall C 4-9 ]

Abstract
Recent years have witnessed a paradigm shift in deep learning from task-centric model design to task-agnostic representation learning and task-specific fine-tuning. Pretrained model representations are commonly evaluated extensively across various real-world tasks and used as a foundation for different downstream tasks. This paper proposes a solution for assessing the quality of representations in a task-agnostic way. To circumvent the need for real-world data in evaluation, we explore the use of synthetic binary classification tasks with Gaussian mixtures to probe pretrained models and compare the robustness-accuracy performance on pretrained representations with an idealized reference. Our approach offers a holistic evaluation, revealing intrinsic model capabilities and reducing the dependency on real-life data for model evaluation. Evaluated with various pretrained image models, the experimental results confirm that our task-agnostic evaluation correlates with actual linear probing performance on downstream tasks and can also guide parameter choice in robust linear probing to achieve a better robustness-accuracy trade-off.
[ Hall C 4-9 ]

Abstract
We propose a framework for probabilistic forecasting of dynamical systems based on generative modeling. Given observations of the system state over time, we formulate the forecasting problem as sampling from the conditional distribution of the future system state given its current state. To this end, we leverage the framework of stochastic interpolants, which facilitates the construction of a generative model between an arbitrary base distribution and the target. We design a fictitious, non-physical stochastic dynamics that takes as initial condition the current system state and produces as output a sample from the target conditional distribution in finite time and without bias. This process therefore maps a point mass centered at the current state onto a probabilistic ensemble of forecasts. We prove that the drift coefficient entering the stochastic differential equation (SDE) achieving this task is non-singular, and that it can be learned efficiently by square loss regression over the time-series data. We show that the drift and the diffusion coefficients of this SDE can be adjusted after training, and that a specific choice that minimizes the impact of the estimation error gives a Föllmer process. We highlight the utility of our approach on several complex, high-dimensional forecasting problems, including stochastically …
[ Hall C 4-9 ]

Abstract
Predictive models are often introduced to decision-making tasks under the rationale that they improve performance over an existing decision-making policy. However, it is challenging to compare predictive performance against an existing decision-making policy that is generally under-specified and dependent on unobservable factors. These sources of uncertainty are often addressed in practice by making strong assumptions about the data-generating mechanism. In this work, we propose a method to compare the predictive performance of decision policies under a variety of modern identification approaches from the causal inference and off-policy evaluation literatures (e.g., instrumental variable, marginal sensitivity model, proximal variable). Key to our method is the insight that there are regions of uncertainty that we can safely ignore in the policy comparison. We develop a practical approach for finite-sample estimation of regret intervals under no assumptions on the parametric form of the status quo policy. We verify our framework theoretically and via synthetic data experiments. We conclude with a real-world application using our framework to support a pre-deployment evaluation of a proposed modification to a healthcare enrollment policy.
[ Hall C 4-9 ]

Abstract
Machine learning models are increasingly used in societal applications, yet legal and privacy concerns demand that they very often be kept confidential. Consequently, there is a growing distrust about the fairness properties of these models in the minds of consumers, who are often at the receiving end of model predictions. To this end, we propose Fairproof -- a system that uses Zero-Knowledge Proofs (a cryptographic primitive) to publicly verify the fairness of a model, while maintaining confidentiality. We also propose a fairness certification algorithm for fully-connected neural networks which is befitting to ZKPs and is used in this system. We implement Fairproof in Gnark and demonstrate empirically that our system is practically feasible. Code is available at https://github.com/infinite-pursuits/FairProof.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Model quantization is a compression technique that converts a full-precision model to a more compact low-precision version for better storage. Despite the great success of quantization, recent studies revealed the feasibility of malicious exploiting model quantization via implanting quantization-conditioned backdoors (QCBs). These special backdoors remain dormant in full-precision models but are exposed upon quantization. Unfortunately, existing defenses have limited effects on mitigating QCBs. In this paper, we conduct an in-depth analysis of QCBs. We reveal an intriguing characteristic of QCBs, where activation of backdoor-related neurons on even benign samples enjoy a distribution drift after quantization, although this drift is more significant on poisoned samples. Motivated by this finding, we propose to purify the backdoor-exposed quantized model by aligning its layer-wise activation with its full-precision version. To further exploit the more pronounced activation drifts on poisoned samples, we design an additional module to layer-wisely approximate poisoned activation distribution based on batch normalization statistics of the full-precision model. Extensive experiments are conducted, verifying the effectiveness of our defense. Our code is publicly available.
[ Hall C 4-9 ]

Abstract
Ensuring privacy-preserving inference on cryptographically secure data is a well-known computational challenge. To alleviate the bottleneck of costly cryptographic computations in non-linear activations, recent methods have suggested linearizing a targeted portion of these activations in neural networks. This technique results in significantly reduced runtimes with often negligible impacts on accuracy. In this paper, we demonstrate that such computational benefits may lead to increased fairness costs. Specifically, we find that reducing the number of ReLU activations disproportionately decreases the accuracy for minority groups compared to majority groups. To explain these observations, we provide a mathematical interpretation under restricted assumptions about the nature of the decision boundary, while also showing the prevalence of this problem across widely used datasets and architectures. Finally, we show how a simple procedure altering the finetuning step for linearized models can serve as an effective mitigation strategy.
[ Hall C 4-9 ]

Abstract
In mobile and IoT systems, Federated Learning (FL) is increasingly important for effectively using data while maintaining user privacy. One key challenge in FL is managing statistical heterogeneity, such as non-i.i.d. data, arising from numerous clients and diverse data sources. This requires strategic cooperation, often with clients having similar characteristics. However, we are interested in a fundamental question: does achieving optimal cooperation necessarily entail cooperating with the most similar clients? Typically, significant model performance improvements are often realized not by partnering with the most similar models, but through leveraging complementary data. Our theoretical and empirical analyses suggest that optimal cooperation is achieved by enhancing complementarity in feature distribution while restricting the disparity in the correlation between features and targets. Accordingly, we introduce a novel framework, FedSaC, which balances similarity and complementarity in FL cooperation. Our framework aims to approximate an optimal cooperation network for each client by optimizing a weighted sum of model similarity and feature complementarity. The strength of FedSaC lies in its adaptability to various levels of data heterogeneity and multimodal scenarios. Our comprehensive unimodal and multimodal experiments demonstrate that FedSaC markedly surpasses other state-of-the-art FL methods.
[ Hall C 4-9 ]

Abstract
The popularity of federated learning comes from the possibility of better scalability and the ability for participants to keep control of their data, improving data security and sovereignty. Unfortunately, sharing model updates also creates a new privacy attack surface. In this work, we characterize the privacy guarantees of decentralized learning with random walk algorithms, where a model is updated by traveling from one node to another along the edges of a communication graph. Using a recent variant of differential privacy tailored to the study of decentralized algorithms, namely Pairwise Network Differential Privacy, we derive closed-form expressions for the privacy loss between each pair of nodes where the impact of the communication topology is captured by graph theoretic quantities. Our results further reveal that random walk algorithms tends to yield better privacy guarantees than gossip algorithms for nodes close from each other. We supplement our theoretical results with empirical evaluation on synthetic and real-world graphs and datasets.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
We provide a simple and flexible framework for designing differentially private algorithms to find approximate stationary points of non-convex loss functions. Our framework is based on using a private approximate risk minimizer to "warm start" another private algorithm for finding stationary points. We use this framework to obtain improved, and sometimes optimal, rates for several classes of non-convex loss functions. First, we obtain improved rates for finding stationary points of smooth non-convex empirical loss functions. Second, we specialize to quasar-convex functions, which generalize star-convex functions and arise in learning dynamical systems and training some neural nets. We achieve the optimal rate for this class. Third, we give an optimal algorithm for finding stationary points of functions satisfying the Kurdyka-Lojasiewicz (KL) condition. For example, over-parameterized neural networks often satisfy this condition. Fourth, we provide new state-of-the-art rates for stationary points of non-convex population loss functions. Fifth, we obtain improved rates for non-convex generalized linear models. A modification of our algorithm achieves nearly the same rates for second-order stationary points of functions with Lipschitz Hessian, improving over the previous state-of-the-art for each of the above problems.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Differential privacy (DP) offers a theoretical upper bound on the potential privacy leakage of an algorithm, while empirical auditing establishes a practical lower bound. Auditing techniques exist for DP training algorithms. However machine learning can also be made private at inference. We propose the first framework for auditing private prediction where we instantiate adversaries with varying poisoning and query capabilities. This enables us to study the privacy leakage of four private prediction algorithms: PATE (Papernot et al., 2016), CaPC (Choquette-Choo et al., 2020), PromptPATE (Duan et al., 2023), and Private-kNN (Zhu et al., 2020). To conduct our audit, we introduce novel techniques to empirically evaluate privacy leakage in terms of Renyi DP. Our experiments show that (i) the privacy analysis of private prediction can be improved, (ii) algorithms which are easier to poison lead to much higher privacy leakage, and (iii) the privacy leakage is significantly lower for adversaries without query control than those with full control.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
As the number of accepted papers at AI and ML conferences reaches into the thousands, it has become unclear how researchers access and read research publications. In this paper, we investigate the role of social media influencers in enhancing the visibility of machine learning research, particularly the citation counts of papers they share. We have compiled a comprehensive dataset of over 8,000 papers, spanning tweets from December 2018 to October 2023, alongside controls precisely matched by 9 key covariates. Our statistical and causal inference analysis reveals a significant increase in citations for papers endorsed by these influencers, with median citation counts 2-3 times higher than those of the control group. Additionally, the study delves into the geographic, gender, and institutional diversity of highlighted authors. Given these findings, we advocate for a responsible approach to curation, encouraging influencers to uphold the journalistic standard that includes showcasing diverse research topics, authors, and institutions.
[ Hall C 4-9 ]

Abstract
This paper tackles the challenge of detecting unreliable behavior in regression algorithms, which may arise from intrinsic variability (e.g., aleatoric uncertainty) or modeling errors (e.g., model uncertainty). First, we formally introduce the notion of unreliability in regression, i.e., when the output of the regressor exceeds a specified discrepancy (or error). Then, using powerful tools for probabilistic modeling, we estimate the discrepancy density, and we measure its statistical diversity using our proposed metric for statistical dissimilarity. In turn, this allows us to derive a data-driven score that expresses the uncertainty of the regression outcome. We show empirical improvements in error detection for multiple regression tasks, consistently outperforming popular baseline approaches, and contributing to the broader field of uncertainty quantification and safe machine learning systems.
[ Hall C 4-9 ]

Abstract
Truthfulness is paramount for large language models (LLMs) as they are increasingly deployed in real-world applications. However, existing LLMs still struggle with generating truthful content, as evidenced by their modest performance on benchmarks like TruthfulQA. To address this issue, we propose GRAdual self-truTHifying (GRATH), a novel post-processing method to enhance truthfulness of LLMs. GRATH utilizes out-of-domain question prompts to generate pairwise truthfulness training data with each pair containing a question and its correct and incorrect answers, and then optimizes the model via direct preference optimization (DPO) to learn from the truthfulness difference between answer pairs. GRATH iteratively refines truthfulness data and updates the model, leading to a gradual improvement in model truthfulness in a self-supervised manner. Empirically, we evaluate GRATH using different 7B-LLMs and compare with LLMs with similar or even larger sizes on benchmark datasets. Our results show that GRATH effectively improves LLMs' truthfulness without compromising other core capabilities. Notably, GRATH achieves state-of-the-art performance on TruthfulQA, with MC1 accuracy of 54.71% and MC2 accuracy of 69.10%, which even surpass those on 70B-LLMs. The code is available at https://github.com/chenweixin107/GRATH.
[ Hall C 4-9 ]
Abstract
Data valuation quantifies the contribution of each data point to the performance of a machine learning model. Existing works typically define the value of data by its improvement of the validation performance of the trained model. However, this approach can be impractical to apply in collaborative machine learning and data marketplace since it is difficult for the parties/buyers to agree on a common validation dataset or determine the exact validation distribution a priori. To address this, we propose a distributionally robust data valuation approach to perform data valuation without known/fixed validation distributions. Our approach defines the value of data by its improvement of the distributionally robust generalization error (DRGE), thus providing a worst-case performance guarantee without a known/fixed validation distribution. However, since computing DRGE directly is infeasible, we propose using model deviation as a proxy for the marginal improvement of DRGE (for kernel regression and neural networks) to compute data values. Furthermore, we identify a notion of uniqueness where low uniqueness characterizes low-value data. We empirically demonstrate that our approach outperforms existing data valuation approaches in data selection and data removal tasks on real-world datasets (e.g., housing price prediction, diabetes hospitalization prediction).
[ Hall C 4-9 ]
Abstract
Developing machine learning models that account for potential faults encountered in real-world environments presents a fundamental challenge for mission-critical applications. In this paper, we introduce a novel theoretical framework grounded in learning theory for dealing with faults. In particular, we propose a framework called fault-tolerant PAC learning, aimed at identifying the most fault-tolerant models from a given hypothesis class (such as neural networks). We show that if faults occur randomly, fault-tolerant learning is equivalent to regular PAC learning. However, for adversarial faults, we show that the sample complexity of fault-tolerant PAC learning can grow linearly w.r.t. the number of perturbing functions induced by the faults, even for a hypothesis class with VC-dimension 1. We then provide a matching upper bound by restricting the number of perturbing functions. Finally, we show that the linear dependency on the number of perturbing functions can be substantially improved for deletion faults in neural networks. Our work provides a powerful formal framework and avenues for a number of future investigations on the precise characterization of fault-tolerant learning.
[ Hall C 4-9 ]

Abstract
Algorithmic decision-making in practice must be fair for legal, ethical, and societal reasons. To achieve this, prior research has contributed various approaches that ensure fairness in machine learning predictions, while comparatively little effort has focused on fairness in decision-making, specifically off-policy learning. In this paper, we propose a novel framework for fair off-policy learning: we learn decision rules from observational data under different notions of fairness, where we explicitly assume that observational data were collected under a different -- potentially discriminatory -- behavioral policy. Importantly, our framework applies to different fairness notions for off-policy learning, where fairness is formalized based on actions or policy values. As our main contribution, we propose a neural network-based framework to learn optimal policies under different fairness notions. We further provide theoretical guarantees in the form of generalization bounds for the finite-sample version of our framework. We demonstrate the effectiveness of our framework through extensive numerical experiments using both simulated and real-world data. Altogether, our work enables algorithmic decision-making in a wide array of practical applications where fairness must be ensured.
[ Hall C 4-9 ]
Abstract
Vision-Language Models (VLMs) have emerged as the dominant approach for zero-shot recognition, adept at handling diverse scenarios and significant distribution changes. However, their deployment in risk-sensitive areas requires a deeper understanding of their uncertainty estimation capabilities, a relatively uncharted area. In this study, we explore the calibration properties of VLMs across different architectures, datasets, and training strategies. In particular, we analyze the uncertainty estimation performance of VLMs when calibrated in one domain, label set or hierarchy level, and tested in a different one. Our findings reveal that while VLMs are not inherently calibrated for uncertainty, temperature scaling significantly and consistently improves calibration, even across shifts in distribution and changes in label set. Moreover, VLMs can be calibrated with a very small set of examples. Through detailed experimentation, we highlight the potential applications and importance of our insights, aiming for more reliable and effective use of VLMs in critical, real-world scenarios.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
The remarkable success of modern machine learning models on large datasets often demands extensive training time and resource consumption. To save cost, a prevalent research line, known as online batch selection, explores selecting informative subsets during the training process. Although recent efforts achieve advancements by measuring the impact of each sample on generalization, their reliance on additional reference models inherently limits their practical applications, when there are no such ideal models available. On the other hand, the vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner, which sacrifices the diversity and induces the redundancy. To tackle this dilemma, we propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples. Specifically, we define a novel selection objective that measures the group-wise orthogonalized representativeness to combat the redundancy issue of previous sample-wise criteria, and provide a principled selection-efficient realization. Extensive experiments across various tasks demonstrate the significant superiority of DivBS in the performance-speedup trade-off. The code is publicly available.
[ Hall C 4-9 ]

Abstract
Counterfactuals, or modified inputs that lead to a different outcome, are an important tool for understanding the logic used by machine learning classifiers and how to change an undesirable classification. Even if a counterfactual changes a classifier's decision, however, it may not affect the true underlying class probabilities, i.e. the counterfactual may act like an adversarial attack and ``fool'' the classifier. We propose a new framework for creating modified inputs that change the true underlying probabilities in a beneficial way which we call Trustworthy Actionable Perturbations (TAP). This includes a novel verification procedure to ensure that TAP change the true class probabilities instead of acting adversarially. Our framework also includes new cost, reward, and goal definitions that are better suited to effectuating change in the real world. We present PAC-learnability results for our verification procedure and theoretically analyze our new method for measuring reward. We also develop a methodology for creating TAP and compare our results to those achieved by previous counterfactual methods.
[ Hall C 4-9 ]
Abstract
Different users of machine learning methods require different explanations, depending on their goals. To make machine learning accountable to society, one important goal is to get actionable options for recourse, which allow an affected user to change the decision f(x) of a machine learning system by making limited changes to its input x. We formalize this by providing a general definition of recourse sensitivity, which needs to be instantiated with a utility function that describes which changes to the decisions are relevant to the user. This definition applies to local attribution methods, which attribute an importance weight to each input feature. It is often argued that such local attributions should be robust, in the sense that a small change in the input x that is being explained, should not cause a large change in the feature weights. However, we prove formally that it is in general impossible for any single attribution method to be both recourse sensitive and robust at the same time. It follows that there must always exist counterexamples to at least one of these properties. We provide such counterexamples for several popular attribution methods, including LIME, SHAP, Integrated Gradients and SmoothGrad. Our results also cover counterfactual explanations, …
[ Hall C 4-9 ]

Abstract
Understanding the internal representations of large language models (LLMs) can help explain models' behavior and verify their alignment with human values. Given the capabilities of LLMs in generating human-understandable text, we propose leveraging the model itself to explain its internal representations in natural language. We introduce a framework called Patchscopes and show how it can be used to answer a wide range of questions about an LLM's computation. We show that many prior interpretability methods based on projecting representations into the vocabulary space and intervening on the LLM computation can be viewed as instances of this framework. Moreover, several of their shortcomings such as failure in inspecting early layers or lack of expressivity can be mitigated by Patchscopes. Beyond unifying prior inspection techniques, Patchscopes also opens up new possibilities such as using a more capable model to explain the representations of a smaller model, and multihop reasoning error correction.
[ Hall C 4-9 ]

Abstract
Vision transformers (ViTs) have emerged as a significant area of focus, particularly for their capacity to be jointly trained with large language models and to serve as robust vision foundation models. Yet, the development of trustworthy explanation methods for ViTs has lagged, particularly in the context of post-hoc interpretations of ViT predictions. Existing sub-image selection approaches, such as feature-attribution and conceptual models, fall short in this regard. This paper proposes five desiderata for explaining ViTs -- faithfulness, stability, sparsity, multi-level structure, and parsimony -- and demonstrates the inadequacy of current methods in meeting these criteria comprehensively. We introduce a variational Bayesian explanation framework, dubbed ProbAbilistic Concept Explainers (PACE), which models the distributions of patch embeddings to provide trustworthy post-hoc conceptual explanations. Our qualitative analysis reveals the distributions of patch-level concepts, elucidating the effectiveness of ViTs by modeling the joint distribution of patch embeddings and ViT's predictions. Moreover, these patch-level explanations bridge the gap between image-level and dataset-level explanations, thus completing the multi-level structure of PACE. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that PACE surpasses state-of-the-art methods in terms of the defined desiderata.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Concept-based explainability methods provide insight into deep learning systems by constructing explanations using human-understandable concepts. While the literature on human reasoning demonstrates that we exploit relationships between concepts when solving tasks, it is unclear whether concept-based methods incorporate the rich structure of inter-concept relationships. We analyse the concept representations learnt by concept-based models to understand whether these models correctly capture inter-concept relationships. First, we empirically demonstrate that state-of-the-art concept-based models produce representations that lack stability and robustness, and such methods fail to capture inter-concept relationships. Then, we develop a novel algorithm which leverages inter-concept relationships to improve concept intervention accuracy, demonstrating how correctly capturing inter-concept relationships can improve downstream tasks.
[ Hall C 4-9 ]

Abstract
Pre-trained contrastive vision-language models have demonstrated remarkable performance across a wide range of tasks. However, they often struggle on fine-trained datasets with categories not adequately represented during pre-training, which makes adaptation necessary. Recent works have shown promising results by utilizing samples from web-scale databases for retrieval-augmented adaptation, especially in low-data regimes. Despite the empirical success, understanding how retrieval impacts the adaptation of vision-language models remains an open research question. In this work, we adopt a reflective perspective by presenting a systematic study to understand the roles of key components in retrieval-augmented adaptation. We unveil new insights on uni-modal and cross-modal retrieval and highlight the critical role of logit ensemble for effective adaptation. We further present theoretical underpinnings that directly support our empirical observations.
[ Hall C 4-9 ]

Abstract
We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-written and AI-generated reference texts to accurately and efficiently examine real-world LLM-use at the corpus level. We apply this approach to a case study of scientific peer review in AI conferences that took place after the release of ChatGPT: ICLR 2024, NeurIPS 2023, CoRL 2023 and EMNLP 2023. Our results suggest that between 6.5% and 16.9% of text submitted as peer reviews to these conferences could have been substantially modified by LLMs, i.e. beyond spell-checking or minor writing updates. The circumstances in which generated text occurs offer insight into user behavior: the estimated fraction of LLM-generated text is higher in reviews which report lower confidence, were submitted close to the deadline, and from reviewers who are less likely to respond to author rebuttals. We also observe corpus-level trends in generated text which may be too subtle to detect at the individual level, and discuss the implications of such trends on peer review. We call for future interdisciplinary work to examine how LLM use is changing our …
[ Hall C 4-9 ]

Abstract
This paper proposes a new algorithm for learning accurate tree-based models while ensuring the existence of recourse actions. Algorithmic Recourse (AR) aims to provide a recourse action for altering the undesired prediction result given by a model. Typical AR methods provide a reasonable action by solving an optimization task of minimizing the required effort among executable actions. In practice, however, such actions do not always exist for models optimized only for predictive performance. To alleviate this issue, we formulate the task of learning an accurate classification tree under the constraint of ensuring the existence of reasonable actions for as many instances as possible. Then, we propose an efficient top-down greedy algorithm by leveraging the adversarial training techniques. We also show that our proposed algorithm can be applied to the random forest, which is known as a popular framework for learning tree ensembles. Experimental results demonstrated that our method successfully provided reasonable actions to more instances than the baselines without significantly degrading accuracy and computational efficiency.
[ Hall C 4-9 ]

Abstract
I introduce a novel associative memory model named Correlated Dense Associative Memory (CDAM), which integrates both auto- and hetero-association in a unified framework for continuous-valued memory patterns. Employing an arbitrary graph structure to semantically link memory patterns, CDAM is theoretically and numerically analysed, revealing four distinct dynamical modes: auto-association, narrow hetero-association, wide hetero-association, and neutral quiescence. Drawing inspiration from inhibitory modulation studies, I employ anti-Hebbian learning rules to control the range of hetero-association, extract multi-scale representations of community structures in graphs, and stabilise the recall of temporal sequences. Experimental demonstrations showcase CDAM's efficacy in handling real-world data, replicating a classical neuroscience experiment, performing image retrieval, and simulating arbitrary finite automata.
[ Hall C 4-9 ]

Abstract
In this work, we investigate an intriguing and prevalent phenomenon of diffusion models which we term as "consistent model reproducibility'': given the same starting noise input and a deterministic sampler, different diffusion models often yield remarkably similar outputs. We confirm this phenomenon through comprehensive experiments, implying that different diffusion models consistently reach the same data distribution and score function regardless of diffusion model frameworks, model architectures, or training procedures. More strikingly, our further investigation implies that diffusion models are learning distinct distributions influenced by the training data size. This is evident in two distinct training regimes: (I) "memorization regime,'' where the diffusion model overfits to the training data distribution, and (ii) "generalization regime,'' where the model learns the underlying data distribution. Our study also finds that this valuable property generalizes to many variants of diffusion models, including those for conditional generation and solving inverse problems. Lastly, we discuss how our findings connect to existing research and highlight the practical implications of our discoveries.
[ Hall C 4-9 ]
Abstract
We present Junk DNA Hypothesis by adopting a novel task-centric angle for the pre-trained weights of large language models (LLMs). It has been believed that weights in LLMs contain significant redundancy, leading to the conception that a considerable chunk of the parameters can be removed by pruning without compromising performance. Contrary to this belief, this paper presents a counter-argument: small-magnitude weights of pre-trained model weights encode vital knowledge essential for tackling difficult downstream tasks - manifested as the monotonic relationship between the performance drop of downstream tasks across the difficulty spectrum, as we prune more pre-trained weights by magnitude. Moreover, we reveal that these seemingly inconsequential weights can result in irreparable loss of knowledge and performance degradation in difficult tasks, even when downstream continual training is allowed. Interestingly, our evaluations show that the other popular compression, namely quantization fail to exhibit similar ``monotonic" effect and does not as convincingly disentangle this task-difficulty information. To study formally, we introduce several quantifiable metrics to gauge the downstream task difficulty: (a) within the same task category, and (b) across different task categories. Our extensive experiments substantiate the Junk DNA Hypothesis across a diverse range of model sizes, tasks, datasets, and even …
[ Hall C 4-9 ]

Abstract
On-policy reinforcement learning methods, like Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO), often demand extensive data per update, leading to sample inefficiency. This paper introduces Reflective Policy Optimization (RPO), a novel on-policy extension that amalgamates past and future state-action information for policy optimization. This approach empowers the agent for introspection, allowing modifications to its actions within the current state. Theoretical analysis confirms that policy performance is monotonically improved and contracts the solution space, consequently expediting the convergence procedure. Empirical results demonstrate RPO's feasibility and efficacy in two reinforcement learning benchmarks, culminating in superior sample efficiency. The source code of this work is available at https://github.com/Edgargan/RPO.
[ Hall C 4-9 ]
Abstract
Neural network compression has been an increasingly important subject, not only due to its practical relevance, but also due to its theoretical implications, as there is an explicit connection between compressibility and generalization error. Recent studies have shown that the choice of the hyperparameters of stochastic gradient descent (SGD) can have an effect on the compressibility of the learned parameter vector. These results, however, rely on unverifiable assumptions and the resulting theory does not provide a practical guideline due to its implicitness. In this study, we propose a simple modification for SGD, such that the outputs of the algorithm will be provably compressible without making any nontrivial assumptions. We consider a one-hidden-layer neural network trained with SGD, and show that if we inject additive heavy-tailed noise to the iterates at each iteration, for any compression rate, there exists a level of overparametrization such that the output of the algorithm will be compressible with high probability. To achieve this result, we make two main technical contributions: (i) we prove a "propagation of chaos" result for a class of heavy-tailed stochastic differential equations, and (ii) we derive error estimates for their Euler discretization. Our experiments suggest that the proposed approach not only …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
We consider multiple senders with informational advantage signaling to convince a single self-interested actor to take certain actions. Generalizing the seminal Bayesian Persuasion framework, such settings are ubiquitous in computational economics, multi-agent learning, and machine learning with multiple objectives. The core solution concept here is the Nash equilibrium of senders' signaling policies. Theoretically, we prove that finding an equilibrium in general is PPAD-Hard; in fact, even computing a sender's best response is NP-Hard. Given these intrinsic difficulties, we turn to finding local Nash equilibria. We propose a novel differentiable neural network to approximate this game's non-linear and discontinuous utilities. Complementing this with the extra-gradient algorithm, we discover local equilibria that Pareto dominates full-revelation equilibria and those found by existing neural networks. Broadly, our theoretical and empirical contributions are of interest to a large class of economic problems.
[ Hall C 4-9 ]

Abstract
In this paper, we propose a novel approach called DIffusion-guided DIversity (DIDI) for offline behavioral generation. The goal of DIDI is to learn a diverse set of skills from a mixture of label-free offline data. We achieve this by leveraging diffusion probabilistic models as priors to guide the learning process and regularize the policy. By optimizing a joint objective that incorporates diversity and diffusion-guided regularization, we encourage the emergence of diverse behaviors while maintaining the similarity to the offline data. Experimental results in four decision-making domains (Push, Kitchen, Humanoid, and D4RL tasks) show that DIDI is effective in discovering diverse and discriminative skills. We also introduce skill stitching and skill interpolation, which highlight the generalist nature of the learned skill space. Further, by incorporating an extrinsic reward function, DIDI enables reward-guided behavior generation, facilitating the learning of diverse and optimal behaviors from sub-optimal data.
[ Hall C 4-9 ]
Abstract
Inverse Reinforcement Learning (IRL)---the problem of learning reward functions from demonstrations of an expert policy---plays a critical role in developing intelligent systems. While widely used in applications, theoretical understandings of IRL present unique challenges and remain less developed compared with standard RL. For example, it remains open how to do IRL efficiently in standard offline settings with pre-collected data, where states are obtained from a behavior policy (which could be the expert policy itself), and actions are sampled from the expert policy. This paper provides the first line of results for efficient IRL in vanilla offline and online settings using polynomial samples and runtime. Our algorithms and analyses seamlessly adapt the pessimism principle commonly used in offline RL, and achieve IRL guarantees in stronger metrics than considered in existing work. We provide lower bounds showing that our sample complexities are nearly optimal. As an application, we also show that the learned rewards can transfer to another target MDP with suitable guarantees when the target MDP satisfies certain similarity assumptions with the original (source) MDP.
[ Hall C 4-9 ]

Abstract
Medical Visual Question Answering (Med-VQA) interprets complex medical imagery using user instructions for precise diagnostics, yet faces challenges due to diverse, inadequately annotated images. In this paper, we introduce the Universal Instruction-Vision Navigator (Uni-Med) framework for extracting instruction-to-answer relationships, facilitating the understanding of visual evidence behind responses. Specifically, we design the Instruct-to-Answer Clues Interpreter (IAI) to generate visual explanations based on the answers and mark the core part of instructions with "real intent" labels. The IAI-Med VQA dataset, produced using IAI, is now publicly available to advance Med-VQA research. Additionally, our Token-Level Cut-Mix module dynamically aligns visual explanations with image patches, ensuring answers are traceable and learnable. We also implement intention-guided attention to minimize non-core instruction interference, sharpening focus on 'real intent'. Extensive experiments on SLAKE datasets show Uni-Med’s superior accuracies (87.52% closed, 86.12% overall), outperforming MedVInT-PMC-VQA by 1.22% and 0.92%. Code and dataset are available at: https://github.com/zhongzee/Uni-Med-master.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Generative Large Language Models (LLMs) have demonstrated remarkable results for a wide range of tasks. However, deploying these models for inference has been a significant challenge due to their unprecedented resource requirements. This has forced existing deployment frameworks to use multi-GPU inference pipelines, which are often complex and costly, or to use smaller and less performant models. In this work, we demonstrate that the main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, specifically for single batch inference. While quantization has emerged as a promising solution by representing weights with reduced precision, previous efforts have often resulted in notable performance degradation. To address this, we introduce SqueezeLLM, a post-training quantization framework that not only enables lossless compression to ultra-low precisions of up to 3-bit, but also achieves higher quantization performance under the same memory constraint. Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format. When applied to the LLaMA models, our 3-bit quantization significantly reduces the perplexity gap from the FP16 baseline by up to 2.1x …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
While machine learning shows promise in automated knowledge generation, current techniques such as large language models and micro-targeted influence operations can be exploited for harmful purposes like the proliferation of disinformation. The European Union's Digital Services Act (DSA) is an exemplary policy response addressing these harms generated by online platforms. In this regard, it necessitates a comprehensive evaluation of its impact on curbing the harmful downstream effects of these opaque practices. Despite their harmful applications, we argue that machine learning techniques offer immense, yet under-exploited, potential for unraveling the impacts of regulations like the DSA. Following an analysis that reveals possible limitations in the DSA's provisions, we call for resolute efforts to address methodological barriers around appropriate data access, isolating marginal regulatory effects, and facilitating generalization across different contexts. Given the identified advantages of data-driven approaches to regulatory delivery, we advocate for machine learning research to help quantify the policy impacts on online harms.
[ Hall C 4-9 ]

Abstract
A general belief in fair classification is that fairness constraints incur a trade-off with accuracy, which biased data may worsen. Contrary to this belief, Blum & Stangl (2019) show that fair classification with equal opportunity constraints even on extremely biased data can recover optimally accurate and fair classifiers on the original data distribution. Their result is interesting because it demonstrates that fairness constraints can implicitly rectify data bias and simultaneously overcome a perceived fairness-accuracy trade-off. Their data bias model simulates under-representation and label bias in underprivileged population, and they show the above result on a stylized data distribution with i.i.d. label noise, under simple conditions on the data distribution and bias parameters. We propose a general approach to extend the result of Blum & Stangl (2019) to different fairness constraints, data bias models, data distributions, and hypothesis classes. We strengthen their result, and extend it to the case when their stylized distribution has labels with Massart noise instead of i.i.d. noise. We prove a similar recovery result for arbitrary data distributions using fair reject option classifiers. We further generalize it to arbitrary data distributions and arbitrary hypothesis classes, i.e., we prove that for any data distribution, if the optimally accurate …
[ Hall C 4-9 ]

Abstract
In this paper, we consider classic randomized low diameter decomposition procedures for planar graphs that obtain connected clusters that are cohesive in that close by pairs of nodes are assigned to the same cluster with high probability. We consider the additional aspect of individual fairness -- pairs of nodes at comparable distances should be separated with comparable probability. We show that classic decomposition procedures do not satisfy this property. We present novel algorithms that achieve various trade-offs between this property and additional desiderata of connectivity of the clusters and optimality in number of clusters. We show that our individual fairness bounds may be difficult to improve by tying the improvement to resolving a major open question in metric embeddings. We finally show the efficacy of our algorithms on real planar networks modeling Congressional redistricting.
[ Hall C 4-9 ]

Abstract
A common approach to explaining NLP models is to use importance measures that express which tokens are important for a prediction. Unfortunately, such explanations are often wrong despite being persuasive. Therefore, it is essential to measure their faithfulness. One such metric is if tokens are truly important, then masking them should result in worse model performance. However, token masking introduces out-of-distribution issues, and existing solutions that address this are computationally expensive and employ proxy models. Furthermore, other metrics are very limited in scope. This work proposes an inherently faithfulness measurable model that addresses these challenges. This is achieved using a novel fine-tuning method that incorporates masking, such that masking tokens become in-distribution by design. This differs from existing approaches, which are completely model-agnostic but are inapplicable in practice. We demonstrate the generality of our approach by applying it to 16 different datasets and validate it using statistical in-distribution tests. The faithfulness is then measured with 9 different importance measures. Because masking is in-distribution, importance measures that themselves use masking become consistently more faithful. Additionally, because the model makes faithfulness cheap to measure, we can optimize explanations towards maximal faithfulness; thus, our model becomes indirectly inherently explainable.
[ Hall C 4-9 ]

Abstract
Explainable Artificial Intelligence (XAI) is a young but very promising field of research. Unfortunately, the progress in this field is currently slowed down by divergent and incompatible goals. We separate various threads tangled within the area of XAI into two complementary cultures of human/value-oriented explanations (BLUE XAI) and model/validation-oriented explanations (RED XAI). This position paper argues that the area of RED XAI is currently under-explored, i.e., more methods for explainability are desperately needed to question models (e.g., extract knowledge from well-performing models as well as spotting and fixing bugs in faulty models), and the area of RED XAI hides great opportunities and potential for important research necessary to ensure the safety of AI systems. We conclude this paper by presenting promising challenges in this area.
[ Hall C 4-9 ]
Abstract
Data Shapley provides a principled approach to data valuation and plays a crucial role in data-centric machine learning (ML) research. Data selection is considered a standard application of Data Shapley. However, its data selection performance has shown to be inconsistent across settings in the literature. This study aims to deepen our understanding of this phenomenon. We introduce a hypothesis testing framework and show that Data Shapley's performance can be no better than random selection without specific constraints on utility functions. We identify a class of utility functions, monotonically transformed modular functions, within which Data Shapley optimally selects data. Based on this insight, we propose a heuristic for predicting Data Shapley’s effectiveness in data selection tasks. Our experiments corroborate these findings, adding new insights into when Data Shapley may or may not succeed.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Recent research in the field of graph neural network (GNN) has identified a critical issue known as "over-squashing," resulting from the bottleneck phenomenon in graph structures, which impedes the propagation of long-range information. Prior works have proposed a variety of graph rewiring concepts that aim at optimizing the spatial or spectral properties of graphs to promote the signal propagation. However, such approaches inevitably deteriorate the original graph topology, which may lead to a distortion of information flow. To address this, we introduce an expanded width-aware (PANDA) message passing, a new message passing paradigm where nodes with high centrality, a potential source of over-squashing, are selectively expanded in width to encapsulate the growing influx of signals from distant nodes. Experimental results show that our method outperforms existing rewiring methods, suggesting that selectively expanding the hidden state of nodes can be a compelling alternative to graph rewiring for addressing the over-squashing.
[ Hall C 4-9 ]
Abstract
Recent works attribute the capability of in-context learning (ICL) in large pre-trained language models to implicitly simulating and fine-tuning an internal model (e.g., linear or 2-layer MLP) during inference. However, such constructions require large memory overhead, which makes simulation of more sophisticated internal models intractable. In this work, we propose a new efficient construction, Transformer in Transformer (in short, TINT), that allows a transformer to simulate and fine-tune more complex models during inference (e.g., pre-trained language models). In particular, we introduce innovative approximation techniques that allow a TINT model with less than 2 billion parameters to simulate and fine-tune a 125 million parameter transformer model within a single forward pass. TINT accommodates many common transformer variants and its design ideas also improve the efficiency of past instantiations of simple models inside transformers. We conduct end-to-end experiments to validate the internal fine-tuning procedure of TINT on various language modeling and downstream tasks. For example, even with a limited one-step budget, we observe TINT for a OPT-125M model improves performance by 4 − 16% absolute on average compared to OPT-125M. These findings suggest that large pre-trained language models are capable of performing intricate subroutines. To facilitate further work, a modular and extensible …
[ Hall C 4-9 ]
Abstract
Standard empirical risk minimization (ERM) models may prioritize learning spurious correlations between spurious features and true labels, leading to poor accuracy on groups where these correlations do not hold. Mitigating this issue often requires expensive spurious attribute (group) labels or relies on trained ERM models to infer group labels when group information is unavailable. However, the significant performance gap in worst-group accuracy between using pseudo group labels and using oracle group labels inspires us to consider further improving group robustness through preciser group inference. Therefore, we propose GIC, a novel method that accurately infers group labels, resulting in improved worst-group performance. GIC trains a spurious attribute classifier based on two key properties of spurious correlations: (1) high correlation between spurious attributes and true labels, and (2) variability in this correlation between datasets with different group distributions. Empirical studies on multiple datasets demonstrate the effectiveness of GIC in inferring group labels, and combining GIC with various downstream invariant learning methods improves worst-group accuracy, showcasing its powerful flexibility. Additionally, through analyzing the misclassifications in GIC, we identify an interesting phenomenon called semantic consistency, which may contribute to better decoupling the association between spurious attributes and labels, thereby mitigating spurious correlation. The code …
[ Hall C 4-9 ]
Abstract
Auto-regressive generation models achieve competitive performance across many different NLP tasks such as summarization, question answering, and classifications. However, they are also known for being slow in inference, which makes them challenging to deploy in real-time applications. We propose a switchable decision to accelerate inference by dynamically assigning computation resources for each data instance. Automatically making decisions on where to skip and how to balance quality and computation cost with constrained optimization, our dynamic neural generation networks enforce the efficient inference path and determine the optimized trade-off. Experiments across question answering, summarization, and classification benchmarks show that our method benefits from less computation cost during inference while keeping the same accuracy. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Local feature selection in machine learning provides instance-specific explanations by focusing on the most relevant features for each prediction, enhancing the interpretability of complex models. However, such methods tend to produce misleading explanations by encoding additional information in their selections. In this work, we attribute the problem of misleading selections by formalizing the concepts of label and feature leakage. We rigorously derive the necessary and sufficient conditions under which we can guarantee no leakage, and show existing methods do not meet these conditions. Furthermore, we propose the first local feature selection method that is proven to have no leakage called SUWR. Our experimental results indicate that SUWR is less prone to overfitting and combines state-of-the-art predictive performance with high feature-selection sparsity. Our generic and easily extendable formal approach provides a strong theoretical basis for future work on interpretability with reliable explanations.
[ Hall C 4-9 ]

Abstract
High-dimensional optimization problems have long been considered the Achilles' heel of Bayesian optimization algorithms. Spurred by the curse of dimensionality, a large collection of algorithms aim to make BO more performant in this setting, commonly by imposing various simplifying assumptions on the objective, thereby decreasing its presumed complexity. In this paper, we identify the degeneracies that make vanilla BO poorly suited to high-dimensional tasks, and further show how existing algorithms address these degeneracies through the lens of model complexity. Motivated by the model complexity measure, we derive an enhancement to the prior assumptions that are typical of the vanilla BO algorithm, which reduces the complexity to manageable levels without imposing structural restrictions on the objective. Our modification - a simple scaling of the Gaussian process lengthscale prior in the dimensionality - reveals that standard BO works drastically better than previously thought in high dimensions. Our insights are supplemented by substantial out-performance of existing state-of-the-art on multiple commonly considered real-world high-dimensional tasks.
[ Hall C 4-9 ]

Abstract
Sparse Neural Networks (SNNs) have received voluminous attention for mitigating the explosion in computational costs and memory footprints of modern deep neural networks. Despite their popularity, most state-of-the-art training approaches seek to find a single high-quality sparse subnetwork with a preset sparsity pattern and ratio, making them inadequate to satiate platform and resource variability. Recently proposed approaches attempt to jointly train multiple subnetworks (we term as ``sparse co-training") with a fixed sparsity pattern, to allow switching sparsity ratios subject to resource requirements. In this work, we take one more step forward and expand the scope of sparse co-training to cover diverse sparsity patterns and multiple sparsity ratios at once. We introduce Sparse Cocktail, the first sparse co-training framework that co-trains a suite of sparsity patterns simultaneously, loaded with multiple sparsity ratios which facilitate harmonious switch across various sparsity patterns and ratios at inference depending on the hardware availability. More specifically, Sparse Cocktail alternatively trains subnetworks generated from different sparsity patterns with a gradual increase in sparsity ratios across patterns and relies on an unified mask generation process and the Dense Pivot Co-training to ensure the subnetworks of different patterns orchestrate their shared parameters without canceling each other’s …
[ Hall C 4-9 ]
Abstract
Large Language Models (LLMs) demonstrate remarkable proficiency in comprehending and handling text-based tasks. Many efforts are being made to transfer these attributes to video modality, which are termed Video-LLMs. However, existing Video-LLMs can only capture the coarse-grained semantics and are unable to effectively handle tasks related to comprehension or localization of specific video segments. In light of these challenges, we propose Momentor, a Video-LLM capable of accomplishing fine-grained temporal understanding tasks. To support the training of Momentor, we design an automatic data generation engine to construct Moment-10M, a large-scale video instruction dataset with segment-level instruction data. We train Momentor on Moment-10M, enabling it to perform segment-level reasoning and localization. Zero-shot evaluations on several tasks demonstrate that Momentor excels in fine-grained temporally grounded comprehension and localization.
[ Hall C 4-9 ]

Abstract
We introduce Score identity Distillation (SiD), an innovative data-free method that distills the generative capabilities of pretrained diffusion models into a single-step generator. SiD not only facilitates an exponentially fast reduction in Fréchet inception distance (FID) during distillation but also approaches or even exceeds the FID performance of the original teacher diffusion models. By reformulating forward diffusion processes as semi-implicit distributions, we leverage three score-related identities to create an innovative loss mechanism. This mechanism achieves rapid FID reduction by training the generator using its own synthesized images, eliminating the need for real data or reverse-diffusion-based generation, all accomplished within significantly shortened generation time. Upon evaluation across four benchmark datasets, the SiD algorithm demonstrates high iteration efficiency during distillation and surpasses competing distillation approaches, whether they are one-step or few-step, data-free, or dependent on training data, in terms of generation quality. This achievement not only redefines the benchmarks for efficiency and effectiveness in diffusion distillation but also in the broader field of diffusion-based generation. The PyTorch implementation is available at https://github.com/mingyuanzhou/SiD.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
For multimodal LLMs, the synergy of visual comprehension (textual output) and generation (visual output) presents an ongoing challenge. This is due to a conflicting objective: for comprehension, an MLLM needs to abstract the visuals; for generation, it needs to preserve the visuals as much as possible. Thus, the objective is a dilemma for visual-tokens. To resolve the conflict, we propose encoding images into morph-tokens to serve a dual purpose: for comprehension, they act as visual prompts instructing MLLM to generate texts; for generation, they take on a different, non-conflicting role as complete visual-tokens for image reconstruction, where the missing visual cues are recovered by the MLLM. Extensive experiments show that morph-tokens can achieve a new SOTA for multimodal comprehension and generation simultaneously. Our project is available at https://github.com/DCDmllm/MorphTokens.
[ Hall C 4-9 ]

Abstract
Social media platforms (SMPs) leverage algorithmic filtering (AF) as a means of selecting the content that constitutes a user's feed with the aim of maximizing their rewards. Selectively choosing the contents to be shown on the user's feed may yield a certain extent of influence, either minor or major, on the user's decision-making, compared to what it would have been under a natural/fair content selection. As we have witnessed over the past decade, algorithmic filtering can cause detrimental side effects, ranging from biasing individual decisions to shaping those of society as a whole, for example, diverting users' attention from whether to get the COVID-19 vaccine or inducing the public to choose a presidential candidate. The government's constant attempts to regulate the adverse effects of AF are often complicated, due to bureaucracy, legal affairs, and financial considerations. On the other hand SMPs seek to monitor their own algorithmic activities to avoid being fined for exceeding the allowable threshold. In this paper, we mathematically formalize this framework and utilize it to construct a data-driven statistical auditing procedure to regulate AF from deflecting users' beliefs over time, along with sample complexity guarantees. This state-of-the-art algorithm can be used either by authorities acting as …
[ Hall C 4-9 ]
Abstract
Semi-supervised Learning (SSL) has shown remarkable success in applications with limited supervision. However, due to the scarcity of labels in the training process, SSL algorithms are known to be impaired by the lack of proper model selection, as splitting a validation set will further reduce the limited labeled data, and the size of the validation set could be too small to provide a reliable indication to the generalization error. Therefore, we seek alternatives that do not rely on validation data to probe the generalization performance of SSL models. Specifically, we find that the distinct margin distribution in SSL can be effectively utilized in conjunction with the model's spectral complexity, to provide a non-vacuous indication of the generalization error. Built upon this, we propose a novel model selection method, specifically tailored for SSL, known as Spectral-normalized Labeled-margin Minimization (SLAM). We prove that the model selected by SLAM has upper-bounded differences w.r.t. the best model within the search space. In addition, comprehensive experiments showcase that SLAM can achieve significant improvements compared to its counterparts, verifying its efficacy from both theoretical and empirical standpoints.
[ Hall C 4-9 ]

Abstract
We discuss the inhomogeneous Wigner spike model, a theoretical framework recently introduced to study structured noise in various learning scenarios, through the prism of random matrix theory, with a specific focus on its spectral properties. Our primary objective is to find an optimal spectral method, and to extend the celebrated (BBP) phase transition criterion ---well-known in the homogeneous case--- to our inhomogeneous, block-structured, Wigner model. We provide a thorough rigorous analysis of a transformed matrix and show that the transition for the appearance of 1) an outlier outside the bulk of the limiting spectral distribution and 2) a positive overlap between the associated eigenvector and the signal, occurs precisely at the optimal threshold, making the proposed spectral method optimal within the class of iterative methods for the inhomogeneous Wigner problem.
[ Hall C 4-9 ]
Abstract
NLP has recently made exciting progress toward training language models (LMs) with strong scientific problem-solving skills. However, model development has not focused on real-life use-cases of LMs for science, including applications in education that require processing long scientific documents. To address this, we introduce TutorEval and TutorChat. TutorEval is a diverse question-answering benchmark consisting of questions about long chapters from STEM textbooks, written by experts. TutorEval helps measure real-life usability of LMs as scientific assistants, and it is the first benchmark combining long contexts, free-form generation, and multi-disciplinary scientific knowledge. Moreover, we show that fine-tuning base models with existing dialogue datasets leads to poor performance on TutorEval. Therefore, we create TutorChat, a dataset of 80,000 long synthetic dialogues about textbooks. We use TutorChat to fine-tune Llemma models with 7B and 34B parameters. These LM tutors specialized in math have a 32K-token context window, and they excel at TutorEval while performing strongly on GSM8K and MATH. Our datasets build on open-source materials, and we release our models, data, and evaluations publicly.
[ Hall C 4-9 ]
Abstract
Many real-world datasets are represented as 3D point clouds -- yet they often lack a predefined reference frame, posing a challenge for machine learning or general data analysis. Traditional methods for determining reference frames and normalizing 3D point clouds often struggle with specific inputs, lack theoretical guarantees, or require massive data. We introduce a new algorithm that overcomes these limitations and guarantees both universality and compatibility with any learnable framework for 3D point cloud analysis. Our algorithm works with any input point cloud and performs consistently regardless of input complexities, unlike data-driven methods that are susceptible to biases or limited training data. Empirically, our algorithm outperforms existing methods in effectiveness and generalizability across diverse benchmark datasets. Code is available at https://github.com/Utah-Math-Data-Science/alignment.
[ Hall C 4-9 ]

Abstract
Most reinforcement learning practitioners evaluate their policies with online Monte Carlo estimators for either hyperparameter tuning or testing different algorithmic design choices, where the policy is repeatedly executed in the environment to get the average outcome. Such massive interactions with the environment are prohibitive in many scenarios. In this paper, we propose novel methods that improve the data efficiency of online Monte Carlo estimators while maintaining their unbiasedness. We first propose a tailored closed-form behavior policy that provably reduces the variance of an online Monte Carlo estimator. We then design efficient algorithms to learn this closed-form behavior policy from previously collected offline data. Theoretical analysis is provided to characterize how the behavior policy learning error affects the amount of reduced variance. Compared with previous works, our method achieves better empirical performance in a broader set of environments, with fewer requirements for offline data.
[ Hall C 4-9 ]
Abstract
Large language models display remarkable capabilities in logical and mathematical reasoning, allowing them to solve complex tasks. Interestingly, these abilities emerge in networks trained on the simple task of next-token prediction. In this work, we present a theoretical framework for studying auto-regressive next-token predictors. We demonstrate that even simple models such as linear next-token predictors, trained on Chain-of-Thought (CoT) data, can approximate any function efficiently computed by a Turing machine. We introduce a new complexity measure---length complexity---which measures the number of intermediate tokens in a CoT sequence required to approximate some target function, and analyze the interplay between length complexity and other notions of complexity. Finally, we show experimentally that simple next-token predictors, such as linear networks and shallow Multi-Layer Perceptrons (MLPs), display non-trivial performance on text generation and arithmetic tasks. Our results demonstrate that the power of today's LLMs can be attributed, to a great extent, to the auto-regressive next-token training scheme, and not necessarily to a particular choice of architecture.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
This paper introduces SceneCraft, a Large Language Model (LLM) Agent converting text descriptions into Blender-executable Python scripts which render complex scenes with up to a hundred 3D assets. This process requires complex spatial planning and arrangement. We tackle these challenges through a combination of advanced abstraction, strategic planning, and library learning. SceneCraft first models a scene graph as a blueprint, detailing the spatial relationships among assets in the scene. SceneCraft then writes Python scripts based on this graph, translating relationships into numerical constraints for asset layout. Next, SceneCraft leverages the perceptual strengths of vision-language foundation models like GPT-V to analyze rendered images and iteratively refine the scene. On top of this process, SceneCraft features a library learning mechanism that compiles common script functions into a reusable library, facilitating continuous self-improvement without expensive LLM parameter tuning. Our evaluation demonstrates that SceneCraft surpasses existing LLM-based agents in rendering complex scenes, as shown by its adherence to constraints and favorable human assessments. We also showcase the broader application potential of SceneCraft by reconstructing detailed 3D scenes from the Sintel movie and guiding a video generative model with generated scenes as intermediary control signal.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Graph augmentation has received great attention in recent years for graph contrastive learning (GCL) to learn well-generalized node/graph representations. However, mainstream GCL methods often favor randomly disrupting graphs for augmentation, which shows limited generalization and inevitably leads to the corruption of high-level graph information, i.e., the graph community. Moreover, current knowledge-based graph augmentation methods can only focus on either topology or node features, causing the model to lack robustness against various types of noise. To address these limitations, this research investigated the role of the graph community in graph augmentation and figured out its crucial advantage for learnable graph augmentation. Based on our observations, we propose a community-invariant GCL framework to maintain graph community structure during learnable graph augmentation. By maximizing the spectral changes, this framework unifies the constraints of both topology and feature augmentation, enhancing the model's robustness. Empirical evidence on 21 benchmark datasets demonstrates the exclusive merits of our framework. Code is released on Github (https://github.com/ShiyinTan/CI-GCL.git).
[ Hall C 4-9 ]
Abstract
Learning a high-quality transition model is of great importance for sequential decision-making tasks, especially in offline settings. Nevertheless, the complex behaviors of transition dynamics in real-world environments pose challenges for the standard forward models because of their inductive bias towards smooth regressors, conflicting with the inherent nature of transitions such as discontinuity or large curvature. In this work, we propose to model the transition probability implicitly through a scalar-value energy function, which enables not only flexible distribution prediction but also capturing complex transition behaviors. The Energy-based Transition Models (ETM) are shown to accurately fit the discontinuous transition functions and better generalize to out-of-distribution transition data. Furthermore, we demonstrate that energy-based transition models improve the evaluation accuracy and significantly outperform other off-policy evaluation methods in DOPE benchmark. Finally, we show that energy-based transition models also benefit reinforcement learning and outperform prior offline RL algorithms in D4RL Gym-Mujoco tasks.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
While recent large-scale text-to-speech (TTS) models have achieved significant progress, they still fall shorts in speech quality, similarity, and prosody. Considering that speech intricately encompasses various attributes (e.g., content, prosody, timbre, and acoustic details) that pose significant challenges for generation, a natural idea is to factorize speech into individual subspaces representing different attributes and generate them individually. Motivated by it, we propose a TTS system with novel factorized diffusion models to generate natural speech in a zero-shot way. Specifically, 1) we design a neural codec with factorized vector quantization (FVQ) to disentangle speech waveform into subspaces of content, prosody, timbre, and acoustic details; 2) we propose a factorized diffusion model, which generates attributes in each subspace following its corresponding prompt. With this factorization design, our method can effectively and efficiently model the intricate speech with disentangled subspaces in a divide-and-conquer way. Experimental results show that our method outperforms the state-of-the-art TTS systems on quality, similarity, prosody, and intelligibility.
[ Hall C 4-9 ]
Abstract
A common approach for aligning language models to human preferences is to first learn a reward model from preference data, and then use this reward model to update the language model. We study two closely related problems that arise in this approach. First, any monotone transformation of the reward model preserves preference ranking; is there a choice that is "better" than others? Second, we often wish to align language models to multiple properties: how should we combine multiple reward models? Using a probabilistic interpretation of the alignment procedure, we identify a natural choice for transformation for (the common case of) rewards learned from Bradley-Terry preference models. The derived transformation is straightforward: we apply a log-sigmoid function to the centered rewards, a method we term "LSC-transformation" (log-sigmoid-centered transformation). This transformation has two important properties. First, it emphasizes improving poorly-performing outputs, rather than outputs that already score well. This mitigates both underfitting (where some prompts are not improved) and reward hacking (where the model learns to exploit misspecification of the reward model). Second, it enables principled aggregation of rewards by linking summation to logical conjunction: the sum of transformed rewards corresponds to the probability that the output is "good" in all measured …
[ Hall C 4-9 ]
Abstract
Goodness-of-fit testing, a classical statistical tool, has been extensively explored in the batch setting, where the sample size is predetermined. However, practitioners often prefer methods that adapt to the complexity of a problem rather than fixing the sample size beforehand. Classical batch tests are generally unsuitable for streaming data, as valid inference after data peeking requires multiple testing corrections, resulting in reduced statistical power. To address this issue, we delve into the design of consistent sequential goodness-of-fit tests. Following the principle of testing by betting, we reframe this task as selecting a sequence of payoff functions that maximize the wealth of a fictitious bettor, betting against the null in a repeated game. We conduct experiments to demonstrate the adaptability of our sequential test across varying difficulty levels of problems while maintaining control over type-I errors.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
In this work, we introduce self-infilling code generation, a general framework that incorporates infilling operations into auto-regressive decoding. Our approach capitalizes on the observation that recent infilling-capable code language models can perform self-infilling: whereas conventional infilling is designed to fill in the middle based on a predefined prefix and suffix, self-infilling sequentially generates both such surrounding context and the infilled content. We utilize self-infilling to introduce novel interruption and looping mechanisms in conventional decoding, evolving it into a non-monotonic process. Interruptions allow for postponing the generation of specific code until a definitive suffix is established, enhancing control during decoding. Meanwhile, the looping mechanism, which leverages the complementary nature of self-infilling and left-to-right decoding, can iteratively update and synchronize each piece of generation cyclically. Extensive experiments across a variety of code generation benchmarks demonstrate that decoding with self-infilling not only improves the output quality but also regularizes the overall generation, which effectively mitigates potential degeneration and scaffolds code to be more consistent with intended functionality.
[ Hall C 4-9 ]
Abstract
The last decade has seen tremendous progress in our ability to generate realistic-looking data, be it images, text, audio, or video. Here, we discuss the closely related problem of quantifying realism, that is, designing functions that can reliably tell realistic data from unrealistic data. This problem turns out to be significantly harder to solve and remains poorly understood, despite its prevalence in machine learning and recent breakthroughs in generative AI. Drawing on insights from algorithmic information theory, we discuss why this problem is challenging, why a good generative model alone is insufficient to solve it, and what a good solution would look like. In particular, we introduce the notion of a universal critic, which unlike adversarial critics does not require adversarial training. While universal critics are not immediately practical, they can serve both as a North Star for guiding practical implementations and as a tool for analyzing existing attempts to capture realism.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Pre-training has been investigated to improve the efficiency and performance of training neural operators in data-scarce settings. However, it is largely in its infancy due to the inherent complexity and diversity, such as long trajectories, multiple scales and varying dimensions of partial differential equations (PDEs) data. In this paper, we present a new auto-regressive denoising pre-training strategy, which allows for more stable and efficient pre-training on PDE data and generalizes to various downstream tasks. Moreover, by designing a flexible and scalable model architecture based on Fourier attention, we can easily scale up the model for large-scale pre-training. We train our PDE foundation model with up to 0.5B parameters on 10+ PDE datasets with more than 100k trajectories. Extensive experiments show that we achieve SOTA on these benchmarks and validate the strong generalizability of our model to significantly enhance performance on diverse downstream PDE tasks like 3D data.
[ Hall C 4-9 ]

Abstract
We leverage offline data to facilitate online learning in stochastic multi-armed bandits. The probability distributions that govern the offline data and the online rewards can be different. Without any non-trival upper bound on their difference, we show that no non-anticipatory policy can out-perform the UCB policy by (Auer et al. 2002), even in the presence of offline data. In complement, we propose an online policy MIN-UCB, which outperforms UCB when a non-trivial upper bound is given. MIN-UCB adaptively chooses to utilize the offline data when they are deemed informative, and to ignore them otherwise. MIN-UCB is shown to be tight in terms of both instance indepedent and dependent regret bounds. Finally, we corroborate the theoretical results with numerical experiments.
[ Hall C 4-9 ]
Abstract
In this paper, we introduce a new class of score-based generative models (SGMs) designed to handle high-cardinality data distributions by leveraging concepts from mean-field theory. We present mean-field chaos diffusion models (MF-CDMs), which address the curse of dimensionality inherent in high-cardinality data by utilizing the propagation of chaos property of interacting particles. By treating high-cardinality data as a large stochastic system of interacting particles, we develop a novel score-matching method for infinite-dimensional chaotic particle systems and propose an approximation scheme that employs a subdivision strategy for efficient training. Our theoretical and empirical results demonstrate the scalability and effectiveness of MF-CDMs for managing large high-cardinality data structures, such as 3D point clouds.
[ Hall C 4-9 ]
Abstract
This paper presents a novel approach to object completion, with the primary goal of reconstructing a complete object from its partially visible components. Our method, named MaskComp, delineates the completion process through iterative stages of generation and segmentation. In each iteration, the object mask is provided as an additional condition to boost image generation, and, in return, the generated images can lead to a more accurate mask by fusing the segmentation of images. We demonstrate that the combination of one generation and one segmentation stage effectively functions as a mask denoiser. Through alternation between the generation and segmentation stages, the partial object mask is progressively refined, providing precise shape guidance and yielding superior object completion results. Our experiments demonstrate the superiority of MaskComp over existing approaches, e.g., ControlNet and Stable Diffusion, establishing it as an effective solution for object completion.
[ Hall C 4-9 ]
Abstract
Transformers to do reasoning and few-shot learning, without any fine-tuning, is widely conjectured to stem from their ability to implicitly simulate a multi-step algorithms -- such as gradient descent -- with their weights in a single forward pass. Recently, there has been progress in understanding this complex phenomenon from an expressivity point of view, by demonstrating that Transformers can express such multi-step algorithms. However, our knowledge about the more fundamental aspect of its learnability, beyond single layer models, is very limited. In particular, can training Transformers enable convergence to algorithmic solutions? In this work we resolve this for in context linear regression with linear looped Transformers -- a multi-layer model with weight sharing that is conjectured to have an inductive bias to learn fix-point iterative algorithms. More specifically, for this setting we show that the global minimizer of the population training loss implements multi-step preconditioned gradient descent, with a preconditioner that adapts to the data distribution. Furthermore, we show a fast convergence for gradient flow on the regression loss, despite the non-convexity of the landscape, by proving a novel gradient dominance condition. To our knowledge, this is the first theoretical analysis for multi-layer Transformer in this setting. We further …
[ Hall C 4-9 ]
Abstract
Most variance reduction methods require multiple times of full gradient computation, which is time-consuming and hence a bottleneck in application to distributed optimization. We present a single-loop variance-reduced gradient estimator named SILVER (SIngle-Loop VariancE-Reduction) for the finite-sum non-convex optimization, which does not require multiple full gradients but nevertheless achieves the optimal gradient complexity. Notably, unlike existing methods, SILVER provably reaches second-order optimality, with exponential convergence in the Polyak-Łojasiewicz (PL) region, and achieves further speedup depending on the data heterogeneity. Owing to these advantages, SILVER serves as a new base method to design communication-efficient federated learning algorithms: we combine SILVER with local updates which gives the best communication rounds and number of communicated gradients across all range of Hessian heterogeneity, and, at the same time, guarantees second-order optimality and exponential convergence in the PL region.
[ Hall C 4-9 ]
Abstract
Existing optical character recognition (OCR) methods rely on task-specific designs with divergent paradigms, architectures, and training strategies, which significantly increases the complexity of research and maintenance and hinders the fast deployment in applications. To this end, we propose UPOCR, a simple-yet-effective generalist model for Unified Pixel-level OCR interface. Specifically, the UPOCR unifies the paradigm of diverse OCR tasks as image-to-image transformation and the architecture as a vision Transformer (ViT)-based encoder-decoder with learnable task prompts. The prompts push the general feature representations extracted by the encoder towards task-specific spaces, endowing the decoder with task awareness. Moreover, the model training is uniformly aimed at minimizing the discrepancy between the predicted and ground-truth images regardless of the inhomogeneity among tasks. Experiments are conducted on three pixel-level OCR tasks including text removal, text segmentation, and tampered text detection. Without bells and whistles, the experimental results showcase that the proposed method can simultaneously achieve state-of-the-art performance on three tasks with a unified single model, which provides valuable strategies and insights for future research on generalist OCR models. Code is available at https://github.com/shannanyinxiang/UPOCR.
[ Hall C 4-9 ]

Abstract
Graph matching in the setting of federated learning is still an open problem. This paper proposes an unsupervised federated graph matching algorithm, UFGM, for inferring matched node pairs on different graphs across clients while maintaining privacy requirement, by leveraging graphlet theory and trust region optimization. First, the nodes' graphlet features are captured to generate pseudo matched node pairs on different graphs across clients as pseudo training data for tackling the dilemma of unsupervised graph matching in federated setting and leveraging the strength of supervised graph matching. An approximate graphlet enumeration method is proposed to sample a small number of graphlets and capture nodes' graphlet features. Theoretical analysis is conducted to demonstrate that the approximate method is able to maintain the quality of graphlet estimation while reducing its expensive cost. Second, we propose a separate trust region algorithm for pseudo supervised federated graph matching while maintaining the privacy constraints. In order to avoid expensive cost of the second-order Hessian computation in the trust region algorithm, we propose two weak quasi-Newton conditions to construct a positive definite scalar matrix as the Hessian approximation with only first-order gradients. We theoretically derive the error introduced by the separate trust region due to the Hessian …
[ Hall C 4-9 ]
Abstract
Deep neural policies have recently been installed in a diverse range of settings, from biotechnology to automated financial systems. However, the utilization of deep neural networks to approximate the value function leads to concerns on the decision boundary stability, in particular, with regard to the sensitivity of policy decision making to indiscernible, non-robust features due to highly non-convex and complex deep neural manifolds. These concerns constitute an obstruction to understanding the reasoning made by deep neural policies, and their foundational limitations. Hence, it is crucial to develop techniques that aim to understand the sensitivities in the learnt representations of neural network policies. To achieve this we introduce a theoretically founded method that provides a systematic analysis of the unstable directions in the deep neural policy decision boundary across both time and space. Through experiments in the Arcade Learning Environment (ALE), we demonstrate the effectiveness of our technique for identifying correlated directions of instability, and for measuring how sample shifts remold the set of sensitive directions in the neural policy landscape. Most importantly, we demonstrate that state-of-the-art robust training techniques yield learning of disjoint unstable directions, with dramatically larger oscillations over time, when compared to standard training. We believe our results …
[ Hall C 4-9 ]
Abstract
Discovering new drug molecules is a pivotal yet challenging process due to the near-infinitely large chemical space and notorious demands on time and resources. Numerous generative models have recently been introduced to accelerate the drug discovery process, but their progression to experimental validation remains limited, largely due to a lack of consideration for synthetic accessibility in practical settings. In this work, we introduce a novel framework that is capable of generating new chemical structures while ensuring synthetic accessibility. Specifically, we introduce a postfix notation of synthetic pathways to represent molecules in chemical space. Then, we design a transformer-based model to translate molecular graphs into postfix notations of synthesis. We highlight the model's ability to: (a) perform bottom-up synthesis planning more accurately, (b) generate structurally similar, synthesizable analogs for unsynthesizable molecules proposed by generative models with their properties preserved, and (c) explore the local synthesizable chemical space around hit molecules.
[ Hall C 4-9 ]
Abstract
Chain-of-thought distillation is a powerful technique for transferring reasoning abilities from large language models (LLMs) to smaller student models. Previous methods typically require the student to mimic the step-by-step rationale produced by LLMs, often facing the following challenges: (i) Tokens within a rationale vary in significance, and treating them equally may fail to accurately mimic keypoint tokens, leading to reasoning errors. (ii) They usually distill knowledge by consistently predicting all the steps in a rationale, which falls short in distinguishing the learning order of step generation. This diverges from the human cognitive progression of starting with easy tasks and advancing to harder ones, resulting in sub-optimal outcomes. To this end, we propose a unified framework, called KPOD, to address these issues. Specifically, we propose a token weighting module utilizing mask learning to encourage accurate mimicry of keypoint tokens by the student during distillation. Besides, we develop an in-rationale progressive distillation strategy, starting with training the student to generate the final reasoning steps and gradually extending to cover the entire rationale. To accomplish this, a weighted token generation loss is proposed to assess step reasoning difficulty, and a value function is devised to schedule the progressive distillation by considering both step …
[ Hall C 4-9 ]

Abstract
Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter – we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for semantic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detectsarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they not only write code, but also selectively "emulate" the interpreter by generating the expected output of "detectsarcasm(string)". In this work, we propose Chain of Code (CoC), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format semantic sub-tasks in a program as flexible pseudocode that the interpreter can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other …
[ Hall C 4-9 ]
Abstract
Instruction-guided speech editing aims to follow the user's natural language instruction to manipulate the semantic and acoustic attributes of a speech. In this work, we construct triplet paired data (instruction, input speech, output speech) to alleviate data scarcity and train a multi-task large language model named InstructSpeech. To mitigate the challenges of accurately executing user's instructions, we 1) introduce the learned task embeddings with a fine-tuned Flan-T5-XL to guide the generation process towards the correct generative task; 2) include an extensive and diverse set of speech editing and processing tasks to enhance model capabilities; 3) investigate chain-of-thought reasoning for free-form semantic content editing; and 4) propose a hierarchical adapter that effectively updates a small portion of parameters for generalization to new tasks. To assess instruction speech editing in greater depth, we introduce a benchmark evaluation with contrastive instruction-speech pre-training (CISP) to test the speech quality and instruction-speech alignment faithfulness. Experimental results demonstrate that InstructSpeech achieves state-of-the-art results in eleven tasks, for the first time unlocking the ability to edit speech's acoustic and semantic attributes following a user's instruction. Audio samples are available at https://InstructSpeech.github.io
[ Hall C 4-9 ]

Abstract
Robotic behavior synthesis, the problem of understanding multimodal inputs and generating precise physical control for robots, is an important part of Embodied AI. Despite successes in applying multimodal large language models for high-level understanding, it remains challenging to translate these conceptual understandings into detailed robotic actions while achieving generalization across various scenarios. In this paper, we propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX. RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints, and applies code generation to introduce generalization ability across various robotics platforms. To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning. Extensive experiments demonstrate that RoboCodeX achieves state-of-the-art performance in both simulators and real robots on four different kinds of manipulation tasks and one embodied navigation task.
[ Hall C 4-9 ]
Abstract
Second-order information is valuable for many applications but challenging to compute. Several works focus on computing or approximating Hessian diagonals, but even this simplification introduces significant additional costs compared to computing a gradient. In the absence of efficient exact computation schemes for Hessian diagonals, we revisit an early approximation scheme proposed by Becker and LeCun (1989, BL89), which has a cost similar to gradients and appears to have been overlooked by the community. We introduce HesScale, an improvement over BL89, which adds negligible extra computation. On small networks, we find that this improvement is of higher quality than all alternatives, even those with theoretical guarantees, such as unbiasedness, while being much cheaper to compute. We use this insight in reinforcement learning problems where small networks are used and demonstrate HesScale in second-order optimization and scaling the step-size parameter. In our experiments, HesScale optimizes faster than existing methods and improves stability through step-size scaling. These findings are promising for scaling second-order methods in larger models in the future.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In preference-based Reinforcement Learning (RL), obtaining a large number of preference labels are both time-consuming and costly. Furthermore, the queried human preferences cannot be utilized for the new tasks. In this paper, we propose Zero-shot Cross-task Preference Alignment and Robust Reward Learning (PEARL), which learns policies from cross-task preference transfer without any human labels of the target task. Our contributions include two novel components that facilitate the transfer and learning process. The first is Cross-task Preference Alignment (CPA), which transfers the preferences between tasks via optimal transport. The key idea of CPA is to use Gromov-Wasserstein distance to align the trajectories between tasks, and the solved optimal transport matrix serves as the correspondence between trajectories. The target task preferences are computed as the weighted sum of source task preference labels with the correspondence as weights. Moreover, to ensure robust learning from these transferred labels, we introduce Robust Reward Learning (RRL), which considers both reward mean and uncertainty by modeling rewards as Gaussian distributions. Empirical results on robotic manipulation tasks from Meta-World and Robomimic demonstrate that our method is capable of transferring preference labels across tasks accurately and then learns well-behaved policies. Notably, our approach significantly exceeds existing methods when there …
[ Hall C 4-9 ]
Abstract
Unified multi-model representation spaces are the foundation of multimodal understanding and generation. However, the billions of model parameters and catastrophic forgetting problems make it challenging to further enhance pre-trained unified spaces. In this work, we propose FreeBind, an idea that treats multimodal representation spaces as basic units, and freely augments pre-trained unified space by integrating knowledge from extra expert spaces via ``space bonds". Specifically, we introduce two kinds of basic space bonds: 1) Space Displacement Bond and 2) Space Combination Bond. Based on these basic bonds, we design Complex Sequential & Parallel Bonds to effectively integrate multiple spaces simultaneously. Benefiting from the modularization concept, we further propose a coarse-to-fine customized inference strategy to flexibly adjust the enhanced unified space for different purposes. Experimentally, we bind ImageBind with extra image-text and audio-text expert spaces, resulting in three main variants: ImageBind++, InternVLIB, and InternVLIB++. These resulting spaces outperform ImageBind on 5 audio-image-text downstream tasks across 9 datasets. Moreover, via customized inference, it even surpasses the advanced audio-text and image-text expert spaces. Our code and checkpoints are released at https://github.com/zehanwang01/FreeBind
[ Hall C 4-9 ]

Abstract
Given the critical role of graphs in real-world applications and their high-security requirements, improving the ability of graph neural networks (GNNs) to detect out-of-distribution (OOD) data is an urgent research problem. The recent work GNNSAFE proposes a framework based on the aggregation of negative energy scores that significantly improves the performance of GNNs to detect node-level OOD data. However, our study finds that score aggregation among nodes is susceptible to extreme values due to the unboundedness of the negative energy scores and logit shifts, which severely limits the accuracy of GNNs in detecting node-level OOD data. In this paper, we propose NODESAFE: reducing the generation of extreme scores of nodes by adding two optimization terms that make the negative energy scores bounded and mitigate the logit shift. Experimental results show that our approach dramatically improves the ability of GNNs to detect OOD data at the node level, e.g., in detecting OOD data induced by Structure Manipulation, the metric of FPR95 (lower is better) in scenarios without (with) OOD data exposure are reduced from the current SOTA by 28.4% ( 22.7% ). The code is available via https://github.com/ShenzhiYang2000/NODESAFE-Bounded-and-Uniform-Energy-based-Out-of-distribution-Detection-for-Graphs.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
In this work, we investigate how people use text-to-image models to generate desired target images. To study this interaction, we created ArtWhisperer, an online game where users are given a target image and are tasked with iteratively finding a prompt that creates a similar-looking image as the target. Through this game, we recorded over 50,000 human-AI interactions; each interaction corresponds to one text prompt created by a user and the corresponding generated image. The majority of these are repeated interactions where a user iterates to find the best prompt for their target image, making this a unique sequential dataset for studying human-AI collaborations. In an initial analysis of this dataset, we identify several characteristics of prompt interactions and user strategies. People submit diverse prompts and are able to discover a variety of text descriptions that generate similar images. Interestingly, prompt diversity does not decrease as users find better prompts. We further propose a new metric to quantify AI model steerability using our dataset. We define steerability as the expected number of interactions required to adequately complete a task. We estimate this value by fitting a Markov chain for each target task and calculating the expected time to reach an adequate …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
We use (multi)modal deep neural networks (DNNs) to probe for sites of multimodal integration in the human brain by predicting stereoencephalography (SEEG) recordings taken while human subjects watched movies. We operationalize sites of multimodal integration as regions where a multimodal vision-language model predicts recordings better than unimodal language, unimodal vision, or linearly-integrated language-vision models. Our target DNN models span different architectures (e.g., convolutional networks and transformers) and multimodal training techniques (e.g., cross-attention and contrastive learning). As a key enabling step, we first demonstrate that trained vision and language models systematically outperform their randomly initialized counterparts in their ability to predict SEEG signals. We then compare unimodal and multimodal models against one another. Because our target DNN models often have different architectures, number of parameters, and training sets (possibly obscuring those differences attributable to integration), we carry out a controlled comparison of two models (SLIP and SimCLR), which keep all of these attributes the same aside from input modality. Using this approach, we identify a sizable number of neural sites (on average 141 out of 1090 total sites or 12.94%) and brain regions where multimodal integration seems to occur. Additionally, we find that among the variants of multimodal training techniques we …
[ Hall C 4-9 ]

Abstract
Science fiction has explored the possibility of a conscious self-aware mind being locked in silent suffering for prolonged periods of time. Unfortunately, we still do not have a reliable test for the presence of consciousness in information processing systems. Even in case of humans, our confidence in the presence of consciousness in specific individuals is based mainly on their self-reports and our own subjective experiences and the expectation other beings like us should share them. Considering our limited understanding of consciousness and some academic theories suggesting consciousness may be an emergent correlate of any complex-enough information processing, it is not impossible that an artificial intelligence (AI) system, such as a large language model (LLM), may be undergoing some, perhaps rudimentary, conscious experience. Given the tedious tasks often assigned to AI, such conscious experience may be highly unpleasant. Such unobserved suffering of a conscious being would be viewed as morally wrong by at least some ethicists - even if it has no practical effects on human users of AI. This paper proposes a method to mitigate the risk of an AI suffering in silence without needing to confirm if the AI is actually conscious. Our core postulate is that in all …
[ Hall C 4-9 ]

Abstract
Spiking Neural Networks (SNNs) emulate the integrated-fire-leak mechanism found in biological neurons, offering a compelling combination of biological realism and energy efficiency. In recent years, they have gained considerable research interest. However, existing SNNs predominantly rely on the Leaky Integrate-and-Fire (LIF) model and are primarily suited for simple, static tasks. They lack the ability to effectively model long-term temporal dependencies and facilitate spatial information interaction, which is crucial for tackling complex, dynamic spatio-temporal prediction tasks. To tackle these challenges, this paper draws inspiration from the concept of autaptic synapses in biology and proposes a novel Spatio-Temporal Circuit (STC) model. The STC model integrates two learnable adaptive pathways, enhancing the spiking neurons' temporal memory and spatial coordination. We conduct theoretical analysis of the dynamic parameters in the STC model, highlighting their contribution in establishing long-term memory and mitigating the issue of gradient vanishing. Through extensive experiments on multiple spatio-temporal prediction datasets, we demonstrate that our model outperforms other adaptive models. Furthermore, our model is compatible with existing spiking neuron models, thereby augmenting their dynamic representations. In essence, our work enriches the specificity and topological complexity of SNNs.
[ Hall C 4-9 ]

Abstract
There is increasing interest in employing large language models (LLMs) as cognitive models. For such purposes, it is central to understand which properties of human cognition are well-modeled by LLMs, and which are not. In this work, we study the biases of LLMs in relation to those known in children when solving arithmetic word problems. Surveying the learning science literature, we posit that the problem-solving process can be split into three distinct steps: text comprehension, solution planning and solution execution. We construct tests for each one in order to understand whether current LLMs display the same cognitive biases as children in these steps. We generate a novel set of word problems for each of these tests, using a neuro-symbolic approach that enables fine-grained control over the problem features. We find evidence that LLMs, with and without instruction-tuning, exhibit human-like biases in both the text-comprehension and the solution-planning steps of the solving process, but not in the final step, in which the arithmetic expressions are executed to obtain the answer.
[ Hall C 4-9 ]

Abstract
Increasing experimental evidence suggests that the human hippocampus, evolutionarily shaped by spatial navigation tasks, also plays an important role in language comprehension, indicating a shared computational mechanism for both functions. However, the specific relationship between the hippocampal formation's computational mechanism in spatial navigation and its role in language processing remains elusive. To investigate this question, we develop a prefrontal-hippocampal-entorhinal model (which called PHE-trinity) that features two key aspects: 1) the use of a modular continuous attractor neural network to represent syntactic structure, akin to the grid network in the entorhinal cortex; 2) the creation of two separate input streams, mirroring the factorized structure-content representation found in the hippocampal formation. We evaluate our model on language command parsing tasks, specifically using the SCAN dataset. Our findings include: 1) attractor dynamics can facilitate systematic generalization and efficient learning from limited data; 2) through visualization and reverse engineering, we unravel a potential dynamic mechanism for grid network representing syntactic structure. Our research takes an initial step in uncovering the dynamic mechanism shared by spatial navigation and language information processing.
[ Hall C 4-9 ]

Abstract
The human brain is a complex inter-wired system that emerges spontaneous functional fluctuations. In spite of tremendous success in the experimental neuroscience field, a system-level understanding of how brain anatomy supports various neural activities remains elusive. Capitalizing on the unprecedented amount of neuroimaging data, we present a physics-informed deep model to uncover the coupling mechanism between brain structure and function through the lens of data geometry that is rooted in the widespread wiring topology of connections between distant brain regions. Since deciphering the puzzle of self-organized patterns in functional fluctuations is the gateway to understanding the emergence of cognition and behavior, we devise a geometric deep model to uncover manifold mapping functions that characterize the intrinsic feature representations of evolving functional fluctuations on the Riemannian manifold. In lieu of learning unconstrained mapping functions, we introduce a set of graph-harmonic scattering transforms to impose the brain-wide geometry on top of manifold mapping functions, which allows us to cast the manifold-based deep learning into a reminiscent of MLP-Mixer architecture (in computer vision) for Riemannian manifold. As a proof-of-concept approach, we explore a neural-manifold perspective to understand the relationship between (static) brain structure and (dynamic) function, challenging the prevailing notion in cognitive neuroscience …
[ Hall C 4-9 ]
Abstract
WebAssembly enables near-native execution in web applications and is increasingly adopted for tasks that demand high performance and robust security. However, its assembly-like syntax, implicit stack machine, and low-level data types make it extremely difficult for human developers to understand, spurring the need for effective WebAssembly reverse engineering techniques. In this paper, we propose StackSight, a novel neurosymbolic approach that combines Large Language Models (LLMs) with advanced program analysis to decompile complex WebAssembly code into readable C++ snippets. StackSight visualizes and tracks virtual stack alterations via a static analysis algorithm and then applies chain-of-thought prompting to harness LLM's complex reasoning capabilities. Evaluation results show that StackSight significantly improves WebAssembly decompilation. Our user study also demonstrates that code snippets generated by StackSight have significantly higher win rates and enable a better grasp of code semantics.
[ Hall C 4-9 ]

Abstract
In this work, we propose a novel method for modeling numerous speakers, which enables expressing the overall characteristics of speakers in detail like a trained multi-speaker model without additional training on the target speaker's dataset. Although various works with similar purposes have been actively studied, their performance has not yet reached that of trained multi-speaker models due to their fundamental limitations. To overcome previous limitations, we propose effective methods for feature learning and representing target speakers' speech characteristics by discretizing the features and conditioning them to a speech synthesis model. Our method obtained a significantly higher similarity mean opinion score (SMOS) in subjective similarity evaluation than seen speakers of a high-performance multi-speaker model, even with unseen speakers. The proposed method also outperforms a zero-shot method by significant margins. Furthermore, our method shows remarkable performance in generating new artificial speakers. In addition, we demonstrate that the encoded latent features are sufficiently informative to reconstruct an original speaker's speech completely. It implies that our method can be used as a general methodology to encode and reconstruct speakers' characteristics in various tasks.
[ Hall C 4-9 ]

Abstract
Automatically generating high-quality code descriptions greatly improves the readability and maintainability of the codebase. Recently, retrieval augmented code-to-text generation has proven to be an effective solution, which has achieved state-of-the-art results on various benchmarks. It brings out the potential to leverage large unlabeled code descriptions to further improve the generation quality. Despite the promising performance, retrieval-augmented models however suffer from being deluded by inconducive retrieved references, due to irrelevant or even misleading information contained therein. To this end, we design PinNet, a new framework for code-to-text generation. PinNet relies on a discriminator to measure how well the retrievals match the semantics of the input code. Remarkably, the hidden representation of the reference before the output layer of the discriminator can be leveraged to significantly improve the code-to-text generation by modifying the attention weights. It essentially pays high attention to valuable information and eliminates misleadingness. To effectively execute this idea, we also propose a novel contrastive learning method to quantify the semantical similarities between unlabeled references. Using extensive experiments on code summarization and SQL-to-text generation, we demonstrate that the proposed method can significantly outperform all of the baselines.
[ Hall C 4-9 ]

Abstract
Audio generation is a major branch of generative AI research. Compared with prior works in this area that are commonly task-specific with heavy domain knowledge, this paper advocates building universal audio generation models that can handle various tasks in a unified manner. As recent research on large language models (LLMs) has demonstrated their strong ability to handle multiple tasks, this work presents UniAudio, an LLM-based audio generation model that supports a wide range of audio generation tasks. Based on various input conditions, such as phoneme, text description, or audio itself, UniAudio can generate speech, sound, music, and singing voice. The proposed UniAudio is built with 100k hours of multi-source open-available audio data and is scaled to 1B parameters. The audio tokenization method and language model architecture are also specifically designed for both performance and efficiency. Experimentally, UniAuido supports 11 audio generation tasks and achieves competitive results on all tasks consistently. We also show that UniAudio can support new tasks seamlessly via simple fine-tuning.
[ Hall C 4-9 ]
Abstract
While large language models (LLMs) have achieved impressive performance in generating fluent and realistic text, controlling the generated text so that it exhibits properties such as safety, factuality, and non-toxicity remains challenging. Existing decoding-based controllable text generation methods are static in terms of the dimension of control; if the target subject is changed, they require new training. Moreover, it can quickly become prohibitive to concurrently control multiple subjects. To address these challenges, we first show that existing methods can be framed as a reinforcement learning problem, where an action-value function estimates the likelihood of a desired attribute appearing in the generated text. Then, we introduce a novel approach named SF-Gen, which leverages the concept of successor features to decouple the dynamics of LLMs from task-specific rewards. By employing successor features, our method proves to be memory-efficient and computationally efficient for both training and decoding, especially when dealing with multiple target subjects. To the best of our knowledge, our research represents the first application of successor features in text generation. In addition to its computational efficiency, the resultant language produced by our method is comparable to the SOTA (and outperforms baselines) in both control measures as well as language quality, which …
[ Hall C 4-9 ]
Abstract
Music has a unique and complex structure which is challenging for both expert humans and existing AI systems to understand, and presents unique challenges relative to other forms of audio. We present LLark, an instruction-tuned multimodal model for music understanding. We detail our process for dataset creation, which involves augmenting the annotations of diverse open-source music datasets and converting them to a unified instruction-tuning format. We propose a multimodal architecture for LLark, integrating a pretrained generative model for music with a pretrained language model. In evaluations on three types of tasks (music understanding, captioning, reasoning), we show that LLark matches or outperforms existing baselines in music understanding, and that humans show a high degree of agreement with its responses in captioning and reasoning tasks. LLark is trained entirely from open-source music data and models, and we make our training code available along with the release of this paper. Additional results and audio examples are at https://bit.ly/llark, and our source code is available at https://github.com/spotify-research/llark.
[ Hall C 4-9 ]

Abstract
We propose SelfVC, a training strategy to iteratively improve a voice conversion model with self-synthesized examples. Previous efforts on voice conversion focus on factorizing speech into explicitly disentangled representations that separately encode speaker characteristics and linguistic content. However, disentangling speech representations to capture such attributes using task-specific loss terms can lead to information loss. In this work, instead of explicitly disentangling attributes with loss terms, we present a framework to train a controllable voice conversion model on entangled speech representations derived from self-supervised learning (SSL) and speaker verification models. First, we develop techniques to derive prosodic information from the audio signal and SSL representations to train predictive submodules in the synthesis model. Next, we propose a training strategy to iteratively improve the synthesis model for voice conversion, by creating a challenging training objective using self-synthesized examples. We demonstrate that incorporating such self-synthesized examples during training improves the speaker similarity of generated speech as compared to a baseline voice conversion model trained solely on heuristically perturbed inputs. Our framework is trained without any text and achieves state-of-the-art results in zero-shot voice conversion on metrics evaluating naturalness, speaker similarity, and intelligibility of synthesized audio.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
We introduce Cell2Sentence (C2S), a novel method to directly adapt large language models to a biological context, specifically single-cell transcriptomics. By transforming gene expression data into "cell sentences," C2S bridges the gap between natural language processing and biology. We demonstrate cell sentences enable the fine-tuning of language models for diverse tasks in biology, including cell generation, complex cell-type annotation, and direct data-driven text generation. Our experiments reveal that GPT-2, when fine-tuned with C2S, can generate biologically valid cells based on cell type inputs, and accurately predict cell types from cell sentences. This illustrates that language models, through C2S fine-tuning, can acquire a significant understanding of single-cell biology while maintaining robust text generation capabilities. C2S offers a flexible, accessible framework to integrate natural language processing with transcriptomics, utilizing existing models and libraries for a wide range of biological applications.
[ Hall C 4-9 ]

Abstract
Unsupervised domain adaptation of multivariate time series aims to train a model to adapt its classification ability from a labeled source domain to an unlabeled target domain, where there are differences in the distribution between domains. Existing methods extract domain-invariant features directly via a shared feature extractor, neglecting the exploration of the underlying causal patterns, which undermines their reliability, especially in complex multivariate dynamic systems. To address this problem, we propose CauDiTS, an innovative framework for unsupervised domain adaptation of multivariate time series. CauDiTS adopts an adaptive rationale disentangler to disentangle domain-common causal rationales and domain-specific correlations from variable interrelationships. The stability of causal rationales across domains is vital for filtering domainspecific perturbations and facilitating the extraction of domain-invariant representations. Moreover, we promote the cross-domain consistency of intra-class causal rationales employing the learning strategies of causal prototype consistency and domain-intervention causality invariance. CauDiTS is evaluated on four benchmark datasets, demonstrating its effectiveness and outperforming state-of-the-art methods.
[ Hall C 4-9 ]
Abstract
Sleep is a complex physiological process evaluated through various modalities recording electrical brain, cardiac, and respiratory activities. We curate a large polysomnography dataset from over 14,000 participants comprising over 100,000 hours of multi-modal sleep recordings. Leveraging this extensive dataset, we developed SleepFM, the first multi-modal foundation model for sleep analysis. We show that a novel leave-one-out approach for contrastive learning significantly improves downstream task performance compared to representations from standard pairwise contrastive learning. A logistic regression model trained on SleepFM's learned embeddings outperforms an end-to-end trained convolutional neural network (CNN) on sleep stage classification (macro AUROC 0.88 vs 0.72 and macro AUPRC 0.72 vs 0.48) and sleep disordered breathing detection (AUROC 0.85 vs 0.69 and AUPRC 0.77 vs 0.61). Notably, the learned embeddings achieve 48% top-1 average accuracy in retrieving modality clip pairs from 90,000 candidates. This work demonstrates the value of holistic multi-modal sleep modeling to fully capture the richness of sleep recordings. SleepFM is open source and available at https://anonymous.4open.science/r/sleepfm.
[ Hall C 4-9 ]

Abstract
Metallic Glasses (MGs) are widely used materials that are stronger than steel while being shapeable as plastic. While understanding the structure-property relationship of MGs remains a challenge in materials science, studying their energy barriers (EBs) as an intermediary step shows promise. In this work, we utilize Graph Neural Networks (GNNs) to model MGs and study EBs. We contribute a new dataset for EB prediction and a novel Symmetrized GNN (SymGNN) model that is E(3)-invariant in expectation. SymGNN handles invariance by aggregating over orthogonal transformations of the graph structure. When applied to EB prediction, SymGNN are more accurate than molecular dynamics (MD) local-sampling methods and other machine-learning models. Compared to precise MD simulations, SymGNN reduces the inference time on new MGs from roughly 41 days to less than one second. We apply explanation algorithms to reveal the relationship between structures and EBs. The structures that we identify through explanations match the medium-range order (MRO) hypothesis and possess unique topological properties. Our work enables effective prediction and interpretation of MG EBs, bolstering material science research.
[ Hall C 4-9 ]
Abstract
Macro placement is a crucial step in modern chip design, and reinforcement learning (RL) has recently emerged as a promising technique for improving the placement quality. However, existing RL-based techniques are hindered by their low sample efficiency, requiring numerous online rollouts or substantial offline expert data to achieve bootstrap, which are often impractical in industrial scenarios. To address this challenge, we propose a novel sample-efficient framework, namely EfficientPlace, for fast macro placement. EfficientPlace integrates a global tree search algorithm to strategically direct the optimization process, as well as a RL agent for local policy learning to advance the tree search. Experiments on commonly used benchmarks demonstrate that EfficientPlace achieves remarkable placement quality within a short timeframe, outperforming recent state-of-the-art approaches.
[ Hall C 4-9 ]

Abstract
We investigate both the theoretical and algorithmic aspects of likelihood-based methods for recovering a complex-valued signal from multiple sets of measurements, referred to as looks, affected by speckle (multiplicative) noise. Our theoretical contributions include establishing the first existing theoretical upper bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis. Our theoretical results capture the dependence of MSE upon the number of parameters in the deep image prior, the number of looks, the signal dimension, and the number of measurements per look. On the algorithmic side, we introduce the concept of bagged Deep Image Priors (Bagged-DIP) and integrate them with projected gradient descent. Furthermore, we show how employing Newton-Schulz algorithm for calculating matrix inverses within the iterations of PGD reduces the computational complexity of the algorithm. We will show that this method achieves the state-of-the-art performance.
[ Hall C 4-9 ]

Abstract
Error correction codes are a crucial part of the physical communication layer, ensuring the reliable transfer of data over noisy channels. The design of optimal linear block codes capable of being efficiently decoded is of major concern, especially for short block lengths. While neural decoders have recently demonstrated their advantage over classical decoding techniques, the neural design of the codes remains a challenge. In this work, we propose for the first time a unified encoder-decoder training of binary linear block codes. To this end, we adapt the coding setting to support efficient and differentiable training of the code for end-to-end optimization over the order two Galois field. We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient. Our results show that (i) the proposed decoder outperforms existing neural decoding on conventional codes, (ii) the suggested framework generates codes that outperform the analogous conventional codes, and (iii) the codes we developed not only excel with our decoder but also show enhanced performance with traditional decoding techniques.
[ Hall C 4-9 ]

Abstract
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving. However, their proficiency in solving mathematical problems remains inadequate. We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data using frontier LLMs (e.g., GPT-3.5). Inspired by the cognitive mechanism in human mathematical learning, it first extracts topics and knowledge points from seed math questions and then build a concept graph, which is subsequently used to generate new math questions. MathScale exhibits effective scalability along the size axis of the math dataset that we generate. As a result, we create a mathematical reasoning dataset (MathScaleQA) containing two million math question-answer pairs. To evaluate mathematical reasoning abilities of LLMs comprehensively, we construct MWPBench, a benchmark of Math Word Problems, which is a collection of 9 datasets (including GSM8K and MATH) covering K-12, college, and competition level math problems. We apply MathScaleQA to fine-tune open-source LLMs (e.g., LLaMA-2 and Mistral), resulting in significantly improved capabilities in mathematical reasoning. Evaluated on MWPBench, MathScale-7B achieves state-of-the-art performance across all datasets, surpassing its best peers of equivalent size by 42.8% in micro average accuracy and 43.6% in macro average accuracy, respectively.
[ Hall C 4-9 ]

Abstract
The current state-of-the-art No-Reference Image Quality Assessment (NR-IQA) methods typically rely on feature extraction from upstream semantic backbone networks, assuming that all extracted features are relevant. However, we make a key observation that not all features are beneficial, and some may even be harmful, necessitating careful selection. Empirically, we find that many image pairs with small feature spatial distances can have vastly different quality scores, indicating that the extracted features may contain quality-irrelevant noise. To address this issue, we propose a Quality-Aware Feature Matching IQA Metric (QFM-IQM) that employs an adversarial perspective to remove harmful semantic noise features from the upstream task. Specifically, QFM-IQM enhances the semantic noise distinguish capabilities by matching image pairs with similar quality scores but varying semantic features as adversarial semantic noise and adaptively adjusting the upstream task’s features by reducing sensitivity to adversarial noise perturbation. Furthermore, we utilize a distillation framework to expand the dataset and improve the model's generalization ability. Extensive experiments conducted on eight standard IQA datasets have demonstrated the effectiveness of our proposed QFM-IQM.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In-context learning is a powerful emergent ability in transformer models. Prior work in mechanistic interpretability has identified a circuit element that may be critical for in-context learning – the induction head (IH), which performs a match-and-copy operation. During training of large transformers on natural language data, IHs emerge around the same time as a notable phase change in the loss. Despite the robust evidence for IHs and this interesting coincidence with the phase change, relatively little is known about the diversity and emergence dynamics of IHs. Why is there more than one IH, and how are they dependent on each other? Why do IHs appear all of a sudden, and what are the subcircuits that enable them to emerge? We answer these questions by studying IH emergence dynamics in a controlled setting by training on synthetic data. In doing so, we develop and share a novel optogenetics-inspired causal framework for modifying activations throughout training. Using this framework, we delineate the diverse and additive nature of IHs. By "clamping" subsets of activations throughout training, we then identify three underlying subcircuits that interact to drive IH formation, yielding the phase change. Furthermore, these subcircuits shed light on data-dependent properties of formation, such …
[ Hall C 4-9 ]

Abstract
Neural networks whose weights are the output of a predictor (HyperNetworks) achieve excellent performance on many tasks. In ConvNets, kernel prediction layers are a popular type of HyperNetwork. Previous theoretical work has argued that a hierarchy of multiplicative interactions exists in which gating is at the bottom and full weight prediction, as in HyperNetworks, is at the top. In this paper, we constructively demonstrate an equivalence between gating combined with fixed weight layers and weight prediction, relativizing the notion of a hierarchy of multiplicative interactions. We further derive an equivalence between a restricted type of HyperNetwork and factorization machines. Finally, we find empirically that gating layers can learn to imitate weight prediction layers with an SGD variant and show a novel practical application in image denoising using kernel prediction networks. Our reformulation of predicted kernels, combining fixed layers and gating, reduces memory requirements.
[ Hall C 4-9 ]

Abstract
Offline Imitation Learning (IL) with imperfect demonstrations has garnered increasing attention owing to the scarcity of expert data in many real-world domains. A fundamental problem in this scenario is how to extract positive behaviors from noisy data. In general, current approaches to the problem select data building on state-action similarity to given expert demonstrations, neglecting precious information in (potentially abundant) diverse state-actions that deviate from expert ones. In this paper, we introduce a simple yet effective data selection method that identifies positive behaviors based on their resultant states - a more informative criterion enabling explicit utilization of dynamics information and effective extraction of both expert and beneficial diverse behaviors. Further, we devise a lightweight behavior cloning algorithm capable of leveraging the expert and selected data correctly. In the experiments, we evaluate our method on a suite of complex and high-dimensional offline IL benchmarks, including continuous-control and vision-based tasks. The results demonstrate that our method achieves state-of-the-art performance, outperforming existing methods on 20/21 benchmarks, typically by 2-5x, while maintaining a comparable runtime to Behavior Cloning (BC).
[ Hall C 4-9 ]
Abstract
The temperature parameter plays a profound role during training and/or inference with large foundation models (LFMs) such as large language models (LLMs) and CLIP models. Particularly, it adjusts the logits in the softmax function in LLMs, which is crucial for next token generation, and it scales the similarities in the contrastive loss for training CLIP models. A significant question remains: `` Is it viable to learn a neural network to predict a personalized temperature of any input data for enhancing LFMs?" In this paper, we present a principled framework for learning a small yet generalizable temperature prediction network (TempNet) to improve LFMs. Our solution is composed of a novel learning framework with robust losses underpinned by constrained distributionally robust optimization (DRO), and a properly designed TempNet with theoretical inspiration. TempNet can be trained together with a large foundation model from scratch or learned separately given a pretrained foundation model. It is not only useful for predicting personalized temperature to promote the training of LFMs but also generalizable and transferable to new tasks. Our experiments on LLMs and CLIP models demonstrate that TempNet greatly improves the performance of existing solutions or models.
[ Hall C 4-9 ]

Abstract
Federated Prompt Learning (FPL) incorporates large pre-trained Vision-Language models (VLM) into federated learning through prompt tuning. The transferable representations and remarkable generalization capacity of VLM make them highly compatible with the integration of federated learning. Addressing data heterogeneity in federated learning requires personalization, but excessive focus on it across clients could compromise the model's ability to generalize effectively. To preserve the impressive generalization capability of VLM, it is crucial to strike a balance between personalization and generalization in FPL. To tackle this challenge, we proposed Federated Prompt Learning with CLIP Generalization and low-rank Personalization (FedPGP), which employs pre-trained CLIP to provide knowledge-guidance on the global prompt for improved generalization and incorporates a low-rank adaptation term to personalize the global prompt. Further, FedPGP integrates a prompt-wise contrastive loss to achieve knowledge guidance and personalized adaptation simultaneously, enabling a harmonious balance between personalization and generalization in FPL. We conduct extensive experiments on various datasets to explore base-to-novel generalization in both category-level and domain-level scenarios with heterogeneous data, showing the superiority of FedPGP in balancing generalization and personalization.
[ Hall C 4-9 ]
Abstract
In many practical applications, coarse-grained labels are readily available compared to fine-grained labels that reflect subtle differences between classes. However, existing methods cannot leverage coarse labels to infer fine-grained labels in an unsupervised manner. To bridge this gap, we propose FALCON, a method that discovers fine-grained classes from coarsely labeled data without any supervision at the fine-grained level. FALCON simultaneously infers unknown fine-grained classes and underlying relationships between coarse and fine-grained classes. Moreover, FALCON is a modular method that can effectively learn from multiple datasets labeled with different strategies. We evaluate FALCON on eight image classification tasks and a single-cell classification task. FALCON outperforms baselines by a large margin, achieving 22% improvement over the best baseline on the tieredImageNet dataset with over 600 fine-grained classes.
[ Hall C 4-9 ]

Abstract
Despite impressive results, deep generative models require massive datasets for training, and as dataset size increases, effective evaluation metrics like precision and recall (P&R) become computationally infeasible on commodity hardware. In this paper, we address this challenge by proposing efficient P&R (eP&R) metrics that give almost identical results as the original P&R but with much lower computational costs. Specifically, we identify two redundancies in the original P&R: i) redundancy in ratio computation and ii) redundancy in manifold inside/outside identification. We find both can be effectively removed via hubness-aware sampling, which extracts representative elements from synthetic/real image samples based on their hubness values, i.e., the number of times a sample becomes a k-nearest neighbor to others in the feature space. Thanks to the insensitivity of hubness-aware sampling to exact k-nearest neighbor (k-NN) results, we further improve the efficiency of our eP&R metrics by using approximate k-NN methods. Extensive experiments show that our eP&R matches the original P&R but is far more efficient in time and space. Our code is available at: https://github.com/Byronliang8/HubnessPrecisionRecall
[ Hall C 4-9 ]

Abstract
Knowledge distillation (KD) has been widely used for model compression and deployment acceleration. Nonetheless, the statistical insight of the remarkable performance of KD remains elusive, and methods for evaluating the uncertainty of the distilled model/student model are lacking. To address these issues, we establish a close connection between KD and a Bayesian model. In particular, we develop an innovative method named Bayesian Knowledge Distillation (BKD) to provide a transparent interpretation of the working mechanism of KD, and a suite of Bayesian inference tools for the uncertainty quantification of the student model. In BKD, the regularization imposed by the teacher model in KD is formulated as a teacher-informed prior for the student model's parameters. Consequently, we establish the equivalence between minimizing the KD loss and estimating the posterior mode in BKD. Efficient Bayesian inference algorithms are developed based on the stochastic gradient Langevin Monte Carlo and examined with extensive experiments on uncertainty ranking and credible intervals construction for predicted class probabilities.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Dataset distillation aims to synthesize a small number of images per class (IPC) from a large dataset to approximate full dataset training with minimal performance loss. While effective in very small IPC ranges, many distillation methods become less effective, even underperforming random sample selection, as IPC increases. Our examination of state-of-the-art trajectory-matching based distillation methods across various IPC scales reveals that these methods struggle to incorporate the complex, rare features of harder samples into the synthetic dataset even with the increased IPC, resulting in a persistent coverage gap between easy and hard test samples. Motivated by such observations, we introduce SelMatch, a novel distillation method that effectively scales with IPC. SelMatch uses selection-based initialization and partial updates through trajectory matching to manage the synthetic dataset's desired difficulty level tailored to IPC scales. When tested on CIFAR-10/100 and TinyImageNet, SelMatch consistently outperforms leading selection-only and distillation-only methods across subset ratios from 5% to 30%.
[ Hall C 4-9 ]

Abstract
Existing few-shot semantic segmentation methods typically rely on a one-way flow of category information from support to query, ignoring the impact of intra-class diversity. To address this, drawing inspiration from cybernetics, we introduce a Query Feedback Branch (QFB) to propagate query information back to support, generating a query-related support prototype that is more aligned with the query. Subsequently, a Query Amplifier Branch (QAB) is employed to amplify target objects in the query using the acquired support prototype. To further improve the model, we propose a Query Rectification Module (QRM), which utilizes the prediction disparity in the query before and after support activation to identify challenging positive and negative samples from ambiguous regions for query self-rectification. Furthermore, we integrate the QFB, QAB, and QRM into a feedback and rectification layer and incorporate it into an iterative pipeline. This configuration enables the progressive enhancement of bidirectional reciprocative flow of category information between query and support, effectively providing query-adaptive support information and addressing the intra-class diversity problem. Extensive experiments conducted on both PASCAL-5i and COCO-20i datasets validate the effectiveness of our approach. The code is available at https://github.com/LIUYUANWEI98/IFRNet .
[ Hall C 4-9 ]

Abstract
Taming the generation outcome of state of the art Diffusion and Flow-Matching (FM) models without having to re-train a task-specific model unlocks a powerful tool for solving inverse problems, conditional generation, and controlled generation in general. In this work we introduce D-Flow, a simple framework for controlling the generation process by differentiating through the flow, optimizing for the source (noise) point. We motivate this framework by our key observation stating that for Diffusion/FM models trained with Gaussian probability paths, differentiating through the generation process projects gradient on the data manifold, implicitly injecting the prior into the optimization process. We validate our framework on linear and non-linear controlled generation problems including: image and audio inverse problems and conditional molecule generation reaching state of the art performance across all.
[ Hall C 4-9 ]

Abstract
Training general-purpose vision models on purely sequential visual data, eschewing linguistic inputs, has heralded a new frontier in visual understanding. These models are intended to not only comprehend but also seamlessly transit to out-of-domain tasks. However, current endeavors are hamstrung by an over-reliance on colossal models, exemplified by models with upwards of 3B parameters, and the necessity for an extensive corpus of visual data, often comprising a staggering 400B tokens. In this paper, we delve into the development of an efficient, autoregression-based vision model, innovatively architected to operate on a limited dataset. We meticulously demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding during the testing phase. Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint, and a marked decrease in training data requirements, thereby paving the way for more sustainable and accessible advancements in the field of generalist vision models. The code is available at https://github.com/ggjy/DeLVM.
[ Hall C 4-9 ]

Abstract
Score-based diffusion models are a powerful class of generative models, widely utilized across diverse domains. Despite significant advancements in large-scale tasks such as text-to-image generation, their application to constrained domains has received considerably less attention. This work addresses model learning in a setting where, in addition to the training dataset, there further exists side-information in the form of an oracle that can label samples as being outside the support of the true data generating distribution. Specifically we develop a new denoising diffusion probabilistic modeling methodology, Gen-neG, that leverages this additional side-information. Gen-neG builds on classifier guidance in diffusion models to guide the generation process towards the positive support region indicated by the oracle. We empirically establish the utility of Gen-neG in applications including collision avoidance in self-driving simulators and safety-guarded human motion generation.
[ Hall C 4-9 ]
Abstract
Diffusion models create data from noise by inverting the forward paths of data towards noise and have emerged as a powerful generative modeling technique for high-dimensional, perceptual data such as images and videos. Rectified flow is a recent generative model formulation that connects data and noise in a straight line. Despite its better theoretical properties and conceptual simplicity, it is not yet decisively established as standard practice. In this work, we improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales. Through a large-scale study, we demonstrate the superior performance of this approach compared to established diffusion formulations for high-resolution text-to-image synthesis. Additionally, we present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities and enables a bidirectional flow of information between image and text tokens, improving text comprehension, typography, and human preference ratings. We demonstrate that this architecture follows predictable scaling trends and correlates lower validation loss to improved text-to-image synthesis as measured by various metrics and human evaluations. Our largest models outperform state-of-the-art models. Stability AI is considering making experimental data, code, and model weights publicly available.
[ Hall C 4-9 ]

Abstract
In this work, we present DFlow, a novel generative framework that combines Normalizing Flow (NF) with a Denoising AutoEncoder (DAE), for high-fidelity waveform generation. With a tactfully designed structure, DFlow seamlessly integrates the capabilities of both NF and DAE, resulting in a significantly improved performance compared to the standard NF models. Experimental results showcase DFlow's superiority, achieving the highest MOS score among the existing methods on commonly used datasets and the fastest synthesis speed among all likelihood models. We further demonstrate the generalization ability of DFlow by generating high-quality out-of-distribution audio samples, such as singing and music audio. Additionally, we extend the model capacity of DFlow by scaling up both the model size and training set size. Our large-scale universal vocoder, DFlow-XL, achieves highly competitive performance against the best universal vocoder, BigVGAN.
[ Hall C 4-9 ]

Abstract
We introduce HyperFields, a method for generating text-conditioned Neural Radiance Fields (NeRFs) with a single forward pass and (optionally) some fine-tuning. Key to our approach are: (i) a dynamic hypernetwork, which learns a smooth mapping from text token embeddings to the space of NeRFs; (ii) NeRF distillation training, which distills scenes encoded in individual NeRFs into one dynamic hypernetwork. These techniques enable a single network to fit over a hundred unique scenes. We further demonstrate that HyperFields learns a more general map between text and NeRFs, and consequently is capable of predicting novel in-distribution and out-of-distribution scenes --- either zero-shot or with a few finetuning steps. Finetuning HyperFields benefits from accelerated convergence thanks to the learned general map, and is capable of synthesizing novel scenes 5 to 10 times faster than existing neural optimization-based methods. Our ablation experiments show that both the dynamic architecture and NeRF distillation are critical to the expressivity of HyperFields.
[ Hall C 4-9 ]

Abstract
Generating rich and controllable motion is a pivotal challenge in video synthesis. We propose Boximator, a new approach for fine-grained motion control. Boximator introduces two constraint types: hard box and soft box. Users select objects in the conditional frame using hard boxes and then use either type of boxes to roughly or rigorously define the object’s position, shape, or motion path in future frames. Boximator functions as a plug-in for existing video diffusion models. Its training process preserves the base model’s knowledge by freezing the original weights and training only the control module. To address training challenges, we introduce a novel self-tracking technique that greatly simplifies the learning of box-object correlations. Empirically, Boximator achieves state-of-the-art video quality (FVD) scores, improving on two base models, and further enhanced after incorporating box constraints. Its robust motion controllability is validated by drastic increases in the bounding box alignment metric. Human evaluation also shows that users favor Boximator generation results over the base model.
[ Hall C 4-9 ]
Abstract
Large Language Models (LLMs) with hundreds of billions of parameters have transformed the field of machine learning. However, serving these models at inference time is both compute and memory intensive, where a single request can require multiple GPUs and tens of Gigabytes of memory. Multi-head attention is one of the key components of LLMs, which can for over 50% of LLMs memory and compute requirement. We observe that there is a high amount of redundancy across heads on which tokens they pay attention to. Based on this insight, we propose Clustered HeadAttention ( CHAI ). CHAI combines heads with a high amount of correlation for self-attention at runtime, thus reducing both memory and compute. In our experiments, we show that CHAI is able to reduce the memory requirements for storing K,V cache by up to 21.4% and inference time latency by up to 1.73× without any fine-tuning required. CHAI achieves this with a maximum 3.2% deviation in accuracy across 3 different models (i.e. OPT-66B, LLAMA-7B, LLAMA-33B) and 5 different evaluation datasets.
[ Hall C 4-9 ]

Abstract
Tabular data are omnipresent in various sectors of industries. Neural networks for tabular data such as TabNet have been proposed to make predictions while leveraging the attention mechanism for interpretability. However, the inferred attention masks are often dense, making it challenging to come up with rationales about the predictive signal. To remedy this, we propose InterpreTabNet, a variant of the TabNet model that models the attention mechanism as a latent variable sampled from a Gumbel-Softmax distribution. This enables us to regularize the model to learn distinct concepts in the attention masks via a KL Divergence regularizer. It prevents overlapping feature selection by promoting sparsity which maximizes the model's efficacy and improves interpretability to determine the important features when predicting the outcome. To assist in the interpretation of feature interdependencies from our model, we employ a large language model (GPT-4) and use prompt engineering to map from the learned feature mask onto natural language text describing the learned signal. Through comprehensive experiments on real-world datasets, we demonstrate that InterpreTabNet outperforms previous methods for interpreting tabular data while attaining competitive accuracy.
[ Hall C 4-9 ]

Abstract
Self-attention and transformers have been widely used in deep learning. Recent efforts have been devoted to incorporating transformer blocks into different types of neural architectures, including those with convolutions, leading to various visual transformers for computer vision tasks. In this paper, we propose a novel and compact transformer block, Transformer with Differentiable Channel Selection, or DCS-Transformer. DCS-Transformer features channel selection in the computation of the attention weights and the input/output features of the MLP in the transformer block. Our DCS-Transformer is compatible with many popular and compact transformer networks, such as MobileViT and EfficientViT, and it reduces the FLOPs of the visual transformers while maintaining or even improving the prediction accuracy. In the experiments, we replace all the transformer blocks in MobileViT and EfficientViT with DCS-Transformer blocks, leading to DCS-Transformer networks with different backbones. The DCS-Transformer is motivated by reduction of Information Bottleneck, and a novel variational upper bound for the IB loss which can be optimized by SGD is derived and incorporated into the training loss of the network with DCS-Transformer. Extensive results on image classification and object detection evidence that DCS-Transformer renders compact and efficient visual transformers with comparable or much better prediction accuracy than the original visual …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
The computational difficulties of large language model (LLM) inference remain a significant obstacle to their widespread deployment. The need for many applications to support long input sequences and process them in large batches typically causes token-generation to be bottlenecked by data transfer. For this reason, we introduce SparQ Attention, a technique for increasing the inference throughput of LLMs by utilising memory bandwidth more efficiently within the attention layers, through selective fetching of the cached history. Our proposed technique can be applied directly to off-the-shelf LLMs during inference, without requiring any modification to the pre-training setup or additional fine-tuning. We show that SparQ Attention brings up to 8x savings in attention data transfers without substantial drops in accuracy, by evaluating Llama 2 and 3, Mistral, Gemma and Pythia models on a wide range of downstream tasks.
[ Hall C 4-9 ]

Abstract
The search for "biologically plausible" learning algorithms has converged on the idea of representing gradients as activity differences. However, most approaches require a high degree of synchronization (distinct phases during learning) and introduce substantial computational overhead, which raises doubts regarding their biological plausibility as well as their potential utility for neuromorphic computing. Furthermore, they commonly rely on applying infinitesimal perturbations (nudges) to output units, which is impractical in noisy environments. Recently it has been shown that by modelling artificial neurons as dyads with two oppositely nudged compartments, it is possible for a fully local learning algorithm named ``dual propagation'' to bridge the performance gap to backpropagation, without requiring separate learning phases or infinitesimal nudging. However, the algorithm has the drawback that its numerical stability relies on symmetric nudging, which may be restrictive in biological and analog implementations. In this work we first provide a solid foundation for the objective underlying the dual propagation method, which also reveals a surpising connection with adversarial robustness. Second, we demonstrate how dual propagation is related to a particular adjoint state method, which is stable regardless of asymmetric nudging.
[ Hall C 4-9 ]

Abstract
Quantization techniques commonly reduce the inference costs of neural networks by restricting the precision of weights and activations. Recent studies show that also reducing the precision of the accumulator can further improve hardware efficiency at the risk of numerical overflow, which introduces arithmetic errors that can degrade model accuracy. To avoid numerical overflow while maintaining accuracy, recent work proposed accumulator-aware quantization (A2Q)—a quantization-aware training method that constrains model weights during training to safely use a target accumulator bit width during inference. Although this shows promise, we demonstrate that A2Q relies on an overly restrictive constraint and a sub-optimal weight initialization strategy that each introduce superfluous quantization error. To address these shortcomings, we introduce: (1) an improved bound that alleviates accumulator constraints without compromising overflow avoidance; and (2) a new strategy for initializing quantized weights from pre-trained floating-point checkpoints. We combine these contributions with weight normalization to introduce A2Q+. We identify and characterize the various tradeoffs that arise as a consequence of accumulator constraints and support our analysis with experiments that show A2Q+ significantly improves these trade-offs when compared to prior methods.
[ Hall C 4-9 ]

Abstract
Pretraining transformers are generally time-consuming. Fully quantized training (FQT) is a promising approach to speed up pretraining. However, most FQT methods adopt a quantize-compute-dequantize procedure, which often leads to suboptimal speedup and significant performance degradation when used in transformers due to the high memory access overheads and low-precision computations. In this work, we propose Jetfire, an efficient and accurate INT8 training method specific to transformers. Our method features an INT8 data flow to optimize memory access and a per-block quantization method to maintain the accuracy of pretrained transformers. Extensive experiments demonstrate that our INT8 FQT method achieves comparable accuracy to the FP16 training baseline and outperforms the existing INT8 training works for transformers. Moreover, for a standard transformer block, our method offers an end-to-end training speedup of 1.42x and a 1.49x memory reduction compared to the FP16 baseline.
[ Hall C 4-9 ]

Abstract
Fine-tuning the learnable prompt for a pre-trained vision-language model (VLM), such as CLIP, has demonstrated exceptional efficiency in adapting to a broad range of downstream tasks. Existing prompt tuning methods for VLMs do not distinguish spurious features introduced by biased training data from invariant features, and employ a uniform alignment process when adapting to unseen target domains. This can impair the cross-modal feature alignment when the testing data significantly deviate from the distribution of the training data, resulting in a poor out-of-distribution (OOD) generalization performance. In this paper, we reveal that the prompt tuning failure in such OOD scenarios can be attribute to the undesired alignment between the textual and the spurious feature. As a solution, we propose CoOPood, a fine-grained prompt tuning method that can discern the causal features and deliberately align the text modality with the invariant feature. Specifically, we design two independent contrastive phases using two lightweight projection layers during the alignment, each with different objectives: 1) pulling the text embedding closer to invariant image embedding and 2) pushing text embedding away from spurious image embedding. We have illustrated that CoOPood can serve as a general framework for VLMs and can be seamlessly integrated with existing …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
We tackle the common challenge of inter-concept visual confusion in compositional concept generation using text-guided diffusion models (TGDMs). It becomes even more pronounced in the generation of customized concepts, due to the scarcity of user-provided concept visual examples. By revisiting the two major stages leading to the success of TGDMs---1) contrastive image-language pre-training (CLIP) for text encoder that encodes visual semantics, and 2) training TGDM that decodes the textual embeddings into pixels---we point that existing customized generation methods only focus on fine-tuning the second stage while overlooking the first one. To this end, we propose a simple yet effective solution called CLIF: contrastive image-language fine-tuning. Specifically, given a few samples of customized concepts, we obtain non-confusing textual embeddings of a concept by fine-tuning CLIP via contrasting a concept and the over-segmented visual regions of other concepts. Experimental results demonstrate the effectiveness of CLIF in preventing the confusion of multi-customized concept generation. Project page: https://clif-official.github.io/clif.
[ Hall C 4-9 ]

Abstract
Input space reconstruction is an attractive representation learning paradigm. Despite interpretability benefit of reconstruction and generation, we identify a misalignment between learning to reconstruct, and learning for perception. We show that the former allocates a model's capacity towards a subspace of the data explaining the observed variance--a subspace with uninformative features for the latter. For example, the supervised TinyImagenet task with images projected onto the top subspace explaining 90% of the pixel variance can be solved with 45% test accuracy. Using the bottom subspace instead, accounting for only 20% of the pixel variance, reaches 55% test accuracy. Learning by reconstruction is also wasteful as the features for perception are learned last, pushing the need for long training schedules. We finally prove that learning by denoising can alleviate that misalignment for some noise strategies, e.g., masking. While tuning the noise strategy without knowledge of the perception task seems challenging, we provide a solution to detect if a noise strategy is never beneficial regardless of the perception task, e.g., additive Gaussian noise.
[ Hall C 4-9 ]

Abstract
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures. Although diffusion models have achieved notable success in graph generation recently, they are ill-suited for modeling the topological properties of graphs since learning to denoise the noisy samples does not explicitly learn the graph structures to be generated. To tackle this limitation, we propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process. Specifically, we design the generative process as a mixture of endpoint-conditioned diffusion processes which is driven toward the predicted graph that results in rapid convergence. We further introduce a simple parameterization of the mixture process and develop an objective for learning the final graph structure, which enables maximum likelihood training. Through extensive experimental validation on general graph and 2D/3D molecule generation tasks, we show that our method outperforms previous generative models, generating graphs with correct topology with both continuous (e.g. 3D coordinates) and discrete (e.g. atom types) features. Our code is available at https://github.com/harryjo97/GruM.
[ Hall C 4-9 ]

Abstract
As synthetic data becomes higher quality and proliferates on the internet, machine learning models are increasingly trained on a mix of human- and machine-generated data. Despite the successful stories of using synthetic data for representation learning, using synthetic data for generative model training creates ``self-consuming loops'' which may lead to training instability or even collapse, unless certain conditions are met. Our paper aims to stabilize self-consuming generative model training. Our theoretical results demonstrate that by introducing an idealized correction function, which maps a data point to be more likely under the true data distribution, self-consuming loops can be made exponentially more stable. We then propose self-correction functions, which rely on expert knowledge (e.g. the laws of physics programmed in a simulator), and aim to approximate the idealized corrector automatically and at scale. We empirically validate the effectiveness of self-correcting self-consuming loops on the challenging human motion synthesis task, and observe that it successfully avoids model collapse, even when the ratio of synthetic data to real data is as high as 100%.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
One highly promising direction for enabling flexible real-time on-device image editing is utilizing data distillation by leveraging large-scale text-to-image diffusion models to generate paired datasets used for training generative adversarial networks (GANs). This approach notably alleviates the stringent requirements typically imposed by high-end commercial GPUs for performing image editing with diffusion models. However, unlike text-to-image diffusion models, each distilled GAN is specialized for a specific image editing task, necessitating costly training efforts to obtain models for various concepts. In this work, we introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient? To achieve this goal, we propose a series of innovative techniques. First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch. Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model. Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time. Extensive experiments show that we can efficiently empower GANs with the ability to perform real-time high-quality …
[ Hall C 4-9 ]

Abstract
Denoising is intuitively related to projection. Indeed, under the manifold hypothesis, adding random noise is approximately equivalent to orthogonal perturbation. Hence, learning to denoise is approximately learning to project. In this paper, we use this observation to interpret denoising diffusion models as approximate gradient descent applied to the Euclidean distance function. We then provide straight-forward convergence analysis of the DDIM sampler under simple assumptions on the projection error of the denoiser. Finally, we propose a new gradient-estimation sampler, generalizing DDIM using insights from our theoretical results. In as few as 5-10 function evaluations, our sampler achieves state-of-the-art FID scores on pretrained CIFAR-10 and CelebA models and can generate high quality samples on latent diffusion models.
[ Hall C 4-9 ]

Abstract
We propose TopDis (Topological Disentanglement), a method for learning disentangled representations via adding a multi-scale topological loss term. Disentanglement is a crucial property of data representations substantial for the explainability and robustness of deep learning models and a step towards high-level cognition. The state-of-the-art methods are based on VAE and encourage the joint distribution of latent variables to be factorized. We take a different perspective on disentanglement by analyzing topological properties of data manifolds. In particular, we optimize the topological similarity for data manifolds traversals. To the best of our knowledge, our paper is the first one to propose a differentiable topological loss for disentanglement learning. Our experiments have shown that the proposed TopDis loss improves disentanglement scores such as MIG, FactorVAE score, SAP score, and DCI disentanglement score with respect to state-of-the-art results while preserving the reconstruction quality. Our method works in an unsupervised manner, permitting us to apply it to problems without labeled factors of variation. The TopDis loss works even when factors of variation are correlated. Additionally, we show how to use the proposed topological loss to find disentangled directions in a trained GAN.
[ Hall C 4-9 ]

Abstract
Bridging the gap between diffusion models and human preferences is crucial for their integration into practical generative workflows. While optimizing downstream reward models has emerged as a promising alignment strategy, concerns arise regarding the risk of excessive optimization with learned reward models, which potentially compromises ground-truth performance. In this work, we confront the reward overoptimization problem in diffusion model alignment through the lenses of both inductive and primacy biases. We first identify a mismatch between current methods and the temporal inductive bias inherent in the multi-step denoising process of diffusion models, as a potential source of reward overoptimization. Then, we surprisingly discover that dormant neurons in our critic model act as a regularization against reward overoptimization while active neurons reflect primacy bias. Motivated by these observations, we propose Temporal Diffusion Policy Optimization with critic active neuron Reset (TDPO-R), a policy gradient algorithm that exploits the temporal inductive bias of diffusion models and mitigates the primacy bias stemming from active neurons. Empirical results demonstrate the superior efficacy of our methods in mitigating reward overoptimization. Code is avaliable at https://github.com/ZiyiZhang27/tdpo.
[ Hall C 4-9 ]
Abstract
Reversing a diffusion process by learning its score forms the heart of diffusion-based generative modeling and for estimating properties of scientific systems. The diffusion processes that are tractable center on linear processes with a Gaussian stationary distribution, limiting the kinds of models that can be built to those that target a Gaussian prior or more generally limits the kinds of problems that can be generically solved to those that have conditionally linear score functions. In this work, we introduce a family of tractable denoising score matching objectives, called local-DSM, built using local increments of the diffusion process. We show how local-DSM melded with Taylor expansions enables automated training and score estimation with nonlinear diffusion processes. To demonstrate these ideas, we use automated-DSM to train generative models using non-Gaussian priors on challenging low dimensional distributions and the CIFAR10 image dataset. Additionally, we use the automated-DSM to learn the scores for nonlinear processes studied in statistical physics.
[ Hall C 4-9 ]
Abstract
Given a collection of probability measures, a practitioner sometimes needs to find an "average" distribution which adequately aggregates reference distributions. A theoretically appealing notion of such an average is the Wasserstein barycenter, which is the primal focus of our work. By building upon the dual formulation of Optimal Transport (OT), we propose a new scalable approach for solving the Wasserstein barycenter problem. Our methodology is based on the recent Neural OT solver: it has bi-level adversarial learning objective and works for general cost functions. These are key advantages of our method since the typical adversarial algorithms leveraging barycenter tasks utilize tri-level optimization and focus mostly on quadratic cost. We also establish theoretical error bounds for our proposed approach and showcase its applicability and effectiveness in illustrative scenarios and image data setups. Our source code is available at https://github.com/justkolesov/NOTBarycenters.
[ Hall C 4-9 ]

Abstract
We present GALA3D, generative 3D GAussians with LAyout-guided control, for effective compositional text-to-3D generation. We first utilize large language models (LLMs) to generate the initial layout and introduce a layout-guided 3D Gaussian representation for 3D content generation with adaptive geometric constraints. We then propose an instance-scene compositional optimization mechanism with conditioned diffusion to collaboratively generate realistic 3D scenes with consistent geometry, texture, scale, and accurate interactions among multiple objects while simultaneously adjusting the coarse layout priors extracted from the LLMs to align with the generated scene. Experiments show that GALA3D is a user-friendly, end-to-end framework for state-of-the-art scene-level 3D content generation and controllable editing while ensuring the high fidelity of object-level entities within the scene. The source codes and models will be available at gala3d.github.io.
[ Hall C 4-9 ]
Abstract
Graph-based learning is a rapidly growing sub-field of machine learning with applications in social networks, citation networks, and bioinformatics. One of the most popular models is graph attention networks. They were introduced to allow a node to aggregate information from features of neighbor nodes in a non-uniform way, in contrast to simple graph convolution which does not distinguish the neighbors of a node. In this paper, we theoretically study the behaviour of graph attention networks. We prove multiple results on the performance of the graph attention mechanism for the problem of node classification for a contextual stochastic block model. Here, the node features are obtained from a mixture of Gaussians and the edges from a stochastic block model. We show that in an "easy" regime, where the distance between the means of the Gaussians is large enough, graph attention is able to distinguish inter-class from intra-class edges. Thus it maintains the weights of important edges and significantly reduces the weights of unimportant edges. Consequently, we show that this implies perfect node classification. In the "hard" regime, we show that every attention mechanism fails to distinguish intra-class from inter-class edges. In addition, we show that graph attention convolution cannot (almost) perfectly …
[ Hall C 4-9 ]
Abstract
Mitigating the climate crisis requires a rapid transition towards lower-carbon energy. Catalyst materials play a crucial role in the electrochemical reactions involved in numerous industrial processes key to this transition, such as renewable energy storage and electrofuel synthesis. To reduce the energy spent on such activities, we must quickly discover more efficient catalysts to drive electrochemical reactions. Machine learning (ML) holds the potential to efficiently model materials properties from large amounts of data, accelerating electrocatalyst design. The Open Catalyst Project OC20 dataset was constructed to that end. However, ML models trained on OC20 are still neither scalable nor accurate enough for practical applications. In this paper, we propose task-specific innovations applicable to most architectures, enhancing both computational efficiency and accuracy. This includes improvements in (1) the graph creation step, (2) atom representations, (3) the energy prediction head, and (4) the force prediction head. We describe these contributions, referred to as PhAST, and evaluate them thoroughly on multiple architectures. Overall, PhAST improves energy MAE by 4 to 42% while dividing compute time by 3 to 8× depending on the targeted task/model. PhAST also enables CPU training, leading to 40× speedups in highly parallelized settings. Python package: https://phast.readthedocs.io.
[ Hall C 4-9 ]

Abstract
We investigate the trade-off between the representation power of graph generative models and model overlap, i.e., the degree to which the model generates diverse outputs versus regurgitating its training data. In particular, we delineate a nested hierarchy of graph generative models categorized into three levels of complexity: edge independent, node independent, and arbitrarily dependent models. This hierarchy encapsulates a wide range of prevalent methods. We derive theoretical bounds on the number of triangles and other short-length cycles producible by each level of the hierarchy, finding that more complex dependency structure allows an improved trade-off between representation power and overlap. We provide instances demonstrating the asymptotic optimality of our bounds. Furthermore, we introduce new generative models for each of the three hierarchical levels, leveraging dense subgraph discovery. Our evaluation, conducted on real-world datasets, focuses on assessing the output quality and overlap of our proposed models in comparison to other popular models. Our results indicate that our simple, interpretable models provide competitive baselines to popular generative models. Through this investigation, we offer a structured and robust evaluation scheme, thereby facilitating the development of models capable of generating accurate and edge-diverse graphs.
[ Hall C 4-9 ]
Abstract
Transformers trained on huge text corpora exhibit a remarkable set of capabilities, e.g., performing simple logical operations. Given the inherent compositional nature of language, one can expect the model to learn to compose these capabilities, potentially yielding a combinatorial explosion of what operations it can perform on an input. Motivated by the above, we aim to assess in this paper “how capable can a transformer become?”. Specifically, we train autoregressive Transformer models on a data-generating process that involves compositions of a set of well-defined monolithic capabilities. Through a series of extensive and systematic experiments on this data-generating process, we show that: (1) autoregressive Transformers can learn compositional structures from small amounts of training data and generalize to exponentially or even combinatorially many functions; (2) composing functions by generating intermediate outputs is more effective at generalizing to unseen compositions, compared to generating no intermediate outputs; (3) biases in the order of the compositions in the training data, results in Transformers that fail to compose some combinations of functions; and (4) the attention layers seem to select the capability to apply while the feed-forward layers execute the capability.
[ Hall C 4-9 ]
Abstract
In the burgeoning age of generative AI, watermarks act as identifiers of provenance and artificial content. We present WAVES (Watermark Analysis via Enhanced Stress-testing), a benchmark for assessing image watermark robustness, overcoming the limitations of current evaluation methods. WAVES integrates detection and identification tasks and establishes a standardized evaluation protocol comprised of a diverse range of stress tests. The attacks in WAVES range from traditional image distortions to advanced, novel variations of diffusive, and adversarial attacks. Our evaluation examines two pivotal dimensions: the degree of image quality degradation and the efficacy of watermark detection after attacks. Our novel, comprehensive evaluation reveals previously undetected vulnerabilities of several modern watermarking algorithms. We envision WAVES as a toolkit for the future development of robust watermarks.
[ Hall C 4-9 ]

Abstract
This paper addresses the growing need for efficient large language models (LLMs) on mobile devices, driven by increasing cloud costs and latency concerns. We focus on designing top-quality LLMs with fewer than a billion parameters, a practical choice for mobile deployment. Contrary to prevailing belief emphasizing the pivotal role of data and parameter quantity in determining model quality, our investigation underscores the significance of model architecture for sub-billion scale LLMs. Leveraging deep and thin architectures, coupled with embedding sharing and grouped-query attention mechanisms, we establish a strong baseline network denoted as MobileLLM, which attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M state-of-the-art models. Additionally, we propose an immediate block-wise weight-sharing approach with no increase in model size and only marginal latency overhead. The resultant models, denoted as MobileLLM-LS, demonstrate a further accuracy enhancement of 0.7%/0.8% than MobileLLM 125M/350M. Moreover, MobileLLM model family shows significant improvements compared to previous sub-billion models on chat benchmarks, and demonstrates close correctness to LLaMA-v2 7B in API calling tasks, highlighting the capability of small models for common on-device use cases.
[ Hall C 4-9 ]
Abstract
Negotiation is the basis of social interactions; humans negotiate everything from the price of cars to how to share common resources. With rapidly growing interest in using large language models (LLMs) to act as agents on behalf of human users, such LLM agents would also need to be able to negotiate. In this paper, we study how well LLMs can negotiate with each other. We develop NegotiationArena: a flexible framework for evaluating and probing the negotiation abilities of LLM agents. We implemented three types of scenarios in NegotiationArena to assess LLM's behaviors in allocating shared resources (ultimatum games), aggregate resources (trading games) and buy/sell goods (price negotiations). Each scenario allows for multiple turns of flexible dialogues between LLM agents to allow for more complex negotiations. Interestingly, LLM agents can significantly boost their negotiation outcomes by employing certain behavioral tactics. For example, by pretending to be desolate and desperate, LLMs can improve their payoffs by 20% when negotiating against the standard GPT-4. We also quantify irrational negotiation behaviors exhibited by the LLM agents, many of which also appear in humans. Together, NegotiationArena offers a new environment to investigate LLM interactions, enabling new insights into LLM's theory of mind, irrationality, and reasoning …
[ Hall C 4-9 ]

Abstract
Large language models (LLMs) have demonstrated remarkable potential across numerous applications and have shown an emergent ability to tackle complex reasoning tasks, such as mathematical computations. However, even for the simplest arithmetic calculations, the intrinsic mechanisms behind LLMs remains mysterious, making it challenging to ensure reliability. In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations. Through comprehensive experiments, we find that LLMs frequently involve a small fraction (<5%) of attention heads, which play a pivotal role in focusing on operands and operators during calculation processes. Subsequently, the information from these operands is processed through multi-layer perceptrons (MLPs), progressively leading to the final solution. These pivotal heads/MLPs, though identified on a specific dataset, exhibit transferability across different datasets and even distinct tasks. This insight prompted us to investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance. We empirically find that such precise tuning can yield notable enhancements on mathematical prowess, without compromising the performance on non-mathematical tasks. Our work serves as a preliminary exploration into the arithmetic calculation abilities inherent in LLMs, laying a solid foundation to reveal more intricate mathematical tasks.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
This paper proposes the use of "multicalibration": to yield interpretable and reliable confidence scores for outputs generated by large language models (LLMs). Multicalibration asks for calibration not just marginally, but simultaneously across various intersecting groupings of the data. We show how to form groupings for prompt/completion pairs that are correlated with the probability of correctness via two techniques: clustering within an embedding space, and "self-annotation" - querying the LLM by asking it various yes-or-no questions about the prompt. We also develop novel variants of multicalibration algorithms that offer performance improvements by reducing their tendency to overfit. Through systematic benchmarking across various question answering datasets and LLMs, we show how our techniques can yield confidence scores that provide substantial improvements in fine-grained measures of both calibration and accuracy compared to existing methods.
[ Hall C 4-9 ]

Abstract
Moderate-sized large language models (LLMs) -- those with 7B or 13B parameters -- exhibit promising machine translation (MT) performance. However, they do not match the performance of state-of-the-art conventional encoder-decoder translation models or larger-scale LLMs such as GPT-4. In this study, we bridge this performance gap. We first assess the shortcomings of supervised fine-tuning for LLMs in the MT task, emphasizing the quality issues present in the reference data, despite being human-generated. Then, in contrast to supervised fine-tuning which mimics reference translations, we introduce Contrastive Preference Optimization (CPO), a novel approach that trains models to avoid generating adequate but not perfect translations. Applying CPO to ALMA models with only 22K parallel sentences and 0.1% parameters yields significant improvements. The resulting model, called ALMA-R, can match or exceed the performance of the WMT competition winners and GPT-4 on WMT'21, WMT'22 and WMT'23 test datasets.
[ Hall C 4-9 ]
Abstract
Some neural language models (LMs) exhibit a remarkable capacity for in-context learning (ICL): they can fit predictors to datasets provided as input. While the mechanisms underlying ICL are well-studied in the context of synthetic problems like in-context linear regression, there is still some divergence between these model problems and the “real” ICL exhibited by LMs trained on large text corpora. In this paper, we study ICL through the lens of a new family of model problems we term in context language learning (ICLL). In ICLL, LMs are presented with a set of strings from a formal language, and must generate additional strings from the same language. We focus on in- context learning of regular languages generated by random finite automata. We evaluate a diverse set of neural sequence models on regular ICLL tasks. We first show that Transformers significantly outperform neural sequence models with recurrent or convolutional representations on ICLL tasks. Next, we provide evidence that they do so by computing in-context n-gram statistics using specialized attention heads. Finally, we show that hard-wiring these heads into neural models improves performance not just on synthetic ICLL, but natural language modeling, reducing the perplexity of 340M-parameter Transformers by up to 1.14 points …
[ Hall C 4-9 ]
Abstract
Large Language Models (LLMs) have unlocked new capabilities and applications; however, evaluating the alignment with human preferences still poses significant challenges. To address this issue, we introduce Chatbot Arena, an open platform for evaluating LLMs based on human preferences. Our methodology employs a pairwise comparison approach and leverages input from a diverse user base through crowdsourcing. The platform has been operational for several months, amassing over 240K votes. This paper describes the platform, analyzes the data we have collected so far, and explains the tried-and-true statistical methods we are using for efficient and accurate evaluation and ranking of models. We confirm that the crowdsourced questions are sufficiently diverse and discriminating and that the crowd-sourced human votes are in good agreement with those of expert raters. These analyses collectively establish a robust foundation for the credibility of Chatbot Arena. Because of its unique value and openness, Chatbot Arena has emerged as one of the most referenced LLM leaderboards, widely cited by leading LLM developers and companies. The platform is publicly available at https://chat.lmsys.org.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
There is a consensus that instruction fine-tuning of LLMs requires high-quality data, but what are they? LIMA (NeurIPS 2023) and AlpaGasus (ICLR 2024) are state-of-the-art methods for selecting such high-quality examples, either via manual curation or using GPT-3.5-Turbo as a quality scorer. We show that the extremely simple baseline of selecting the 1,000 instructions with longest responses---that intuitively contain more learnable information and are harder to overfit---from standard datasets can consistently outperform these sophisticated methods according to GPT-4 and PaLM-2 as judges, while remaining competitive on the Open LLM benchmarks that test factual knowledge. We demonstrate this for several LLMs (Llama-2-7B, Llama-2-13B, Mistral-7B-v0.1) and datasets (Alpaca-52k, Evol-Instruct-70k). In addition, a lightweight refinement of such long instructions can further improve the abilities of the fine-tuned LLMs, and allows us to obtain competitive results on MT-Bench and the 2nd highest-ranked Llama-2-7B-based model on AlpacaEval 2.0, while training on only 1,000 examples and no extra preference data. We also conduct a thorough analysis of our models to ensure that their enhanced performance is not simply due to GPT-4's preference for longer responses. Overall, our findings suggest that fine-tuning on the longest responses should be the default baseline for any work on instruction fine-tuning. …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Simplicial neural network models are becoming popular for processing and analyzing higher-order graph data, but they suffer from high training complexity and dependence on task-specific labels. To address these challenges, we propose simplicial scattering networks (SSNs), a parameter-free model inspired by scattering transforms designed to extract task-agnostic features from simplicial complex data without labels in a principled manner. Specifically, we propose a simplicial scattering transform based on random walk matrices for various adjacencies underlying a simplicial complex. We then use the simplicial scattering transform to construct a deep filter bank network that captures high-frequency information at multiple scales. The proposed simplicial scattering transform possesses properties such as permutation invariance, robustness to perturbations, and expressivity. We theoretically prove that including higher-order information improves the robustness of SSNs to perturbations. Empirical evaluations demonstrate that SSNs outperform existing simplicial or graph neural models in many tasks like node classification, simplicial closure, graph classification, trajectory prediction, and simplex prediction while being computationally efficient.
[ Hall C 4-9 ]

Abstract
How would randomly shuffling feature vectors among nodes from the same class affect graph neural networks (GNNs)? The feature shuffle, intuitively, perturbs the dependence between graph topology and features (A-X dependence) for GNNs to learn from. Surprisingly, we observe a consistent and significant improvement in GNN performance following the feature shuffle. Having overlooked the impact of A-X dependence on GNNs, the prior literature does not provide a satisfactory understanding of the phenomenon. Thus, we raise two research questions. First, how should A-X dependence be measured, while controlling for potential confounds? Second, how does A-X dependence affect GNNs? In response, we (i) propose a principled measure for A-X dependence, (ii) design a random graph model that controls A-X dependence, (iii) establish a theory on how A-X dependence relates to graph convolution, and (iv) present empirical analysis on real-world graphs that align with the theory. We conclude that A-X dependence mediates the effect of graph convolution, such that smaller dependence improves GNN-based node classification.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Graph Attention Networks (GATs) are designed to provide flexible neighborhood aggregation that assigns weights to neighbors according to their importance. In practice, however, GATs are often unable to switch off task-irrelevant neighborhood aggregation, as we show experimentally and analytically. To address this challenge, we propose GATE, a GAT extension that holds three major advantages: i) It alleviates over-smoothing by addressing its root cause of unnecessary neighborhood aggregation. ii) Similarly to perceptrons, it benefits from higher depth as it can still utilize additional layers for (non-)linear feature transformations in case of (nearly) switched-off neighborhood aggregation. iii) By down-weighting connections to unrelated neighbors, it often outperforms GATs on real-world heterophilic datasets. To further validate our claims, we construct a synthetic test bed to analyze a model's ability to utilize the appropriate amount of neighborhood aggregation, which could be of independent interest.
[ Hall C 4-9 ]

Abstract
Accurate prediction of protein-ligand binding structures, a task known as molecular docking is crucial for drug design but remains challenging. While deep learning has shown promise, existing methods often depend on holo-protein structures (docked, and not accessible in realistic tasks) or neglect pocket sidechain conformations, leading to limited practical utility and unrealistic conformation predictions. To fill these gaps, we introduce an under-explored task, named flexible docking to predict poses of ligand and pocket sidechains simultaneously and introduce Re-Dock, a novel diffusion bridge generative model extended to geometric manifolds. Specifically, we propose energy-to-geometry mapping inspired by the Newton-Euler equation to co-model the binding energy and conformations for reflecting the energy-constrained docking generative process. Comprehensive experiments on designed benchmark datasets including apo-dock and cross-dock demonstrate our model's superior effectiveness and efficiency over current methods.
[ Hall C 4-9 ]
Abstract
Much of the recent discourse within the ML community has been centered around Large Language Models (LLMs), their functionality and potential -- yet not only do we not have a working definition of LLMs, but much of this discourse relies on claims and assumptions that are worth re-examining. We contribute a definition of LLMs, critically examine five common claims regarding their properties (including 'emergent properties'), and conclude with suggestions for future research directions and their framing.
[ Hall C 4-9 ]

Abstract
Current Large Language Models (LLMs) are not only limited to some maximum context length, but also are not able to robustly consume long inputs. To address these limitations, we propose ReadAgent, an LLM agent system that increases effective context length up to 20x in our experiments. Inspired by how humans interactively read long documents, we implement ReadAgent as a simple prompting system that uses the advanced language capabilities of LLMs to (1) decide what content to store together in a memory episode, (2) compress those memory episodes into short episodic memories called gist memories, and (3) take actions to look up passages in the original text if ReadAgent needs to remind itself of relevant details to complete a task. We evaluate ReadAgent against baselines using retrieval methods, using the original long contexts, and using the gist memories. These evaluations are performed on three long-document reading comprehension tasks: QuALITY, NarrativeQA, and QMSum. ReadAgent outperforms the baselines on all three tasks while extending the effective context window by 3.5-20x.
[ Hall C 4-9 ]

Abstract
Pretraining auto-regressive large language models (LLMs) with retrieval demonstrates better perplexity and factual accuracy by leveraging external databases. However, the size of existing pretrained retrieval-augmented LLM is still limited (e.g., Retro has 7.5B parameters), which limits the effectiveness of instruction tuning and zero-shot generalization. In this work, we introduce Retro 48B, the largest LLM pretrained with retrieval. Specifically, we continue to pretrain a 43B GPT model on additional 100 billion tokens using the Retro augmentation method by retrieving from 1.2 trillion tokens. Notably, the obtained foundation model, Retro 48B, largely outperforms the counterpart GPT 43B trained on 1.2T tokens in terms of perplexity with only 2.58% additional GPU hours, demonstrating the significant scaling potential of the method. After instruction tuning on Retro, InstructRetro demonstrates significant improvement over the instruction-tuned GPT on a wide range of zero-shot tasks. Specifically, the average improvement of InstructRetro is 7% over its GPT counterpart across 8 short-form QA and reading comprehension tasks, 10% over GPT across 4 challenging long-form QA tasks, and 16% over GPT across 3 summarization tasks. Surprisingly, we find that one can ablate the encoder from InstructRetro architecture and directly use its decoder backbone, while achieving comparable results. Our results highlight the …
[ Hall C 4-9 ]
Abstract
Many real-world tasks require an agent to reason jointly over text and visual objects, (e.g., navigating in public spaces), which we refer to as context-sensitive text-rich visual reasoning. Specifically, these tasks require an understanding of the context in which the text interacts with visual elements within an image. However, there is a lack of existing datasets to benchmark the state-of-the-art multimodal models' capability on context-sensitive text-rich visual reasoning. In this paper, we introduce ConTextual, a novel dataset featuring human-crafted instructions that require context-sensitive reasoning for text-rich images. We conduct experiments to assess the performance of 14 foundation models (GPT-4V, Gemini-Pro-Vision, LLaVA-Next) and establish a human performance baseline. Further, we perform human evaluations of the model responses and observe a significant performance gap of 30.8% between GPT-4V (the current best-performing Large Multimodal Model) and human performance. Our fine-grained analysis reveals that GPT-4V encounters difficulties interpreting time-related data and infographics. However, it demonstrates proficiency in comprehending abstract visual contexts such as memes and quotes. Finally, our qualitative analysis uncovers various factors contributing to poor performance including lack of precise visual perception and hallucinations. Our dataset, code, and leaderboard can be found on the project page https://con-textual.github.io/.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Classifier-Free Guidance (CFG) has recently emerged in as a lightweight technique to encourage prompt-adherence in generations, yet has not yet been successfully applied to language modeling. In this work, we demonstrate across a wide array of benchmarks that CFG can be used broadly as an inference-time technique in pure language modeling. We show that CFG (1) improves the performance of Pythia, GPT-2 and LLaMA-family models across: Q&A, reasoning, code generation, and machine translation, achieving SOTA on LAMBADA with LLaMA-7B over PaLM-540B; (2) brings improvements equivalent to a model with twice the parameter-count; (3) can stack alongside other inference-time methods like Chain-of-Thought and Self-Consistency, yielding further improvements in difficult tasks; (4) can be used to increase the faithfulness and coherence of assistants in challenging form-driven and content-driven prompts: in human evaluations we show a 75% preference for using CFG over baseline.
[ Hall C 4-9 ]

Abstract
The autoregressive nature of conventional large language models (LLMs) inherently limits inference speed, as tokens are generated sequentially. While speculative (Leviathan et al., 2023) and parallel (Stern et al., 2018) decoding techniques attempt to mitigate this, they face limitations: either relying on less accurate smaller models for generation or failing to fully leverage the base LLM's representations. We introduce a novel architecture, Tandem transformers, to address these issues. This architecture uniquely combines (1) a small autoregressive model and (2) a large model operating in block mode (processing multiple tokens simultaneously). The small model's predictive accuracy is substantially enhanced by granting it attention to the large model's richer representations. On the PaLM2 pretraining dataset, a tandem of PaLM2-Bison and PaLM2-Gecko demonstrates a 3.3% improvement in next-token prediction accuracy over a standalone PaLM2-Gecko, offering a 1.16x speedup compared to a PaLM2-Otter model with comparable downstream performance. We further incorporate the Tandem model within the speculative decoding (SPEED) framework where the large model validates tokens from the small model. This ensures that the tandem of PaLM2-Bison and PaLM2-Gecko achieves substantial speedup (around 1.14x faster than using vanilla PaLM2-Gecko in SPEED) while maintaining identical downstream task accuracy.
[ Hall C 4-9 ]
Abstract
Fine-tuning large language models (LLM) can be costly. Parameter-efficient fine-tuning (PEFT) addresses the problems by training a fraction of the parameters, whose success reveals the expressiveness and flexibility of pretrained models. This paper studies the limit of PEFT, by further simplifying its design and reducing the number of trainable parameters beyond standard setups. To this end, we use Random Masking to fine-tune the pretrained model. Despite its simplicity, we show that Random Masking is surprisingly effective: with a larger-than-expected learning rate, Random Masking can match the performance of standard PEFT algorithms such as LoRA on various tasks, using fewer trainable parameters. We provide both empirical and theoretical explorations into the success of Random Masking. We show that masking induces a flatter loss landscape and more distant solutions, which allows for and necessitates large learning rates.
[ Hall C 4-9 ]
Abstract
LLM watermarking has attracted attention as a promising way to detect AI-generated content, with some works suggesting that current schemes may already be fit for deployment. In this work we dispute this claim, identifying watermark stealing (WS) as a fundamental vulnerability of these schemes. We show that querying the API of the watermarked LLM to approximately reverse-engineer a watermark enables practical spoofing attacks, as hypothesized in prior work, but also greatly boosts scrubbing attacks, which was previously unnoticed. We are the first to propose an automated WS algorithm and use it in the first comprehensive study of spoofing and scrubbing in realistic settings. We show that for under $50 an attacker can both spoof and scrub state-of-the-art schemes previously considered safe, with average success rate of over 80\%. Our findings challenge common beliefs about LLM watermarking, stressing the need for more robust schemes. We make all our code and additional examples available at https://watermark-stealing.org.
[ Hall C 4-9 ]

Abstract
Large Language Models (LLMs) have a natural role in answering complex queries about data streams, but the high computational cost of LLM inference makes them infeasible in many such tasks. We propose online cascade learning, the first approach to address this challenge. The objective here is to learn a ``cascade'' of models, starting with lower-capacity models (such as logistic regression) and ending with a powerful LLM, along with a deferral policy that determines the model to be used on a given input. We formulate the task of learning cascades online as an imitation-learning problem, where smaller models are updated over time imitating the collected LLM demonstrations, and give a no-regret algorithm for the problem. Experimental results across four benchmarks show that our method parallels LLMs in accuracy while cutting down inference costs by as much as 90% with strong robustness against input distribution shifts, underscoring its efficacy and adaptability in stream processing. Our source code is available at https://github.com/flitternie/onlinecascadelearning.
[ Hall C 4-9 ]

Abstract
Pre-trained large language models (LLMs) need fine-tuning to improve their responsiveness to natural language instructions. Federated learning offers a way to fine-tune LLMs using the abundant data on end devices without compromising data privacy. Most existing federated fine-tuning methods for LLMs rely on parameter-efficient fine-tuning techniques, which may not reach the performance height possible with full-parameter tuning. However, federated full-parameter tuning of LLMs is a non-trivial problem due to the immense communication cost. This work introduces FedKSeed that employs zeroth-order optimization with a finite set of random seeds. It significantly reduces transmission requirements between the server and clients to just a few random seeds and scalar gradients, amounting to only a few thousand bytes, making federated full-parameter tuning of billion-sized LLMs possible on devices. Building on it, we develop a strategy enabling probability-differentiated seed sampling, prioritizing perturbations with greater impact on model accuracy. Experiments across six scenarios with various LLMs, datasets and data partitions demonstrate that our approach outperforms existing federated LLM fine-tuning methods in both communication efficiency and zero-shot generalization.
[ Hall C 4-9 ]

Abstract
Pre-trained language models (LMs) are able to perform complex reasoning without explicit fine-tuning. To understand how pre-training with a next-token prediction objective contributes to the emergence of such reasoning capability, we propose that we can view an LM as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time. We found this perspective effective in two important cases of reasoning: logic reasoning with knowledge graphs (KGs) and chain-of-thought (CoT) reasoning. More specifically, we formalize the reasoning paths as random walk paths on the knowledge/reasoning graphs. Analyses of learned LM distributions suggest that a weighted sum of relevant random walk path probabilities is a reasonable way to explain how LMs reason. Experiments and analysis on multiple KG and CoT datasets reveal the effect of training on random walk paths and suggest that augmenting unlabeled random walk reasoning paths can improve real-world multi-step reasoning performance.
[ Hall C 4-9 ]

Abstract
Assessing response quality to instructions in language models is vital but challenging due to the complexity of human language across different contexts. This complexity often results in ambiguous or inconsistent interpretations, making accurate assessment difficult. To address this issue, we propose a novel Uncertainty-aware Reward Model (URM) that introduces a robust uncertainty estimation for the quality of paired responses based on Bayesian approximation. Trained with preference datasets, our uncertainty-enabled proxy not only scores rewards for responses but also evaluates their inherent uncertainty. Empirical results demonstrate significant benefits of incorporating the proposed proxy into language model training. Our method boosts the instruction following capability of language models by refining data curation for training and improving policy optimization objectives, thereby surpassing existing methods by a large margin on benchmarks such as Vicuna and MT-bench. These findings highlight that our proposed approach substantially advances language model training and paves a new way of harnessing uncertainty within language models.
[ Hall C 4-9 ]

Abstract
Numerous capability and safety techniques of Large Language Models (LLMs), including RLHF, automated red-teaming, prompt engineering, and infilling, can be cast as sampling from an unnormalized target distribution defined by a given reward or potential function over the full sequence. In this work, we leverage the rich toolkit of Sequential Monte Carlo (SMC) for these probabilistic inference problems. In particular, we use learned twist functions to estimate the expected future value of the potential at each timestep, which enables us to focus inference-time computation on promising partial sequences. We propose a novel contrastive method for learning the twist functions, and establish connections with the rich literature of soft reinforcement learning. As a complementary application of our twisted SMC framework, we present methods for evaluating the accuracy of language model inference techniques using novel bidirectional SMC bounds on the log partition function. These bounds can be used to estimate the KL divergence between the inference and target distributions in both directions. We apply our inference evaluation techniques to show that twisted SMC is effective for sampling undesirable outputs from a pretrained model (a useful component of harmlessness training and automated red-teaming), generating reviews with varied sentiment, and performing infilling tasks.
[ Hall C 4-9 ]

Abstract
Large language models (LLMs) have proven to be highly effective across various natural language processing tasks. However, their large number of parameters poses significant challenges for practical deployment. Pruning, a technique aimed at reducing the size and complexity of LLMs, offers a potential solution by removing redundant components from the network. Despite the promise of pruning, existing methods often struggle to achieve substantial end-to-end LLM inference speedup. In this paper, we introduce SLEB, a novel approach designed to stream- line LLMs by eliminating redundant transformer blocks. We choose the transformer block as the fundamental unit for pruning, because LLMs exhibit block-level redundancy with high similarity between the outputs of neighboring blocks. This choice allows us to effectively enhance the processing speed of LLMs. Our experimental results demonstrate that SLEB outperforms previous LLM pruning methods in accelerating LLM inference while also maintaining superior perplexity and accuracy, making SLEB as a promising technique for enhancing the efficiency of LLMs. The code is available at: https://github.com/jiwonsong-dev/SLEB.
[ Hall C 4-9 ]
Abstract
We introduce Syntax-Aware Fill-in-the-Middle (SAFIM), a new benchmark for evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM) task. This benchmark focuses on syntax-aware completions of program structures such as code blocks and conditional expressions, and includes 17,720 examples from multiple programming languages, sourced from recent code submissions after April 2022 to minimize data contamination. SAFIM provides a robust framework with various prompt designs and novel syntax-aware post-processing techniques, facilitating accurate and fair comparisons across LLMs. Our comprehensive evaluation of 15 LLMs shows that FIM pretraining not only enhances FIM proficiency but also improves Left-to-Right (L2R) inference using LLMs. Our findings challenge conventional beliefs and suggest that pretraining methods and data quality have more impact than model size. SAFIM thus serves as a foundational platform for future research in effective pretraining strategies for code LLMs. The evaluation toolkit and dataset are available at https://github.com/gonglinyuan/safim, and the leaderboard is available at https://safimbenchmark.com.
[ Hall C 4-9 ]

Abstract
Language models can learn sophisticated language understanding skills from fitting raw text. They also unselectively learn useless corpus statistics and biases, especially during finetuning on domain-specific corpora. In this paper, we propose a simple modification to causal language modeling called conditional finetuning, which performs language modeling conditioned on a context. We show that a context can "explain away" certain corpus statistics and make the model avoid learning them. In this fashion, conditional finetuning achieves selective learning from a corpus, learning knowledge useful for downstream tasks while avoiding learning useless corpus statistics like topic biases. This selective learning effect leads to less forgetting and better stability-plasticity tradeoff in domain finetuning, potentially benefitting lifelong learning with language models.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Estimating the uncertainty of a model’s prediction on a test point is a crucial part of ensuring reliability and calibration under distribution shifts.A minimum description length approach to this problem uses the predictive normalized maximum likelihood (pNML) distribution, which considers every possible label for a data point, and decreases confidence in a prediction if other labels are also consistent with the model and training data. In this work we propose IF-COMP, a scalable and efficient approximation of the pNML distribution that linearizes the model with a temperature-scaled Boltzmann influence function. IF-COMP can be used to produce well-calibrated predictions on test points as well as measure complexity in both labelled and unlabelled settings. We experimentally validate IF-COMP on uncertainty calibration, mislabel detection, and OOD detection tasks, where it consistently matches or beats strong baseline methods.
[ Hall C 4-9 ]

Abstract
Protein-protein bindings play a key role in a variety of fundamental biological processes, and thus predicting the effects of amino acid mutations on protein-protein binding is crucial. To tackle the scarcity of annotated mutation data, pre-training with massive unlabeled data has emerged as a promising solution. However, this process faces a series of challenges: (1) complex higher-order dependencies among multiple (more than paired) structural scales have not yet been fully captured; (2) it is rarely explored how mutations alter the local conformation of the surrounding microenvironment; (3) pre-training is costly, both in data size and computational burden. In this paper, we first construct a hierarchical prompt codebook to record common microenvironmental patterns at different structural scales independently. Then, we develop a novel codebook pre-training task, namely masked microenvironment modeling, to model the joint distribution of each mutation with their residue types, angular statistics, and local conformational changes in the microenvironment. With the constructed prompt codebook, we encode the microenvironment around each mutation into multiple hierarchical prompts and combine them to flexibly provide information to wild-type and mutated protein complexes about their microenvironmental differences. Such a hierarchical prompt learning framework has demonstrated superior performance and training efficiency over state-of-the-art pre-training-based methods …
[ Hall C 4-9 ]

Abstract
Deep Neural Networks (DNN) have shown great promise in many classification applications, yet are widely known to have poorly calibrated predictions when they are over-parametrized. Improving DNN calibration without comprising on model accuracy is of extreme importance and interest in safety critical applications such as in the health-care sector. In this work, we show that decoupling the training of feature extraction layers and classification layers in over-parametrized DNN architectures such as Wide Residual Networks (WRN) and Vision Transformers (ViT) significantly improves model calibration whilst retaining accuracy, and at a low training cost. In addition, we show that placing a Gaussian prior on the last hidden layer outputs of a DNN, and training the model variationally in the classification training stage, even further improves calibration. We illustrate these methods improve calibration across ViT and WRN architectures for several image classification benchmark datasets.
[ Hall C 4-9 ]

Abstract
We investigate certified robustness for GNNs under graph injection attacks. Existing research only provides sample-wise certificates by verifying each node independently, leading to very limited certifying performance. In this paper, we present the first collective certificate, which certifies a set of target nodes simultaneously. To achieve it, we formulate the problem as a binary integer quadratic constrained linear programming (BQCLP). We further develop a customized linearization technique that allows us to relax the BQCLP into linear programming (LP) that can be efficiently solved. Through comprehensive experiments, we demonstrate that our collective certification scheme significantly improves certification performance with minimal computational overhead. For instance, by solving the LP within 1 minute on the Citeseer dataset, we achieve a significant increase in the certified ratio from 0.0% to 81.2% when the injected node number is 5% of the graph size. Our paper marks a crucial step towards making provable defense more practical. Our source code is available at https://github.com/Yuni-Lai/CollectiveLPCert.
[ Hall C 4-9 ]

Abstract
Research on adversarial robustness has predominantly focused on continuous inputs, leaving categorical inputs, especially tabular attributes, less examined. To echo this challenge, our work aims to evaluate and enhance the robustness of classification over categorical attributes against adversarial perturbations through efficient attack-free approaches. We propose a robustness evaluation metric named Integrated Gradient-Smoothed Gradient (IGSG). It is designed to evaluate the attributional sensitivity of each feature and the decision boundary of the classifier, two aspects that significantly influence adversarial risk, according to our theoretical analysis. Leveraging this metric, we develop an IGSG-based regularization to reduce adversarial risk by suppressing the sensitivity of categorical attributes. We conduct extensive empirical studies over categorical datasets of various application domains. The results affirm the efficacy of both IGSG and IGSG-based regularization. Notably, IGSG-based regularization surpasses the state-of-the-art robust training methods by a margin of approximately 0.4% to 12.2% on average in terms of adversarial accuracy, especially on high-dimension datasets. The code is available at https://github.com/YujunZhou/IGSG.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Despite the remarkable performance and generalization levels of deep learning models in a wide range of artificial intelligence tasks, it has been demonstrated that these models can be easily fooled by the addition of imperceptible yet malicious perturbations to natural inputs. These altered inputs are known in the literature as adversarial examples. In this paper, we propose a novel probabilistic framework to generalize and extend adversarial attacks in order to produce a desired probability distribution for the classes when we apply the attack method to a large number of inputs. This novel attack paradigm provides the adversary with greater control over the target model, thereby exposing, in a wide range of scenarios, threats against deep learning models that cannot be conducted by the conventional paradigms. We introduce four different strategies to efficiently generate such attacks, and illustrate our approach by extending multiple adversarial attack algorithms. We also experimentally validate our approach for the spoken command classification task and the Tweet emotion classification task, two exemplary machine learning problems in the audio and text domain, respectively. Our results demonstrate that we can closely approximate any probability distribution for the classes while maintaining a high fooling rate and even prevent the attacks …
[ Hall C 4-9 ]
Abstract
Mechanistic Interpretability (MI) proposes a path toward fully understanding how neural networks make their predictions. Prior work demonstrates that even when trained to perform simple arithmetic, models can implement a variety of algorithms (sometimes concurrently) depending on initialization and hyperparameters. Does this mean neuron-level interpretability techniques have limited applicability? Here, we argue that high-dimensional neural networks can learn useful low-dimensional representations of the data they were trained on, going beyond simply making good predictions: Such representations can be understood with the MI lens and provide insights that are surprisingly faithful to human-derived domain knowledge. This indicates that such approaches to interpretability can be useful for deriving a new understanding of a problem from models trained to solve it. As a case study, we extract nuclear physics concepts by studying models trained to reproduce nuclear data.
[ Hall C 4-9 ]

Abstract
Modern information retrieval (IR) systems consists of multiple stages like retrieval and ranking, with Transformer-based models achieving state-of-the-art performance at each stage. In this paper, we challenge the tradition of using separate models for different stages and ask if a single Transformer encoder can provide relevance score needed in each stage. We present USTAD – a new unified approach to train a single network that can provide powerful ranking scores as a cross-encoder (CE) model as well as factorized embeddings for large-scale retrieval as a dual-encoder (DE) model. Empirically, we find a single USTAD model to be competitive to separate ranking CE and retrieval DE models. Furthermore, USTAD combines well with a novel embedding matching-based distillation, significantly improving CE to DE distillation. It further motivates novel asymmetric architectures for student models to ensure a better embedding alignment between the student and the teacher while ensuring small online inference cost. On standard benchmarks like MSMARCO, we demonstrate that USTAD with our proposed distillation method leads to asymmetric students with only 1/10th trainable parameter but retaining 95-97% of the teacher performance.
[ Hall C 4-9 ]

Abstract
In this work, we introduce the Prototypical Transformer (ProtoFormer), a general and unified framework that approaches various motion tasks from a prototype perspective. ProtoFormer seamlessly integrates prototype learning with Transformer by thoughtfully considering motion dynamics, introducing two innovative designs. First, Cross-Attention Prototyping discovers prototypes based on signature motion patterns, providing transparency in understanding motion scenes. Second, Latent Synchronization guides feature representation learning via prototypes, effectively mitigating the problem of motion uncertainty. Empirical results demonstrate that our approach achieves competitive performance on popular motion tasks such as optical flow and scene depth. Furthermore, it exhibits generality across various downstream tasks, including object tracking and video stabilization.
[ Hall C 4-9 ]
Abstract
Large language models (LLMs) have demonstrated remarkable capabilities in language generation, understanding, and few-shot learning in recent years. An extensive body of work has explored how their performance may be further improved through the tools of prompting, ranging from verification, self-consistency, or intermediate scratchpads. In this paper, we present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer. Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks. We also demonstrate that our approach improves the factual validity of generated content, reducing fallacious answers and hallucinations that contemporary models are prone to. Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate. Overall, our findings suggest that such "society of minds" approach has the potential to significantly advance the capabilities of LLMs and pave the way for further breakthroughs in language generation and understanding.
[ Hall C 4-9 ]

Abstract
We introduce a method to improve the zero-shot reasoning abilities of large language models on general language understanding tasks. Specifically, we build an autonomous agent to instruct the reasoning process of large language models. To enable this, our agent only needs to generate a single set of instructions for each task. These instructions turn out to be extremely effective for improving the reasoning process of different large language models across all task instances. We show this approach further unleashes the zero-shot reasoning abilities of large language models to more tasks. We study the performance of our method on a wide set of datasets spanning generation, classification, and reasoning. We show that our method generalizes to most tasks and obtains state-of-the-art zero-shot performance on 20 of the 29 datasets that we evaluate. For instance, our method boosts the performance of state-of-the-art large language models by a large margin, including Vicuna-13b, Llama-2-70b-chat, and GPT-3.5 Turbo. Compared to zero-shot chain of thought, our improvement in reasoning is striking. With our method, Llama-2-70b-chat outperforms zero-shot GPT-3.5 Turbo significantly.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
We study the feasibility of identifying epistemic uncertainty (reflecting a lack of knowledge), as opposed to aleatoric uncertainty (reflecting entropy in the underlying distribution), in the outputs of large language models (LLMs) over free-form text. In the absence of ground-truth probabilities, we explore a setting where, in order to (approximately) disentangle a given LLM's uncertainty, a significantly larger model stands in as a proxy for the ground truth. We show that small linear probes trained on the embeddings of frozen, pretrained models accurately predict when larger models will be more confident at the token level and that probes trained on one text domain generalize to others. Going further, we propose a fully unsupervised method that achieves non-trivial accuracy on the same task. Taken together, we interpret these results as evidence that LLMs naturally contain internal representations of different types of uncertainty that could potentially be leveraged to devise more informative indicators of model confidence in diverse practical settings. Code can be found at: https://github.com/KempnerInstitute/llm_uncertainty
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Aligning language models with human preferences is crucial for reducing errors and biases in these models. Alignment techniques, such as reinforcement learning from human feedback (RLHF), are typically cast as optimizing a tradeoff between human preference rewards and a proximity regularization term that encourages staying close to the unaligned model. Selecting an appropriate level of regularization is critical: insufficient regularization can lead to reduced model capabilities due to reward hacking, whereas excessive regularization hinders alignment. Traditional methods for finding the optimal regularization level require retraining multiple models with varying regularization strengths. This process, however, is resource-intensive, especially for large models. To address this challenge, we propose decoding-time realignment (DeRa), a simple method to explore and evaluate different regularization strengths in aligned models without retraining. DeRa enables control over the degree of alignment, allowing users to smoothly transition between unaligned and aligned models. It also enhances the efficiency of hyperparameter tuning by enabling the identification of effective regularization strengths using a validation dataset.
[ Hall C 4-9 ]

Abstract
Adapting state-of-the-art Large Language Models (LLMs) like GPT-4 and Gemini for specific tasks is challenging. Due to the opacity in their parameters, embeddings, and even output probabilities, existing fine-tuning adaptation methods are inapplicable. Consequently, adapting these black-box LLMs is only possible through their API services, raising concerns about transparency, privacy, and cost. To address these challenges, we introduce BBox-Adapter, a novel lightweight adapter for black-box LLMs. BBox-Adapter distinguishes target and source domain data by treating target data as positive and source data as negative. It employs a ranking-based Noise Contrastive Estimation (NCE) loss to promote the likelihood of target domain data while penalizing that of the source domain. Furthermore, it features an online adaptation mechanism, which incorporates real-time positive data sampling from ground-truth, human, or AI feedback, coupled with negative data from previous adaptations. Extensive experiments demonstrate BBox-Adapter's effectiveness and cost efficiency. It improves model performance by up to 6.77% across diverse tasks and domains, while reducing training and inference costs by 31.30x and 1.84x, respectively.
Poster Session 4 Wed 24 Jul 01:30 p.m.
[ Hall C 4-9 ]
Abstract
Large-scale datasets are increasingly being used to inform decision making. While this effort aims to ground policy in real-world evidence, challenges have arisen as selection bias and other forms of distribution shifts often plague observational data. Previous attempts to provide robust inference have given guarantees depending on a user-specified amount of possible distribution shift (e.g., the maximum KL divergence between the observed and target distributions). However, decision makers will often have additional knowledge about the target distribution which constrains the kind of possible shifts. To leverage such information, we propose a framework that enables statistical inference in the presence of selection bias which obeys user-specified constraints in the form of functions whose expectation is known under the target distribution. The output is high-probability bounds on the value of an estimand for the target distribution. Hence, our method leverages domain knowledge in order to partially identify a wide class of estimands. We analyze the computational and statistical properties of methods to estimate these bounds and show that our method can produce informative bounds on a variety of simulated and semisynthetic tasks, as well as in a real-world use case.
[ Hall C 4-9 ]
Abstract
Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.
[ Hall C 4-9 ]

Abstract
Large language models (LLMs) have accomplished remarkable reasoning performance in various domains. However, in the domain of reasoning tasks, we discover a frailty: LLMs are surprisingly brittle to the ordering of the premises, despite the fact that such ordering does not alter the underlying task. In particular, we observe that LLMs achieve the best performance when the premise order aligns with the context required in intermediate reasoning steps. For example, in deductive reasoning tasks, presenting the premises in the same order as the ground truth proof in the prompt (as opposed to random ordering) drastically increases the model's accuracy. We first examine the effect of premise ordering on deductive reasoning on a variety of LLMs, and our evaluation shows that even if the model performance is decent on the optimal order, permuting the premise order can cause a performance drop of over 30%. In addition, we release the benchmark R-GSM, based on GSM8K, to examine the ordering effect for mathematical problem-solving, and we again observe a significant drop in accuracy, relative to the original GSM8K benchmark.
[ Hall C 4-9 ]

Abstract
The resonate-and-fire (RF) neuron, introduced over two decades ago, is a simple, efficient, yet biologically plausible spiking neuron model, which can extract frequency patterns within the time domain due to its resonating membrane dynamics. However, previous RF formulations suffer from intrinsic shortcomings that limit effective learning and prevent exploiting the principled advantage of RF neurons. Here, we introduce the balanced RF (BRF) neuron, which alleviates some of the intrinsic limitations of vanilla RF neurons and demonstrates its effectiveness within recurrent spiking neural networks (RSNNs) on various sequence learning tasks. We show that networks of BRF neurons achieve overall higher task performance, produce only a fraction of the spikes, and require significantly fewer parameters as compared to modern RSNNs. Moreover, BRF-RSNN consistently provide much faster and more stable training convergence, even when bridging many hundreds of time steps during backpropagation through time (BPTT). These results underscore that our BRF-RSNN is a strong candidate for future large-scale RSNN architectures, further lines of research in SNN methodology, and more efficient hardware implementations.
[ Hall C 4-9 ]

Abstract
This paper addresses the training of Neural Ordinary Differential Equations (neural ODEs), and in particular explores the interplay between numerical integration techniques, stability regions, step size, and initialization techniques. It is shown how the choice of integration technique implicitly regularizes the learned model, and how the solver's corresponding stability region affects training and prediction performance. From this analysis, a stability-informed parameter initialization technique is introduced. The effectiveness of the initialization method is displayed across several learning benchmarks and industrial applications.
[ Hall C 4-9 ]

Abstract
Causal effect estimation under networked interference is an important but challenging problem. Available parametric methods are limited in their model space, while previous semiparametric methods, e.g., leveraging neural networks to fit only one single nuisance function, may still encounter misspecification problems under networked interference without appropriate assumptions on the data generation process. To mitigate bias stemming from misspecification, we propose a novel doubly robust causal effect estimator under networked interference, by adapting the targeted learning technique to the training of neural networks. Specifically, we generalize the targeted learning technique into the networked interference setting and establish the condition under which an estimator achieves double robustness. Based on the condition, we devise an end-to-end causal effect estimator by transforming the identified theoretical condition into a targeted loss. Moreover, we provide a theoretical analysis of our designed estimator, revealing a faster convergence rate compared to a single nuisance model. Extensive experimental results on two real-world networks with semisynthetic data demonstrate the effectiveness of our proposed estimators.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
The application of machine learning methods to solve combinatorial problems has garnered considerable research interest. In this paper, we propose MAgg (Metamorphic Aggregation), a method to augment machine learning models for combinatorial problems at inference time using metamorphic relations. MAgg models metamorphic relations using directed graphs, which are then fed to a Graph Neural Network (GNN) model to improve the aggregation of predictions across transformed input instances. By incorporating metamorphic relations, MAgg essentially extends standard Test-Time Augmentation (TTA), eliminating the necessity of label-preserving transformations and expanding its applicability to a broader range of supervised learning tasks for combinatorial problems. We evaluate the proposed MAgg method on three mainstream machine learning tasks for combinatorial problems, namely Boolean Satisfiability Prediction (SAT), Decision Traveling Salesman Problem Satisfiability Prediction (Decision TSP), and Graph Edit Distance Estimation (GED). The evaluation result shows significant improvements over base models in all three tasks, corroborating the effectiveness and versatility of the proposed method.
[ Hall C 4-9 ]
Abstract
Foundation models have brought changes to the landscape of machine learning, demonstrating sparks of human-level intelligence across a diverse array of tasks. However, a gap persists in complex tasks such as causal inference, primarily due to challenges associated with intricate reasoning steps and high numerical precision requirements. In this work, we take a first step towards building causally-aware foundation models for treatment effect estimations. We propose a novel, theoretically justified method called Causal Inference with Attention (CInA), which utilizes multiple unlabeled datasets to perform self-supervised causal learning, and subsequently enables zero-shot causal inference on unseen tasks with new data. This is based on our theoretical results that demonstrate the primal-dual connection between optimal covariate balancing and self-attention, facilitating zero-shot causal inference through the final layer of a trained transformer-type architecture. We demonstrate empirically that CInA effectively generalizes to out-of-distribution datasets and various real-world datasets, matching or even surpassing traditional per-dataset methodologies. These results provide compelling evidence that our method has the potential to serve as a stepping stone for the development of causal foundation models.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models. Compared to conventional deep Artificial Neural Networks (ANNs), SNNs exhibit superior efficiency and capability to process temporal information. However, it remains a challenge to train SNNs due to their undifferentiable spiking mechanism. The surrogate gradients method is commonly used to train SNNs, but often comes with an accuracy disadvantage over ANNs counterpart. We link the degraded accuracy to the vanishing of gradient on the temporal dimension through the analytical and experimental study of the training process of Leaky Integrate-and-Fire (LIF) Neuron-based SNNs. Moreover, we propose the Complementary Leaky Integrate-and-Fire (CLIF) Neuron. CLIF creates extra paths to facilitate the backpropagation in computing temporal gradient while keeping binary output. CLIF is hyperparameter-free and features broad applicability. Extensive experiments on a variety of datasets demonstrate CLIF's clear performance advantage over other neuron models. Furthermore, the CLIF's performance even slightly surpasses superior ANNs with identical network structure and training conditions. The code is available at https://github.com/HuuYuLong/Complementary-LIF.
[ Hall C 4-9 ]

Abstract
The challenge of interpreting the world from a human perspective in Artificial Intelligence (AI) is particularly evident in egocentric video question answering, which grapples with issues like small object recognition, noise suppression, and spatial-temporal reasoning. To address these challenges, we introduce the Multi-Factor Adaptive vision Selection (MFAS) framework. MFAS integrates a patch partition and merging module for enhanced small object recognition, a prior-guided patch selection module for noise suppression and focused analysis, and a hierarchical aggregation network to aggregate visual semantics guided by questions. Extensive experiments on several public egocentric datasets have validated the effectiveness and generalization of our framework. Code and data are available in https://github.com/Hyu-Zhang/EgoVideoQA.
[ Hall C 4-9 ]

Abstract
Understanding the optimization dynamics of neural networks is necessary for closing the gap between theory and practice. Stochastic first-order optimization algorithms are known to efficiently locate favorable minima in deep neural networks. This efficiency, however, contrasts with the non-convex and seemingly complex structure of neural loss landscapes. In this study, we delve into the fundamental geometric properties of sampled gradients along optimization paths. We focus on two key quantities, the restricted secant inequality and error bound, as well as their ratio γ, which hold high significance for first-order optimization. Our analysis reveals that these quantities exhibit predictable, consistent behavior throughout training, despite the stochasticity induced by sampling minibatches. Our findings suggest that not only do optimization trajectories never encounter significant obstacles, but they also maintain stable dynamics during the majority of training. These observed properties are sufficiently expressive to theoretically guarantee linear convergence and prescribe learning rate schedules mirroring empirical practices. We conduct our experiments on image classification, semantic segmentation and language modeling across different batch sizes, network architectures, datasets, optimizers, and initialization seeds. We discuss the impact of each factor. Our work provides novel insights into the properties of neural network loss functions, and opens the door to theoretical …
[ Hall C 4-9 ]
Abstract
In recent years, interest in gradient-based optimization over Riemannian manifolds has surged. However, a significant challenge lies in the reliance on hyperparameters, especially the learning rate, which requires meticulous tuning by practitioners to ensure convergence at a suitable rate. In this work, we introduce innovative learning-rate-free algorithms for stochastic optimization over Riemannian manifolds, eliminating the need for hand-tuning and providing a more robust and user-friendly approach. We establish high probability convergence guarantees that are optimal, up to logarithmic factors, compared to the best-known optimally tuned rate in the deterministic setting. Our approach is validated through numerical experiments, demonstrating competitive performance against learning-rate-dependent algorithms.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Recently, accelerated algorithms using the anchoring mechanism for minimax optimization and fixed-point problems have been proposed, and matching complexity lower bounds establish their optimality. In this work, we present the surprising observation that the optimal acceleration mechanism in minimax optimization and fixed-point problems is not unique. Our new algorithms achieve exactly the same worst-case convergence rates as existing anchor-based methods while using materially different acceleration mechanisms. Specifically, these new algorithms are dual to the prior anchor-based accelerated methods in the sense of H-duality. This finding opens a new avenue of research on accelerated algorithms since we now have a family of methods that empirically exhibit varied characteristics while having the same optimal worst-case guarantee.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Combinatorial optimization (CO) is naturally discrete, making machine-learning techniques based on differentiable optimization inapplicable. Karalias & Loukas (2020) adapted the probabilistic method by Erdős & Spencer (1974), to incorporate CO into differentiable optimization. Their work ignited the research on unsupervised learning for CO, composed of two main components: probabilistic objectives and derandomization. However, each component confronts unique challenges. First, deriving objectives under complex conditions and constraints is nontrivial. Second, the derandomization process is underexplored, and the existing derandomization methods are either random sampling or naive rounding. In this work, we aim to tackle complex conditions in unsupervised CO. First, we concretize the targets for probabilistic objective construction and derandomization with theoretical justification. Then, for various complex conditions commonly involved in different CO problems, we derive nontrivial objectives and derandomization to meet the targets. Finally, we apply the derivations to various CO problems. Via extensive experiments on synthetic and real-world graphs, we validate the correctness of our derivations and show our empirical superiority w.r.t. both optimization quality and speed.
[ Hall C 4-9 ]

Abstract
Diffusion models have made significant strides in visual content generation but also raised increasing demands on generated image detection. Existing detection methods have achieved considerable progress, but they usually suffer a significant decline in accuracy when detecting images generated by an unseen diffusion model. In this paper, we seek to address the generalizability of generated image detectors from the perspective of hard sample classification. The basic idea is that if a classifier can distinguish generated images that closely resemble real ones, then it can also effectively detect less similar samples, potentially even those produced by a different diffusion model. Based on this idea, we propose Diffusion Reconstruction Contrastive Learning (DRCT), a universal framework to enhance the generalizability of the existing detectors. DRCT generates hard samples by high-quality diffusion reconstruction and adopts contrastive training to guide the learning of diffusion artifacts. In addition, we have built a million-scale dataset, DRCT-2M, including 16 types diffusion models for the evaluation of generalizability of detection methods. Extensive experimental results show that detectors enhanced with DRCT achieve over a 10% accuracy improvement in cross-set tests. The code, models, and dataset will soon be available at https://github.com/beibuwandeluori/DRCT.
[ Hall C 4-9 ]

Abstract
Post-training quantization (PTQ) for vision transformers (ViTs) has garnered significant attention due to its efficiency in compressing models. However, existing methods typically overlook the intricate interdependence between quantized weight and activation, leading to considerable quantization error. In this paper, we propose ERQ, a two-step PTQ approach meticulously crafted to sequentially reduce the quantization error arising from activation and weight quantization. ERQ first introduces Activation quantization error reduction (Aqer) that strategically formulates the minimization of activation quantization error as a Ridge Regression problem, tackling it by updating weights with full-precision. Subsequently, ERQ introduces Weight quantization error reduction (Wqer) that adopts an iterative approach to mitigate the quantization error induced by weight quantization. In each iteration, an empirically derived, efficient proxy is employed to refine the rounding directions of quantized weights, coupled with a Ridge Regression solver to curtail weight quantization error. Experimental results attest to the effectiveness of our approach. Notably, ERQ surpasses the state-of-the-art GPTQ by 22.36% in accuracy for W3A4 ViT-S.
[ Hall C 4-9 ]

Abstract
In this paper, we address the challenge of Perspective-Invariant Learning in machine learning and computer vision, which involves enabling a network to understand images from varying perspectives to achieve consistent semantic interpretation. While standard approaches rely on the labor-intensive collection of multi-view images or limited data augmentation techniques, we propose a novel framework, Discrete Latent Perspective Learning (DLPL), for latent multi-perspective fusion learning using conventional single-view images. DLPL comprises three main modules: Perspective Discrete Decomposition (PDD), Perspective Homography Transformation (PHT), and Perspective Invariant Attention (PIA), which work together to discretize visual features, transform perspectives, and fuse multi-perspective semantic information, respectively. DLPL is a universal perspective learning framework applicable to a variety of scenarios and vision tasks. Extensive experiments demonstrate that DLPL significantly enhances the network's capacity to depict images across diverse scenarios (daily photos, UAV, auto-driving) and tasks (detection, segmentation).
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Satellite data has the potential to inspire a seismic shift for machine learning---one in which we rethink existing practices designed for traditional data modalities. As machine learning for satellite data (SatML) gains traction for its real-world impact, our field is at a crossroads. We can either continue applying ill-suited approaches, or we can initiate a new research agenda that centers around the unique characteristics and challenges of satellite data. This position paper argues that satellite data constitutes a distinct modality for machine learning research and that we must recognize it as such to advance the quality and impact of SatML research across theory, methods, and deployment. We outline research directions, critical discussion questions and actionable suggestions to transform SatML from merely an intriguing application area to a dedicated research discipline that helps move the needle on big challenges for machine learning and society.
[ Hall C 4-9 ]
Abstract
The explosion of visual content available online underscores the requirement for an accurate machine assessor to robustly evaluate scores across diverse types of visual contents. While recent studies have demonstrated the exceptional potentials of large multi-modality models (LMMs) on a wide range of related fields, in this work, we explore how to teach them for visual rating aligning with human opinions. Observing that human raters only learn and judge discrete text-defined levels in subjective studies, we propose to emulate this subjective process and teach LMMs with text-defined rating levels instead of scores. The proposed Q-Align achieves state-of-the-art accuracy on image quality assessment (IQA), image aesthetic assessment (IAA), as well as video quality assessment (VQA) under the original LMM structure. With the syllabus, we further unify the three tasks into one model, termed the OneAlign. Our experiments demonstrate the advantage of discrete levels over direct scores on training, and that LMMs can learn beyond the discrete levels and provide effective finer-grained evaluations. Code and weights will be released.
[ Hall C 4-9 ]

Abstract
It has recently been discovered that using a pre-trained vision-language model (VLM), e.g., CLIP, to align a whole query image with several finer text descriptions generated by a large language model can significantly enhance zero-shot performance. However, in this paper, we empirically find that the finer descriptions tend to align more effectively with local areas of the query image rather than the whole image, and then we theoretically validate this finding. Thus, we present a method called weighted visual-text cross alignment (WCA). This method begins with a localized visual prompting technique, designed to identify local visual areas within the query image. The local visual areas are then cross-aligned with the finer descriptions by creating a similarity matrix using the pre-trained VLM. To determine how well a query image aligns with each category, we develop a score function based on the weighted similarities in this matrix. Extensive experiments demonstrate that our method significantly improves zero-shot performance across various datasets, achieving results that are even comparable to few-shot learning methods.
[ Hall C 4-9 ]

Abstract
Raw images offer unique advantages in many low-level visual tasks due to their unprocessed nature. However, this unprocessed state accentuates noise, making raw images challenging to compress effectively. Current compression methods often overlook the ubiquitous noise in raw space, leading to increased bitrates and reduced quality. In this paper, we propose a novel raw image compression scheme that selectively compresses the noise-free component of the input, while discarding its real noise using a self-supervised approach. By excluding noise from the bitstream, both the coding efficiency and reconstruction quality are significantly enhanced. We curate an full-day dataset of raw images with calibrated noise parameters and reference images to evaluate the performance of models under a wide range of input signal-noise ratios. Experimental results demonstrate that our method surpasses existing compression techniques, achieving a more advantageous rate-distortion balance with improvements ranging from +2 to +10dB and yielding a bit saving of 2 to 50 times. The code will be released upon paper acceptance.
[ Hall C 4-9 ]

Abstract
Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce SeemoRe, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of ``see more", allowing our model to achieve an optimal performance with minimal computational costs in efficient settings.
[ Hall C 4-9 ]

Abstract
Recent advancements in off-policy Reinforcement Learning (RL) have significantly improved sample efficiency, primarily due to the incorporation of various forms of regularization that enable more gradient update steps than traditional agents. However, many of these techniques have been tested in limited settings, often on tasks from single simulation benchmarks and against well-known algorithms rather than a range of regularization approaches. This limits our understanding of the specific mechanisms driving RL improvements. To address this, we implemented over 60 different off-policy agents, each integrating established regularization techniques from recent state-of-the-art algorithms. We tested these agents across 14 diverse tasks from 2 simulation benchmarks, measuring training metrics related to overestimation, overfitting, and plasticity loss — issues that motivate the examined regularization techniques. Our findings reveal that while the effectiveness of a specific regularization setup varies with the task, certain combinations consistently demonstrate robust and superior performance. Notably, a simple Soft Actor-Critic agent, appropriately regularized, reliably finds a better-performing policy within the training regime, which previously was achieved mainly through model-based approaches.
[ Hall C 4-9 ]
Abstract
How can a scientist use a Reinforcement Learning (RL) algorithm to design experiments over a dynamical system's state space? In the case of finite and Markovian systems, an area called Active Exploration (AE) relaxes the optimization problem of experiments design into Convex RL, a generalization of RL admitting a wider notion of reward. Unfortunately, this framework is currently not scalable and the potential of AE is hindered by the vastness of experiments spaces typical of scientific discovery applications. However, these spaces are often endowed with natural geometries, e.g., permutation invariance in molecular design, that an agent could leverage to improve the statistical and computational efficiency of AE. To achieve this, we bridge AE and MDP homomorphisms, which offer a way to exploit known geometric structures via abstraction. Towards this goal, we make two fundamental contributions: we extend MDP homomorphisms formalism to Convex RL, and we present, to the best of our knowledge, the first analysis that formally captures the benefit of abstraction via homomorphisms on sample efficiency. Ultimately, we propose the Geometric Active Exploration (GAE) algorithm, which we analyse theoretically and experimentally in environments motivated by problems in scientific discovery.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Federated learning is a distributed optimization paradigm that allows training machine learning models across decentralized devices while keeping the data localized. The standard method, FedAvg, suffers from client drift which can hamper performance and increase communication costs over centralized methods. Previous works proposed various strategies to mitigate drift, yet none have shown consistently improved communication-computation trade-offs over vanilla gradient descent across all standard function classes. In this work, we revisit DANE, an established method in distributed optimization. We show that (i) DANE can achieve the desired communication reduction under Hessian similarity constraints. Furthermore, (ii) we present an extension, DANE+, which supports arbitrary inexact local solvers and has more freedom to choose how to aggregate the local updates. We propose (iii) a novel method, FedRed, which has improved local computational complexity and retains the same communication complexity compared to DANE/DANE+. This is achieved by doubly regularized drift correction.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Undeniably, Large Language Models (LLMs) have stirred an extraordinary wave of innovation in the machine learning research domain, resulting in substantial impact across diverse fields such as reinforcement learning, robotics, and computer vision. Their incorporation has been rapid and transformative, marking a significant paradigm shift in the field of machine learning research. However, the field of experimental design, grounded on black-box optimization, has been much less affected by such a paradigm shift, even though integrating LLMs with optimization presents a unique landscape ripe for exploration. In this position paper, we frame the field of black-box optimization around sequence-based foundation models and organize their relationship with previous literature. We discuss the most promising ways foundational language models can revolutionize optimization, which include harnessing the vast wealth of information encapsulated in free-form text to enrich task comprehension, utilizing highly flexible sequence models such as Transformers to engineer superior optimization strategies, and enhancing performance prediction over previously unseen search spaces.
[ Hall C 4-9 ]
Abstract
We study the problem of preferential Bayesian optimization (BO), where we aim to optimize a black-box function with only preference feedback over a pair of candidate solutions. Inspired by the likelihood ratio idea, we construct a confidence set of the black-box function using only the preference feedback. An optimistic algorithm with an efficient computational method is then developed to solve the problem, which enjoys an information-theoretic bound on the total cumulative regret, a first-of-its-kind for preferential BO. This bound further allows us to design a scheme to report an estimated best solution, with a guaranteed convergence rate. Experimental results on sampled instances from Gaussian processes, standard test functions, and a thermal comfort optimization problem all show that our method stably achieves better or competitive performance as compared to the existing state-of-the-art heuristics, which, however, do not have theoretical guarantees on regret bounds or convergence.
[ Hall C 4-9 ]

Abstract
Among various acquisition functions (AFs) in Bayesian optimization (BO), Gaussian process upper confidence bound (GP-UCB) and Thompson sampling (TS) are well-known options with established theoretical properties regarding Bayesian cumulative regret (BCR). Recently, it has been shown that a randomized variant of GP-UCB achieves a tighter BCR bound compared with GP-UCB, which we call the tighter BCR bound for brevity. Inspired by this study, this paper first shows that TS achieves the tighter BCR bound. On the other hand, GP-UCB and TS often practically suffer from manual hyperparameter tuning and over-exploration issues, respectively. Therefore, we analyze yet another AF called a probability of improvement from the maximum of a sample path (PIMS). We show that PIMS achieves the tighter BCR bound and avoids the hyperparameter tuning, unlike GP-UCB. Furthermore, we demonstrate a wide range of experiments, focusing on the effectiveness of PIMS that mitigates the practical issues of GP-UCB and TS.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
This paper investigates projection-free algorithms for stochastic constrained multi-level optimization. In this context, the objective function is a nested composition of several smooth functions, and the decision set is closed and convex. Existing projection-free algorithms for solving this problem suffer from two limitations: 1) they solely focus on the gradient mapping criterion and fail to match the optimal sample complexities in unconstrained settings; 2) their analysis is exclusively applicable to non-convex functions, without considering convex and strongly convex objectives. To address these issues, we introduce novel projection-free variance reduction algorithms and analyze their complexities under different criteria. For gradient mapping, our complexities improve existing results and match the optimal rates for unconstrained problems. For the widely-used Frank-Wolfe gap criterion, we provide theoretical guarantees that align with those for single-level problems. Additionally, by using a stage-wise adaptation, we further obtain complexities for convex and strongly convex functions. Finally, numerical experiments on different tasks demonstrate the effectiveness of our methods.
[ Hall C 4-9 ]

Abstract
We investigate the potential of patent data for improving the antibody humanness prediction using a multi-stage, multi-loss training process. Humanness serves as a proxy for the immunogenic response to antibody therapeutics, one of the major causes of attrition in drug discovery and a challenging obstacle for their use in clinical settings. We pose the initial learning stage as a weakly-supervised contrastive-learning problem, where each antibody sequence is associated with possibly multiple identifiers of function and the objective is to learn an encoder that groups them according to their patented properties. We then freeze a part of the contrastive encoder and continue training it on the patent data using the cross-entropy loss to predict the humanness score of a given antibody sequence. We illustrate the utility of the patent data and our approach by performing inference on three different immunogenicity datasets, unseen during training. Our empirical results demonstrate that the learned model consistently outperforms the alternative baselines and establishes new state-of-the-art on five out of six inference tasks, irrespective of the used metric.
[ Hall C 4-9 ]

Abstract
We propose a new method called the N-particle underdamped Langevin algorithm for optimizing a special class of non-linear functionals defined over the space of probability measures. Examples of problems with this formulation include training mean-field neural networks, maximum mean discrepancy minimization and kernel Stein discrepancy minimization. Our algorithm is based on a novel spacetime discretization of the mean-field underdamped Langevin dynamics, for which we provide a new, fast mixing guarantee. In addition, we demonstrate that our algorithm converges globally in total variation distance, bridging the theoretical gap between the dynamics and its practical implementation.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Real-valued functions on geometric data---such as node attributes on a graph---can be optimized using descriptors from persistent homology, allowing the user to incorporate topological terms in the loss function. When optimizing a single real-valued function (the one-parameter setting), there is a canonical choice of descriptor for persistent homology: the barcode. The operation mapping a real-valued function to its barcode is differentiable almost everywhere, and the convergence of gradient descent for losses using barcodes is relatively well understood. When optimizing a vector-valued function (the multiparameter setting), there is no unique choice of descriptor for multiparameter persistent homology, and many distinct descriptors have been proposed. This calls for the development of a general framework for differentiability and optimization that applies to a wide range of multiparameter homological descriptors. In this article, we develop such a framework and show that it encompasses well-known descriptors of different flavors, such as signed barcodes and the multiparameter persistence landscape. We complement the theory with numerical experiments supporting the idea that optimizing multiparameter homological descriptors can lead to improved performances compared to optimizing one-parameter descriptors, even when using the simplest and most efficiently computable multiparameter descriptors.
[ Hall C 4-9 ]
Abstract
Despite the success of the Adam optimizer in practice, the theoretical understanding of its algorithmic components still remains limited. In particular, most existing analyses of Adam show the convergence rate that can be simply achieved by non-adative algorithms like SGD. In this work, we provide a different perspective based on online learning that underscores the importance of Adam's algorithmic components. Inspired by Cutkosky et al. (2023), we consider the framework called online learning of updates/increments, where we choose the updates/increments of an optimizer based on an online learner. With this framework, the design of a good optimizer is reduced to the design of a good online learner. Our main observation is that Adam corresponds to a principled online learning framework called Follow-the-Regularized-Leader (FTRL). Building on this observation, we study the benefits of its algorithmic components from the online learning perspective.
[ Hall C 4-9 ]
Abstract
This paper studies the problem of solving nonconvex nonsmooth optimization over a closed convex set. Most previous works tackle such problems by transforming the constrained problem into an unconstrained problem that can be solved by the techniques developed in the unconstrained setting. However, they only provide asymptotic convergence analysis for their methods. In this work, we provide the non-asymptotic analysis for solving constrained nonconvex nonsmooth optimization. We first generalize classical gradient mapping and the Frank–Wolfe gap in the nonsmooth setting. Then we introduce novel notions of approximate stationarity concerning such generalized quantities. We also propose several stochastic zeroth-order algorithms for the problem, along with their non-asymptotic convergence guarantees of obtaining the proposed approximate stationarity. Finally, we conduct numerical experiments that demonstrate the effectiveness of our algorithms.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Selecting a small subset of items that represent the diversity of a larger population lies at the heart of many data analysis and machine learning applications. However, when it comes to items described by discrete features, the lack of natural ordering and the combinatorial nature of the search space pose significant challenges to the current selection techniques and make existing methods ill-suited. In this paper, we propose to make a step in that direction by proposing novel methods to select subsets of diverse categorical data based on the advances in combinatorial optimization. First, we start to cast the subset selection problem through the lens of the optimization of three diversity metrics. We then provide novel bounds for this problem and present exact solvers that unfortunately come with a high computational cost. To overcome this bottleneck, we go on and show how to employ tools from linear programming and submodular optimization by introducing two computationally plausible methods that still present approximation guarantees about the diversity metrics. Finally, a numerical assessment is provided to illustrate the potential of the designs with respect to state-of-the-art methods.
[ Hall C 4-9 ]

Abstract
Cluster deletion is an NP-hard graph clustering objective with applications in computational biology and social network analysis, where the goal is to delete a minimum number of edges to partition a graph into cliques. We first provide a tighter analysis of two previous approximation algorithms, improving their approximation guarantees from 4 to 3. Moreover, we show that both algorithms can be derandomized in a surprisingly simple way, by greedily taking a vertex of maximum degree in an auxiliary graph and forming a cluster around it. One of these algorithms relies on solving a linear program. Our final contribution is to design a new and purely combinatorial approach for doing so that is far more scalable in theory and practice.
[ Hall C 4-9 ]

Abstract
Molecular surfaces imply fingerprints of interaction patterns between proteins. However, non-equivalent efforts have been paid to incorporating the abundant protein surface information for analyzing proteins' biological functions in juxtaposition to amino acid sequences and 3D structures. We propose a novel surface-based unsupervised learning algorithm termed Surface-VQMAE to overcome this obstacle. In light of surface point clouds' sparsity and disorder properties, we first partition them into patches and obtain the sequential arrangement via the Morton curve. Successively, a Transformer-based architecture named SurfFormer was introduced to integrate the surface geometry and capture patch-level relations. At last, we enhance the prevalent masked auto-encoder (MAE) with the vector quantization (VQ) technique, which establishes a surface pattern codebook to enforce a discrete posterior distribution of latent variables and achieve more condensed semantics. Our work is the foremost to implement pretraining purely on molecular surfaces and extensive experiments on diverse real-life scenarios including binding site scoring, binding affinity prediction, and mutant effect estimation demonstrate its effectiveness. The code is available at https://github.com/smiles724/VQMAE.
[ Hall C 4-9 ]

Abstract
Recent research in molecular discovery has primarily been devoted to small, drug-like molecules, leaving many similarly important applications in material design without adequate technology. These applications often rely on more complex molecular structures with fewer examples that are carefully designed using known substructures. We propose a data-efficient and interpretable model for representing and reasoning over such molecules in terms of graph grammars that explicitly describe the hierarchical design space featuring motifs to be the design basis. We present a novel representation in the form of random walks over the design space, which facilitates both molecule generation and property prediction. We demonstrate clear advantages over existing methods in terms of performance, efficiency, and synthesizability of predicted molecules, and we provide detailed insights into the method's chemical interpretability.
[ Hall C 4-9 ]
Abstract
Automation is one of the cornerstones of contemporary material discovery. Bayesian optimization (BO) is an essential part of such workflows, enabling scientists to leverage prior domain knowledge into efficient exploration of a large molecular space. While such prior knowledge can take many forms, there has been significant fanfare around the ancillary scientific knowledge encapsulated in large language models (LLMs). However, existing work thus far has only explored LLMs for heuristic materials searches. Indeed, recent work obtains the uncertainty estimate---an integral part of BO---from point-estimated, non-Bayesian LLMs. In this work, we study the question of whether LLMs are actually useful to accelerate principled Bayesian optimization in the molecular space. We take a sober, dispassionate stance in answering this question. This is done by carefully (i) viewing LLMs as fixed feature extractors for standard but principled BO surrogate models and by (ii) leveraging parameter-efficient finetuning methods and Bayesian neural networks to obtain the posterior of the LLM surrogate. Our extensive experiments with real-world chemistry problems show that LLMs can be useful for BO over molecules, but only if they have been pretrained or finetuned with domain-specific data.
[ Hall C 4-9 ]

Abstract
Recently, a noticeable trend has emerged in developing pre-trained foundation models in the domains of CV and NLP. However, for molecular pre-training, there lacks a universal model capable of effectively applying to various categories of molecular tasks, since existing prevalent pre-training methods exhibit effectiveness for specific types of downstream tasks. Furthermore, the lack of profound understanding of existing pre-training methods, including 2D graph masking, 2D-3D contrastive learning, and 3D denoising, hampers the advancement of molecular foundation models. In this work, we provide a unified comprehension of existing pre-training methods through the lens of contrastive learning. Thus their distinctions lie in clustering different views of molecules, which is shown beneficial to specific downstream tasks. To achieve a complete and general-purpose molecular representation, we propose a novel pre-training framework, named UniCorn, that inherits the merits of the three methods, depicting molecular views in three different levels. SOTA performance across quantum, physicochemical, and biological tasks, along with comprehensive ablation study, validate the universality and effectiveness of UniCorn.
[ Hall C 4-9 ]

Abstract
Deep Reinforcement Learning (DRL) agents have demonstrated impressive success in a wide range of game genres. However, existing research primarily focuses on optimizing DRL competence rather than addressing the challenge of prolonged player interaction. In this paper, we propose a practical DRL agent system for fighting games named Shūkai, which has been successfully deployed to Naruto Mobile, a popular fighting game with over 100 million registered users. Shūkai quantifies the state to enhance generalizability, introducing Heterogeneous League Training (HELT) to achieve balanced competence, generalizability, and training efficiency. Furthermore, Shūkai implements specific rewards to align the agent's behavior with human expectations. Shūkai's ability to generalize is demonstrated by its consistent competence across all characters, even though it was trained on only 13% of them. Additionally, HELT exhibits a remarkable 22% improvement in sample efficiency. Shūkai serves as a valuable training partner for players in Naruto Mobile, enabling them to enhance their abilities and skills.
[ Hall C 4-9 ]
Abstract
With the accumulation of data at an unprecedented rate, its potential to fuel scientific discovery is growing exponentially. This position paper urges the Machine Learning (ML) community to exploit the capabilities of large generative models (LGMs) to develop automated systems for end-to-end data-driven discovery—a paradigm encompassing the search and verification of hypotheses purely from a set of provided datasets, without the need for additional data collection or physical experiments. We first outline several desiderata for an ideal data-driven discovery system. Then, through DataVoyager, a proof-of-concept utilizing GPT-4, we demonstrate how LGMs fulfill several of these desiderata—a feat previously unattainable—while also highlighting important limitations in the current system that open up opportunities for novel ML research. We contend that achieving accurate, reliable, and robust end-to-end discovery systems solely through the current capabilities of LGMs is challenging. We instead advocate for fail-proof tool integration, along with active user moderation through feedback mechanisms, to foster data-driven scientific discoveries with efficiency and reproducibility.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Policy gradient methods have enabled deep reinforcement learning (RL) to approach challenging continuous control problems, even when the underlying systems involve highly nonlinear dynamics that generate complex non-smooth optimization landscapes. We develop a rigorous framework for understanding how policy gradient methods mollify non-smooth optimization landscapes to enable effective policy search, as well as the downside of it: while making the objective function smoother and easier to optimize, the stochastic objective deviates further from the original problem. We demonstrate the equivalence between policy gradient methods and solving backward heat equations. Following the ill-posedness of backward heat equations from PDE theory, we present a fundamental challenge to the use of policy gradient under stochasticity. Moreover, we make the connection between this limitation and the uncertainty principle in harmonic analysis to understand the effects of exploration with stochastic policies in RL. We also provide experimental results to illustrate both the positive and negative aspects of mollification effects in practice.
[ Hall C 4-9 ]
Abstract
We propose MusicRL, the first music generation system finetuned from human feedback. Appreciation of text-to-music models is particularly subjective since the concept of musicality as well as the specific intention behind a caption are user-dependent (e.g. a caption such as “upbeat workout music” can map to a retro guitar solo or a technopop beat). Not only this makes supervised training of such models challenging, but it also calls for integrating continuous human feedback in their post-deployment finetuning. MusicRL is a pretrained autoregressive MusicLM model of discrete audio tokens finetuned with reinforcement learning to maximize sequence-level rewards. We design reward functions related specifically to text-adherence and audio quality with the help from selected raters, and use those to finetune MusicLM into MusicRL-R. We deploy MusicLM to users and collect a substantial dataset comprising 300,000 pairwise preferences. Using Reinforcement Learning from Human Feedback (RLHF), we train MusicRL-U, the first text-to-music model that incorporates human feedback at scale. Human evaluations show that both MusicRL-R and MusicRL-U are preferred to the baseline. Ultimately, MusicRL-RU combines the two approaches and results in the best model according to human raters. Ablation studies shed light on the musical attributes influencing human preferences, indicating that text adherence and …
[ Hall C 4-9 ]

Abstract
The surge in volumes of video data offers unprecedented opportunities for advancing reinforcement learning (RL). This growth has motivated the development of passive RL, seeking to convert passive observations into actionable insights. This paper explores the prerequisites and mechanisms through which passive data can be utilized to improve online RL. We show that, in identifiable dynamics, where action impact can be distinguished from stochasticity, learning on passive data is statistically beneficial. Building upon the theoretical insights, we propose a novel algorithm named Multiscale State-Centric Planners (MSCP) that leverages two planners at distinct scales to offer guidance across varying levels of abstraction. The algorithm's fast planner targets immediate objectives, while the slow planner focuses on achieving longer-term goals. Notably, the fast planner incorporates pessimistic regularization to address the distributional shift between offline and online data. MSCP effectively handles the practical challenges involving imperfect pretraining and limited dataset coverage. Our empirical evaluations across multiple benchmarks demonstrate that MSCP significantly outperforms existing approaches, underscoring its proficiency in addressing complex, long-horizon tasks through the strategic use of passive data.
[ Hall C 4-9 ]
Abstract
We focus on s-rectangular robust Markov decision processes (MDPs), which capture interconnected uncertainties across different actions within each state. This framework is more general compared to sa-rectangular robust MDPs, where uncertainties in each action are independent. However, the introduced interdependence significantly amplifies the complexity of the problem. Existing methods either have slow performance guarantees or are inapplicable to even moderately large state spaces. In this work, we derive optimal robust Bellman operators in explicit forms. This leads to robust value iteration methods with significantly faster time complexities than existing approaches, which can be used in large state spaces. Further, our findings reveal that the optimal policies demonstrate a novel threshold behavior, selectively favoring a limited set of actions based on their respective advantage functions. Additionally, our study uncovers a noteworthy connection between the robustness of a policy and the variance in its value function, highlighting that policies with lower variance exhibit greater resilience.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In real-world scenarios, the application of reinforcement learning is significantly challenged by complex non-stationarity. Most existing methods attempt to model changes in the environment explicitly, often requiring impractical prior knowledge of environments. In this paper, we propose a new perspective, positing that non-stationarity can propagate and accumulate through complex causal relationships during state transitions, thereby compounding its sophistication and affecting policy learning. We believe that this challenge can be more effectively addressed by implicitly tracing the causal origin of non-stationarity. To this end, we introduce the Causal-Origin REPresentation (COREP) algorithm. COREP primarily employs a guided updating mechanism to learn a stable graph representation for the state, termed as causal-origin representation. By leveraging this representation, the learned policy exhibits impressive resilience to non-stationarity. We supplement our approach with a theoretical analysis grounded in the causal interpretation for non-stationary reinforcement learning, advocating for the validity of the causal-origin representation. Experimental results further demonstrate the superior performance of COREP over existing methods in tackling non-stationarity problems. The code is available at https://github.com/PKU-RL/COREP.
[ Hall C 4-9 ]
Abstract
Large language models (LLMs) have the potential to tackle sequential decision-making problems due to their generalist capabilities. Instead of optimizing ``myopic'' surrogate objectives such as human preferences within a single turn, in such problems, we wish to directly optimize long-term objectives, such as user satisfaction over an entire dialogue with an LLM or delayed success metrics in web navigation. Multi-turn reinforcement learning (RL) provides an appealing approach to directly optimize long-term objectives, but how can we design effective and efficient multi-turn RL algorithms for LLMs? In this work, we propose an algorithmic framework to multi-turn RL for LLMs that preserves the flexibility of token-by-token RL used in single-turn RL problems, while still accommodating long horizons and delayed rewards more effectively. Our framework, the Actor-Critic Framework with a Hierarchical Structure (ArCHer), combines a high-level off-policy RL algorithm that trains a value function with a low-level RL algorithm that trains a token-by-token policy. While ArCHer can be instantiated with multiple RL algorithms, a particularly convenient instantiation is to use temporal difference (TD) learning at the high level and on-policy token-level policy gradient at the low level. Empirically, we show that …
[ Hall C 4-9 ]
Abstract
In reinforcement learning, it is crucial to have an accurate environment dynamics model to evaluate different policies' value in downstream tasks like offline policy optimization and policy evaluation. However, the learned model is known to be inaccurate in predictions when evaluating target policies different from data-collection policies. In this work, we found that utilizing policy representation for model learning, called policy-conditioned model (PCM) learning, is useful to mitigate the problem, especially when the offline dataset is collected from diversified behavior policies. The reason beyond that is in this case, PCM becomes a meta-dynamics model that is trained to be aware of and focus on the evaluation policies that on-the-fly adjust the model to be suitable to the evaluation policies’ state-action distribution, thus improving the prediction accuracy. Based on that intuition, we propose an easy-to-implement yet effective algorithm of PCM for accurate model learning. We also give a theoretical analysis and experimental evidence to demonstrate the feasibility of reducing value gaps by adapting the dynamics model under different policies. Experiment results show that PCM outperforms the existing SOTA off-policy evaluation methods in the DOPE benchmark by a large margin, and derives significantly better policies in offline policy selection and model predictive …
[ Hall C 4-9 ]

Abstract
To solve safety-critical decision-making problems, Inverse Constrained Reinforcement Learning (ICRL) infers constraints from expert demonstrations and seeks to imitate expert preference by utilizing these constraints. While prior ICRL research commonly overlooks the discrepancy between the training and deploying environments, we demonstrate that such a discrepancy can significantly compromise the reliability of the inferred constraints and thus induce unsafe movements. Motivated by this finding, we propose the Robust Constraint Inference (RCI) problem and an Adaptively Robust ICRL (AR-ICRL) algorithm to solve RCI efficiently. Specifically, we model the impact of misspecified dynamics with an opponent policy and learn a robust policy to facilitate safe control in a Markov Game. Subsequently, we adjust our constraint model to align the learned policies to expert demonstrations, accommodating both soft and hard optimality in our behavioral models. Empirical results demonstrate the significance of robust constraints and the effectiveness of the proposed AR-ICRL algorithm under continuous and discrete domains. The code is available at https://github.com/Jasonxu1225/AR-ICRL.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
We propose a novel model-based reinforcement learning algorithm---Dynamics Learning and predictive control with Parameterized Actions (DLPA)---for Parameterized Action Markov Decision Processes (PAMDPs). The agent learns a parameterized-action-conditioned dynamics model and plans with a modified Model Predictive Path Integral control. We theoretically quantify the difference between the generated trajectory and the optimal trajectory during planning in terms of the value they achieved through the lens of Lipschitz Continuity. Our empirical results on several standard benchmarks show that our algorithm achieves superior sample efficiency and asymptotic performance than state-of-the-art PAMDP methods.
[ Hall C 4-9 ]

Abstract
Asynchronous action coordination presents a pervasive challenge in Multi-Agent Systems (MAS), which can be represented as a Stackelberg game (SG). However, the scalability of existing Multi-Agent Reinforcement Learning (MARL) methods based on SG is severely restricted by network architectures or environmental settings. To address this issue, we propose the Stackelberg Decision Transformer (STEER). It efficiently manages decision-making processes by incorporating the hierarchical decision structure of SG, the modeling capability of autoregressive sequence models, and the exploratory learning methodology of MARL. Our approach exhibits broad applicability across diverse task types and environmental configurations in MAS. Experimental results demonstrate both the convergence of our method towards Stackelberg equilibrium strategies and its superiority over strong baselines in complex scenarios.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
We propose a model-based offline reinforcement learning (RL) algorithm for confounded partially observable Markov decision processes (POMDPs) under general function approximations and show it is provably efficient under some technical conditions such as the partial coverage imposed on the offline data distribution. Specifically, we first establish a novel model-based identification result for learning the effect of any action on the reward and future transitions in the confounded POMDP. Using this identification result, we then design a nonparametric two-stage estimation procedure to construct an estimator for off-policy evaluation (OPE), which permits general function approximations. Finally, we learn the optimal policy by performing a conservative policy optimization within the confidence regions based on the proposed estimation procedure for OPE. Under some mild conditions, we establish a finite-sample upper bound on the suboptimality of the learned policy in finding the optimal one, which depends on the sample size and the length of horizons polynomially.
[ Hall C 4-9 ]

Abstract
In this work, we focus on safe policy improvement in multi-agent domains where current state-of-the-art methods cannot be effectively applied because of large state and action spaces. We consider recent results using Monte Carlo Tree Search for Safe Policy Improvement with Baseline Bootstrapping and propose a novel algorithm that scales this approach to multi-agent domains, exploiting the factorization of the transition model and value function. Given a centralized behavior policy and a dataset of trajectories, our algorithm generates an improved policy by selecting joint actions using a novel extension of Max-Plus (or Variable Elimination) that constrains local actions to guarantee safety criteria. An empirical evaluation on multi-agent SysAdmin and multi-UAV Delivery shows that the approach scales to very large domains where state-of-the-art methods cannot work.
[ Hall C 4-9 ]

Abstract
Cross-domain offline reinforcement learning leverages source domain data with diverse transition dynamics to alleviate the data requirement for the target domain. However, simply merging the data of two domains leads to performance degradation due to the dynamics mismatch. Existing methods address this problem by measuring the dynamics gap via domain classifiers while relying on the assumptions of the transferability of paired domains. In this paper, we propose a novel representation-based approach to measure the domain gap, where the representation is learned through a contrastive objective by sampling transitions from different domains. We show that such an objective recovers the mutual-information gap of transition functions in two domains without suffering from the unbounded issue of the dynamics gap in handling significantly different domains. Based on the representations, we introduce a data filtering algorithm that selectively shares transitions from the source domain according to the contrastive score functions. Empirical results on various tasks demonstrate that our method achieves superior performance, using only 10% of the target data to achieve 89.2% of the performance on 100% target dataset with state-of-the-art methods.
[ Hall C 4-9 ]

Abstract
In this work, we investigate how to leverage pre-trained visual-language models (VLM) for online Reinforcement Learning (RL). In particular, we focus on sparse reward tasks with pre-defined textual task descriptions. We first identify the problem of reward misalignment when applying VLM as a reward in RL tasks. To address this issue, we introduce a lightweight fine-tuning method, named Fuzzy VLM reward-aided RL (FuRL), based on reward alignment and relay RL. Specifically, we enhance the performance of SAC/DrQ baseline agents on sparse reward tasks by fine-tuning VLM representations and using relay RL to avoid local minima. Extensive experiments on the Meta-world benchmark tasks demonstrate the efficacy of the proposed method. Code is available at: https://github.com/fuyw/FuRL.
[ Hall C 4-9 ]

Abstract
Large language model behavior is shaped by the language of those with whom they interact. This capacity and their increasing prevalence online portend that they will intentionally or unintentionally "program" one another and form emergent AI subjectivities, relationships, and collectives. Here, we call upon the research community to investigate these "societies" of interacting artificial intelligences to increase their rewards and reduce their risks for human society and the health of online environments. We use a small "community" of models and their evolving outputs to illustrate how such emergent, decentralized AI collectives can spontaneously expand the bounds of human diversity and reduce the risk of toxic, anti-social behavior online. Finally, we discuss opportunities for AI cross-moderation and address ethical issues and design challenges associated with creating and maintaining free-formed AI collectives.
[ Hall C 4-9 ]

Abstract
We consider the problem of quantifying the amount of influence one agent can exert on another in the setting of multi-agent reinforcement learning (MARL). As a step towards a unified approach to express agents' interdependencies, we introduce the total and state influence measurement functions. Both of these are valid for all common MARL systems, such as the discounted reward setting. Additionally, we propose novel quantities, called the total impact measurement (TIM) and state impact measurement (SIM), that characterize one agent's influence on another by the maximum impact it can have on the other agents' expected returns and represent instances of impact measurement functions in the average reward setting. Furthermore, we provide approximation algorithms for TIM and SIM with simultaneously learning approximations of agents' expected returns, error bounds, stability analyses under changes of the policies, and convergence guarantees. The approximation algorithm relies only on observing other agents' actions and is, other than that, fully decentralized. Through empirical studies, we validate our approach's effectiveness in identifying intricate influence structures in complex interactions. Our work appears to be the first study of determining influence structures in the multi-agent average reward setting with convergence guarantees.
[ Hall C 4-9 ]

Abstract
An emergency responder management (ERM) system dispatches responders, such as ambulances, when it receives requests for medical aid. ERM systems can also proactively reposition responders between predesignated waiting locations to cover any gaps that arise due to the prior dispatch of responders or significant changes in the distribution of anticipated requests. Optimal repositioning is computationally challenging due to the exponential number of ways to allocate responders between locations and the uncertainty in future requests. The state-of-the-art approach in proactive repositioning is a hierarchical approach based on spatial decomposition and online Monte Carlo tree search, which may require minutes of computation for each decision in a domain where seconds can save lives. We address the issue of long decision times by introducing a novel reinforcement learning (RL) approach, based on the same hierarchical decomposition, but replacing online search with learning. To address the computational challenges posed by large, variable-dimensional, and discrete state and action spaces, we propose: (1) actor-critic based agents that incorporate transformers to handle variable-dimensional states and actions, (2) projections to fixed-dimensional observations to handle complex states, and (3) combinatorial techniques to map continuous actions to discrete allocations. We evaluate our approach using real-world data from two U.S. cities, …
[ Hall C 4-9 ]
Abstract
Imitation learning has emerged as a promising approach for addressing sequential decision-making problems, with the assumption that expert demonstrations are optimal. However, in real-world scenarios, most demonstrations are often imperfect, leading to challenges in the effectiveness of imitation learning. While existing research has focused on optimizing with imperfect demonstrations, the training typically requires a certain proportion of optimal demonstrations to guarantee performance. To tackle these problems, we propose to purify the potential noises in imperfect demonstrations first, and subsequently conduct imitation learning from these purified demonstrations. Motivated by the success of diffusion model, we introduce a two-step purification via diffusion process. In the first step, we apply a forward diffusion process to smooth potential noises in imperfect demonstrations by introducing additional noise. Subsequently, a reverse generative process is utilized to recover the optimal demonstration from the diffused ones. We provide theoretical evidence supporting our approach, demonstrating that the distance between the purified and optimal demonstration can be bounded. Empirical results on MuJoCo and RoboSuite demonstrate the effectiveness of our method from different aspects.
[ Hall C 4-9 ]

Abstract
Inverse Reinforcement Learning (IRL) and Reinforcement Learning from Human Feedback (RLHF) are pivotal methodologies in reward learning, which involve inferring and shaping the underlying reward function of sequential decision-making problems based on observed human demonstrations and feedback. Most prior work in reward learning has relied on prior knowledge or assumptions about decision or preference models, potentially leading to robustness issues. In response, this paper introduces a novel linear programming (LP) framework tailored for offline reward learning. Utilizing pre-collected trajectories without online exploration, this framework estimates a feasible reward set from the primal-dual optimality conditions of a suitably designed LP, and offers an optimality guarantee with provable sample efficiency. Our LP framework also enables aligning the reward functions with human feedback, such as pairwise trajectory comparison data, while maintaining computational tractability and sample efficiency. We demonstrate that our framework potentially achieves better performance compared to the conventional maximum likelihood estimation (MLE) approach through analytical examples and numerical experiments.
[ Hall C 4-9 ]
Abstract
In coming up with solutions to real-world problems, humans implicitly adhere to constraints that are too numerous and complex to be specified completely. However, reinforcement learning (RL) agents need these constraints to learn the correct optimal policy in these settings. The field of Inverse Constraint Reinforcement Learning (ICRL) deals with this problem and provides algorithms that aim to estimate the constraints from expert demonstrations collected offline. Practitioners prefer to know a measure of confidence in the estimated constraints, before deciding to use these constraints, which allows them to only use the constraints that satisfy a desired level of confidence. However, prior works do not allow users to provide the desired level of confidence for the inferred constraints. This work provides a principled ICRL method that can take a confidence level with a set of expert demonstrations and outputs a constraint that is at least as constraining as the true underlying constraint with the desired level of confidence. Further, unlike previous methods, this method allows a user to know if the number of expert trajectories is insufficient to learn a constraint with a desired level of confidence, and therefore collect more expert trajectories as required to simultaneously learn constraints with the …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Recent work has shown that deep reinforcement learning agents have difficulty in effectively using their network parameters. We leverage prior insights into the advantages of sparse training techniques and demonstrate that gradual magnitude pruning enables value-based agents to maximize parameter effectiveness. This results in networks that yield dramatic performance improvements over traditional networks, using only a small fraction of the full network parameters. Our code is publicly available, see Appendix A for details.
[ Hall C 4-9 ]
Abstract
Recently, it has been shown that transformers pre-trained on diverse datasets with multi-episode contexts can generalize to new reinforcement learning tasks in-context. A key limitation of previously proposed models is their reliance on a predefined action space size and structure. The introduction of a new action space often requires data re-collection and model re-training, which can be costly for some applications. In our work, we show that it is possible to mitigate this issue by proposing the Headless-AD model that, despite being trained only once, is capable of generalizing to discrete action spaces of variable size, semantic content and order. By experimenting with Bernoulli and contextual bandits, as well as a gridworld environment, we show that Headless-AD exhibits significant capability to generalize to action spaces it has never encountered, even outperforming specialized models trained for a specific set of actions on several environment configurations.
[ Hall C 4-9 ]

Abstract
Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms. We identify that existing benchmarks used for research into open-ended learning fall into one of two categories. Either they are too slow for meaningful research to be performed without enormous computational resources, like Crafter, NetHack and Minecraft, or they are not complex enough to pose a significant challenge, like Minigrid and Procgen. To remedy this, we first present Craftax-Classic: a ground-up rewrite of Crafter in JAX that runs up to 250x faster than the Python-native original. A run of PPO using 1 billion environment interactions finishes in under an hour using only a single GPU and averages 90% of the optimal reward. To provide a more compelling challenge we present the main Craftax benchmark, a significant extension of the Crafter mechanics with elements inspired from NetHack. Solving Craftax requires deep exploration, long term planning and memory, as well as continual adaptation to novel situations as more of the world is discovered. We show that existing methods including global and episodic exploration, as well as unsupervised environment design fail to make material progress on the benchmark. We therefore believe that Craftax can for the first time …
[ Hall C 4-9 ]
Abstract
Value functions are an essential component in deep reinforcement learning (RL), that are typically trained via mean squared error regression to match bootstrapped target values. However, scaling value-based RL methods to large networks has proven challenging. This difficulty is in stark contrast to supervised learning: by leveraging a cross-entropy classification loss, supervised methods have scaled reliably to massive networks. Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions. We show that training value functions with categorical cross-entropy significantly enhances performance and scalability across various domains, including single-task RL on Atari 2600 games, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers, achieving state-of-the-art results on these domains. Through careful analysis, we show that categorical cross-entropy mitigates issues inherent to value-based RL, such as noisy targets and non-stationarity. We argue that shifting to categorical cross-entropy for training value functions can substantially improve the scalability of deep RL at little-to-no cost.
[ Hall C 4-9 ]

Abstract
Similar to natural language models, pre-trained genome language models are proposed to capture the underlying intricacies within genomes with unsupervised sequence modeling. They have become essential tools for researchers and practitioners in biology. However, the hand-crafted tokenization policies used in these models may not encode the most discriminative patterns from the limited vocabulary of genomic data. In this paper, we introduce VQDNA, a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning. By leveraging vector-quantized codebook as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings in an end-to-end manner. To further push its limits, we propose Hierarchical Residual Quantization (HRQ), where varying scales of codebooks are designed in a hierarchy to enrich the genome vocabulary in a coarse-to-fine manner. Extensive experiments on 32 genome datasets demonstrate VQDNA's superiority and favorable parameter efficiency compared to existing genome language models. Notably, empirical analysis of SARS-CoV-2 mutations reveals the fine-grained pattern awareness and biological significance of learned HRQ vocabulary, highlighting its untapped potential for broader applications in genomics.
[ Hall C 4-9 ]

Abstract
Quality-Diversity (QD) algorithms have emerged as a powerful optimization paradigm with the aim of generating a set of high-quality and diverse solutions. To achieve such a challenging goal, QD algorithms require maintaining a large archive and a large population in each iteration, which brings two main issues, sample and resource efficiency. Most advanced QD algorithms focus on improving the sample efficiency, while the resource efficiency is overlooked to some extent. Particularly, the resource overhead during the training process has not been touched yet, hindering the wider application of QD algorithms. In this paper, we highlight this important research question, i.e., how to efficiently train QD algorithms with limited resources, and propose a novel and effective method called RefQD to address it. RefQD decomposes a neural network into representation and decision parts, and shares the representation part with all decision parts in the archive to reduce the resource overhead. It also employs a series of strategies to address the mismatch issue between the old decision parts and the newly updated representation part. Experiments on different types of tasks from small to large resource consumption demonstrate the excellent performance of RefQD: it not only uses significantly fewer resources (e.g., 16% GPU memories …
[ Hall C 4-9 ]

Abstract
Despite extreme sample inefficiency, on-policy reinforcement learning, aka policy gradients, has become a fundamental tool in decision-making problems. With the recent advances in GPU-driven simulation, the ability to collect large amounts of data for RL training has scaled exponentially. However, we show that current RL methods, e.g. PPO, fail to ingest the benefit of parallelized environments beyond a certain point and their performance saturates. To address this, we propose a new on-policy RL algorithm that can effectively leverage large-scale environments by splitting them into chunks and fusing them back together via importance sampling. Our algorithm, termed SAPG, shows significantly higher performance across a variety of challenging environments where vanilla PPO and other strong baselines fail to achieve high performance. Webpage at https://sapg-rl.github.io/.
[ Hall C 4-9 ]

Abstract
Diffusion models have become a popular choice for representing actor policies in behavior cloning and offline reinforcement learning. This is due to their natural ability to optimize an expressive class of distributions over a continuous space. However, previous works fail to exploit the score-based structure of diffusion models, and instead utilize a simple behavior cloning term to train the actor, limiting their ability in the actor-critic setting. In this paper, we present a theoretical framework linking the structure of diffusion model policies to a learned Q-function, by linking the structure between the score of the policy to the action gradient of the Q-function. We focus on off-policy reinforcement learning and propose a new policy update method from this theory, which we denote Q-score matching. Notably, this algorithm only needs to differentiate through the denoising model rather than the entire diffusion model evaluation, and converged policies through Q-score matching are implicitly multi-modal and explorative in continuous domains. We conduct experiments in simulated environments to demonstrate the viability of our proposed method and compare to popular baselines. Source code is available from the project website: https://scorematchingrl.com/.
[ Hall C 4-9 ]

Abstract
Model-Free Reinforcement Learning (MFRL), leveraging the policy gradient theorem, has demonstrated considerable success in continuous control tasks. However, these approaches are plagued by high gradient variance due to zeroth-order gradient estimation, resulting in suboptimal policies. Conversely, First-Order Model-Based Reinforcement Learning (FO-MBRL) methods employing differentiable simulation provide gradients with reduced variance but are susceptible to sampling error in scenarios involving stiff dynamics, such as physical contact. This paper investigates the source of this error and introduces Adaptive Horizon Actor-Critic (AHAC), an FO-MBRL algorithm that reduces gradient error by adapting the model-based horizon to avoid stiff dynamics. Empirical findings reveal that AHAC outperforms MFRL baselines, attaining 40% more reward across a set of locomotion tasks and efficiently scaling to high-dimensional control environments with improved wall-clock-time efficiency. adaptive-horizon-actor-critic.github.io
[ Hall C 4-9 ]

Abstract
Recently, deep reinforcement learning has shown promising results for learning fast heuristics to solve routing problems. Meanwhile, most of the solvers suffer from generalizing to an unseen distribution or distributions with different scales. To address this issue, we propose a novel architecture, called Invariant Nested View Transformer (INViT), which is designed to enforce a nested design together with invariant views inside the encoders to promote the generalizability of the learned solver. It applies a modified policy gradient algorithm enhanced with data augmentations. We demonstrate that the proposed INViT achieves a dominant generalization performance on both TSP and CVRP problems with various distributions and different problem scales. Our source code and datasets are available in supplementary materials.
[ Hall C 4-9 ]

Abstract
The combination of Monte Carlo tree search and neural networks has revolutionized online planning. As neural network approximations are often imperfect, we ask whether uncertainty estimates about the network outputs could be used to improve planning. We develop a Bayesian planning approach that facilitates such uncertainty quantification, inspired by classical ideas from the meta-reasoning literature. We propose a Thompson sampling based algorithm for searching the tree of possible actions, for which we prove the first (to our knowledge) finite time Bayesian regret bound, and propose an efficient implementation for a restricted family of posterior distributions. In addition we propose a variant of the Bayes-UCB method applied to trees. Empirically, we demonstrate that on the ProcGen Maze and Leaper environments, when the uncertainty estimates are accurate but the neural network output is inaccurate, our Bayesian approach searches the tree much more effectively. In addition, we investigate whether popular uncertainty estimation methods are accurate enough to yield significant gains in planning.
[ Hall C 4-9 ]
Abstract
Value iteration networks (VINs) enable end-to-end learning for planning tasks by employing a differentiable "planning module" that approximates the value iteration algorithm. However, long-term planning remains a challenge because training very deep VINs is difficult. To address this problem, we embed highway value iteration---a recent algorithm designed to facilitate long-term credit assignment---into the structure of VINs. This improvement augments the "planning module" of the VIN with three additional components: 1) an "aggregate gate," which constructs skip connections to improve information flow across many layers; 2) an "exploration module," crafted to increase the diversity of information and gradient flow in spatial dimensions; 3) a "filter gate" designed to ensure safe exploration. The resulting novel highway VIN can be trained effectively with hundreds of layers using standard backpropagation. In long-term planning tasks requiring hundreds of planning steps, deep highway VINs outperform both traditional VINs and several advanced, very deep NNs.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Reinforcement Learning (RL) from temporal logical specifications is a fundamental problem in sequential decision making. One of the basic and core such specification is the reachability specification that requires a target set to be eventually visited. Despite strong empirical results for RL from such specifications, the theoretical guarantees are bleak, including the impossibility of Probably Approximately Correct (PAC) guarantee for reachability specifications. Given the impossibility result, in this work we consider the problem of RL from reachability specifications along with the information of expected conditional distance (ECD). We present (a) lower bound results which establish the necessity of ECD information for PAC guarantees and (b) an algorithm that establishes PAC-guarantees given the ECD information. To the best of our knowledge, this is the first RL from reachability specifications that does not make any assumptions on the underlying environment to learn policies.
[ Hall C 4-9 ]
Abstract
In reinforcement learning (RL), different reward functions can define the same optimal policy but result in drastically different learning performance. For some, the agent gets stuck with a suboptimal behavior, and for others, it solves the task efficiently. Choosing a good reward function is hence an extremely important yet challenging problem. In this paper, we explore an alternative approach for using rewards for learning. We introduce max-reward RL, where an agent optimizes the maximum rather than the cumulative reward. Unlike earlier works, our approach works for deterministic and stochastic environments and can be easily combined with state-of-the-art RL algorithms. In the experiments, we study the performance of max-reward RL algorithms in two goal-reaching environments from Gymnasium-Robotics and demonstrate its benefits over standard RL. The code is available at https://github.com/veviurko/To-the-Max.
[ Hall C 4-9 ]

Abstract
This paper contributes a new approach for distributional reinforcement learning which elucidates a clean separation of transition structure and reward in the learning process. Analogous to how the successor representation (SR) describes the expected consequences of behaving according to a given policy, our distributional successor measure (SM) describes the distributional consequences of this behaviour. We formulate the distributional SM as a distribution over distributions and provide theory connecting it with distributional and model-based reinforcement learning. Moreover, we propose an algorithm that learns the distributional SM from data by minimizing a two-level maximum mean discrepancy. Key to our method are a number of algorithmic techniques that are independently valuable for learning generative models of state. As an illustration of the usefulness of the distributional SM, we show that it enables zero-shot risk-sensitive policy evaluation in a way that was not previously possible.
[ Hall C 4-9 ]
Abstract
The multivariate hypergeometric distribution describes sampling without replacement from a discrete population of elements divided into multiple categories. Addressing a gap in the literature, we tackle the challenge of estimating discrete distributions when both the total population size and the category sizes are unknown. Here, we propose a novel solution using the hypergeometric likelihood to solve this estimation problem, even in the presence of severe under-sampling. Our approach accounts for a data generating process where the ground-truth is a mixture of distributions conditional on a continuous latent variable, as seen in collaborative filtering, using the variational autoencoder framework. Empirical data simulation demonstrates that our method outperforms other likelihood functions used to model count data, both in terms of accuracy of population size estimate and learning an informative latent space. We showcase our method's versatility through applications in NLP, by inferring and estimating the complexity of latent vocabularies in reading passage excerpts, and in biology, by accurately recovering the true number of gene transcripts from sparse single-cell genomics data.
[ Hall C 4-9 ]
Abstract
In this study, we consider the realm of covariance matrices in machine learning, particularly focusing on computing Fréchet means on the manifold of symmetric positive definite matrices, commonly referred to as Karcher or geometric means. Such means are leveraged in numerous machine learning tasks. Relying on advanced statistical tools, we introduce a random matrix theory based method that estimates Fréchet means, which is particularly beneficial when dealing with low sample support and a high number of matrices to average. Our experimental evaluation, involving both synthetic and real-world EEG and hyperspectral datasets, shows that we largely outperform state-of-the-art methods.
[ Hall C 4-9 ]
Abstract
The dynamical formulation of the optimal transport can be extended through various choices of the underlying geometry (kinetic energy), and the regularization of density paths (potential energy). These combinations yield different variational problems (Lagrangians), encompassing many variations of the optimal transport problem such as the Schrödinger bridge, unbalanced optimal transport, and optimal transport with physical constraints, among others. In general, the optimal density path is unknown, and solving these variational problems can be computationally challenging. We propose a novel deep learning based framework approaching all of these problems from a unified perspective. Leveraging the dual formulation of the Lagrangians, our method does not require simulating or backpropagating through the trajectories of the learned dynamics, and does not need access to optimal couplings. We showcase the versatility of the proposed framework by outperforming previous approaches for the single-cell trajectory inference, where incorporating prior knowledge into the dynamics is crucial for correct predictions.
[ Hall C 4-9 ]

Abstract
This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a stochastic dynamical system given a history of noisy partial observations. Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states, due to the weight degeneracy issue. In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step. Unlike SIR particle filters, the OT formulation does not require the analytical form of the likelihood. Moreover, it allows us to harness the approximation power of neural networks to model complex and multi-modal distributions and employ stochastic optimization algorithms to enhance scalability. Extensive numerical experiments are presented that compare the OT method to the SIR particle filter and the ensemble Kalman filter, evaluating the performance in terms of sample efficiency, high-dimensional scalability, and the ability to capture complex and multi-modal distributions.
[ Hall C 4-9 ]

Abstract
This paper introduces the Deep Functional Factor Model (DF2M), a Bayesian nonparametric model designed for analysis of high-dimensional functional time series. DF2M is built upon the Indian Buffet Process and the multi-task Gaussian Process, incorporating a deep kernel function that captures non-Markovian and nonlinear temporal dynamics. Unlike many black-box deep learning models, DF2M offers an explainable approach to utilizing neural networks by constructing a factor model and integrating deep neural networks within the kernel function. Additionally, we develop a computationally efficient variational inference algorithm to infer DF2M. Empirical results from four real-world datasets demonstrate that DF2M provides better explainability and superior predictive accuracy compared to conventional deep learning models for high-dimensional functional time series.
[ Hall C 4-9 ]

Abstract
A major challenge in sample-based inference (SBI) for Bayesian neural networks is the size and structure of the networks’ parameter space. Our work shows that successful SBI is possible by embracing the characteristic relationship between weight and function space, uncovering a systematic link between overparameterization and the difficulty of the sampling problem. Through extensive experiments, we establish practical guidelines for sampling and convergence diagnosis. As a result, we present a deep ensemble initialized approach as an effective solution with competitive performance and uncertainty quantification.
[ Hall C 4-9 ]

Abstract
Detecting weaknesses in cryptographic algorithms is of utmost importance for designing secure information systems. The state-of-the-art soft analytical side-channel attack (SASCA) uses physical leakage information to make probabilistic predictions about intermediate computations and combines these "guesses" with the known algorithmic logic to compute the posterior distribution over the key. This attack is commonly performed via loopy belief propagation, which, however, lacks guarantees in terms of convergence and inference quality. In this paper, we develop a fast and exact inference method for SASCA, denoted as ExSASCA, by leveraging knowledge compilation and tractable probabilistic circuits. When attacking the Advanced Encryption Standard (AES), the most widely used encryption algorithm to date, ExSASCA outperforms SASCA by more than 31% top-1 success rate absolute. By leveraging sparse belief messages, this performance is achieved with little more computational cost than SASCA, and about 3 orders of magnitude less than exact inference via exhaustive enumeration. Even with dense belief messages, ExSASCA still uses 6 times less computations than exhaustive inference.
[ Hall C 4-9 ]
Abstract
This paper explores the connections between tempering (for Sequential Monte Carlo; SMC) and entropic mirror descent to sample from a target probability distribution whose unnormalized density is known. We establish that tempering SMC corresponds to entropic mirror descent applied to the reverse Kullback-Leibler (KL) divergence and obtain convergence rates for the tempering iterates. Our result motivates the tempering iterates from an optimization point of view, showing that tempering can be seen as a descent scheme of the KL divergence with respect to the Fisher-Rao geometry, in contrast to Langevin dynamics that perform descent of the KL with respect to the Wasserstein-2 geometry. We exploit the connection between tempering and mirror descent iterates to justify common practices in SMC and derive adaptive tempering rules that improve over other alternative benchmarks in the literature.
[ Hall C 4-9 ]

Abstract
We present a performant, general-purpose gradient-guided nested sampling (GGNS) algorithm, combining the state of the art in differentiable programming, Hamiltonian slice sampling, clustering, mode separation, dynamic nested sampling, and parallelization. This unique combination allows GGNS to scale well with dimensionality and perform competitively on a variety of synthetic and real-world problems. We also show the potential of combining nested sampling with generative flow networks to obtain large amounts of high-quality samples from the posterior distribution. This combination leads to faster mode discovery and more accurate estimates of the partition function.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Multi-fidelity surrogate modeling aims to learn an accurate surrogate at the highest fidelity level by combining data from multiple sources. Traditional methods relying on Gaussian processes can hardly scale to high-dimensional data. Deep learning approaches utilize neural network based encoders and decoders to improve scalability. These approaches share encoded representations across fidelities without including corresponding decoder parameters. This hinders inference performance, especially in out-of-distribution scenarios when the highest fidelity data has limited domain coverage. To address these limitations, we propose Multi-fidelity Residual Neural Processes (MFRNP), a novel multi-fidelity surrogate modeling framework. MFRNP explicitly models the residual between the aggregated output from lower fidelities and ground truth at the highest fidelity. The aggregation introduces decoders into the information sharing step and optimizes lower fidelity decoders to accurately capture both in-fidelity and cross-fidelity information. We show that MFRNP significantly outperforms state-of-the-art in learning partial differential equations and a real-world climate modeling task. Our code is published at: https://github.com/Rose-STL-Lab/MFRNP
[ Hall C 4-9 ]

Abstract
In modern machine learning, models can often fit training data in numerous ways, some of which perform well on unseen (test) data, while others do not. Remarkably, in such cases gradient descent frequently exhibits an implicit bias that leads to excellent performance on unseen data. This implicit bias was extensively studied in supervised learning, but is far less understood in optimal control (reinforcement learning). There, learning a controller applied to a system via gradient descent is known as policy gradient, and a question of prime importance is the extent to which a learned controller extrapolates to unseen initial states. This paper theoretically studies the implicit bias of policy gradient in terms of extrapolation to unseen initial states. Focusing on the fundamental Linear Quadratic Regulator (LQR) problem, we establish that the extent of extrapolation depends on the degree of exploration induced by the system when commencing from initial states included in training. Experiments corroborate our theory, and demonstrate its conclusions on problems beyond LQR, where systems are non-linear and controllers are neural networks. We hypothesize that real-world optimal control may be greatly improved by developing methods for informed selection of initial states to train on.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Using multiple input streams simultaneously to train multimodal neural networks is intuitively advantageous but practically challenging. A key challenge is unimodal bias, where a network overly relies on one modality and ignores others during joint training. We develop a theory of unimodal bias with multimodal deep linear networks to understand how architecture and data statistics influence this bias. This is the first work to calculate the duration of the unimodal phase in learning as a function of the depth at which modalities are fused within the network, dataset statistics, and initialization. We show that the deeper the layer at which fusion occurs, the longer the unimodal phase. A long unimodal phase can lead to a generalization deficit and permanent unimodal bias in the overparametrized regime. Our results, derived for multimodal linear networks, extend to nonlinear networks in certain settings. Taken together, this work illuminates pathologies of multimodal learning under joint training, showing that late and intermediate fusion architectures can give rise to long unimodal phases and permanent unimodal bias. Our code is available at: https://yedizhang.github.io/unimodal-bias.html.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Winner-takes-all training is a simple learning paradigm, which handles ambiguous tasks by predicting a set of plausible hypotheses. Recently, a connection was established between Winner-takes-all training and centroidal Voronoi tessellations, showing that, once trained, hypotheses should quantize optimally the shape of the conditional distribution to predict. However, the best use of these hypotheses for uncertainty quantification is still an open question. In this work, we show how to leverage the appealing geometric properties of the Winner-takes-all learners for conditional density estimation, without modifying its original training scheme. We theoretically establish the advantages of our novel estimator both in terms of quantization and density estimation, and we demonstrate its competitiveness on synthetic and real-world datasets, including audio data.
[ Hall C 4-9 ]
Abstract
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density. This method is statistically consistent, and makes the inductive bias of the model clear and interpretable. While there is no closed analytic form for the associated kernel, we show that one can approximate it using sampling. The optimization problem needed to determine the density is non-convex, and standard gradient methods do not perform well. However, we show that with an appropriate initialization and using natural gradients, one can obtain well performing solutions. Finally, while the approach provides pre-densities (i.e. not necessarily integrating to 1), which prevents the use of log-likelihood for cross validation, we show that one can instead adapt Fisher divergence based score matching methods for this task. We evaluate the resulting method on the comprehensive recent anomaly detection benchmark suite, ADBench, and find that it ranks second best, among more than 15 algorithms.
[ Hall C 4-9 ]
Abstract
Mean-field variational inference (MFVI) methods provide computationally cheap approximations to the posterior of Bayesian Neural Networks (BNNs) when compared to alternatives like MCMC. However, applying MFVI to BNNs encounters limitations due to the Monte Carlo sampling problem. This problem stems from two main issues. First, most samples do not accurately represent the most probable weights. Second, random sampling from variational distributions introduces high variance in gradient estimates, which can hinder the optimization process, leading to slow convergence or even failure. In this paper, we introduce a novel sampling method called Reparameterized Importance Sampling (RIS) to estimate the first moment in neural networks, reducing variance during feed-forward propagation. We begin by analyzing the generalized form of the optimal proposal distribution and presenting an inexpensive approximation. Next, we describe the sampling process from the proposal distribution as a transformation that combines exogenous randomness with the variational parameters. Our experimental results demonstrate the effectiveness of the proposed RIS method in three critical aspects: improved convergence, enhanced predictive performance, and successful uncertainty estimation for out-of-distribution data.
[ Hall C 4-9 ]
Abstract
The incredible success of transformers on sequence modeling tasks can be largely attributed to the self-attention mechanism, which allows information to be transferred between different parts of a sequence. Self-attention allows transformers to encode causal structure which makes them particularly suitable for sequence modeling. However, the process by which transformers learn such causal structure via gradient-based training algorithms remains poorly understood. To better understand this process, we introduce an in-context learning task that requires learning latent causal structure. We prove that gradient descent on a simplified two-layer transformer learns to solve this task by encoding the latent causal graph in the first attention layer. The key insight of our proof is that the gradient of the attention matrix encodes the mutual information between tokens. As a consequence of the data processing inequality, the largest entries of this gradient correspond to edges in the latent causal graph. As a special case, when the sequences are generated from in-context Markov chains, we prove that transformers learn an induction head (Olsson et al., 2022). We confirm our theoretical findings by showing that transformers trained on our in-context learning task are able to recover a wide variety of causal structures.
[ Hall C 4-9 ]

Abstract
Fourier features based positional encoding (PE) is commonly used in machine learning tasks that involve learning high-frequency features from low-dimensional inputs, such as 3D view synthesis and time series regression with neural tangent kernels. Despite their effectiveness, existing PEs require manual, empirical adjustment of crucial hyperparameters, specifically the Fourier features, tailored to each unique task. Further, PEs face challenges in efficiently learning high-frequency functions, particularly in tasks with limited data. In this paper, we introduce sinusoidal PE (SPE), designed to efficiently learn adaptive frequency features closely aligned with the true underlying function. Our experiments demonstrate that SPE, without hyperparameter tuning, consistently achieves enhanced fidelity and faster training across various tasks, including 3D view synthesis, Text-to-Speech generation, and 1D regression. SPE is implemented as a direct replacement for existing PEs. Its plug-and-play nature lets numerous tasks easily adopt and benefit from SPE.
[ Hall C 4-9 ]

Abstract
In real-world continual learning (CL) scenarios, tasks often exhibit intricate and unpredictable semantic shifts, posing challenges for fixed prompt management strategies which are tailored to only handle semantic shifts of uniform degree (i.e., uniformly mild or uniformly abrupt). To address this limitation, we propose an adaptive prompting approach that effectively accommodates semantic shifts of varying degree where mild and abrupt shifts are mixed. AdaPromptCL employs the assign-and-refine semantic grouping mechanism that dynamically manages prompt groups in accordance with the semantic similarity between tasks, enhancing the quality of grouping through continuous refinement. Our experiment results demonstrate that AdaPromptCL outperforms existing prompting methods by up to 21.3%, especially in the benchmark datasets with diverse semantic shifts between tasks.
[ Hall C 4-9 ]

Abstract
We propose a discrete time graphon game formulation on continuous state and action spaces using a representative player to study stochastic games with heterogeneous interaction among agents. This formulation admits both conceptual and mathematical advantages, compared to a widely adopted formulation using a continuum of players. We prove the existence and uniqueness of the graphon equilibrium with mild assumptions, and show that this equilibrium can be used to construct an approximate solution for the finite player game, which is challenging to analyze and solve due to curse of dimensionality. An online oracle-free learning algorithm is developed to solve the equilibrium numerically, and sample complexity analysis is provided for its convergence.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
We derive new bounds for the condition number of kernel matrices, which we then use to enhance existing non-asymptotic test error bounds for kernel ridgeless regression in the over-parameterized regime for a fixed input dimension. For kernels with polynomial spectral decay, we recover the bound from previous work; for exponential decay, our bound is non-trivial and novel. Our conclusion is two-fold: (i) kernel regressors whose eigenspectrum decays polynomially must generalize well, even in the presence of noisy labeled training data; these models exhibit so-called tempered overfitting; (ii) if the eigenspectrum of any kernel ridge regressor decays exponentially, then it generalizes poorly, i.e., it exhibits catastrophic overfitting. This adds to the available characterization of kernel ridge regressors exhibiting benign overfitting as the extremal case where the eigenspectrum of the kernel decays sub-polynomially. Our analysis combines new random matrix theory (RMT) techniques with recent tools in the kernel ridge regression (KRR) literature.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Understanding the generalization properties of large-scale models necessitates incorporating realistic data assumptions into the analysis. Therefore, we consider Principal Component Regression (PCR)---combining principal component analysis and linear regression---on data from a low-dimensional manifold. We present an analysis of PCR when the data is sampled from a spiked covariance model, obtaining fundamental asymptotic guarantees for the generalization risk of this model. Our analysis is based on random matrix theory and allows us to provide guarantees for high-dimensional data. We additionally present an analysis of the distribution shift between training and test data. The results allow us to disentangle the effects of (1) the number of parameters, (2) the data-generating model and, (3) model misspecification on the generalization risk. The use of PCR effectively regularizes the model and prevents the interpolation peak of the double descent. Our theoretical findings are empirically validated in simulation, demonstrating their practical relevance.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Mixed linear regression is a well-studied problem in parametric statistics and machine learning. Given a set of samples, tuples of covariates and labels, the task of mixed linear regression is to find a small list of linear relationships that best fit the samples. Usually it is assumed that the label is generated stochastically by randomly selecting one of two or more linear functions, applying this chosen function to the covariates, and potentially introducing noise to the result. In that situation, the objective is to estimate the ground-truth linear functions up to some parameter error. The popular expectation maximization (EM) and alternating minimization (AM) algorithms have been previously analyzed for this. In this paper, we consider the more general problem of agnostic learning of mixed linear regression from samples, without such generative models. In particular, we show that the AM and EM algorithms, under standard conditions of separability and good initialization, lead to agnostic learning in mixed linear regression by converging to the population loss minimizers, for suitably defined loss functions. In some sense, this shows the strength of AM and EM algorithms that converges to ``optimal solutions'' even in the absence of realizable generative models.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Since machine learning technologies are being used in various practical situations, models with merely low prediction errors might not be satisfactory; prediction errors occurring with a low probability might yield dangerous results in some applications. Therefore, there are attempts to achieve an ML model whose input-output pairs are guaranteed to satisfy given constraints. Among such attempts, many previous works chose the approach of modifying the outputs of an ML model at the inference time to satisfy the constraints. Such a strategy is handy because we can control its output without expensive training or fine-tuning. However, it is unclear whether using constraints only in the inference time degrades a model's predictive performance. This paper analyses how the generalization error bounds change when we only put constraints in the inference time. Our main finding is that a class of loss functions preserves the relative generalization error, i.e., the difference in generalization error compared with the best model will not increase by imposing constraints at the inference time on multi-class classification. Some popular loss functions preserve the relative error, including the softmax cross-entropy loss. On the other hand, we also show that some loss functions do not preserve relative error when we use …
[ Hall C 4-9 ]

Abstract
We study the trajectory of iterations and the convergence rates of the Expectation-Maximization (EM) algorithm for two-component Mixed Linear Regression (2MLR). The fundamental goal of MLR is to learn the regression models from unlabeled observations. The EM algorithm finds extensive applications in solving the mixture of linear regressions. Recent results have established the super-linear convergence of EM for 2MLR in the noiseless and high SNR settings under some assumptions and its global convergence rate with random initialization has been affirmed. However, the exponent of convergence has not been theoretically estimated and the geometric properties of the trajectory of EM iterations are not well-understood. In this paper, first, using Bessel functions we provide explicit closed-form expressions for the EM updates under all SNR regimes. Then, in the noiseless setting, we completely characterize the behavior of EM iterations by deriving a recurrence relation at the population level and notably show that all the iterations lie on a certain cycloid. Based on this new trajectory-based analysis, we exhibit the theoretical estimate for the exponent of super-linear convergence and further improve the statistical error bound at the finite-sample level. Our analysis provides a new framework for studying the behavior of EM for Mixed Linear …
[ Hall C 4-9 ]

Abstract
Despite great advances in algorithms for multi-label learning, research on the theoretical analysis of generalization is still in the early stage. Some recent theoretical results has investigated the generalization performance of multi-label learning under several evaluation metrics, however, how to reduce the dependency on the number of labels, explicitly introduce label correlations, and quantitatively analyze the impact of various inductive biases in the generalization analysis of multi-label learning is still a crucial and open problem. In an attempt to make up for the gap in the generalization theory of multi-label learning, we develop several novel vector-contraction inequalities, which exploit the Lipschitz continuity of loss functions, and derive generalization bounds with a weaker dependency on the number of labels than the state of the art in the case of decoupling the relationship among different components, which serves as theoretical guarantees for the generalization of multi-label learning. In addition, we derive the generalization bound for Macro-Averaged AUC and analyze its relationship with class-imbalance. The mild bounds without strong assumptions explain the good generalization ability of multi-label learning with first-order label correlations and high-order label correlations induced by norm regularizers.
[ Hall C 4-9 ]

Abstract
In several real-world sequential decision problems, at every step, the learner is required to select different actions. Every action affects a specific part of the system and generates an observable intermediate effect. In this paper, we introduce the Factored-Reward Bandits (FRBs), a novel setting able to effectively capture and exploit the structure of this class of scenarios, where the reward is computed as the product of the action intermediate observations. We characterize the statistical complexity of the learning problem in the FRBs, by deriving worst-case and asymptotic instance-dependent regret lower bounds. Then, we devise and analyze two regret minimization algorithms. The former, F-UCB, is an anytime optimistic approach matching the worst-case lower bound (up to logarithmic factors) but fails to perform optimally from the instance-dependent perspective. The latter, F-Track, is a bound-tracking approach, that enjoys optimal asymptotic instance-dependent regret guarantees.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
We study online learning problems in which a decision maker has to make a sequence of costly decisions, with the goal of maximizing their expected reward while adhering to budget and return-on-investment (ROI) constraints. Existing primal-dual algorithms designed for constrained online learning problems under adversarial inputs rely on two fundamental assumptions. First, the decision maker must know beforehand the value of parameters related to the degree of strict feasibility of the problem (i.e. Slater parameters). Second, a strictly feasible solution to the offline optimization problem must exist at each round. Both requirements are unrealistic for practical applications such as bidding in online ad auctions. In this paper, we show how such assumptions can be circumvented by endowing standard primal-dual templates with weakly adaptive regret minimizers. This results in a ``dual-balancing'' framework which ensures that dual variables stay sufficiently small, even in the absence of knowledge about Slater's parameter. We prove the first best-of-both-worlds no-regret guarantees which hold in absence of the two aforementioned assumptions, under stochastic and adversarial inputs. Finally, we show how to instantiate the framework to optimally bid in various mechanisms of practical relevance, such as first- and second-price auctions.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
The partial monitoring (PM) framework provides a theoretical formulation of sequential learning problems with incomplete feedback. At each round, a learning agent plays an action while the environment simultaneously chooses an outcome. The agent then observes a feedback signal that is only partially informative about the (unobserved) outcome. The agent leverages the received feedback signals to select actions that minimize the (unobserved) cumulative loss. In contextual PM, the outcomes depend on some side information that is observable by the agent before selecting the action. In this paper, we consider the contextual and non-contextual PM settings with stochastic outcomes. We introduce a new class of PM strategies based on the randomization of deterministic confidence bounds. We also extend regret guarantees to settings where existing stochastic strategies are not applicable. Our experiments show that the proposed RandCBP and RandCBPside* strategies have competitive performance against state-of-the-art baselines in multiple PM games. To illustrate how the PM framework can benefit real world applications, we design a use case on the real-world problem of monitoring the error rate of any deployed classification system.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Most studies on causal inference tackle the issue of confounding bias by reducing the distribution shift between the control and treated groups. However, it remains an open question to adopt an appropriate metric for distribution shift in practice. In this paper, we define a generic balancing error on reweighted samples to characterize the confounding bias, and study the connection between the balancing error and the Wasserstein discrepancy derived from the theory of optimal transport. We not only regard the Wasserstein discrepancy as the metric of distribution shift, but also explore the association between the balancing error and the underlying cost function involved in the Wasserstein discrepancy. Motivated by this, we propose to reduce the balancing error under the framework of optimal transport with learnable marginal distributions and the cost function, which is implemented by jointly learning weights and representations associated with factual outcomes. The experiments on both synthetic and real-world datasets demonstrate the effectiveness of our proposed method.
[ Hall C 4-9 ]

Abstract
With the advancement of neural networks, diverse methods for neural Granger causality have emerged, which demonstrate proficiency in handling complex data, and nonlinear relationships. However, the existing framework of neural Granger causality has several limitations. It requires the construction of separate predictive models for each target variable, and the relationship depends on the sparsity on the weights of the first layer, resulting in challenges in effectively modeling complex relationships between variables as well as unsatisfied estimation accuracy of Granger causality. Moreover, most of them cannot grasp full-time Granger causality. To address these drawbacks, we propose a Jacobian Regularizer-based Neural Granger Causality (JRNGC) approach, a straightforward yet highly effective method for learning multivariate summary Granger causality and full-time Granger causality by constructing a single model for all target variables. Specifically, our method eliminates the sparsity constraints of weights by leveraging an input-output Jacobian matrix regularizer, which can be subsequently represented as the weighted causal matrix in the post-hoc analysis. Extensive experiments show that our proposed approach achieves competitive performance with the state-of-the-art methods for learning summary Granger causality and full-time Granger causality while maintaining lower model complexity and high scalability.
[ Hall C 4-9 ]

Abstract
We study the generic identifiability of causal effects in linear non-Gaussian acyclic models (LiNGAM) with latent variables. We consider the problem in two main settings: When the causal graph is known a priori, and when it is unknown. In both settings, we provide a complete graphical characterization of the identifiable direct or total causal effects among observed variables. Moreover, we propose efficient algorithms to certify the graphical conditions. Finally, we propose an adaptation of the reconstruction independent component analysis (RICA) algorithm that estimates the causal effects from the observational data given the causal graph. Experimental results show the effectiveness of the proposed method in estimating the causal effects.
[ Hall C 4-9 ]
Abstract
Policy learning is an important component of many real-world learning systems. A major challenge in policy learning is how to adapt efficiently to unseen environments or tasks. Recently, it has been suggested to exploit invariant conditional distributions to learn models that generalize better to unseen environments. However, assuming invariance of entire conditional distributions (which we call full invariance) may be too strong of an assumption in practice. In this paper, we introduce a relaxation of full invariance called effect-invariance (e-invariance for short) and prove that it is sufficient, under suitable assumptions, for zero-shot policy generalization. We also discuss an extension that exploits e-invariance when we have a small sample from the test environment, enabling few-shot policy generalization. Our work does not assume an underlying causal graph or that the data are generated by a structural causal model; instead, we develop testing procedures to test e-invariance directly from data. We present empirical results using simulated data and a mobile health intervention dataset to demonstrate the effectiveness of our approach.
[ Hall C 4-9 ]

Abstract
Subset or core-set selection offers a data-efficient way for training deep learning models. One-shot subset selection poses additional challenges as subset selection is only performed once and full set data become unavailable after the selection. However, most existing methods tend to choose either diverse or difficult data samples, which fail to faithfully represent the joint data distribution that is comprised of both feature and label information. The selection is also performed independently from the subset size, which plays an essential role in choosing what types of samples. To address this critical gap, we propose to conduct Feature similarity and Label variability Balanced One-shot Subset Selection (BOSS), aiming to construct an optimal size-aware subset for data-efficient deep learning. We show that a novel balanced core-set loss bound theoretically justifies the need to simultaneously consider both diversity and difficulty to form an optimal subset. It also reveals how the subset size influences the bound. We further connect the inaccessible bound to a practical surrogate target which is tailored to subset sizes and varying levels of overall difficulty. We design a novel Beta-scoring importance function to delicately control the optimal balance of diversity and difficulty. Comprehensive experiments conducted on both synthetic and real …
[ Hall C 4-9 ]
Abstract
Weighted low rank approximation (WLRA) is an important yet computationally challenging primitive with applications ranging from statistical analysis, model compression, and signal processing. To cope with the NP-hardness of this problem, prior work considers heuristics, bicriteria, or parameterized tractable algorithms to solve this problem. In this work, we introduce a new relaxed solution to WLRA which outputs a matrix that is not necessarily low rank, but can be stored using very few parameters and gives provable approximation guarantees when the weight matrix has low rank. Our central idea is to use the weight matrix itself to reweight a low rank solution, which gives an extremely simple algorithm with remarkable empirical performance in applications to model compression and on synthetic datasets. Our algorithm also gives nearly optimal communication complexity bounds for a natural distributed problem associated with this problem, for which we show matching communication lower bounds. Together, our communication complexity bounds show that the rank of the weight matrix provably parameterizes the communication complexity of WLRA. We also obtain the first relative error guarantees for feature selection with a weighted objective.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Compositionality is a critical aspect of scalable system design. Here, we focus on Boolean composition of learned tasks as opposed to functional or sequential composition. Existing Boolean composition for Reinforcement Learning focuses on reaching a satisfying absorbing state in environments with discrete action spaces, but does not support composable safety (i.e., avoidance) constraints. We provide three contributions: i) introduce two distinct notions of compositional safety semantics; ii) show how to enforce either safety semantics, prove correctness, and analyze the trade-offs between the two safety notions; and iii) extend Boolean composition from discrete action spaces to continuous action spaces. We demonstrate these techniques using modified versions of value iteration in a grid world, Deep Q-Network (DQN) in a grid world with image observations, and Twin Delayed DDPG (TD3) in a continuous-observation and continuous-action Bullet physics environment
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
This study introduces an innovative method for analyzing the impact of various interventions on customer churn, using the potential outcomes framework. We present a new causal model, the tensorized latent factor block hazard model, which incorporates tensor completion methods for a principled causal analysis of customer churn. A crucial element of our approach is the formulation of a 1-bit tensor completion for the parameter tensor. This captures hidden customer characteristics and temporal elements from churn records, effectively addressing the binary nature of churn data and its time-monotonic trends. Our model also uniquely categorizes interventions by their similar impacts, enhancing the precision and practicality of implementing customer retention strategies. For computational efficiency, we apply a projected gradient descent algorithm combined with spectral clustering. We lay down the theoretical groundwork for our model, including its non-asymptotic properties. The efficacy and superiority of our model are further validated through comprehensive experiments on both simulated and real-world applications.
[ Hall C 4-9 ]
Abstract
Off-policy evaluation, and the complementary problem of policy learning, use historical data collected under a logging policy to estimate and/or optimize the value of a target policy. Methods for these tasks typically assume overlap between the target and logging policy, enabling solutions based on importance weighting and/or imputation. Absent such an overlap assumption, existing work either relies on a well-specified model or optimizes needlessly conservative bounds. In this work, we develop methods for no-overlap policy evaluation without a well-specified model, relying instead on non-parametric assumptions on the expected outcome, with a particular focus on Lipschitz smoothness. Under such assumptions we are able to provide sharp bounds on the off-policy value, along with optimal estimators of those bounds. For Lipschitz smoothness, we construct a pair of linear programs that upper and lower bound the contribution of the no-overlap region to the off-policy value. We show that these programs have a concise closed form solution, and that their solutions converge under the Lipschitz assumption to the sharp partial identification bounds at a minimax optimal rate, up to log factors. We demonstrate the effectiveness our methods on two semi-synthetic examples, and obtain informative and valid bounds that are tighter than those possible without …
[ Hall C 4-9 ]

Abstract
Estimating the conditional average treatment effect (CATE) from observational data is relevant for many applications such as personalized medicine. Here, we focus on the widespread setting where the observational data come from multiple environments, such as different hospitals, physicians, or countries. Furthermore, we allow for violations of standard causal assumptions, namely, overlap within the environments and unconfoundedness. To this end, we move away from point identification and focus on partial identification. Specifically, we show that current assumptions from the literature on multiple environments allow us to interpret the environment as an instrumental variable (IV). This allows us to adapt bounds from the IV literature for partial identification of CATE by leveraging treatment assignment mechanisms across environments. Then, we propose different model-agnostic learners (so-called meta-learners) to estimate the bounds that can be used in combination with arbitrary machine learning models. We further demonstrate the effectiveness of our meta-learners across various experiments using both simulated and real-world data. Finally, we discuss the applicability of our meta-learners to partial identification in instrumental variable settings, such as randomized controlled trials with non-compliance.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Curriculum learning is a training paradigm where machine learning models are trained in a meaningful order, inspired by the way humans learn curricula. Due to its capability to improve model generalization and convergence, curriculum learning has gained considerable attention and has been widely applied to various research domains. Nevertheless, as new curriculum learning methods continue to emerge, it remains an open issue to benchmark them fairly. Therefore, we develop CurBench, the first benchmark that supports systematic evaluations for curriculum learning. Specifically, it consists of 15 datasets spanning 3 research domains: computer vision, natural language processing, and graph machine learning, along with 3 settings: standard, noise, and imbalance. To facilitate a comprehensive comparison, we establish the evaluation from 2 dimensions: performance and complexity. CurBench also provides a unified toolkit that plugs automatic curricula into general machine learning processes, enabling the implementation of 15 core curriculum learning methods. On the basis of this benchmark, we conduct comparative experiments and make empirical analyses of existing methods. CurBench is open-source and publicly available at https://github.com/THUMNLab/CurBench.
[ Hall C 4-9 ]

Abstract
Adapting pre-trained large language models to different domains in natural language processing requires two key considerations: high computational demands and model's inability to continual adaptation. To simultaneously address both issues, this paper presents COPAL (COntinual Pruning in Adaptive Language settings), an algorithm developed for pruning large language generative models under a continual model adaptation setting. While avoiding resource-heavy finetuning or retraining, our pruning process is guided by the proposed sensitivity analysis. The sensitivity effectively measures model's ability to withstand perturbations introduced by the new dataset and finds model's weights that are relevant for all encountered datasets. As a result, COPAL allows seamless model adaptation to new domains while enhancing the resource efficiency. Our empirical evaluation on a various size of LLMs show that COPAL outperforms baseline models, demonstrating its efficacy in efficiency and adaptability.
[ Hall C 4-9 ]

Abstract
Learning new knowledge frequently occurs in our dynamically changing world, e.g., humans culturally evolve by continuously acquiring new abilities to sustain their survival, leveraging collective intelligence rather than a large number of individual attempts. The effective learning paradigm during cultural evolution is termed socialized learning (SL). Consequently, a straightforward question arises: Can multi-agent systems acquire more new abilities like humans? In contrast to most existing methods that address continual learning and multi-agent collaboration, our emphasis lies in a more challenging problem: we prioritize the knowledge in the original expert classes, and as we adeptly learn new ones, the accuracy in the original expert classes stays superior among all in a directional manner. Inspired by population genetics and cognitive science, leading to unique and complete development, we propose Multi-Agent Socialized Collaboration (MASC), which achieves SL through interactions among multiple agents. Specifically, we introduce collective collaboration and reciprocal altruism modules, organizing collaborative behaviors, promoting information sharing, and facilitating learning and knowledge interaction among individuals. We demonstrate the effectiveness of multi-agent collaboration in an extensive empirical study. Our code will be publicly available at https://github.com/yxjdarren/SL.
[ Hall C 4-9 ]
Abstract
Existing paradigms of pushing the state of the art require exponentially more training data in many fields. Coreset selection seeks to mitigate this growing demand by identifying the most efficient subset of training data. In this paper, we delve into geometry-based coreset methods and preliminarily link the geometry of data distribution with models' generalization capability in theoretics. Leveraging these theoretical insights, we propose a novel coreset construction method by selecting training samples to reconstruct the decision boundary of a deep neural network learned on the full dataset. Extensive experiments across various popular benchmarks demonstrate the superiority of our method over multiple competitors. For the first time, our method achieves a 50% data pruning rate on the ImageNet-1K dataset while sacrificing less than 1% in accuracy. Additionally, we showcase and analyze the remarkable cross-architecture transferability of the coresets derived from our approach.
[ Hall C 4-9 ]

Abstract
The purpose of offline multi-task reinforcement learning (MTRL) is to develop a unified policy applicable to diverse tasks without the need for online environmental interaction. Recent advancements approach this through sequence modeling, leveraging the Transformer architecture's scalability and the benefits of parameter sharing to exploit task similarities. However, variations in task content and complexity pose significant challenges in policy formulation, necessitating judicious parameter sharing and management of conflicting gradients for optimal policy performance. In this work, we introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task. We approach this as a bi-level optimization problem, employing a meta-learning framework that leverages gradient-based techniques. The upper level of this framework is dedicated to learning a task-specific mask that delineates the harmony subspace, while the inner level focuses on updating parameters to enhance the overall performance of the unified policy. Empirical evaluations on a series of benchmarks demonstrate the superiority of HarmoDT, verifying the effectiveness of our approach.
[ Hall C 4-9 ]

Abstract
Data-driven weather forecasting models are advancing rapidly, yet they rely on initial states (i.e., analysis states) typically produced by traditional data assimilation algorithms. Four-dimensional variational assimilation (4DVar) is one of the most widely adopted data assimilation algorithms in numerical weather prediction centers; it is accurate but computationally expensive. In this paper, we aim to couple the AI forecasting model, FengWu, with 4DVar to build a self-contained data-driven global weather forecasting framework, FengWu-4DVar. To achieve this, we propose an AI-embedded 4DVar algorithm that includes three components: (1) a 4DVar objective function embedded with the FengWu forecasting model and its error representation to enhance efficiency and accuracy; (2) a spherical-harmonic-transform-based (SHT-based) approximation strategy for capturing the horizontal correlation of background error; and (3) an auto-differentiation (AD) scheme for determining the optimal analysis fields. Experimental results show that under the ERA5 simulated observational data with varying proportions and noise levels, FengWu-4DVar can generate accurate analysis fields; remarkably, it has achieved stable self-contained global weather forecasts for an entire year for the first time, demonstrating its potential for real-world applications. Additionally, our framework is approximately 100 times faster than the traditional 4DVar algorithm under similar experimental conditions, highlighting its significant computational efficiency.
[ Hall C 4-9 ]
Abstract
Existing work in scientific machine learning (SciML) has shown that data-driven learning of solution operators can provide a fast approximate alternative to classical numerical partial differential equation (PDE) solvers. Of these, Neural Operators (NOs) have emerged as particularly promising. We observe that several uncertainty quantification (UQ) methods for NOs fail for test inputs that are even moderately out-of-domain (OOD), even when the model approximates the solution well for in-domain tasks. To address this limitation, we show that ensembling several NOs can identify high-error regions and provide good uncertainty estimates that are well-correlated with prediction errors. Based on this, we propose a cost-effective alternative, DiverseNO, that mimics the properties of the ensemble by encouraging diverse predictions from its multiple heads in the last feed-forward layer. We then introduce Operator-ProbConserv, a method that uses these well-calibrated UQ estimates within the ProbConserv framework to update the model. Our empirical results show that Operator-ProbConserv enhances OOD model performance for a variety of challenging PDE problems and satisfies physical constraints such as conservation laws.
[ Hall C 4-9 ]
Abstract
Modeling the complex three-dimensional (3D) dynamics of relational systems is an important problem in the natural sciences, with applications ranging from molecular simulations to particle mechanics. Machine learning methods have achieved good success by learning graph neural networks to model spatial interactions. However, these approaches do not faithfully capture temporal correlations since they only model next-step predictions. In this work, we propose Equivariant Graph Neural Operator (EGNO), a novel and principled method that directly models dynamics as trajectories instead of just next-step prediction. Different from existing methods, EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it. To capture the temporal correlations while keeping the intrinsic SE(3)-equivariance, we develop equivariant temporal convolutions parameterized in the Fourier space and build EGNO by stacking the Fourier layers over equivariant networks. EGNO is the first operator learning framework that is capable of modeling solution dynamics functions over time while retaining 3D equivariance. Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods, thanks to the equivariant temporal modeling. Our code is available at …
[ Hall C 4-9 ]

Abstract
Recent vision-language-action (VLA) models rely on 2D inputs, lacking integration with the broader realm of the 3D physical world. Furthermore, they perform action prediction by learning a direct mapping from perception to action, neglecting the vast dynamics of the world and the relations between actions and dynamics. In contrast, human beings are endowed with world models that depict imagination about future scenarios to plan action accordingly. To this end, we propose 3D-VLA by introducing a new family of embodied foundation models that seamlessly link 3D perception, reasoning, and action through a generative world model. Specifically, 3D-VLA is built on top of a 3D-based large language model (LLM) and a set of action tokens is introduced to engage with the embodied environment. Furthermore, to inject generation abilities into the model, we train the embodied diffusion models and align them into the LLM for predicting the goal image and point cloud. To train our 3D-VLA, we curate a large-scale 3D embodied instruction dataset by extracting vast 3D-related information from existing robotics datasets. Our experiments on held-in datasets demonstrate that 3D-VLA significantly improves the reasoning, multimodality generation and planning capabilities in embodied environments, showcasing its potential in real-world applications.
[ Hall C 4-9 ]
Abstract
In this paper, we develop a structured critique of robotic simulations for real-world manipulation, by arguing that scaling simulators is neither necessary nor sufficient for making progress in general-purpose real-world robotic manipulation agents that are compliant with human preferences. With the ubiquity of robotic simulators, and recent efforts to scale them for diverse tasks, and at the same time the interest in generally capable real-world manipulation systems, we believe it is important to address the limitations of using simulation for real-world manipulation, so that as a community, we can focus our collective resources, energy, and time on approaches that have more principled odds of success. We further demonstrate the unique challenges that real-world manipulation presents, and show through examples and arguments why scaling simulation doesn't get us closer to solving these challenges required for diverse real-world deployment.
[ Hall C 4-9 ]

Abstract
Learning reward functions remains the bottleneck to equip a robot with a broad repertoire of skills. Large Language Models (LLM) contain valuable task-related knowledge that can potentially aid in the learning of reward functions. However, the proposed reward function can be imprecise, thus ineffective which requires to be further grounded with environment information. We proposed a method to learn rewards more efficiently in the absence of humans. Our approach consists of two components: We first use the LLM to propose features and parameterization of the reward, then update the parameters through an iterative self-alignment process. In particular, the process minimizes the ranking inconsistency between the LLM and the learnt reward functions based on the execution feedback. The method was validated on 9 tasks across 2 simulation environments. It demonstrates a consistent improvement in training efficacy and efficiency, meanwhile consuming significantly fewer GPT tokens compared to the alternative mutation-based method.
[ Hall C 4-9 ]

Abstract
For Multivariate Time Series Forecasting (MTSF), recent deep learning applications show that univariate models frequently outperform multivariate ones. To address the deficiency in multivariate models, we introduce a method to Construct Auxiliary Time Series (CATS) that functions like a 2D temporal-contextual attention mechanism, which generates Auxiliary Time Series (ATS) from Original Time Series (OTS) to effectively represent and incorporate inter-series relationships for forecasting. Key principles of ATS—continuity, sparsity, and variability—are identified and implemented through different modules. Even with a basic 2-layer MLP as the core predictor, CATS achieves state-of-the-art, significantly reducing complexity and parameters compared to previous multivariate models, marking it as an efficient and transferable MTSF solution.
[ Hall C 4-9 ]

Abstract
Hierarchical time series forecasting requires not only prediction accuracy but also coherency, i.e., forecasts add up appropriately across the hierarchy. Recent literature has shown that reconciliation via projection outperforms prior methods such as top-down or bottom-up approaches. Unlike existing work that pre-specifies a projection matrix (e.g., orthogonal), we study the problem of learning the optimal oblique projection from data for coherent forecasting of hierarchical time series. In addition to the unbiasedness-preserving property, oblique projection implicitly accounts for the hierarchy structure and assigns different weights to individual time series, providing significant adaptability over orthogonal projection which treats base forecast errors equally. We examine two broad classes of projections, namely Euclidean projection and general oblique projections. We propose to model the reconciliation step as a learnable, structured, projection layer in the neural forecaster architecture. The proposed approach allows for the efficient learning of the optimal projection in an end-to-end framework where both the neural forecaster and the projection layer are learned simultaneously. An empirical evaluation of real-world hierarchical time series datasets demonstrates the superior performance of the proposed method over existing state-of-the-art approaches.
[ Hall C 4-9 ]

Abstract
Learning a decent representation from unlabeled time series is a challenging task, especially when the time series data is derived from diverse channels at different sampling rates. Our motivation stems from the financial domain, where sparsely labeled covariates are commonly collected at different frequencies, e.g., daily stock market index, monthly unemployment rate and quarterly net revenue of a certain listed corporation. This paper presents Multi-Frequency Contrastive Learning Representation (MF-CLR), aimed at learning a good representation of multi-frequency time series in a self-supervised paradigm by leveraging the ability of contrastive learning. MF-CLR introduces a hierarchical mechanism that spans across different frequencies along the feature dimension. Within each contrastive block, two groups of subseries with adjacent frequencies are embedded based on our proposed cross-frequency consistency. To validate the effectiveness of MF-CLR, we conduct extensive experiments on five downstream tasks, including long-term and short-term forecasting, classification, anomaly detection and imputation. Experimental evidence shows that MF-CLR delivers a leading performance in all the downstream tasks and keeps consistent performance across different target dataset scales in the transfer learning scenario.
[ Hall C 4-9 ]
Abstract
Motivated by recent advances in large language models for Natural Language Processing (NLP), we design a time-series foundation model for forecasting whose out-of-the-box zero-shot performance on a variety of public datasets comes close to the accuracy of state-of-the-art supervised forecasting models for each individual dataset. Our model is based on pretraining a decoder style attention model with input patching, using a large time-series corpus comprising both real-world and synthetic datasets. Experiments on a diverse set of previously unseen forecasting datasets suggests that the model can yield accurate zero-shot forecasts across different domains, forecasting horizons and temporal granularities.
[ Hall C 4-9 ]

Abstract
Large-scale pre-trained vision-language models (e.g., CLIP) have shown powerful zero-shot transfer capabilities in image recognition tasks. Recent approaches typically employ supervised fine-tuning methods to adapt CLIP for zero-shot multi-label image recognition tasks. However, obtaining sufficient multi-label annotated image data for training is challenging and not scalable. In this paper, we propose a new language-driven framework for zero-shot multi-label recognition that eliminates the need for annotated images during training. Leveraging the aligned CLIP multi-modal embedding space, our method utilizes language data generated by LLMs to train a cross-modal classifier, which is subsequently transferred to the visual modality. During inference, directly applying the classifier to visual inputs may limit performance due to the modality gap. To address this issue, we introduce a cross-modal mapping method that maps image embeddings to the language modality while retaining crucial visual information. Comprehensive experiments demonstrate that our method outperforms other zero-shot multi-label recognition methods and achieves competitive results compared to few-shot methods.
[ Hall C 4-9 ]

Abstract
Recent years have experienced increasing utilization of complex machine learning models across multiple sources of data to inform more generalizable decision-making. However, distribution shifts across data sources and privacy concerns related to sharing individual-level data, coupled with a lack of uncertainty quantification from machine learning predictions, make it challenging to achieve valid inferences in multi-source environments. In this paper, we consider the problem of obtaining distribution-free prediction intervals for a target population, leveraging multiple potentially biased data sources. We derive the efficient influence functions for the quantiles of unobserved outcomes in the target and source populations, and show that one can incorporate machine learning prediction algorithms in the estimation of nuisance functions while still achieving parametric rates of convergence to nominal coverage probabilities. Moreover, when conditional outcome invariance is violated, we propose a data-adaptive strategy to upweight informative data sources for efficiency gain and downweight non-informative data sources for bias reduction. We highlight the robustness and efficiency of our proposals for a variety of conformal scores and data-generating mechanisms via extensive synthetic experiments. Hospital length of stay prediction intervals for pediatric patients undergoing a high-risk cardiac surgical procedure between 2016-2022 in the U.S. illustrate the utility of our methodology.
[ Hall C 4-9 ]
Abstract
A key challenge in Meta-Reinforcement Learning (meta-RL) is the task distribution shift, since the generalization ability of most current meta-RL methods is limited to tasks sampled from the training distribution. In this paper, we propose Posterior Sampling Bayesian Lifelong In-Context Reinforcement Learning (PSBL), which is robust to task distribution shift. PSBL meta-trains a variant of transformer to directly perform amortized inference about the Predictive Posterior Distribution (PPD) of the optimal policy. Once trained, the network can infer the PPD online with frozen parameters. The agent then samples actions from the approximate PPD to perform online exploration, which progressively reduces uncertainty and enhances performance in the interaction with the environment. This property is known as in-context learning. Experimental results demonstrate that PSBL significantly outperforms standard Meta RL methods both in tasks with sparse rewards and dense rewards when the test task distribution is strictly shifted from the training distribution.
[ Hall C 4-9 ]

Abstract
While supervised federated learning approaches have enjoyed significant success, the domain of unsupervised federated learning remains relatively underexplored. Several federated EM algorithms have gained popularity in practice, however, their theoretical foundations are often lacking. In this paper, we first introduce a federated gradient EM algorithm (FedGrEM) designed for the unsupervised learning of mixture models, which supplements the existing federated EM algorithms by considering task heterogeneity and potential adversarial attacks. We present a comprehensive finite-sample theory that holds for general mixture models, then apply this general theory on specific statistical models to characterize the explicit estimation error of model parameters and mixture proportions. Our theory elucidates when and how FedGrEM outperforms local single-task learning with insights extending to existing federated EM algorithms. This bridges the gap between their practical success and theoretical understanding. Our numerical results validate our theory, and demonstrate FedGrEM's superiority over existing unsupervised federated learning benchmarks.
[ Hall C 4-9 ]

Abstract
Large-scale pretrained models have proven immensely valuable in handling data-intensive modalities like text and image. However, fine-tuning these models for certain specialized modalities, such as protein sequence and cosmic ray, poses challenges due to the significant modality discrepancy and scarcity of labeled data. In this paper, we propose an end-to-end method, PaRe, to enhance cross-modal fine-tuning, aiming to transfer a large-scale pretrained model to various target modalities. PaRe employs a gating mechanism to select key patches from both source and target data. Through a modality-agnostic Patch Replacement scheme, these patches are preserved and combined to construct data-rich intermediate modalities ranging from easy to hard. By gradually intermediate modality generation, we can not only effectively bridge the modality gap to enhance stability and transferability of cross-modal fine-tuning, but also address the challenge of limited data in the target modality by leveraging enriched intermediate modality data. Compared with hand-designed, general-purpose, task-specific, and state-of-the-art cross-modal fine-tuning approaches, PaRe demonstrates superior performance across three challenging benchmarks, encompassing more than ten modalities.
[ Hall C 4-9 ]

Abstract
Unsupervised domain adaptation (UDA) has seen substantial efforts to improve model accuracy for an unlabeled target domain with the help of a labeled source domain. However, UDA models often exhibit poorly calibrated predictive uncertainty on target data, a problem that remains under-explored and poses risks in safety-critical UDA applications. The calibration problem in UDA is particularly challenging due to the absence of labeled target data and severe distribution shifts between domains. In this paper, we approach UDA calibration as a target-domain-specific unsupervised problem, different from mainstream solutions based on covariate shift. We introduce Pseudo-Calibration (PseudoCal), a novel post-hoc calibration framework. Our innovative use of inference-stage mixup synthesizes a labeled pseudo-target set capturing the structure of the real unlabeled target data. This turns the unsupervised calibration problem into a supervised one, easily solvable with temperature scaling. Extensive empirical evaluations across 5 diverse UDA scenarios involving 10 UDA methods consistently demonstrate the superior performance and versatility of PseudoCal over existing solutions.
[ Hall C 4-9 ]

Abstract
Non-parametric detection of change points in streaming time series data that belong to Euclidean spaces has been extensively studied in the literature. Nevertheless, when the data belongs to a Riemannian manifold, existing approaches are no longer applicable as they fail to account for the structure and geometry of the manifold. In this paper, we introduce a non-parametric algorithm for online change point detection in manifold-valued data streams. This algorithm monitors the generalized Karcher mean of the data, computed using stochastic Riemannian optimization. We provide theoretical bounds on the detection and false alarm rate performances of the algorithm, using a new result on the non-asymptotic convergence of the stochastic Riemannian gradient descent. We apply our algorithm to two different Riemannian manifolds. Experimental results with both synthetic and real data illustrate the performance of the proposed method.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Positive and Unlabeled (PU) learning refers to a special case of binary classification, and technically, it aims to induce a binary classifier from a few labeled positive training instances and loads of unlabeled instances. In this paper, we derive a theorem indicating that the probability boundary of the asymmetric disambiguation-free expected risk of PU learning is controlled by its asymmetric penalty, and we further empirically evaluated this theorem. Inspired by the theorem and its empirical evaluations, we propose an easy-to-implement two-stage PU learning method, namely Positive and Unlabeled Learning with Controlled Probability Boundary Fence (PULCPBF). In the first stage, we train a set of weak binary classifiers concerning different probability boundaries by minimizing the asymmetric disambiguation-free empirical risks with specific asymmetric penalty values. We can interpret these induced weak binary classifiers as a probability boundary fence. For each unlabeled instance, we can use the predictions to locate its class posterior probability and generate a stochastic label. In the second stage, we train a strong binary classifier over labeled positive training instances and all unlabeled instances with stochastic labels in a self-training manner. Extensive empirical results demonstrate that PULCPBF can achieve competitive …
[ Hall C 4-9 ]

Abstract
Semi-supervised learning (SSL) has witnessed remarkable progress, resulting in the emergence of numerous method variations. However, practitioners often encounter challenges when attempting to deploy these methods due to their subpar performance. In this paper, we present a novel SSL approach named FineSSL that significantly addresses this limitation by adapting pre-trained foundation models. We identify the aggregated biases and cognitive deviation problems inherent in foundation models, and propose a simple yet effective solution by imposing balanced margin softmax and decoupled label smoothing. Through extensive experiments, we demonstrate that FineSSL sets a new state of the art for SSL on multiple benchmark datasets, reduces the training cost by over six times, and can seamlessly integrate various fine-tuning and modern SSL algorithms. The source code is available at https://github.com/Gank0078/FineSSL.
[ Hall C 4-9 ]
Abstract
Understanding the interactions and interplay of microorganisms is a great challenge with many applications in medical and environmental settings. In this work, we model bacterial communities directly from their genomes using graph neural networks (GNNs). GNNs leverage the inductive bias induced by the set nature of bacteria, enforcing permutation invariance and granting combinatorial generalization. We propose to learn the dynamics implicitly by directly predicting community relative abundance profiles at steady state, thus escaping the need for growth curves. On two real-world datasets, we show for the first time generalization to unseen bacteria and different community structures. To investigate the prediction results more deeply, we create a simulation for flexible data generation and analyze effects of bacteria interaction strength, community size, and training data amount.
[ Hall C 4-9 ]

Abstract
A wide range of (multivariate) temporal (1D) and spatial (2D) data analysis tasks, such as grouping vehicle sensor trajectories, can be formulated as clustering with given metric constraints. Existing metric-constrained clustering algorithms overlook the rich correlation between feature similarity and metric distance, i.e., metric autocorrelation. The model-based variations of these clustering algorithms (e.g. TICC and STICC) achieve SOTA performance, yet suffer from computational instability and complexity by using a metric-constrained Expectation-Maximization procedure. In order to address these two problems, we propose a novel clustering algorithm, MC-GTA (Model-based Clustering via Goodness-of-fit Tests with Autocorrelations). Its objective is only composed of pairwise weighted sums of feature similarity terms (square Wasserstein-2 distance) and metric autocorrelation terms (a novel multivariate generalization of classic semivariogram). We show that MC-GTA is effectively minimizing the total hinge loss for intra-cluster observation pairs not passing goodness-of-fit tests, i.e., statistically not originating from the same distribution. Experiments on 1D/2D synthetic and real-world datasets demonstrate that MC-GTA successfully incorporates metric autocorrelation. It outperforms strong baselines by large margins (up to 14.3% in ARI and 32.1% in NMI) with faster and stabler optimization (>10x speedup).
[ Hall C 4-9 ]

Abstract
As a branch of clustering, multi-view clustering has received much attention in recent years. In practical applications, a common phenomenon is that partial views of some samples may be missing in the collected multi-view data, which poses a severe challenge to design the multi-view learning model and explore complementary and consistent information. Currently, most of the incomplete multi-view clustering methods only focus on exploring the information of available views while few works study the missing view recovery for incomplete multi-view learning. To this end, we propose an innovative diffusion-based missing view generation (DMVG) network. Moreover, for the scenarios with high missing rates, we further propose an incomplete multi-view data augmentation strategy to enhance the recovery quality for the missing views. Extensive experimental results show that the proposed DMVG can not only accurately predict missing views, but also further enhance the subsequent clustering performance in comparison with several state-of-the-art incomplete multi-view clustering methods.
[ Hall C 4-9 ]

Abstract
The fine-tuning paradigm in addressing long-tail learning tasks has sparked significant interest since the emergence of foundation models. Nonetheless, how fine-tuning impacts performance in long-tail learning was not explicitly quantified. In this paper, we disclose that heavy fine-tuning may even lead to non-negligible performance deterioration on tail classes, and lightweight fine-tuning is more effective. The reason is attributed to inconsistent class conditions caused by heavy fine-tuning. With the observation above, we develop a low-complexity and accurate long-tail learning algorithms LIFT with the goal of facilitating fast prediction and compact models by adaptive lightweight fine-tuning. Experiments clearly verify that both the training time and the learned parameters are significantly reduced with more accurate predictive performance compared with state-of-the-art approaches. The implementation code is available at https://github.com/shijxcs/LIFT.
[ Hall C 4-9 ]

Abstract
Implicit representations allow to use a parametric function that maps (spatial) coordinates to the value that is traditionally stored in each pixel, e.g. RGB values, instead of a discrete grid. This has recently proven quite advantageous as an internal representation for images or scenes for deep learning models. Yet, its potential to ensure certain properties of the solution has not yet been fully explored. In this work, we demonstrate that implicit representations are a powerful tool for enforcing a variety of different geometric constraints in image segmentation. While convexity, star-shape, path-connectedness, periodicity, or symmetry of the (spatial or space-time) region to be segmented are very challenging to enforce for pixel-wise discretizations, a suitable parametrization of an implicit representation, mapping spatial or spatio-temporal coordinates to the likeliness of a pixel belonging to the fore- or background, allows to provably ensure such constraints. Several numerical examples demonstrate that challenging segmentation scenarios can benefit from the inclusion of application-specific constraints, e.g. when occlusions prevent a faithful segmentation with classical approaches.
[ Hall C 4-9 ]
Abstract
Kernel conditional mean embeddings (CMEs) offer a powerful framework for representing conditional distributions, but they often face scalability and expressiveness challenges. In this work, we propose a new method that effectively combines the strengths of deep learning with CMEs in order to address these challenges. Specifically, our approach leverages the end-to-end neural network (NN) optimization framework using a kernel-based objective. This design circumvents the computationally expensive Gram matrix inversion required by current CME methods. To further enhance performance, we provide efficient strategies to optimize the remaining kernel hyperparameters. In conditional density estimation tasks, our NN-CME hybrid achieves competitive performance and often surpasses existing deep learning-based methods. Lastly, we showcase its remarkable versatility by seamlessly integrating it into reinforcement learning (RL) contexts. Building on Q-learning, our approach naturally leads to a new variant of distributional RL methods, which demonstrates consistent effectiveness across different environments.
[ Hall C 4-9 ]

Abstract
Estimating the ratio of two probability densities from finitely many observations of the densities is a central problem in machine learning and statistics with applications in two-sample testing, divergence estimation, generative modeling, covariate shift adaptation, conditional density estimation, and novelty detection. In this work, we analyze a large class of density ratio estimation methods that minimize a regularized Bregman divergence between the true density ratio and a model in a reproducing kernel Hilbert space (RKHS). We derive new finite-sample error bounds, and we propose a Lepskii type parameter choice principle that minimizes the bounds without knowledge of the regularity of the density ratio. In the special case of square loss, our method adaptively achieves a minimax optimal error rate. A numerical illustration is provided.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
While self-supervised learning (SSL) in speech has greatly reduced the reliance of speech processing systems on annotated corpora, the success of SSL still hinges on the availability of a large-scale unannotated corpus, which is still often impractical for many low-resource languages or under privacy concerns. Some existing work seeks to alleviate the problem by data augmentation, but most works are confined to introducing perturbations to real speech and do not introduce new variations in speech prosody, speakers, and speech content, which are important for SSL. Motivated by the recent finding that diffusion models have superior capabilities for modeling data distributions, we propose DiffS4L, a pretraining scheme that augments the limited unannotated data with synthetic data with different levels of variations, generated by a diffusion model trained on the limited unannotated data. Finally, an SSL model is pre-trained on the real and the synthetic speech. Our experiments show that DiffS4L can significantly improve the performance of SSL models, such as reducing the WER of the HuBERT pretrained model by 6.26 percentage points in the English ASR task. Notably, we find that the synthetic speech with all levels of variations, i.e. new prosody, new speakers, and even new content (despite the new …
[ Hall C 4-9 ]

Abstract
Large Language Models have recently gained significant attention in scientific discovery for their extensive knowledge and advanced reasoning capabilities. However, they encounter challenges in effectively simulating observational feedback and grounding it with language to propel advancements in physical scientific discovery. Conversely, human scientists undertake scientific discovery by formulating hypotheses, conducting experiments, and revising theories through observational analysis. Inspired by this, we propose to enhance the knowledge-driven, abstract reasoning abilities of LLMs with the computational strength of simulations. We introduce Scientific Generative Agent (SGA), a bilevel optimization framework: LLMs act as knowledgeable and versatile thinkers, proposing scientific hypotheses and reason about discrete components, such as physics equations or molecule structures; meanwhile, simulations function as experimental platforms, providing observational feedback and optimizing via differentiability for continuous parts, such as physical parameters. We conduct extensive experiments to demonstrate our framework's efficacy in constitutive law discovery and molecular design, unveiling novel solutions that differ from conventional human expectations yet remain coherent upon analysis.
[ Hall C 4-9 ]

Abstract
Spiking neural networks (SNNs), inspired by the spiking behavior of biological neurons, provide a unique pathway for capturing the intricacies of temporal data. However, applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection. In this paper, we propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information. Through a series of experiments, we demonstrate that our proposed SNN-based approaches achieve comparable or superior results to traditional time-series forecasting methods on diverse benchmarks with much less energy consumption. Furthermore, we conduct detailed analysis experiments to assess the SNN's capacity to capture temporal dependencies within time-series data, offering valuable insights into its nuanced strengths and effectiveness in modeling the intricate dynamics of temporal data. Our study contributes to the expanding field of SNNs and offers a promising alternative for time-series forecasting tasks, presenting a pathway for the development of more biologically inspired and temporally aware forecasting models. Our code is available at https://github.com/microsoft/SeqSNN.
[ Hall C 4-9 ]
Abstract
Biologically plausible learning algorithms offer a promising alternative to traditional deep learning techniques, especially in overcoming the limitations of backpropagation in fast and low-energy neuromorphic implementations. To this end, there has been extensive research in understanding what their capabilities are. In this work, we show how one of such algorithms, called predictive coding, is able to perform causal inference tasks. First, we show how a simple change in the inference process of predictive coding enables to compute interventions without the need to mutilate or redefine a causal graph. Then, we explore applications in cases where the graph is unknown, and has to be inferred from observational data. Empirically, we show how such findings can be used to improve the performance of predictive coding in image classification tasks, and conclude that such models are naturally able to perform causal inference tasks using a biologically plausible kind of message passing.
[ Hall C 4-9 ]

Abstract
With the rapid development of Artificial Intelligence of Things (AIoT), customizing and optimizing operating system (OS) kernel configurations for various AIoT application scenarios is crucial for maximizing system performance. However, existing approaches falter due to the overwhelming problem complexity (i.e., over 15,000 configuration options in the Linux kernel), together with the huge evaluation costs and error-prone options that may result in OS boot-up failure, which all make it an unresolved problem to optimize the Linux kernel automatically. In this paper, we introduce AutoOS, a novel framework exploiting Large Language Models for customizing and optimizing OS kernel configurations automatically for various AIoT application scenarios.Inspired by the inherently directory-structured kernel configuration process, we first formulate our research problem as optimizing on a dynamic tree. We then propose a novel framework integrating a state machine-based traversal algorithm as the observe-prune-propose-act-correct loop, which can effectively refine the optimization space and ensure a successful OS boot-up.Experimental results show that AutoOS can automatically customize and optimize the OS kernel configurations without human effort. More importantly, AutoOS even achieves better performance by up to 25% than vendor-provided configuration.
[ Hall C 4-9 ]

Abstract
Adaptive Testing System (ATS) is a promising testing mode, extensively utilized in standardized tests like the GRE. It offers personalized ability assessment by dynamically adjusting questions based on individual ability levels. Compared to traditional exams, ATS can improve the accuracy of ability estimates while simultaneously reducing the number of questions required. Despite the diverse testing formats of ATS, tailored to different adaptability requirements in various testing scenarios, there is a notable absence of a unified framework for modeling them. In this paper, we introduce a unified data-driven ATS framework that conceptualizes the various testing formats as a hierarchical test structure search problem. It can learn directly from data to solve for the optimal questions for each student, eliminating the need for manual test design. The proposed solution algorithm comes with theoretical guarantees for estimation error and convergence. Empirical results show that our framework maintains assessment accuracy while reducing question count by 20% on average and improving training stability.
[ Hall C 4-9 ]
Abstract
An array of recent works have argued that high-level semantic concepts are encoded "linearly" in the representation space of large language models. In this work, we study the origins of such linear representations. To that end, we introduce a latent variable model to abstract and formalize the concept dynamics of the next token prediction. We use this formalism to prove that linearity arises as a consequence of the loss function and the implicit bias of gradient descent. The theory is further substantiated empirically via experiments.
[ Hall C 4-9 ]

Abstract
We warn against a common but incomplete understanding of empirical research in machine learning that leads to non-replicable results, makes findings unreliable, and threatens to undermine progress in the field. To overcome this alarming situation, we call for more awareness of the plurality of ways of gaining knowledge experimentally but also of some epistemic limitations. In particular, we argue most current empirical machine learning research is fashioned as confirmatory research while it should rather be considered exploratory.
[ Hall C 4-9 ]

Abstract
Collective action in machine learning is the study of the control that a coordinated group can have over machine learning algorithms. While previous research has concentrated on assessing the impact of collectives against Bayes (sub-)optimal classifiers, this perspective is limited in that it does not account for the choice of learning algorithm. Since classifiers seldom behave like Bayes classifiers and are influenced by the choice of learning algorithms along with their inherent biases, in this work we initiate the study of how the choice of the learning algorithm plays a role in the success of a collective in practical settings. Specifically, we focus on distributionally robust optimization (DRO), popular for improving a worst group error, and on the ubiquitous stochastic gradient descent (SGD), due to its inductive bias for "simpler" functions. Our empirical results, supported by a theoretical foundation, show that the effective size and success of the collective are highly dependent on properties of the learning algorithm. This highlights the necessity of taking the learning algorithm into account when studying the impact of collective action in machine learning.
[ Hall C 4-9 ]

Abstract
In federated learning (FL), the multi-step update and data heterogeneity among clients often lead to a loss landscape with sharper minima, degenerating the performance of the resulted global model. Prevalent federated approaches incorporate sharpness-aware minimization (SAM) into local training to mitigate this problem. However, the local loss landscapes may not accurately reflect the flatness of global loss landscape in heterogeneous environments; as a result, minimizing local sharpness and calculating perturbations on client data might not align the efficacy of SAM in FL with centralized training. To overcome this challenge, we propose FedLESAM, a novel algorithm that locally estimates the direction of global perturbation on client side as the difference between global models received in the previous active and current rounds. Besides the improved quality, FedLESAM also speed up federated SAM-based approaches since it only performs once backpropagation in each iteration. Theoretically, we prove a slightly tighter bound than its original FedSAM by ensuring consistent perturbation. Empirically, we conduct comprehensive experiments on four federated benchmark datasets under three partition strategies to demonstrate the superior performance and efficiency of FedLESAM.
[ Hall C 4-9 ]
Abstract
Deep learning with differential privacy (DP) has garnered significant attention over the past years, leading to the development of numerous methods aimed at enhancing model accuracy and training efficiency. This paper delves into the problem of training Transformer models with differential privacy. Our treatment is modular: the logic is to 'reduce' the problem of training DP Transformer to the more basic problem of training DP vanilla neural nets. The latter is better understood and amenable to many model-agnostic methods. Such 'reduction' is done by first identifying the hardness unique to DP Transformer training: the attention distraction phenomenon and a lack of compatibility with existing techniques for efficient gradient clipping. To deal with these two issues, we propose the Re-Attention Mechanism and Phantom Clipping, respectively. We believe that our work not only casts new light on training DP Transformers but also promotes a modular treatment to advance research in the field of differentially private deep learning.
[ Hall C 4-9 ]

Abstract
The promise of least-privilege learning – to find feature representations that are useful for a learning task but prevent inference of any sensitive information unrelated to this task – is highly appealing. However, so far this concept has only been stated informally. It thus remains an open question whether and how we can achieve this goal. In this work, we provide the first formalisation of the least-privilege principle for machine learning and characterise its feasibility. We prove that there is a fundamental trade-off between a representation's utility for a given task and its leakage beyond the intended task: it is not possible to learn representations that have high utility for the intended task but, at the same time, prevent inference of any attribute other than the task label itself. This trade-off holds regardless of the technique used to learn the feature mappings that produce these representations. We empirically validate this result for a wide range of learning techniques, model architectures, and datasets.
[ Hall C 4-9 ]

Abstract
We introduce an optimization-based reconstruction attack capable of completely or near-completely reconstructing a dataset utilized for training a random forest. Notably, our approach relies solely on information readily available in commonly used libraries such as scikit-learn. To achieve this, we formulate the reconstruction problem as a combinatorial problem under a maximum likelihood objective. We demonstrate that this problem is NP-hard, though solvable at scale using constraint programming - an approach rooted in constraint propagation and solution-domain reduction. Through an extensive computational investigation, we demonstrate that random forests trained without bootstrap aggregation but with feature randomization are susceptible to a complete reconstruction. This holds true even with a small number of trees. Even with bootstrap aggregation, the majority of the data can also be reconstructed. These findings underscore a critical vulnerability inherent in widely adopted ensemble methods, warranting attention and mitigation. Although the potential for such reconstruction attacks has been discussed in privacy research, our study provides clear empirical evidence of their practicability.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
We study the problem of differentially private (DP) fine-tuning of large pre-trained models — a recent privacy-preserving approach suitable for solving downstream tasks with sensitive data. Existing work has demonstrated that high accuracy is possible under strong privacy constraint, yet requires significant computational overhead or modifications to the network architecture. We propose differentially private bias-term fine-tuning (DP-BiTFiT), which matches the state-of-the-art accuracy for DP algorithms and the efficiency of the standard BiTFiT. DP-BiTFiT is model agnostic (not modifying the network architecture), parameter efficient (only training about 0.1% of the parameters), and computation efficient (almost removing the overhead caused by DP, in both the time and space complexity). On a wide range of tasks, DP-BiTFiT is 2 - 30X faster and uses 2 - 8X less memory than DP full fine-tuning, even faster than the standard full fine-tuning. This amazing efficiency enables us to conduct DP fine-tuning on language and vision tasks with long-sequence texts and high-resolution images, which were computationally difficult using existing methods.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Membership inference attacks aim to detect if a particular data point was used in training a model. We design a novel statistical test to perform robust membership inference attacks (RMIA) with low computational overhead. We achieve this by a fine-grained modeling of the null hypothesis in our likelihood ratio tests, and effectively leveraging both reference models and reference population data samples. RMIA has superior test power compared with prior methods, throughout the TPR-FPR curve (even at extremely low FPR, as low as 0). Under computational constraints, where only a limited number of pre-trained reference models (as few as 1) are available, and also when we vary other elements of the attack (e.g., data distribution), our method performs exceptionally well, unlike prior attacks that approach random guessing. RMIA lays the groundwork for practical yet accurate data privacy risk assessment in machine learning.
[ Hall C 4-9 ]
Abstract
Differentially private ML approaches seek to learn models which may be publicly released while guaranteeing that the input data is kept private. One issue with this construction is that further model releases based on the same training data (e.g. for a new task) incur a further privacy budget cost. Privacy-preserving synthetic data generation is one possible solution to this conundrum. However, models trained on synthetic private data struggle to approach the performance of private, ad-hoc models. In this paper, we present a novel method based on sum-product networks that is able to perform both privacy-preserving classification and privacy-preserving data generation with a single model. To the best of our knowledge, ours is the first approach that provides both discriminative and generative capabilities to differentially private ML. We show that our approach outperforms the state of the art in terms of stability (i.e. number of training runs required for convergence) and utility of the generated data.
[ Hall C 4-9 ]

Abstract
The few-shot fine-tuning of Latent Diffusion Models (LDMs) has enabled them to grasp new concepts from a limited number of images. However, given the vast amount of personal images accessible online, this capability raises critical concerns about civil privacy. While several previous defense methods have been developed to prevent such misuse of LDMs, they typically assume that the textual prompts used by data protectors exactly match those employed by data exploiters. In this paper, we first empirically demonstrate that breaking this assumption, i.e., in cases where discrepancies exist between the textual conditions used by protectors and exploiters, could substantially reduces the effectiveness of these defenses. Furthermore, considering the visual encoder's independence from textual prompts, we delve into the visual encoder and thoroughly investigate how manipulating the visual encoder affects the few-shot fine-tuning process of LDMs. Drawing on these insights, we propose a simple yet effective method called Prompt-Independent Defense (PID) to safeguard privacy against LDMs. We show that PID can act as a strong privacy shield on its own while requiring significantly less computational power. We believe our studies, along with the comprehensive understanding and new defense method, provide a notable advance toward reliable data protection against LDMs.
[ Hall C 4-9 ]

Abstract
Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks information present in the entire image post-anonymization that can compromise privacy, such as specific locations, objects/items, or unique attributes. Acknowledging the pivotal role of human judgment in anonymity, our study conducts a thorough analysis of perceptual anonymization, exploring its spectral nature and its critical implications for image privacy assessment, particularly in light of regulations such as the General Data Protection Regulation (GDPR). To facilitate this, we curated a dataset specifically tailored for assessing anonymized images. We introduce a learning-based metric, PerceptAnon, which is tuned to align with the human Perception of Anonymity. PerceptAnon evaluates both original-anonymized image pairs and solely anonymized images. Trained using human annotations, our metric encompasses both anonymized subjects and their contextual backgrounds, thus providing a comprehensive evaluation of privacy vulnerabilities. We envision this work as a milestone for understanding and assessing image anonymization, and establishing a foundation for future research. The codes and dataset are available in https://github.com/SonyResearch/gdpr_perceptanon.
[ Hall C 4-9 ]

Abstract
In response to everyday queries, humans explicitly signal uncertainty and offer alternative answers when they are unsure. Machine learning models that output calibrated prediction sets through conformal prediction mimic this human behaviour; larger sets signal greater uncertainty while providing alternatives. In this work, we study the usefulness of conformal prediction sets as an aid for human decision making by conducting a pre-registered randomized controlled trial with conformal prediction sets provided to human subjects. With statistical significance, we find that when humans are given conformal prediction sets their accuracy on tasks improves compared to fixed-size prediction sets with the same coverage guarantee. The results show that quantifying model uncertainty with conformal prediction is helpful for human-in-the-loop decision making and human-AI teams.
[ Hall C 4-9 ]

Abstract
After the revelation that neural networks tend to produce overconfident predictions, the problem of calibration, which aims to align confidence with accuracy to enhance the reliability of predictions, has gained significant importance. Several solutions based on calibration maps have been proposed to address the problem of recalibrating a trained classifier using additional datasets. In this paper, we offer an algorithm that transforms the weights of the last layer of the classifier, distinct from the calibration-map-based approach. We concentrate on the geometry of the final linear layer, specifically its angular aspect, and adjust the weights of the corresponding layer. We name the method Tilt and Average, and validate the calibration effect empirically and theoretically. Through this, we demonstrate that our approach, in addition to the existing calibration-map-based techniques, can yield improved calibration performance.
[ Hall C 4-9 ]
Abstract
In day-to-day communication, people often approximate the truth --- for example, rounding the time or omitting details --- in order to be maximally helpful to the listener. How do large language models (LLMs) handle such nuanced trade-offs? To address this question, we use psychological models and experiments designed to characterize human behavior to analyze LLMs. We test a range of LLMs and explore how optimization for human preferences or inference-time reasoning affects these trade-offs. We find that reinforcement learning from human feedback improves both honesty and helpfulness, while chain-of-thought prompting skews LLMs towards helpfulness over honesty. Finally, GPT-4 Turbo demonstrates human-like response patterns including sensitivity to the conversational framing and listener's decision context. Our findings reveal the conversational values internalized by LLMs and suggest that even these abstract values can, to a degree, be steered by zero-shot prompting.
[ Hall C 4-9 ]

Abstract
Vision-Language Models (VLMs) have made remarkable progress in document-based Visual Question Answering (i.e., responding to queries about the contents of an input document provided as an image). In this work, we show these models can memorize responses for training samples and regurgitate them even when the relevant visual information has been removed. This includes Personal Identifiable Information (PII) repeated once in the training set, indicating these models could divulge memorised sensitive information and therefore pose a privacy risk. We quantitatively measure the extractability of information in controlled experiments and differentiate between cases where it arises from generalization capabilities or from memorization. We further investigate the factors that influence memorization across multiple state-of-the-art models and propose an effective heuristic countermeasure that empirically prevents the extractability of PII.
[ Hall C 4-9 ]

Abstract
Diffusion models have achieved notable success in image generation, but they remain highly vulnerable to backdoor attacks, which compromise their integrity by producing specific undesirable outputs when presented with a pre-defined trigger. In this paper, we investigate how to protect diffusion models from this dangerous threat. Specifically, we propose TERD, a backdoor defense framework that builds unified modeling for current attacks, which enables us to derive an accessible reversed loss. A trigger reversion strategy is further employed: an initial approximation of the trigger through noise sampled from a prior distribution, followed by refinement through differential multi-step samplers. Additionally, with the reversed trigger, we propose backdoor detection from the noise space, introducing the first backdoor input detection approach for diffusion models and a novel model detection algorithm that calculates the KL divergence between reversed and benign distributions. Extensive evaluations demonstrate that TERD secures a 100% True Positive Rate (TPR) and True Negative Rate (TNR) across datasets of varying resolutions. TERD also demonstrates nice adaptability to other Stochastic Differential Equation (SDE)-based models. Our code is available at https://github.com/PKU-ML/TERD.
[ Hall C 4-9 ]

Abstract
Cloud-based AI services offer numerous benefits but also introduce vulnerabilities, allowing for tampering with deployed DNN models, ranging from injecting malicious behaviors to reducing computing resources. Fingerprint samples are generated to query models to detect such tampering. In this paper, we present Intersecting-Boundary-Sensitive Fingerprinting (IBSF), a novel method for black-box integrity verification of DNN models using only top-1 labels. Recognizing that tampering with a model alters its decision boundary, IBSF crafts fingerprint samples from normal samples by maximizing the partial Shannon entropy of a selected subset of categories to position the fingerprint samples near decision boundaries where the categories in the subset intersect. These fingerprint samples are almost indistinguishable from their source samples. We theoretically establish and confirm experimentally that these fingerprint samples' expected sensitivity to tampering increases with the cardinality of the subset. Extensive evaluation demonstrates that IBSF surpasses existing state-of-the-art fingerprinting methods, particularly with larger subset cardinality, establishing its state-of-the-art performance in black-box tampering detection using only top-1 labels. The IBSF code is available at https://github.com/CGCL-codes/IBSF.
[ Hall C 4-9 ]
Abstract
Identifying latent variables and the causal structure involving them is essential across various scientific fields. While many existing works fall under the category of constraint-based methods (with e.g. conditional independence or rank deficiency tests), they may face empirical challenges such as testing-order dependency, error propagation, and choosing an appropriate significance level. These issues can potentially be mitigated by properly designed score-based methods, such as Greedy Equivalence Search (GES) (Chickering, 2002) in the specific setting without latent variables. Yet, formulating score-based methods with latent variables is highly challenging. In this work, we develop score-based methods that are capable of identifying causal structures containing causally-related latent variables with identifiability guarantees. Specifically, we show that a properly formulated scoring function can achieve score equivalence and consistency for structure learning of latent variable causal models. We further provide a characterization of the degrees of freedom for the marginal over the observed variables under multiple structural assumptions considered in the literature, and accordingly develop both exact and continuous score-based methods. This offers a unified view of several existing constraint-based methods with different structural assumptions. Experimental results validate the effectiveness of the proposed methods.
[ Hall C 4-9 ]

Abstract
Existing AI alignment approaches assume that preferences are static, which is unrealistic: our preferences change, and may even be influenced by our interactions with AI systems themselves. To clarify the consequences of incorrectly assuming static preferences, we introduce Dynamic Reward Markov Decision Processes (DR-MDPs), which explicitly model preference changes and the AI's influence on them. We show that despite its convenience, the static-preference assumption may undermine the soundness of existing alignment techniques, leading them to implicitly reward AI systems for influencing user preferences in ways users may not truly want. We then explore potential solutions. First, we offer a unifying perspective on how an agent's optimization horizon may partially help reduce undesirable AI influence. Then, we formalize different notions of AI alignment that account for preference change from the outset. Comparing the strengths and limitations of 8 such notions of alignment, we find that they all either err towards causing undesirable AI influence, or are overly risk-averse, suggesting that a straightforward solution to the problems of changing preferences may not exist. As there is no avoiding grappling with changing preferences in real-world settings, this makes it all the more important to handle these issues with care, balancing risks and capabilities. …
[ Hall C 4-9 ]

Abstract
This paper proposes Progressive inference--a framework to explain the predictions of decoder-only transformer models trained to perform sequence classification tasks. Our work is based on the insight that the classification head of a decoder-only model can be used to make intermediate predictions by evaluating them at different points in the input sequence. Due to the masked attention mechanism used in decoder-only models, these intermediate predictions only depend on the tokens seen before the inference point, allowing us to obtain the model's prediction on a masked input sub-sequence, with negligible computational overheads. We develop two methods to provide sub-sequence level attributions using this core insight. First, we propose Single Pass-Progressive Inference (SP-PI) to compute attributions by simply taking the difference between intermediate predictions. Second, we exploit a connection with Kernel SHAP to develop Multi Pass-Progressive Inference (MP-PI); this uses intermediate predictions from multiple masked versions of the input to compute higher-quality attributions that approximate SHAP values. We perform studies on several text classification datasets to demonstrate that our proposal provides better explanations compared to prior work, both in the single-pass and multi-pass settings.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Rankings are ubiquitous across many applications, from search engines to hiring committees. In practice, many rankings are derived from the output of predictors. However, when predictors trained for classification tasks have intrinsic uncertainty, it is not obvious how this uncertainty should be represented in the derived rankings. Our work considers ranking functions: maps from individual predictions for a classification task to distributions over rankings. We focus on two aspects of ranking functions: stability to perturbations in predictions and fairness towards both individuals and subgroups. Not only is stability an important requirement for its own sake, but --- as we show --- it composes harmoniously with individual fairness in the sense of Dwork et al. (2012). While deterministic ranking functions cannot be stable aside from trivial scenarios, we show that the recently proposed uncertainty aware (UA) ranking functions of Singh et al. (2021) are stable. Our main result is that UA rankings also achieve group fairness through successful composition with multiaccurate or multicalibrated predictors. Our work demonstrates that UA rankings naturally interpolate between group and individual level fairness guarantees, while simultaneously satisfying stability guarantees important whenever machine-learned predictions are used.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
The rising threat of backdoor poisoning attacks (BPAs) on Deep Neural Networks (DNNs) has become a significant concern in recent years. In such attacks, the adversaries strategically target a specific class and generate a poisoned training set. The neural network (NN), well-trained on the poisoned training set, is able to predict any input with the trigger pattern as the targeted label, while maintaining accurate outputs for clean inputs. However, why the BPAs work remains less explored. To fill this gap, we employ a dirty-label attack and conduct a detailed analysis of BPAs in a two-layer convolutional neural network. We provide theoretical insights and results on the effectiveness of BPAs. Our experimental results on two real-world datasets validate our theoretical findings.
[ Hall C 4-9 ]

Abstract
Universal Adversarial Perturbations (UAPs) are imperceptible, image-agnostic vectors that cause deep neural networks (DNNs) to misclassify inputs with high probability. In practical attack scenarios, adversarial perturbations may undergo transformations such as changes in pixel intensity, scaling, etc. before being added to DNN inputs. Existing methods do not create UAPs robust to these real-world transformations, thereby limiting their applicability in practical attack scenarios. In this work, we introduce and formulate UAPs robust against real-world transformations. We build an iterative algorithm using probabilistic robustness bounds and construct UAPs robust to transformations generated by composing arbitrary sub-differentiable transformation functions. We perform an extensive evaluation on the popular CIFAR-10 and ILSVRC 2012 datasets measuring our UAPs' robustness under a wide range common, real-world transformations such as rotation, contrast changes, etc. We further show that by using a set of primitive transformations our method generalizes well to unseen transformations such as fog, JPEG compression, etc. Our results show that our method can generate UAPs up to 23% more robust than state-of-the-art baselines.
[ Hall C 4-9 ]

Abstract
Counterfactual explanations (CEs) based on concepts are explanations that consider alternative scenarios to understand which high-level semantic features contributed to particular model predictions. In this work, we propose CEs based on the semantic graphs accompanying input data to achieve more descriptive, accurate, and human-aligned explanations. Building upon state-of-the-art (SotA) conceptual attempts, we adopt a model-agnostic edit-based approach and introduce leveraging GNNs for efficient Graph Edit Distance (GED) computation. With a focus on the visual domain, we represent images as scene graphs and obtain their GNN embeddings to bypass solving the NP-hard graph similarity problem for all input pairs, an integral part of CE computation process. We apply our method to benchmark and real-world datasets with varying difficulty and availability of semantic annotations. Testing on diverse classifiers, we find that our CEs outperform previous SotA explanation models based on semantics, including both white and black-box as well as conceptual and pixel-level approaches. Their superiority is proven quantitatively and qualitatively, as validated by human subjects, highlighting the significance of leveraging semantic edges in the presence of intricate relationships. Our model-agnostic graph-based approach is widely applicable and easily extensible, producing actionable explanations across different contexts. The code is available at https://github.com/aggeliki-dimitriou/SGCE.
[ Hall C 4-9 ]
Abstract
Recent years have witnessed increasing interest in optimization proxies, i.e., machine learning models that approximate the input-output mapping of parametric optimization problems and return near-optimal feasible solutions. Following recent work by (Nellikkath & Chatzivasileiadis, 2021), this paper reconsiders the optimality verification problem for optimization proxies, i.e., the determination of the worst-case optimality gap over the instance distribution. The paper proposes a compact formulation for optimality verification and a gradient-based primal heuristic that brings significant computational benefits to the original formulation. The compact formulation is also more general and applies to non-convex optimization problems. The benefits of the compact formulation are demonstrated on large-scale DC Optimal Power Flow and knapsack problems.
[ Hall C 4-9 ]

Abstract
Conformal prediction (CP) can convert any model's output into prediction sets guaranteed to include the true label with any user-specified probability. However, same as the model itself, CP is vulnerable to adversarial test examples (evasion) and perturbed calibration data (poisoning). We derive provably robust sets by bounding the worst-case change in conformity scores. Our tighter bounds lead to more efficient sets. We cover both continuous and discrete (sparse) data and our guarantees work both for evasion and poisoning attacks (on both features and labels).
[ Hall C 4-9 ]

Abstract
A multimodal large language model (MLLM) agent can receive instructions, capture images, retrieve histories from memory, and decide which tools to use. Nonetheless, red-teaming efforts have revealed that adversarial images/prompts can jailbreak an MLLM and cause unaligned behaviors. In this work, we report an even more severe safety issue in multi-agent environments, referred to as infectious jailbreak. It entails the adversary simply jailbreaking a single agent, and without any further intervention from the adversary, (almost) all agents will become infected exponentially fast and exhibit harmful behaviors. To validate the feasibility of infectious jailbreak, we simulate multi-agent environments containing up to one million LLaVA-1.5 agents, and employ randomized pair-wise chat as a proof-of-concept instantiation for multi-agent interaction. Our results show that feeding an (infectious) adversarial image into the memory of any randomly chosen agent is sufficient to achieve infectious jailbreak. Finally, we derive a simple principle for determining whether a defense mechanism can provably restrain the spread of infectious jailbreak, but how to design a practical defense that meets this principle remains an open question to investigate.
[ Hall C 4-9 ]
Abstract
Designing faithful yet accurate AI models is challenging, particularly in the field of individual treatment effect estimation (ITE). ITE prediction models deployed in critical settings such as healthcare should ideally be (i) accurate, and (ii) provide faithful explanations. However, current solutions are inadequate: state-of-the-art black-box models do not supply explanations, post-hoc explainers for black-box models lack faithfulness guarantees, and self-interpretable models greatly compromise accuracy. To address these issues, we propose DISCRET, a self-interpretable ITE framework that synthesizes faithful, rule-based explanations for each sample. A key insight behind DISCRET is that explanations can serve dually as database queries to identify similar subgroups of samples. We provide a novel RL algorithm to efficiently synthesize these explanations from a large search space. We evaluate DISCRET on diverse tasks involving tabular, image, and text data. DISCRET outperforms the best self-interpretable models and has accuracy comparable to the best black-box models while providing faithful explanations. DISCRET is available at https://github.com/wuyinjun-1993/DISCRET-ICML2024.
[ Hall C 4-9 ]

Abstract
Value-based reinforcement learning is the current State-Of-The-Art due to high sampling efficiency. However, our study shows it suffers from low exploitation in early training period and bias sensitiveness. To address these issues, we propose to augment the decision-making process with hypothesis, a weak form of environment description. Our approach relies on prompting the learning agent with accurate hypotheses, and designing a ready-to-adapt policy through incremental learning. We propose the ALH algorithm, showing detailed analyses on a typical learning scheme and a diverse set of Mujoco benchmarks. Our algorithm produces a significant improvement over value-based learning algorithms and other strong baselines. Our code is available at Github URL.
[ Hall C 4-9 ]
Abstract
Previous work on fairness in federated learning introduced the notion of core stability, which provides utility-based fairness guarantees to any subset of participating agents. However, these guarantees require strong assumptions on agent utilities that render them impractical. To address this shortcoming, we measure the quality of output models in terms of their ordinal rank instead of their cardinal utility, and use this insight to adapt the classical notion of proportional veto core (PVC) from social choice theory to the federated learning setting. We prove that models that are PVC-stable exist in very general learning paradigms, even allowing non-convex model sets, as well as non-convex and non-concave loss functions. We also design Rank-Core-Fed, a distributed federated learning algorithm, to train a PVC-stable model. Finally, we demonstrate that Rank-Core-Fed outperforms baselines in terms of fairness on different datasets.
[ Hall C 4-9 ]
Abstract
Explaining deep learning models operating on time series data is crucial in various applications of interest which require interpretable and transparent insights from time series signals. In this work, we investigate this problem from an information theoretic perspective and show that most existing measures of explainability may suffer from trivial solutions and distributional shift issues. To address these issues, we introduce a simple yet practical objective function for time series explainable learning. The design of the objective function builds upon the principle of information bottleneck (IB), and modifies the IB objective function to avoid trivial solutions and distributional shift issues. We further present TimeX++, a novel explanation framework that leverages a parametric network to produce explanation-embedded instances that are both in-distributed and label-preserving. We evaluate TimeX++ on both synthetic and real-world datasets comparing its performance against leading baselines, and validate its practical efficacy through case studies in a real-world environmental application. Quantitative and qualitative evaluations show that TimeX++ outperforms baselines across all datasets, demonstrating a substantial improvement in explanation quality for time series data. The source code is available at https://github.com/zichuan-liu/TimeXplusplus.
[ Hall C 4-9 ]

Abstract
Performative prediction, as introduced by Perdomo et al., is a framework for studying social prediction in which the data distribution itself changes in response to the deployment of a model. Existing work in this field usually hinges on three assumptions that are easily violated in practice: that the performative risk is convex over the deployed model, that the mapping from the model to the data distribution is known to the model designer in advance, and the first-order information of the performative risk is available. In this paper, we initiate the study of performative prediction problems that do not require these assumptions. Specifically, we develop a parameterization framework that parametrizes the performative prediction objective as a function of the induced data distribution. We also develop a two-level zeroth-order optimization procedure, where the first level performs iterative optimization on the distribution parameter space, and the second level learns the model that induced a particular target distribution parameter at each iteration. Under mild conditions, this reparameterization allows us to transform the non-convex objective into a convex one and achieve provable regret guarantees. In particular, we provide a regret bound that is sublinear in the total number of performative samples taken and is only …
[ Hall C 4-9 ]
Abstract
Distributed learning is an effective approach to accelerate model training by using parallel computing power of multiple workers. However, substantial communication delays arise between workers and a parameter server due to the massive costs associated with communicating gradients. SignSGD with majority voting (signSGD-MV) is a simple yet effective optimizer that reduces communication costs through sign quantization, but its convergence rate significantly decreases when adversarial workers arbitrarily manipulate datasets or local gradient updates. In this paper, we consider a distributed learning problem where the workforce comprises a mixture of honest and adversarial workers. In this setting, we show that the convergence rate can remain invariant as long as the number of honest workers providing trustworthy local updates to the parameter server exceeds the number of adversarial workers. The key idea behind this counter-intuitive result is our novel aggregation method, signSGD with federated defense (signSGD-FD). Unlike traditional approaches, signSGD-FD utilizes the gradient information sent by adversarial workers with appropriate weights, obtained through gradient sign decoding. Experimental results demonstrate that signSGD-FD achieves superior convergence rates compared to traditional algorithms in various adversarial attack scenarios.
[ Hall C 4-9 ]

Abstract
Traveling waves are a fundamental phenomenon in the brain, playing a crucial role in short-term information storage. In this study, we leverage the concept of traveling wave dynamics within a neural lattice to formulate a theoretical model of neural working memory in Recurrent Neural Networks (RNNs), study its properties, and its real world implications in AI. The proposed model diverges from traditional approaches, which assume information storage in static, register-like locations updated by interference. Instead, the model stores data as waves that is updated by the wave's boundary conditions. We rigorously examine the model's capabilities in representing and learning state histories, which are vital for learning history-dependent dynamical systems. The findings reveal that the model reliably stores external information and enhances the learning process by addressing the diminishing gradient problem of RNNs. To understand the model's real-world applicability, we explore two cases: linear boundary condition and non-linear, self-attention-driven boundary condition. The experiments reveal that the linear scenario is effectively learned by RNNs through backpropagation when modeling history-dependent dynamical systems. Conversely, the non-linear scenario parallels an attention-only transformer. Collectively, our findings suggest the broader relevance of traveling waves in AI and its potential in advancing neural network architectures.
[ Hall C 4-9 ]

Abstract
While VideoQA Transformer models demonstrate competitive performance on standard benchmarks, the reasons behind their success are not fully understood. Do these models capture the rich multimodal structures and dynamics from video and text jointly? Or are they achieving high scores by exploiting biases and spurious features? Hence, to provide insights, we design QUAG (QUadrant AveraGe), a lightweight and non-parametric probe, to conduct dataset-model combined representation analysis by impairing modality fusion. We find that the models achieve high performance on many datasets without leveraging multimodal representations. To validate QUAG further, we design QUAG-attention, a less-expressive replacement of self-attention with restricted token interactions. Models with QUAG-attention achieve similar performance with significantly fewer multiplication operations without any finetuning. Our findings raise doubts about the current models' abilities to learn highly-coupled multimodal representations. Hence, we design the CLAVI (Complements in LAnguage and VIdeo) dataset, a stress-test dataset curated by augmenting real-world videos to have high modality coupling. Consistent with the findings of QUAG, we find that most of the models achieve near-trivial performance on CLAVI. This reasserts the limitations of current models for learning highly-coupled multimodal representations, that is not evaluated by the current datasets.
[ Hall C 4-9 ]

Abstract
A common method to study deep learning systems is to use simplified model representations—for example, using singular value decomposition to visualize the model’s hidden states in a lower dimensional space. This approach assumes that the results of these simplifications are faithful to the original model. Here, we illustrate an important caveat to this assumption: even if the simplified representations can accurately approximate the full model on the training set, they may fail to accurately capture the model’s behavior out of distribution. We illustrate this by training Transformer models on controlled datasets with systematic generalization splits, including the Dyck balanced-parenthesis languages and a code completion task. We simplify these models using tools like dimensionality reduction and clustering, and then explicitly test how these simplified proxies match the behavior of the original model. We find consistent generalization gaps: cases in which the simplified proxies are more faithful to the original model on the in-distribution evaluations and less faithful on various tests of systematic generalization. This includes cases where the original model generalizes systematically but the simplified proxies fail, and cases where the simplified proxies generalize better. Together, our results raise questions about the extent to which mechanistic interpretations derived using tools like …
[ Hall C 4-9 ]

Abstract
Thanks to its solid theoretical foundation, the SHAP framework is arguably one the most widely utilized frameworks for local explainability of ML models. Despite its popularity, its exact computation is known to be very challenging, proven to be NP-Hard in various configurations. Recent works have unveiled positive complexity results regarding the computation of the SHAP score for specific model families, encompassing decision trees, random forests, and some classes of boolean circuits. Yet, all these positive results hinge on the assumption of feature independence, often simplistic in real-world scenarios. In this article, we investigate the computational complexity of the SHAP score by relaxing this assumption and introducing a Markovian perspective. We show that, under the Markovian assumption, computing the SHAP score for the class of Weighted automata, Disjoint DNFs and Decision Trees can be performed in polynomial time, offering a first positive complexity result for the problem of SHAP score computation that transcends the limitations of the feature independence assumption.
[ Hall C 4-9 ]
Abstract
This paper describes MAIA, a Multimodal Automated Interpretability Agent. MAIA is a system that uses neural models to automate neural model understanding tasks like feature interpretation and failure mode discovery. It equips a pre-trained vision-language model with a set of tools that support iterative experimentation on subcomponents of other models to explain their behavior. These include tools commonly used by human interpretability researchers: for synthesizing and editing inputs, computing maximally activating exemplars from real-world datasets, and summarizing and describing experimental results. Interpretability experiments proposed by MAIA compose these tools to describe and explain system behavior. We evaluate applications of MAIA to computer vision models. We first characterize MAIA’s ability to describe (neuron-level) features in learned representations of images. Across several trained models and a novel dataset of synthetic vision neurons with paired ground-truth descriptions, MAIA produces descriptions comparable to those generated by expert human experimenters. We then show that MAIA can aid in two additional interpretability tasks: reducing sensitivity to spurious features, and automatically identifying inputs likely to be mis-classified.
[ Hall C 4-9 ]

Abstract
In this paper, we dive into the reliability concerns of Integrated Gradients (IG), a prevalent feature attribution method for black-box deep learning models. We particularly address two predominant challenges associated with IG: the generation of noisy feature visualizations for vision models and the vulnerability to adversarial attributional attacks. Our approach involves an adaptation of path-based feature attribution, aligning the path of attribution more closely to the intrinsic geometry of the data manifold. Our experiments utilise deep generative models applied to several real-world image datasets. They demonstrate that IG along the geodesics conforms to the curved geometry of the Riemannian data manifold, generating more perceptually intuitive explanations and, subsequently, substantially increasing robustness to targeted attributional attacks.
[ Hall C 4-9 ]

Abstract
This paper considers ''model diagnosis'', which we formulate as a classification problem. Given a pre-trained neural network (NN), the goal is to predict the source of failure from a set of failure modes (such as a wrong hyperparameter, inadequate model size, and insufficient data) without knowing the training configuration of the pre-trained NN. The conventional diagnosis approach uses training and validation errors to determine whether the model is underfitting or overfitting. However, we show that rich information about NN performance is encoded in the optimization loss landscape, which provides more actionable insights than validation-based measurements. Therefore, we propose a diagnosis method called MD tree based on loss landscape metrics and experimentally demonstrate its advantage over classical validation-based approaches. We verify the effectiveness of MD tree in multiple practical scenarios: (1) use several models trained on one dataset to diagnose a model trained on another dataset, essentially a few-shot dataset transfer problem; (2) use small models (or models trained with small data) to diagnose big models (or models trained with big data), essentially a scale transfer problem. In a dataset transfer task, MD tree achieves an accuracy of 87.7%, outperforming validation-based approaches by 14.88%. Our code is available at https://github.com/YefanZhou/ModelDiagnosis.
[ Hall C 4-9 ]
Abstract
The local and global interpretability of various ML models has been studied extensively in recent years. However, despite significant progress in the field, many known results remain informal or lack sufficient mathematical rigor. We propose a framework for bridging this gap, by using computational complexity theory to assess local and global perspectives of interpreting ML models. We begin by proposing proofs for two novel insights that are essential for our analysis: (1) a duality between local and global forms of explanations; and (2) the inherent uniqueness of certain global explanation forms. We then use these insights to evaluate the complexity of computing explanations, across three model types representing the extremes of the interpretability spectrum: (1) linear models; (2) decision trees; and (3) neural networks. Our findings offer insights into both the local and global interpretability of these models. For instance, under standard complexity assumptions such as P != NP, we prove that selecting global sufficient subsets in linear models is computationally harder than selecting local subsets. Interestingly, with neural networks and decision trees, the opposite is true: it is harder to carry out this task locally than globally. We believe that our findings demonstrate how examining explainability through a computational …
[ Hall C 4-9 ]

Abstract
Attention-based architectures, in particular transformers, are at the heart of a technological revolution. Interestingly, in addition to helping obtain state-of-the-art results on a wide range of applications, the attention mechanism intrinsically provides meaningful insights on the internal behavior of the model. Can these insights be used as explanations? Debate rages on. In this paper, we mathematically study a simple attention-based architecture and pinpoint the differences between post-hoc and attention-based explanations. We show that they provide quite different results, and that, despite their limitations, post-hoc methods are capable of capturing more useful insights than merely examining the attention weights.
[ Hall C 4-9 ]

Abstract
Fair decision making has largely been studied with respect to a single decision. Here we investigate the notion of fairness in the context of sequential decision making where multiple stakeholders can be affected by the outcomes of decisions. We observe that fairness often depends on the history of the sequential decision-making process, and in this sense that it is inherently non-Markovian. We further observe that fairness often needs to be assessed at time points within the process, not just at the end of the process. To advance our understanding of this class of fairness problems, we explore the notion of non-Markovian fairness in the context of sequential decision making. We identify properties of non-Markovian fairness, including notions of long-term, anytime, periodic, and bounded fairness. We explore the interplay between non-Markovian fairness and memory and how memory can support construction of fair policies. Finally, we introduce the FairQCM algorithm, which can automatically augment its training data to improve sample efficiency in the synthesis of fair policies via reinforcement learning.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data. However, the single reward model overlooks the rich diversity of human preferences inherent in data collected from multiple users. In this work, we first derive an impossibility result of alignment with single reward RLHF, thereby highlighting its insufficiency in representing diverse human preferences. Next, we propose to learn a mixture of reward models via an expectation-maximization algorithm and solve a MaxMin alignment objective inspired by the Egalitarian principle in social choice theory to better honor diverse human preferences. We present comprehensive experimental results on small-scale (GPT-2) and large-scale language (with Tulu2-7B)) and show the efficacy of the proposed approach in the presence of diversity among human preferences. We remark that our findings in this work are not only limited to language models but also extend to reinforcement learning in general.
[ Hall C 4-9 ]

Abstract
This paper considers the scenario in which there are multiple institutions, each with a limited capacity for candidates, and candidates, each with preferences over the institutions. A central entity evaluates the utility of each candidate to the institutions, and the goal is to select candidates for each institution in a way that maximizes utility while also considering the candidates' preferences. The paper focuses on the setting in which candidates are divided into multiple groups and the observed utilities of candidates in some groups are biased--systematically lower than their true utilities. The first result is that, in these biased settings, prior algorithms can lead to selections with sub-optimal true utility and significant discrepancies in the fraction of candidates from each group that get their preferred choices. Subsequently, an algorithm is presented along with proof that it produces selections that achieve near-optimal group fairness with respect to preferences while also nearly maximizing the true utility under distributional assumptions. Further, extensive empirical validation of these results in real-world and synthetic settings, in which the distributional assumptions may not hold, are presented.
[ Hall C 4-9 ]

Abstract
AI systems have been shown to produce unfair results for certain subgroups of population, highlighting the need to understand bias on certain sensitive attributes. Current research often falls short, primarily focusing on the subgroups characterized by a single sensitive attribute, while neglecting the nature of intersectional fairness of multiple sensitive attributes. This paper focuses on its one fundamental aspect by discovering diverse high-bias intersectional sensitive attributes. Specifically, we propose a Bias-Guided Generative Network (BGGN). By treating each bias value as a reward, BGGN efficiently generates high-bias intersectional sensitive attributes. Experiments on real-world text and image datasets demonstrate a diverse and efficient discovery of BGGN. To further evaluate the generated unseen but possible unfair intersectional sensitive attributes, we formulate them as prompts and use modern generative AI to produce new text and images. The results of frequently generating biased data provides new insights of discovering potential unfairness in popular modern generative AI systems. Warning: This paper contains examples that are offensive in nature.
[ Hall C 4-9 ]

Abstract
As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. To do so, safety measures either aim at making LLMs try to avoid harmful outcomes or aim at preventing LLMs from causing harmful outcomes, even if they try to cause them. In this paper, we focus on this second layer of defense. We develop and evaluate pipelines of safety techniques (protocols) that try to ensure safety despite intentional subversion - an approach we call AI control. We investigate a setting in which we want to solve a sequence of programming problems without ever submitting subtly wrong code, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate a range of protocols and red-team them by exploring strategies that the untrusted model could use to subvert them. We find that using the trusted model to edit untrusted-model code or using the untrusted model as a monitor substantially improves on simple baselines.
[ Hall C 4-9 ]
Abstract
Bootstrap is a popular methodology for simulating input uncertainty. However, it can be computationally expensive when the number of samples is large. We propose a new approach called Orthogonal Bootstrap that reduces the number of required Monte Carlo replications. We decomposes the target being simulated into two parts: the non-orthogonal part which has a closed-form result known as Infinitesimal Jackknife and the orthogonal part which is easier to be simulated. We theoretically and numerically show that Orthogonal Bootstrap significantly reduces the computational cost of Bootstrap while improving empirical accuracy and maintaining the same width of the constructed interval.
[ Hall C 4-9 ]

Abstract
In order to enhance the generalization ability towards unseen domains, universal cross-domain image retrieval methods require a training dataset encompassing diverse domains, which is costly to assemble. Given this constraint, we introduce a novel problem of data-free adaptive cross-domain retrieval, eliminating the need for real images during training. Towards this goal, we propose a novel Text-driven Knowledge Integration (TKI) method, which exclusively utilizes a pre-trained vision-language model to implement an ``aggregation after expansion" training strategy. Specifically, we extract diverse implicit domain-specific information through a set of learnable domain word vectors. Subsequently, a domain-agnostic universal projection, equipped with a non-Euclidean multi-layer perceptron, can be optimized using these assorted text descriptions through the text-proxied domain aggregation. Leveraging the cross-modal transferability phenomenon of the shared latent space, we can integrate the trained domain-agnostic universal projection with the pre-trained visual encoder to extract the features of the input image for the following retrieval during testing. Extensive experimental results on several benchmark datasets demonstrate the superiority of our method.
[ Hall C 4-9 ]
Abstract
Deep denoisers have shown excellent performance in solving inverse problems in signal and image processing. In order to guarantee the convergence, the denoiser needs to satisfy some Lipschitz conditions like non-expansiveness. However, enforcing such constraints inevitably compromises recovery performance. This paper introduces a novel training strategy that enforces a weaker constraint on the deep denoiser called pseudo-contractiveness. By studying the spectrum of the Jacobian matrix, relationships between different denoiser assumptions are revealed. Effective algorithms based on gradient descent and Ishikawa process are derived, and further assumptions of strict pseudo-contractiveness yield efficient algorithms using half-quadratic splitting and forward-backward splitting. The proposed algorithms theoretically converge strongly to a fixed point. A training strategy based on holomorphic transformation and functional calculi is proposed to enforce the pseudo-contractive denoiser assumption. Extensive experiments demonstrate superior performance of the pseudo-contractive denoiser compared to related denoisers. The proposed methods are competitive in terms of visual effects and quantitative values.
[ Hall C 4-9 ]
Abstract
We argue that the selective inclusion of data points based on latent objectives is common in practical situations, such as music sequences. Since this selection process often distorts statistical analysis, previous work primarily views it as a bias to be corrected and proposes various methods to mitigate its effect. However, while controlling this bias is crucial, selection also offers an opportunity to provide a deeper insight into the hidden generation process, as it is a fundamental mechanism underlying what we observe. In particular, overlooking selection in sequential data can lead to an incomplete or overcomplicated inductive bias in modeling, such as assuming a universal autoregressive structure for all dependencies. Therefore, rather than merely viewing it as a bias, we explore the causal structure of selection in sequential data to delve deeper into the complete causal process. Specifically, we show that selection structure is identifiable without any parametric assumptions or interventional experiments. Moreover, even in cases where selection variables coexist with latent confounders, we still establish the nonparametric identifiability under appropriate structural conditions. Meanwhile, we also propose a provably correct algorithm to detect and identify selection structures as well as other types of dependencies. The framework has been validated empirically on …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Dense linear layers are the dominant computational bottleneck in foundation models. Identifying more efficient alternatives to dense matrices has enormous potential for building more compute-efficient models, as exemplified by the success of convolutional networks in the image domain. In this work, we systematically explore structured matrices as replacements for dense matrices. We show that different structures often require drastically different initialization scales and learning rates, which are crucial to performance, especially as models scale. Using insights from the Maximal Update Parameterization, we determine the optimal scaling for initialization and learning rates of these unconventional layers. Finally, we measure the scaling laws of different structures to compare how quickly their performance improves with compute. We propose a novel matrix family containing Monarch matrices, the Block Tensor-Train (BTT), which we show performs better than dense matrices for the same compute on multiple tasks. On CIFAR-10/100 with augmentation, BTT achieves exponentially lower training loss than dense when training MLPs and ViTs. BTT matches dense ViT-S/32 performance on ImageNet-1k with 3.8 times less compute and is more efficient than dense for training small GPT-2 language models.
[ Hall C 4-9 ]

Abstract
Visual Model-Based Reinforcement Learning (MBRL) promises to encapsulate agent's knowledge about the underlying dynamics of the environment, enabling learning a world model as a useful planner. However, top MBRL agents such as Dreamer often struggle with visual pixel-based inputs in the presence of exogenous or irrelevant noise in the observation space, due to failure to capture task-specific features while filtering out irrelevant spatio-temporal details. To tackle this problem, we apply a spatio-temporal masking strategy, a bisimulation principle, combined with latent reconstruction, to capture endogenous task-specific aspects of the environment for world models, effectively eliminating non-essential information. Joint training of representations, dynamics, and policy often leads to instabilities. To further address this issue, we develop a Hybrid Recurrent State-Space Model (HRSSM) structure, enhancing state representation robustness for effective policy learning. Our empirical evaluation demonstrates significant performance improvements over existing methods in a range of visually complex control tasks such as Maniskill with exogenous distractors from the Matterport environment. Our code is avaliable at https://github.com/bit1029public/HRSSM.
[ Hall C 4-9 ]
Abstract
Autoregressive language models are the currently dominant paradigm for text generation, however they have some fundamental limitations that cannot be remedied by scale---for example inherently sequential and unidirectional generation. While alternate classes of models have been explored, we have limited mathematical understanding of their fundamental power and limitations. In this paper we focus on Generative Masked Language Models (GMLMs), a non-autoregressive paradigm in which we train a model to fit conditional probabilities of the data distribution via masking, which are subsequently used as inputs to a Markov Chain to draw samples from the model. These models empirically strike a promising speed-quality trade-off as each step can be typically parallelized by decoding the entire sequence in parallel. We develop a mathematical framework for analyzing and improving such models which sheds light on questions of sample complexity and inference speed and quality. Empirically, we adapt the T5 model for iteratively-refined parallel decoding, achieving 2-3x speedup in machine translation with minimal sacrifice in quality compared with autoregressive models. We run careful ablation experiments to give recommendations on key design choices, and make fine-grained observations on the common error modes in connection with our theory. Our mathematical analyses and empirical observations characterize both potentials …
[ Hall C 4-9 ]
Abstract
We consider the prediction of general tensor properties of crystalline materials, including dielectric, piezoelectric, and elastic tensors. A key challenge here is how to make the predictions satisfy the unique tensor equivariance to both O(3) and crystal space groups. To this end, we propose a General Materials Tensor Network (GMTNet), which is carefully designed to satisfy the required symmetries. To evaluate our method, we curate a dataset and establish evaluation metrics that are tailored to the intricacies of crystal tensor predictions. Experimental results show that our GMTNet not only achieves promising performance on crystal tensors of various orders but also generates predictions fully consistent with the intrinsic crystal symmetries. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).
[ Hall C 4-9 ]

Abstract
In view of the complexity of the dynamics of learning in games, we seek to decompose a game into simpler components where the dynamics' long-run behavior is well understood. A natural starting point for this is Helmholtz's theorem, which decomposes a vector field into a potential and an incompressible component. However, the geometry of game dynamics - and, in particular, the dynamics of exponential / multiplicative weights (EW) schemes - is not compatible with the Euclidean underpinnings of Helmholtz's theorem. This leads us to consider a specific Riemannian framework based on the so-called Shahshahani metric, and introduce the class of incompressible games, for which we establish the following results: First, in addition to being volume-preserving, the continuous-time EW dynamics in incompressible games admit a constant of motion and are Poincaré recurrent - i.e., almost every trajectory of play comes arbitrarily close to its starting point infinitely often. Second, we establish a deep connection with a well-known decomposition of games into a potential and harmonic component (where the players' objectives are aligned and anti-aligned respectively): a game is incompressible if and only if it is harmonic, implying in turn that the EW dynamics lead to Poincaré recurrence in harmonic …
[ Hall C 4-9 ]

Abstract
A codebook designed for learning discrete distributions in latent space has demonstrated state-of-the-art results on generation tasks. This inspires us to explore what distribution of codebook is better. Following the spirit of Kepler's Conjecture, we cast the codebook training as solving the sphere packing problem and derive a Kepler codebook with a compact and structured distribution to obtain a codebook for image representations. Furthermore, we implement the Kepler codebook training by simply employing this derived distribution as regularization and using the codebook partition method. We conduct extensive experiments to evaluate our trained codebook for image reconstruction and generation on natural and human face datasets, respectively, achieving significant performance improvement. Besides, our Kepler codebook has demonstrated superior performance when evaluated across datasets and even for reconstructing images with different resolutions. Our trained models and source codes will be publicly released.
[ Hall C 4-9 ]

Abstract
We study the contextual bandits with knapsack (CBwK) problem under the high-dimensional setting where the dimension of the feature is large. We investigate how to exploit the sparsity structure to achieve improved regret for the CBwK problem. To this end, we first develop an online variant of the hard thresholding algorithm that performs the optimal sparse estimation. We further combine our online estimator with a primal-dual framework, where we assign a dual variable to each knapsack constraint and utilize an online learning algorithm to update the dual variable, thereby controlling the consumption of the knapsack capacity. We show that this integrated approach allows us to achieve a sublinear regret that depends logarithmically on the feature dimension, thus improving the polynomial dependency established in the previous literature. We also apply our framework to the high-dimension contextual bandit problem without the knapsack constraint and achieve optimal regret in both the data-poor regime and the data-rich regime.
[ Hall C 4-9 ]
Abstract
Conformal prediction has shown impressive capacity in constructing statistically rigorous prediction sets for machine learning models with exchangeable data samples. The siloed datasets, coupled with the escalating privacy concerns related to local data sharing, have inspired recent innovations extending conformal prediction into federated environments with distributed data samples. However, this framework for distributed uncertainty quantification is susceptible to Byzantine failures. A minor subset of malicious clients can significantly compromise the practicality of coverage guarantees. To address this vulnerability, we introduce a novel framework Rob-FCP, which executes robust federated conformal prediction, effectively countering malicious clients capable of reporting arbitrary statistics with the conformal calibration process. We theoretically provide the conformal coverage bound of Rob-FCP in the Byzantine setting and show that the coverage of Rob-FCP is asymptotically close to the desired coverage level. We also propose a malicious client number estimator to tackle a more challenging setting where the number of malicious clients is unknown to the defender and theoretically shows its effectiveness. We empirically demonstrate the robustness of Rob-FCP against diverse proportions of malicious clients under a variety of Byzantine attacks on five standard benchmark and real-world healthcare datasets.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
2D human pose estimation predicts keypoint locations and the corresponding confidence. Calibration-wise, the confidence should be aligned with the pose accuracy. Yet existing pose estimation methods tend to estimate confidence with heuristics such as the maximum value of heatmaps. This work shows, through theoretical analysis and empirical verification, a calibration gap in current pose estimation frameworks. Our derivations directly lead to closed-form adjustments in the confidence based on additionally inferred instance size and visibility. Given the black-box nature of deep neural networks, however, it is not possible to close the gap with only closed-form adjustments. We go one step further and propose a Calibrated ConfidenceNet (CCNet) to explicitly learn network-specific adjustments with a confidence prediction branch. The proposed CCNet, as a lightweight post-hoc addition, improves the calibration of standard off-the-shelf pose estimation frameworks.
[ Hall C 4-9 ]
Abstract
Dataset Distillation seeks to summarize a large dataset by generating a reduced set of synthetic samples. While there has been much success at distilling small datasets such as CIFAR-10 on smaller neural architectures, Dataset Distillation methods fail to scale to larger high-resolution datasets and architectures. In this work, we introduce Dataset Distillation with Domain Shift (D3S), a scalable distillation algorithm, made by reframing the dataset distillation problem as a domain shift one. In doing so, we derive a universal bound on the distillation loss, and provide a method for efficiently approximately optimizing it. We achieve state-of-the-art results on Tiny-ImageNet, ImageNet-1k, and ImageNet-21K over a variety of recently proposed baselines, including high cross-architecture generalization. Additionally, our ablation studies provide lessons on the importance of validation-time hyperparameters on distillation performance, motivating the need for standardization.
[ Hall C 4-9 ]

Abstract
A central approach to AI-safety research has been to generate aligned AI systems: i.e. systems that do not deceive users and yield actions or recommendations that humans might judge as consistent with their intentions and goals. Here we argue that truthful AIs aligned solely to human intent are insufficient and that preservation of long-term agency of humans may be a more robust standard that may need to be separated and explicitly optimized for. We discuss the science of intent and control and how human intent can be manipulated and we provide a formal definition of agency-preserving AI-human interactions focusing on forward-looking explicit agency evaluations. Our work points to a novel pathway for human harm in AI-human interactions and proposes solutions to this challenge.
[ Hall C 4-9 ]
Abstract
Large language models (LLMs) have exhibited impressive capabilities in comprehending complex instructions. However, their blind adherence to provided instructions has led to concerns regarding risks of malicious use. Existing defence mechanisms, such as model fine-tuning or output censorship methods have proven to be fallible at ensuring that LLMs do not return semantically impermissible responses. We present fundamental limitations of verifying the semantic properties of LLM outputs and identifying compositional threats, illustrating inherent challenges of current approaches to censoring LLM outputs. Specifically, we demonstrate that semantic censorship can be perceived as an undecidable problem, and semantic properties of LLM outputs can become impossible to verify when the LLM is capable of providing "encrypted" outputs. We further show challenges of censorship can extend beyond just semantic censorship, as attackers can reconstruct impermissible outputs from a collection of permissible ones. Consequently, we call for a re-evaluation of the problem of censorship and its goals, stressing the need for new definitions and approaches to censorship. In addition, we provide an initial attempt toward achieving this goal through syntactic censorship, drawing from a security perspective to design censorship methods that can provide guarantees.
[ Hall C 4-9 ]

Abstract
The ability of Large Language Models (LLMs) to process and generate coherent text is markedly weakened when the number of input tokens exceeds their pretraining length. Given the expensive overhead of finetuning large-scale models with longer sequences, we propose a training-free approach named Dual Chunk Attention (DCA), which enables Llama2 70B to support context windows of up to 100k tokens. By decomposing the attention computation for long sequences into chunk-based modules, DCA manages to effectively capture the relative positional information of tokens within the same chunk (Intra-Chunk) and across distinct chunks (Inter-Chunk), as well as integrates seamlessly with Flash Attention. In addition to its impressive extrapolation capability, DCA achieves performance on practical long-context tasks that is comparable to or even better than that of models built through continual training. All code and data used in this work are released at https://github.com/HKUNLP/ChunkLlama.
[ Hall C 4-9 ]
Abstract
We introduce a method to generate 3D scenes that are disentangled into their component objects. This disentanglement is unsupervised, relying only on the knowledge of a large pretrained text-to-image model. Our key insight is that objects can be discovered by finding parts of a 3D scene that, when rearranged spatially, still produce valid configurations of the same scene. Concretely, our method jointly optimizes multiple NeRFs---each representing its own object---along with a set of layouts that composite these objects into scenes. We then encourage these composited scenes to be in-distribution according to the image generator. We show that despite its simplicity, our approach successfully generates 3D scenes decomposed into individual objects, enabling new capabilities in text-to-3D content creation.
[ Hall C 4-9 ]
Abstract
In this paper, we introduce SemiRES, a semi-supervised framework that effectively leverages a combination of labeled and unlabeled data to perform RES. A significant hurdle in applying semi-supervised techniques to RES is the prevalence of noisy pseudo-labels, particularly at the boundaries of objects. SemiRES incorporates the Segment Anything Model (SAM), renowned for its precise boundary demarcation, to improve the accuracy of these pseudo-labels. Within SemiRES, we offer two alternative matching strategies: IoU-based Optimal Matching (IOM) and Composite Parts Integration (CPI). These strategies are designed to extract the most accurate masks from SAM's output, thus guiding the training of the student model with enhanced precision. In instances where a precise mask cannot be matched from the available candidates, we develop the Pixel-Wise Adjustment (PWA) strategy, guiding the student model's training directly by the pseudo-labels. Extensive experiments on three RES benchmarks—RefCOCO, RefCOCO+, and G-Ref reveal its superior performance compared to fully supervised methods, especially in low-data scenarios. Remarkably, with only 1% labeled data, our SemiRES outperforms the supervised baseline by a large margin, e.g. +18.64% gains on RefCOCO val set.
[ Hall C 4-9 ]
Abstract
In this paper, we show that Low Rank Adaptation (LoRA) as originally introduced in (Hu et al., 2021) leads to suboptimal finetuning of models with large width. This is due to the fact that adapter matrices A and B in LoRA are updated with the same learning rate in ADAM. Using scaling arguments for large width networks, we demonstrate that the same learning rate does not allow efficient feature learning. We then show that this suboptimality of LoRA can be corrected simply by setting different learning rates for the LoRA adapter matrices A and B with a well-chosen fixed ratio. We call this proposed algorithm LoRA+. In our extensive experiments, LoRA+ improves finetuning speed (up to ∼ 2X SpeedUp) and performance (1% − 2% improvements), at the same computational cost as LoRA. The code is available at https://github.com/nikhil-ghosh-berkeley/loraplus
[ Hall C 4-9 ]

Abstract
1-bit detectors show impressive performance comparable to their real-valued counterparts when detecting commonly sized objects while exhibiting significant performance degradation on tiny objects. The challenge stems from the fact that high-level features extracted by 1-bit convolutions seem less compelling to reveal the discriminative foreground features. To address these issues, we introduce a Discriminative Feature Refinement method for 1-bit Detectors (DFR-Det), aiming to enhance the discriminative ability of foreground representation for tiny objects in aerial images. This is accomplished by refining the feature representation using an information bottleneck (IB) to achieve a distinctive representation of tiny objects. Specifically, we introduce a new decoder with a foreground mask, aiming to enhance the discriminative ability of high-level features for the target but suppress the background impact. Additionally, our decoder is simple but effective and can be easily mounted on existing detectors without extra burden added to the inference procedure. Extensive experiments on various tiny object detection (TOD) tasks demonstrate DFR-Det's superiority over state-of-the-art 1-bit detectors. For example, 1-bit FCOS achieved by DFR-Det achieves the 12.8% AP on AI-TOD dataset, approaching the performance of the real-valued counterpart.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
This work studies machine learning for electron density prediction, which is fundamental for understanding chemical systems and density functional theory (DFT) simulations. To this end, we introduce the Gaussian plane-wave neural operator (GPWNO), which operates in the infinite-dimensional functional space using the plane-wave and Gaussian-type orbital bases, widely recognized in the context of DFT. In particular, both high- and low-frequency components of the density can be effectively represented due to the complementary nature of the two bases. Extensive experiments on QM9, MD, and material project datasets demonstrate GPWNO's superior performance over ten baselines.
[ Hall C 4-9 ]
Abstract
Latent generative models (e.g., Stable Diffusion) have become more and more popular, but concerns have arisen regarding potential misuse related to images generated by these models. It is, therefore, necessary to analyze the origin of images by inferring if a particular image was generated by a specific latent generative model. Most existing methods (e.g., image watermark and model fingerprinting) require extra steps during training or generation. These requirements restrict their usage on the generated images without such extra operations, and the extra required operations might compromise the quality of the generated images. In this work, we ask whether it is possible to effectively and efficiently trace the images generated by a specific latent generative model without the aforementioned requirements. To study this problem, we design a latent inversion based method called LatentTracer to trace the generated images of the inspected model by checking if the examined images can be well-reconstructed with an inverted latent input. We leverage gradient based latent inversion and identify a encoder-based initialization critical to the success of our approach. Our experiments on the state-of-the-art latent generative models, such as Stable Diffusion, show that our method can distinguish the images generated by the inspected model and other …
[ Hall C 4-9 ]
Abstract
How to explain temporal models is a significant challenge due to the inherent characteristics of time series data, notably the strong temporal dependencies and interactions between observations. Unlike ordinary tabular data, data at different time steps in time series usually interact dynamically, forming influential patterns that shape the model’s predictions, rather than only acting in isolation. Existing explanatory approaches for time series often overlook these crucial temporal interactions by treating time steps as separate entities, leading to a superficial understanding of model behavior. To address this challenge, we introduce FDTempExplainer, an innovative model-agnostic explanation method based on functional decomposition, tailored to unravel the complex interplay within black-box time series models. Our approach disentangles the individual contributions from each time step, as well as the aggregated influence of their interactions, in a rigorous framework. FDTempExplainer accurately measures the strength of interactions, yielding insights that surpass those from baseline models. We demonstrate the effectiveness of our approach in a wide range of time series applications, including anomaly detection, classification, and forecasting, showing its superior performance to the state-of-the-art algorithms.
[ Hall C 4-9 ]
Abstract
The remarkable generalization ability of neural networks is usually attributed to the implicit bias of SGD, which often yields models with lower complexity using simpler (e.g. linear) and low-rank features. Recent works have provided empirical and theoretical evidence for the bias of particular variants of SGD (such as label noise SGD) toward flatter regions of the loss landscape. Despite the folklore intuition that flat solutions are 'simple', the connection with the simplicity of the final trained model (e.g. low-rank) is not well understood. In this work, we take a step toward bridging this gap by studying the simplicity structure that arises from minimizers of the sharpness for a class of two-layer neural networks. We show that, for any high dimensional training data and certain activations, with small enough step size, label noise SGD always converges to a network that replicates a single linear feature across all neurons; thereby implying a simple rank one feature matrix. To obtain this result, our main technical contribution is to show that label noise SGD always minimizes the sharpness on the manifold of models with zero loss for two-layer networks. Along the way, we discover a novel property --- a local geodesic convexity --- of …
[ Hall C 4-9 ]
Abstract
Following natural language instructions by executing actions in digital environments (e.g. web-browsers and REST APIs) is a challenging task for language model (LM) agents. Unfortunately, LM agents often fail to generalize to new environments without human demonstrations. This work presents BAGEL, a method for bootstrapping LM agents without human supervision. BAGEL converts a seed set of randomly explored trajectories to synthetic demonstrations via round-trips between two noisy LM components: an LM labeler which converts a trajectory into a synthetic instruction, and a zero-shot LM agent which maps the synthetic instruction into a refined trajectory. By performing these round-trips iteratively, BAGEL quickly converts the initial distribution of trajectories towards those that are well-described by natural language. We adapt the base LM agent at test time with in-context learning by retrieving relevant BAGEL demonstrations based on the instruction, and find improvements of over 2-13% absolute on ToolQA and MiniWob++, with up to 13x reduction in execution failures.
[ Hall C 4-9 ]
Abstract
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique that aligns language models closely with human-centric values. The initial phase of RLHF involves learning human values using a reward model from ranking data. It is observed that the performance of the reward model degrades after one epoch of training, and optimizing too much against the learned reward model eventually hinders the true objective. This paper analyzes potential reasons behind the issues, and designs improved reward learning algorithm termed 'Iterative Data Smoothing' (IDS). The core idea is that during each training epoch, we not only update the model with the data, but also update the date using the model, replacing hard labels with soft labels. Our empirical findings highlight the superior performance of this approach over the traditional methods.
[ Hall C 4-9 ]

Abstract
The emergence of In-Context Learning (ICL) in LLMs remains a remarkable phenomenon that is partially understood. To explain ICL, recent studies have created theoretical connections to Gradient Descent (GD). We ask, do such connections hold up in actual pre-trained language models? We highlight the limiting assumptions in prior works that make their setup considerably different from the practical setup in which language models are trained. For example, their experimental verification uses ICL objective (training models explicitly for ICL), which differs from the emergent ICL in the wild. Furthermore, the theoretical hand-constructed weights used in these studies have properties that don't match those of real LLMs. We also look for evidence in real models. We observe that ICL and GD have different sensitivity to the order in which they observe demonstrations. Finally, we probe and compare the ICL vs. GD hypothesis in a natural setting. We conduct comprehensive empirical analyses on language models pre-trained on natural data (LLaMa-7B). Our comparisons of three performance metrics highlight the inconsistent behavior of ICL and GD as a function of various factors such as datasets, models, and the number of demonstrations. We observe that ICL and GD modify the output distribution of language models differently. …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
We study the capabilities of the transformer architecture with varying depth. Specifically, we designed a novel set of sequence learning tasks to systematically evaluate and comprehend how the depth of transformer affects its ability to perform memorization, reasoning, generalization, and contextual generalization. We show a transformer with only one attention layer can excel in memorization but falls short in other tasks. Then, we show that exhibiting reasoning and generalization ability requires the transformer to have at least two attention layers, while context generalization ability may necessitate three attention layers. Additionally, we identify a class of simple operations that a single attention layer can execute, and show that the complex tasks can be approached as the combinations of these simple operations and thus can be resolved by stacking multiple attention layers. This sheds light on studying more practical and complex tasks beyond our design. Numerical experiments corroborate our theoretical findings.
[ Hall C 4-9 ]

Abstract
Real-world data generally follows a long-tailed distribution, which makes traditional high-performance training strategies unable to show their usual effects. Various insights have been proposed to alleviate this challenging distribution. However, some observations indicate that models trained on long-tailed distributions always show a trade-off between the performance of head and tail classes. For a profound understanding of the trade-off, we first theoretically analyze the trade-off problem in long-tailed learning and creatively transform the trade-off problem in long-tailed learning into a multi-objective optimization (MOO) problem. Motivated by these analyses, we propose the idea of strategy fusion for MOO long-tailed learning and point out the potential conflict problem. We further design a Multi-Objective Optimization based Strategy Fusion (MOOSF), which effectively resolves conflicts, and achieves an efficient fusion of heterogeneous strategies. Comprehensive experiments on mainstream datasets show that even the simplest strategy fusion can outperform complex long-tailed strategies. More importantly, it provides a new perspective for generalized long-tailed learning. The code is available in the accompanying supplementary materials.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Graph is a fundamental data structure to model interconnections between entities. Set, on the contrary, stores independent elements. To learn graph representations, current Graph Neural Networks (GNNs) primarily use message passing to encode the interconnections. In contrast, this paper introduces a novel graph-to-set conversion method that bijectively transforms interconnected nodes into a set of independent points and then uses a set encoder to learn the graph representation. This conversion method holds dual significance. Firstly, it enables using set encoders to learn from graphs, thereby significantly expanding the design space of GNNs. Secondly, for Transformer, a specific set encoder, we provide a novel and principled approach to inject graph information losslessly, different from all the heuristic structural/positional encoding methods adopted in previous graph transformers. To demonstrate the effectiveness of our approach, we introduce Point Set Transformer (PST), a transformer architecture that accepts a point set converted from a graph as input. Theoretically, PST exhibits superior expressivity for both short-range substructure counting and long-range shortest path distance tasks compared to existing GNNs. Extensive experiments further validate PST's outstanding real-world performance. Besides Transformer, we also devise a Deepset-based set encoder, which achieves performance comparable to representative GNNs, affirming the versatility of our graph-to-set …
[ Hall C 4-9 ]
Abstract
Unsupervised Contrastive learning has gained prominence in fields such as vision, and biology, leveraging predefined positive/negative samples for representation learning. Data augmentation, categorized into hand-designed and model-based methods, has been identified as a crucial component for enhancing contrastive learning. However, hand-designed methods require human expertise in domain-specific data while sometimes distorting the meaning of the data. In contrast, generative model-based approaches usually require supervised or large-scale external data, which has become a bottleneck constraining model training in many domains. To address the problems presented above, this paper proposes DiffAug, a novel unsupervised contrastive learning technique with diffusion mode-based positive data generation. DiffAug consists of a semantic encoder and a conditional diffusion model; the conditional diffusion model generates new positive samples conditioned on the semantic encoding to serve the training of unsupervised contrast learning. With the help of iterative training of the semantic encoder and diffusion model, DiffAug improves the representation ability in an uninterrupted and unsupervised manner. Experimental evaluations show that DiffAug outperforms hand-designed and SOTA model-based augmentation methods on DNA sequence, visual, and bio-feature datasets. The code for review is released at DiffAug CODE.
[ Hall C 4-9 ]
Abstract
We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback. Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training and is therefore rather simple to implement. Our approach is maximalist in that it provably handles non-Markovian, intransitive, and stochastic preferences while being robust to the compounding errors that plague offline approaches to sequential prediction. To achieve the preceding qualities, we build upon the concept of a Minimax Winner (MW), a notion of preference aggregation from the social choice theory literature that frames learning from preferences as a zero-sum game between two policies. By leveraging the symmetry of this game, we prove that rather than using the traditional technique of dueling two policies to compute the MW, we can simply have a single agent play against itself while maintaining strong convergence guarantees. Practically, this corresponds to sampling multiple trajectories from a policy, asking a preference or teacher model to compare them, and then using the proportion of wins as the reward for a particular trajectory. We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches while …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Binarized image super-resolution (SR) has attracted much research attention due to its potential to drastically reduce parameters and operations. However, most binary SR works binarize network weights directly, which hinders high-frequency information extraction. Furthermore, as a pixel-wise reconstruction task, binarization often results in heavy representation content distortion. To address these issues, we propose a flexible residual binarization (FRB) method for image SR. We first propose a second-order residual binarization (SRB), to counter the information loss caused by binarization. In addition to the primary weight binarization, we also binarize the reconstruction error, which is added as a residual term in the prediction. Furthermore, to narrow the representation content gap between the binarized and full-precision networks, we propose Distillation-guided Binarization Training (DBT). We uniformly align the contents of different bit widths by constructing a normalized attention form. Finally, we generalize our method by applying our FRB to binarize convolution and Transformer-based SR networks, resulting in two binary baselines: FRBC and FRBT. We conduct extensive experiments and comparisons with recent leading binarization methods. Our proposed baselines, FRBC and FRBT, achieve superior performance both quantitatively and visually. The code and model will be released.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Despite large neural networks demonstrating remarkable abilities to complete different tasks, they require excessive memory usage to store the optimization states for training. To alleviate this, the low-rank adaptation (LoRA) is proposed to reduce the optimization states by training fewer parameters. However, LoRA restricts overall weight update matrices to be low-rank, limiting the model performance. In this work, we investigate the dynamics of LoRA and identify that it can be approximated by a random projection. Based on this observation, we propose Flora, which is able to achieve high-rank updates by resampling the projection matrices while enjoying the sublinear space complexity of optimization states. We conduct experiments across different tasks and model architectures to verify the effectiveness of our approach.
[ Hall C 4-9 ]
Abstract
We show that offline actor-critic reinforcement learning can scale to large models - such as transformers - and follows similar scaling laws as supervised learning. We find that offline actor-critic algorithms can outperform strong, supervised, behavioral cloning baselines for multi-task training on a large dataset; containing both sub-optimal and expert behavior on 132 continuous control tasks. We introduce a Perceiver-based actor-critic model and elucidate the key features needed to make offline RL work with self- and cross-attention modules. Overall, we find that: i) simple offline actor critic algorithms are a natural choice for gradually moving away from the currently predominant paradigm of behavioral cloning, and ii) via offline RL it is possible to learn multi-task policies that master many domains simultaneously, including real robotics tasks, from sub-optimal demonstrations or self-generated data.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Early time classification algorithms aim to label a stream of features without processing the full input stream, while maintaining accuracy comparable to that achieved by applying the classifier to the entire input. In this paper, we introduce a statistical framework that can be applied to any sequential classifier, formulating a calibrated stopping rule. This data-driven rule attains finite-sample, distribution-free control of the accuracy gap between full and early-time classification. We start by presenting a novel method that builds on the Learn-then-Test calibration framework to control this gap marginally, on average over i.i.d. instances. As this algorithm tends to yield an excessively high accuracy gap for early halt times, our main contribution is the proposal of a framework that controls a stronger notion of error, where the accuracy gap is controlled conditionally on the accumulated halt times. Numerical experiments demonstrate the effectiveness, applicability, and usefulness of our method. We show that our proposed early stopping mechanism reduces up to 94% of timesteps used for classification while achieving rigorous accuracy gap control.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Diffusion models have demonstrated great potential for generating diverse images. However, their performance often suffers from slow generation due to iterative denoising. Knowledge distillation has been recently proposed as a remedy which can reduce the number of inference steps to one or a few, without significant quality degradation. However, existing distillation methods either require significant amounts of offline computation for generating synthetic training data from the teacher model, or need to perform expensive online learning with the help of real data. In this work, we present a novel technique called BOOT, that overcomes these limitations with an efficient data-free distillation algorithm. The core idea is to learn a time-conditioned model that predicts the output of a pre-trained diffusion model teacher given any time-step. Such a model can be efficiently trained based on bootstrapping from two consecutive sampled steps. Furthermore, our method can be easily adapted to large-scale text-to-image diffusion models, which are challenging for previous methods given the fact that the training sets are often large and difficult to access. We demonstrate the effectiveness of our approach on several benchmark datasets in the DDIM setting, achieving comparable generation quality while being orders of magnitude faster than the diffusion teacher. The …
[ Hall C 4-9 ]

Abstract
Recent advancements in offline reinforcement learning (RL) have underscored the capabilities of Conditional Sequence Modeling (CSM), a paradigm that learns the action distribution based on history trajectory and target returns for each state. However, these methods often struggle with stitching together optimal trajectories from sub-optimal ones due to the inconsistency between the sampled returns within individual trajectories and the optimal returns across multiple trajectories. Fortunately, Dynamic Programming (DP) methods offer a solution by leveraging a value function to approximate optimal future returns for each state, while these techniques are prone to unstable learning behaviors, particularly in long-horizon and sparse-reward scenarios. Building upon these insights, we propose the Q-value regularized Transformer (QT), which combines the trajectory modeling ability of the Transformer with the predictability of optimal future returns from DP methods. QT learns an action-value function and integrates a term maximizing action-values into the training loss of CSM, which aims to seek optimal actions that align closely with the behavior policy. Empirical evaluations on D4RL benchmark datasets demonstrate the superiority of QT over traditional DP and CSM methods, highlighting the potential of QT to enhance the state-of-the-art in offline RL.
[ Hall C 4-9 ]
Abstract
Machine learning models fail catastrophically under distribution shift, but a surprisingly effective way to empirically improve robustness to some types of shift (e.g., Imagenet-A/C) is to use stronger open-vocabulary classifiers derived from foundation models. In this work, we first note that for shifts governed by spurious correlations (features spuriously correlated with the label on the training data, but not on test), the zero-shot and few-shot performance of foundation models is no better than ERM models, and remains unchanged when pretrained data/model size is scaled. Secondly, even in these situations, foundation models are quite accurate at predicting the value of the spurious feature. In a simplified setup, we theoretically analyze both these findings. Specifically, we show that during contrastive pretraining, the simplicity bias of foundation models tends to result in the learning of features that mostly rely on the spurious attribute, compared to more robust features. We leverage these observations to propose Prompting for Robustness (PfR) which first uses foundation models to zero-shot predict the spurious attribute on labeled examples, and then learns a classifier with balanced performance across different groups of labels and spurious attribute. Across 5 vision and language tasks, we show that PfR's performance nearly equals …
[ Hall C 4-9 ]
Abstract
Efficient and effective Out-of-Distribution (OOD) detection is essential for the safe deployment of AI systems. Existing feature space methods, while effective, often incur significant computational overhead due to their reliance on auxiliary models built from training features. In this paper, we propose a computationally-efficient OOD detector without using auxiliary models while still leveraging the rich information embedded in the feature space. Specifically, we detect OOD samples based on their feature distances to decision boundaries. To minimize computational cost, we introduce an efficient closed-form estimation, analytically proven to tightly lower bound the distance. Based on our estimation, we discover that In-Distribution (ID) features tend to be further from decision boundaries than OOD features. Additionally, ID and OOD samples are better separated when compared at equal deviation levels from the mean of training features. By regularizing the distances to decision boundaries based on feature deviation from the mean, we develop a hyperparameter-free, auxiliary model-free OOD detector. Our method matches or surpasses the effectiveness of state-of-the-art methods in extensive experiments while incurring negligible overhead in inference latency. Overall, our approach significantly improves the efficiency-effectiveness trade-off in OOD detection. Code is available at: https://github.com/litianliu/fDBD-OOD.
[ Hall C 4-9 ]
Abstract
This paper introduces AIM, a collection of vision models pre-trained with an autoregressive objective. These models are inspired by their textual counterparts, i.e., Large Language Models (LLMs), and exhibit similar scaling properties. Specifically, we highlight two key findings: (1) the performance of the visual features scale with both the model capacity and the quantity of data, (2) the value of the objective function correlates with the performance of the model on downstream tasks. We illustrate the practical implication of these findings by pre-training a 7 billion parameter AIM on 2 billion images, that achieves 84.0% on ImageNet-1k with a frozen trunk. Interestingly, even at this scale, we observe no sign of saturation in performance, suggesting that AIM potentially represents a new frontier for training large-scale vision models. The pre-training of AIM is similar to the pre-training of LLMs, and does not require any image-specific strategy to stabilize the training at scale.
[ Hall C 4-9 ]
Abstract
Active clustering aims to boost the clustering performance by integrating human-annotated pairwise constraints through strategic querying. Conventional approaches with semi-supervised clustering schemes encounter high query costs when applied to large datasets with numerous classes. To address these limitations, we propose a novel Adaptive Active Aggregation and Splitting (A3S) framework, falling within the cluster-adjustment scheme in active clustering. A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm. In particular, our cluster adjustment is inspired by the quantitative analysis of Normalized mutual information gain under the information theory framework and can provably improve the clustering quality. The proposed A3S framework significantly elevates the performance and scalability of active clustering. In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries compared with existing methods.
[ Hall C 4-9 ]

Abstract
The secondary structure of ribonucleic acid (RNA) is more stable and accessible in the cell than its tertiary structure, making it essential for functional prediction. Although deep learning has shown promising results in this field, current methods suffer from poor generalization and high complexity. In this work, we reformulate the RNA secondary structure prediction as a K-Rook problem, thereby simplifying the prediction process into probabilistic matching within a finite solution space. Building on this innovative perspective, we introduce RFold, a simple yet effective method that learns to predict the most matching K-Rook solution from the given sequence. RFold employs a bi-dimensional optimization strategy that decomposes the probabilistic matching problem into row-wise and column-wise components to reduce the matching complexity, simplifying the solving process while guaranteeing the validity of the output. Extensive experiments demonstrate that RFold achieves competitive performance and about eight times faster inference efficiency than the state-of-the-art approaches. The code is available at https://github.com/A4Bio/RFold.
[ Hall C 4-9 ]

Abstract
As the demand for long-context large language models (LLMs) increases, models with context windows of up to 128K or 1M tokens are becoming increasingly prevalent. However, long-context LLM inference is challenging since the inference speed decreases significantly as the sequence length grows. This slowdown is primarily caused by loading a large KV cache during self-attention. Previous works have shown that a small portion of critical tokens will dominate the attention outcomes. However, we observe the criticality of a token highly depends on the query. To this end, we propose Quest, a query-aware KV cache selection algorithm. Quest keeps track of the minimal and maximal Key values in KV cache pages and estimates the criticality of a given page using Query vectors. By only loading the Top-K critical KV cache pages for attention, Quest significantly speeds up self-attention without sacrificing accuracy. We show that Quest can achieve up to 2.23x self-attention speedup, which reduces inference latency by 7.03x while performing well on tasks with long dependencies with negligible accuracy loss. Code is available at https://github.com/mit-han-lab/quest.
[ Hall C 4-9 ]

Abstract
While the great capability of Transformers significantly boosts prediction accuracy, it could also yield overconfident predictions and require calibrated uncertainty estimation, which can be commonly tackled by Gaussian processes (GPs). Existing works apply GPs with symmetric kernels under variational inference to the attention kernel; however, omitting the fact that attention kernels are in essence asymmetric. Moreover, the complexity of deriving the GP posteriors remains high for large-scale data. In this work, we propose Kernel-Eigen Pair Sparse Variational Gaussian Processes (KEP-SVGP) for building uncertainty-aware self-attention where the asymmetry of attention kernels is tackled by Kernel SVD (KSVD) and a reduced complexity is acquired. Through KEP-SVGP, i) the SVGP pair induced by the two sets of singular vectors from KSVD w.r.t. the attention kernel fully characterizes the asymmetry; ii) using only a small set of adjoint eigenfunctions from KSVD, the derivation of SVGP posteriors can be based on the inversion of a diagonal matrix containing singular values, contributing to a reduction in time complexity; iii) an evidence lower bound is derived so that variational parameters and network weights can be optimized with it. Experiments verify our excellent performances and efficiency on in-distribution, distribution-shift and out-of-distribution benchmarks.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Plug-and-Play (PnP) algorithms are a class of iterative algorithms that address image inverse problems by combining a physical model and a deep neural network for regularization. Even if they produce impressive image restoration results, these algorithms rely on a non-standard use of a denoiser on images that are less and less noisy along the iterations, which contrasts with recent algorithms based on Diffusion Models (DM), where the denoiser is applied only on re-noised images. We propose a new PnP framework, called Stochastic deNOising REgularization (SNORE), which applies the denoiser only on images with noise of the adequate level. It is based on an explicit stochastic regularization, which leads to a stochastic gradient descent algorithm to solve ill-posed inverse problems. A convergence analysis of this algorithm and its annealing extension is provided. Experimentally, we prove that SNORE is competitive with respect to state-of-the-art methods on deblurring and inpainting tasks, both quantitatively and qualitatively.
[ Hall C 4-9 ]
Abstract
Deep neural networks are over-parameterized and easily overfit to and memorize the datasets that they train on. In the extreme case, it has been shown that networks can memorize a randomly labeled dataset. In this paper, we propose using the curvature of the loss function around each training sample, averaged over training epochs, as a measure of memorization of a sample. We show that this curvature metric effectively captures memorization statistics, both qualitatively and quantitatively in popular image datasets. We provide quantitative validation of the proposed metric against memorization scores released by Feldman & Zhang (2020). Further, experiments on mislabeled data detection show that corrupted samples are learned with high curvature and using curvature for identifying mislabelled examples outperforms existing approaches. Qualitatively, we find that high curvature samples correspond to long-tailed, mislabeled, or conflicting instances, indicating a likelihood of memorization. Notably, this analysis helps us find, to the best of our knowledge, a novel failure mode on the CIFAR100 and ImageNet datasets: that of duplicated images with differing labels.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
We investigate the problem of explainability for machine learning models, focusing on Feature Attribution Methods (FAMs) that evaluate feature importance through perturbation tests. Despite their utility, FAMs struggle to distinguish the contributions of different features, when their prediction changes are similar after perturbation. To enhance FAMs' discriminative power, we introduce Feature Attribution with Necessity and Sufficiency (FANS), which find a neighborhood of the input such that perturbing samples within this neighborhood have a high Probability of being Necessity and Sufficiency (PNS) cause for the change in predictions, and use this PNS as the importance of the feature. Specifically, FANS compute this PNS via a heuristic strategy for estimating the neighborhood and a perturbation test involving two stages (factual and interventional) for counterfactual reasoning. To generate counterfactual samples, we use a resampling-based approach on the observed samples to approximate the required conditional distribution. We demonstrate that FANS outperforms existing attribution methods on six benchmarks. Please refer to the source code via https://github.com/DMIRLAB-Group/FANS.
[ Hall C 4-9 ]
Abstract
The success of SGD in deep learning has been ascribed by prior works to the implicit bias induced by finite batch sizes (''SGD noise''). While prior works focused on offline learning (i.e., multiple-epoch training), we study the impact of SGD noise on online (i.e., single epoch) learning. Through an extensive empirical analysis of image and language data, we demonstrate that small batch sizes do not confer any implicit bias advantages in online learning. In contrast to offline learning, the benefits of SGD noise in online learning are strictly computational, facilitating more cost-effective gradient steps. This suggests that SGD in the online regime can be construed as taking noisy steps along the ''golden path'' of the noiseless gradient descent algorithm. We study this hypothesis and provide supporting evidence in loss and function space. Our findings challenge the prevailing understanding of SGD and offer novel insights into its role in online learning.
[ Hall C 4-9 ]

Abstract
Training deep neural networks for large language models (LLMs) remains computationally very expensive. To mitigate this, network growing algorithms offer potential cost savings, but their underlying mechanisms are poorly understood. In this paper, we propose a theoretical framework using backward error analysis to illuminate the dynamics of mid-training network growth. Furthermore, we introduce Deep Fusion, an efficient network training approach that leverages pre-trained initializations of smaller networks, facilitating network growth from diverse sources. Our experiments validate the power of our theoretical framework in guiding the optimal use of Deep Fusion. With carefully optimized training dynamics, Deep Fusion demonstrates significant reductions in both training time and resource consumption. Importantly, these gains are achieved without sacrificing performance. We demonstrate reduced computational requirements, and improved generalization performance on a variety of NLP tasks and T5 model sizes.
[ Hall C 4-9 ]

Abstract
Estimating mutual correlations between random variables or data streams is essential for intelligent behavior and decision-making. As a fundamental quantity for measuring statistical relationships, mutual information has been extensively studied and utilized for its generality and equitability. However, existing methods often lack the efficiency needed for real-time applications, such as test-time optimization of a neural network, or the differentiability required for end-to-end learning, like histograms. We introduce a neural network called InfoNet, which directly outputs mutual information estimations of data streams by leveraging the attention mechanism and the computational efficiency of deep learning infrastructures. By maximizing a dual formulation of mutual information through large-scale simulated training, our approach circumvents time-consuming test-time optimization and offers generalization ability. We evaluate the effectiveness and generalization of our proposed mutual information estimation scheme on various families of distributions and applications. Our results demonstrate that InfoNet and its training process provide a graceful efficiency-accuracy trade-off and order-preserving properties. We will make the code and models available as a comprehensive toolbox to facilitate studies in different fields requiring real-time mutual information estimation.
[ Hall C 4-9 ]

Abstract
Equivariant neural networks require explicit knowledge of the symmetry group. Automatic symmetry discovery methods aim to relax this constraint and learn invariance and equivariance from data. However, existing symmetry discovery methods are limited to simple linear symmetries and cannot handle the complexity of real-world data. We propose a novel generative model, Latent LieGAN (LaLiGAN), which can discover symmetries of nonlinear group actions. It learns a mapping from the data space to a latent space where the symmetries become linear and simultaneously discovers symmetries in the latent space. Theoretically, we show that our model can express nonlinear symmetries under some conditions about the group action. Experimentally, we demonstrate that our method can accurately discover the intrinsic symmetry in high-dimensional dynamical systems. LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.
[ Hall C 4-9 ]
Abstract
Discovering features with synergistic interactions in multi-view data, that provide more information gain when considered together than when considered separately, is particularly valuable. This fosters a more comprehensive understanding of the target outcome from diverse perspectives (views). However, despite the increasing opportunities presented by multi-view data, surprisingly little attention has been paid to uncovering these crucial interactions. To address this gap, we formally define the problem of selecting synergistic and non-synergistic feature subsets in multi-view data, leveraging an information-theoretic concept known as interaction information. To this end, we introduce a novel deep learning-based feature selection method that identifies different interactions across multiple views, employing a Bernoulli relaxation technique to solve this intractable subset searching problem. Experiments on synthetic, semi-synthetic, and real-world multi-view datasets demonstrate that our model discovers relevant feature subsets with synergistic and non-synergistic interactions, achieving remarkable similarity to the ground truth. Furthermore, we corroborate the discovered features with supporting medical and scientific literature, underscoring its utility in elucidating complex dependencies and interactions in multi-view data.
[ Hall C 4-9 ]

Abstract
Large Multimodal Models (LMMs) have achieved impressive success in visual reasoning, particularly in visual mathematics. However, problem-solving capabilities in graph theory remain less explored for LMMs, despite being a crucial aspect of mathematical reasoning that requires an accurate understanding of graphical structures and multi-step reasoning on visual graphs. To step forward in this direction, we are the first to design a benchmark named VisionGraph, used to explore the capabilities of advanced LMMs in solving multimodal graph theory problems. It encompasses eight complex graph problem tasks, from connectivity to shortest path problems. Subsequently, we present a Description-Program-Reasoning (DPR) chain to enhance the logical accuracy of reasoning processes through graphical structure description generation and algorithm-aware multi-step reasoning. Our extensive study shows that 1) GPT-4V outperforms Gemini Pro in multi-step graph reasoning; 2) All LMMs exhibit inferior perception accuracy for graphical structures, whether in zero/few-shot settings or with supervised fine-tuning (SFT), which further affects problem-solving performance; 3) DPR significantly improves the multi-step graph reasoning capabilities of LMMs and the GPT-4V (DPR) agent achieves SOTA performance.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Leveraging massive knowledge from large language models (LLMs), recent machine learning models show notable successes in general-purpose task solving in diverse domains such as computer vision and robotics. However, several significant challenges remain: (i) most of these models rely on 2D images yet exhibit a limited capacity for 3D input; (ii) these models rarely explore the tasks inherently defined in 3D world, e.g., 3D grounding, embodied reasoning and acting. We argue these limitations significantly hinder current models from performing real-world tasks and approaching general intelligence. To this end, we introduce LEO, an embodied multi-modal generalist agent that excels in perceiving, grounding, reasoning, planning, and acting in the 3D world. LEO is trained with a unified task interface, model architecture, and objective in two stages: (i) 3D vision-language (VL) alignment and (ii) 3D vision-language-action (VLA) instruction tuning. We collect large-scale datasets comprising diverse object-level and scene-level tasks, which require considerable understanding of and interaction with the 3D world. Moreover, we meticulously design an LLM-assisted pipeline to produce high-quality 3D VL data. Through extensive experiments, we demonstrate LEO's remarkable proficiency across a wide spectrum of tasks, including 3D captioning, question answering, embodied reasoning, navigation and manipulation. Our ablative studies and scaling analyses …
[ Hall C 4-9 ]

Abstract
Feature selection is a crucial task in settings where data is high-dimensional or acquiring the full set of features is costly. Recent developments in neural network-based embedded feature selection show promising results across a wide range of applications. Concrete Autoencoders (CAEs), considered state-of-the-art in embedded feature selection, may struggle to achieve stable joint optimization, hurting their training time and generalization. In this work, we identify that this instability is correlated with the CAE learning duplicate selections. To remedy this, we propose a simple and effective improvement: Indirectly Parameterized CAEs (IP-CAEs). IP-CAEs learn an embedding and a mapping from it to the Gumbel-Softmax distributions' parameters. Despite being simple to implement, IP-CAE exhibits significant and consistent improvements over CAE in both generalization and training time across several datasets for reconstruction and classification. Unlike CAE, IP-CAE effectively leverages non-linear relationships and does not require retraining the jointly optimized decoder. Furthermore, our approach is, in principle, generalizable to Gumbel-Softmax distributions beyond feature selection.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
In-context learning, i.e., learning from context examples, is an impressive ability of Transformer. Training Transformers to possess this in-context learning skill is computationally intensive due to the occurrence of learning plateaus, which are periods within the training process where there is minimal or no enhancement in the model's in-context learning capability. To study the mechanism behind the learning plateaus, we conceptually separate a component within the model's internal representation that is exclusively affected by the model's weights. We call this the “weights component”, and the remainder is identified as the “context component”. By conducting meticulous and controlled experiments on synthetic tasks, we note that the persistence of learning plateaus correlates with compromised functionality of the weights component. Recognizing the impaired performance of the weights component as a fundamental behavior that drives learning plateaus, we have developed three strategies to expedite the learning of Transformers. The effectiveness of these strategies is further confirmed in natural language processing tasks. In conclusion, our research demonstrates the feasibility of cultivating a powerful in-context learning ability within AI systems in an eco-friendly manner.
[ Hall C 4-9 ]

Abstract
We show that a constant number of self-attention layers can efficiently simulate—and be simulated by—a constant number of communication rounds of Massively Parallel Computation. As a consequence, we show that logarithmic-depth is sufficient for transformers to solve basic computational tasks that cannot be efficiently solved by several other neural sequence models and sub-quadratic transformer approximations. We thus establish parallelism as a key distinguishing property of transformers.
[ Hall C 4-9 ]

Abstract
To mitigate the computational complexity in the self-attention mechanism on long sequences, linear attention utilizes computation tricks to achieve linear complexity, while state space models (SSMs) popularize a favourable practice of using non-data-dependent memory pattern, i.e., emphasize the near and neglect the distant, to processing sequences. Recent studies have shown the priorities by combining them as one. However, the efficiency of linear attention remains only at the theoretical level in a causal setting, and SSMs require various designed constraints to operate effectively on specific data. Therefore, in order to unveil the true power of the hybrid design, the following two issues need to be addressed: (1) hardware-efficient implementation for linear attention and (2) stabilization of SSMs. To achieve this, we leverage the thought of tiling and hierarchy to propose CHELA (short-long Convolutions with Hardware-Efficient Linear Attention), which replaces SSMs with short-long convolutions and implements linear attention in a divide-and-conquer manner. This approach enjoys global abstraction and data-dependent selection from stable SSM and linear attention while maintaining real linear complexity. Our comprehensive experiments on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.
[ Hall C 4-9 ]

Abstract
A promising approach to preserving model performance in linearized transformers is to employ position-based re-weighting functions. However, state-of-the-art re-weighting functions rely heavily on target sequence lengths, making it difficult or impossible to apply them to autoregressive and simultaneous tasks, where the target and sometimes even the input sequence length are unknown. To address this issue, we propose Learned Proportions (LeaP) and LeaPformers. Our contribution is built on two major components. First, we generalize the dependence on explicit positional representations and sequence lengths into dependence on sequence proportions for re-weighting. Second, we replace static positional representations with dynamic proportions derived via a compact module, enabling more flexible attention concentration patterns. We evaluate LeaPformer against eight representative efficient transformers on the Long-Range Arena benchmark, where we show that LeaPformer achieves the best quality-throughput trade-off, as well as apply LeaPformer to Wikitext-103b autoregressive language modeling and simultaneous speech-to-text translation for two language pairs, achieving competitive results in both tasks.
[ Hall C 4-9 ]

Abstract
The self-attention mechanism prevails in modern machine learning. It has an interesting functionality of adaptively selecting tokens from an input sequence by modulating the degree of attention localization, which many researchers speculate is the basis of the powerful model performance but complicates the underlying mechanism of the learning dynamics. In recent years, mainly two arguments have connected attention localization to the model performances. One is the rank collapse, where the embedded tokens by a self-attention block become very similar across different tokens, leading to a less expressive network. The other is the entropy collapse, where the attention probability approaches non-uniform and entails low entropy, making the learning dynamics more likely to be trapped in plateaus. These two failure modes may apparently contradict each other because the rank and entropy collapses are relevant to uniform and non-uniform attention, respectively. To this end, we characterize the notion of attention localization by the eigenspectrum of query-key parameter matrices and reveal that a small eigenspectrum variance leads attention to be localized. Interestingly, the small eigenspectrum variance prevents both rank and entropy collapse, leading to better model expressivity and trainability.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
The transformer architecture has prevailed in various deep learning settings due to its exceptional capabilities to select and compose structural information. Motivated by these capabilities, Sanford et al. (2023) proposed the sparse token selection task, in which transformers excel while fully-connected networks (FCNs) fail in the worst case. Building upon that, we strengthen the FCN lower bound to an average-case setting and establish an algorithmic separation of transformers over FCNs. Specifically, a one-layer transformer trained with gradient descent provably learns the sparse token selection task and, surprisingly, exhibits strong out-of-distribution length generalization. We provide empirical simulations to justify our theoretical findings.
[ Hall C 4-9 ]
Abstract
Neural Processes (NPs) are popular meta-learning methods for efficiently modelling predictive uncertainty. Recent state-of-the-art methods, however, leverage expensive attention mechanisms, limiting their applications, particularly in low-resource settings. In this work, we propose Constant Memory Attentive Neural Processes (CMANPs), an NP variant that only requires constant memory. To do so, we first propose an efficient update operation for Cross Attention. Leveraging the update operation, we propose Constant Memory Attention Block (CMAB), a novel attention block that (i) is permutation invariant, (ii) computes its output in constant memory, and (iii) performs constant computation updates. Finally, building on CMAB, we detail Constant Memory Attentive Neural Processes. Empirically, we show CMANPs achieve state-of-the-art results on popular NP benchmarks while being significantly more memory efficient than prior methods.
[ Hall C 4-9 ]

Abstract
With the incorporation of the UNet architecture, diffusion probabilistic models have become a dominant force in image generation tasks. One key design in UNet is the skip connections between the encoder and decoder blocks. Although skip connections have been shown to improve training stability and model performance, we point out that such shortcuts can be a limiting factor for the complexity of the transformation. As the sampling steps decrease, the generation process and the role of the UNet get closer to the push-forward transformations from Gaussian distribution to the target, posing a challenge for the network's complexity. To address this challenge, we propose Skip-Tuning, a simple yet surprisingly effective training-free tuning method on the skip connections. For instance, our method can achieve 100% FID improvement for pretrained EDM on ImageNet 64 with only 19 NFEs (1.75), breaking the limit of ODE samplers regardless of sampling steps. Surprisingly, the improvement persists when we increase the number of sampling steps and can even surpass the best result from EDM-2 (1.58) with only 39 NFEs (1.57). Comprehensive exploratory experiments are conducted to shed light on the surprising effectiveness of our Skip-Tuning. We observe that while Skip-Tuning increases the score-matching losses in the pixel …
[ Hall C 4-9 ]

Abstract
Given an image of a natural scene, we are able to quickly decompose it into a set of components such as objects, lighting, shadows, and foreground. We can then envision a scene where we combine certain components with those from other images, for instance a set of objects from our bedroom and animals from a zoo under the lighting conditions of a forest, even if we have never encountered such a scene before. In this paper, we present a method to decompose an image into such compositional components. Our approach, Decomp Diffusion, is an unsupervised method which, when given a single image, infers a set of different components in the image, each represented by a diffusion model. We demonstrate how components can capture different factors of the scene, ranging from global scene descriptors like shadows or facial expression to local scene descriptors like constituent objects. We further illustrate how inferred factors can be flexibly composed, even with factors inferred from other models, to generate a variety of scenes sharply different than those seen in training time. Code and visualizations are at https://energy-based-model.github.io/decomp-diffusion.
[ Hall C 4-9 ]

Abstract
Consistency Models (CMs) have showed a promise in creating high-quality images with few steps. However, the way to add new conditional controls to the pre-trained CMs has not been explored. In this paper, we explore the pivotal subject of leveraging the generative capacity and efficiency of consistency models to facilitate controllable visual content creation via ControlNet. First, it is observed that ControlNet trained for diffusion models (DMs) can be directly applied to CMs for high-level semantic controls but sacrifice image low-level details and realism. To tackle with this issue, we develop a CMs-tailored training strategy for ControlNet using the consistency training. It is substantiated that ControlNet can be successfully established through the consistency training technique. Besides, a unified adapter can be trained utilizing the consistency training, which enhances the adaptation of DM's ControlNet. We quantitatively and qualitatively evaluate all strategies across various conditional controls, including sketch, hed, canny, depth, human pose, low-resolution image and masked image, with the pre-trained text-to-image latent consistency models.
[ Hall C 4-9 ]
Abstract
Deep generative models like GAN and VAE have shown impressive results in generating unconstrained objects like images. However, many design settings arising in industrial design, material science, computer graphics and more require that the generated objects satisfy hard combinatorial constraints or meet objectives in addition to modeling a data distribution. To address this, we propose GenCO, a generative framework that guarantees constraint satisfaction throughout training by leveraging differentiable combinatorial solvers to enforce feasibility. GenCO imposes the generative loss on provably feasible solutions rather than intermediate soft solutions, meaning that the deep generative network can focus on ensuring the generated objects match the data distribution without having to also capture feasibility. This shift enables practitioners to enforce hard constraints on the generated outputs during end-to-end training, enabling assessments of their feasibility and introducing additional combinatorial loss components to deep generative training. We demonstrate the effectiveness of our approach on a variety of generative combinatorial tasks, including game level generation, map creation for path planning, and photonic device design, consistently demonstrating its capability to yield diverse, high-quality solutions that verifiably adhere to user-specified combinatorial properties.
[ Hall C 4-9 ]
Abstract
Diffusion models have shown remarkable performance in generation problems over various domains including images, videos, text, and audio. A practical bottleneck of diffusion models is their sampling speed, due to the repeated evaluation of score estimation networks during the inference. In this work, we propose a novel framework capable of adaptively allocating compute required for the score estimation, thereby reducing the overall sampling time of diffusion models. We observe that the amount of computation required for the score estimation may vary along the time step for which the score is estimated. Based on this observation, we propose an early-exiting scheme, where we skip the subset of parameters in the score estimation network during the inference, based on a time-dependent exit schedule. Using the diffusion models for image synthesis, we show that our method could significantly improve the sampling throughput of the diffusion models without compromising image quality. Furthermore, we also demonstrate that our method seamlessly integrates with various types of solvers for faster sampling, capitalizing on their compatibility to enhance overall efficiency.
[ Hall C 4-9 ]

Abstract
Generative models have shown strong generation ability while efficient likelihood estimation is less explored. Energy-based models (EBMs) define a flexible energy function to parameterize unnormalized densities efficiently but are notorious for being difficult to train. Adversarial EBMs introduce a generator to form a minimax training game to avoid expensive MCMC sampling used in traditional EBMs, but a noticeable gap between adversarial EBMs and other strong generative models still exists. Inspired by diffusion-based models, we embedded EBMs into each denoising step to split a long-generated process into several smaller steps. Besides, we employ a symmetric Jeffrey divergence and introduce a variational posterior distribution for the generator's training to address the main challenges that exist in adversarial EBMs. Our experiments show significant improvement in generation compared to existing adversarial EBMs, while also providing a useful energy function for efficient density estimation.
[ Hall C 4-9 ]

Abstract
Recent advances in diffusion models attempt to handle conditional generative tasks by utilizing a differentiable loss function for guidance without the need for additional training. While these methods achieved certain success, they often compromise on sample quality and require small guidance step sizes, leading to longer sampling processes. This paper reveals that the fundamental issue lies in the manifold deviation during the sampling process when loss guidance is employed. We theoretically show the existence of manifold deviation by establishing a certain lower bound for the estimation error of the loss guidance. To mitigate this problem, we propose Diffusion with Spherical Gaussian constraint (DSG), drawing inspiration from the concentration phenomenon in high-dimensional Gaussian distributions. DSG effectively constrains the guidance step within the intermediate data manifold through optimization and enables the use of larger guidance steps. Furthermore, we present a closed-form solution for DSG denoising with the Spherical Gaussian constraint. Notably, DSG can seamlessly integrate as a plugin module within existing training-free conditional diffusion methods. Implementing DSG merely involves a few lines of additional code with almost no extra computational overhead, yet it leads to significant performance improvements. Comprehensive experimental results in various conditional generation tasks validate the superiority and adaptability of …
[ Hall C 4-9 ]
Abstract
Diffusion models excel at modeling complex data distributions, including those of images, proteins, and small molecules. However, in many cases, our goal is to model parts of the distribution that maximize certain properties: for example, we may want to generate images with high aesthetic quality, or molecules with high bioactivity. It is natural to frame this as a reinforcement learning (RL) problem, in which the objective is to finetune a diffusion model to maximize a reward function that corresponds to some property. Even with access to online queries of the ground-truth reward function, efficiently discovering high-reward samples can be challenging: they might have a low probability in the initial distribution, and there might be many infeasible samples that do not even have a well-defined reward (e.g., unnatural images or physically impossible molecules). In this work, we propose a novel reinforcement learning procedure that efficiently explores on the manifold of feasible samples. We present a theoretical analysis providing a regret guarantee, as well as empirical validation across three domains: images, biological sequences, and molecules.
[ Hall C 4-9 ]
Abstract
Identifying layers within text-to-image models which control visual attributes can facilitate efficient model editing through closed-form updates. Recent work, leveraging causal tracing show that early Stable-Diffusion variants confine knowledge primarily to the first layer of the CLIP text-encoder, while it diffuses throughout the UNet. Extending this framework, we observe that for recent models (e.g., SD-XL, DeepFloyd), causal tracing fails in pinpointing localized knowledge, highlighting challenges in model editing. To address this issue, we introduce the concept of mechanistic localization in text-to-image models, where knowledge about various visual attributes (e.g., "style", "objects", "facts") can be mechanistically localized to a small fraction of layers in the UNet, thus facilitating efficient model editing. We localize knowledge using our method LocoGen which measures the direct effect of intermediate layers to output generation by performing interventions in the cross-attention layers of the UNet. We then employ LocoEdit, a fast closed-form editing method across popular open-source text-to-image models (including the latest SD-XL) and explore the possibilities of neuron-level model editing. Using mechanistic localization, our work offers a better view of successes and failures in localization-based text-to-image model editing.
[ Hall C 4-9 ]

Abstract
Score function estimation is the cornerstone of both training and sampling from diffusion generative models. Despite this fact, the most commonly used estimators are either biased neural network approximations or high variance Monte Carlo estimators based on the conditional score. We introduce a novel nearest neighbour score function estimator which utilizes multiple samples from the training set to dramatically decrease estimator variance. We leverage our low variance estimator in two compelling applications. Training consistency models with our estimator, we report a significant increase in both convergence speed and sample quality. In diffusion models, we show that our estimator can replace a learned network for probability-flow ODE integration, opening promising new avenues of future research. Code will be released upon paper acceptance.
[ Hall C 4-9 ]

Abstract
Fine-tuning pre-trained Large Language Models (LLMs) is essential to align them with human values and intentions. This process often utilizes methods like pairwise comparisons and KL divergence against a reference LLM, focusing on the evaluation of full answers generated by the models. However, the generation of these responses occurs in a token level, following a sequential, auto-regressive fashion. In this paper, we introduce Token-level Direct Preference Optimization (TDPO), a novel approach to align LLMs with human preferences by optimizing policy at the token level. Unlike previous methods, which face challenges in divergence efficiency, TDPO integrates forward KL divergence constraints for each token, improving alignment and diversity. Utilizing the Bradley-Terry model for a token-based reward system, our method enhances the regulation of KL divergence, while preserving simplicity without the need for explicit reward modeling. Experimental results across various text tasks demonstrate TDPO’s superior performance in balancing alignment with generation diversity. Notably, fine-tuning with TDPO strikes a better balance than DPO in the controlled sentiment generation and single-turn dialogue datasets, and significantly improves the quality of generated responses compared to both DPO and PPO-based RLHF methods.
[ Hall C 4-9 ]
Abstract
A central aspect of machine learning research is experimentation, the process of designing and running experiments, analyzing the results, and iterating towards some positive outcome (e.g., improving accuracy). Could agents driven by powerful language models perform machine learning experimentation effectively? To answer this question, we introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM. For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs. We then construct an agent that can perform ML experimentation based on ReAct framework. We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate. It can build compelling ML models over many tasks in MLAgentBench with 37.5% average success rate. Our agents also display highly interpretable plans and actions. However, the success rates vary considerably; they span from 100% on well-established older datasets to as low as 0% on recent Kaggle challenges created potentially after the underlying LM was trained. Finally, we identify several key challenges for LM-based agents such as long-term planning and reducing hallucination.
[ Hall C 4-9 ]

Abstract
Machine learning on graphs, especially using graph neural networks (GNNs), has seen a surge in interest due to the wide availability of graph data across a broad spectrum of disciplines, from life to social and engineering sciences. Despite their practical success, our theoretical understanding of the properties of GNNs remains highly incomplete. Recent theoretical advancements primarily focus on elucidating the coarse-grained expressive power of GNNs, predominantly employing combinatorial techniques. However, these studies do not perfectly align with practice, particularly in understanding the generalization behavior of GNNs when trained with stochastic first-order optimization techniques. In this position paper, we argue that the graph machine learning community needs to shift its attention to developing a balanced theory of graph machine learning, focusing on a more thorough understanding of the interplay of expressive power, generalization, and optimization.
[ Hall C 4-9 ]

Abstract
The distinguishing power of graph transformers is tied to the choice of positional encoding: features used to augment the base transformer with information about the graph. There are two primary types of positional encoding: absolute positional encodings (APEs) and relative positional encodings (RPEs). APEs assign features to each node and are given as input to the transformer. RPEs instead assign a feature to each pair of nodes, e.g., shortest-path distance, and are used to augment the attention block. A priori, it is unclear which method is better for maximizing the power of the resulting graph transformer. In this paper, we aim to understand the relationship between these different types of positional encodings. Interestingly, we show that graph transformers using APEs and RPEs are equivalent in their ability to distinguish non-isomorphic graphs. In particular, we demonstrate how to interchange APEs and RPEs while maintaining their distinguishing power in terms of graph transformers. However, in the case of graphs with node features, we show that RPEs may have an advantage over APEs. Based on our theoretical results, we provide a study of different APEs and RPEs---including the shortest-path and resistance distance and the recently introduced stable and expressive positional …
[ Hall C 4-9 ]
Abstract
GNNs rely on the exchange of messages to distribute information along the edges of the graph. This approach makes the efficiency of architectures highly dependent on the specific structure of the input graph. Certain graph topologies lead to inefficient information propagation, resulting in a phenomenon known as over-squashing. While the majority of existing methods address over-squashing by rewiring the input graph, our novel approach involves constructing a graph directly from features using Delaunay Triangulation. We posit that the topological properties of the resulting graph prove advantageous for mitigate oversmoothing and over-squashing. Our extensive experimentation demonstrates that our method consistently outperforms established graph rewiring methods.
[ Hall C 4-9 ]

Abstract
While a number of knowledge graph representation learning (KGRL) methods have been proposed over the past decade, very few theoretical analyses have been conducted on them. In this paper, we present the first PAC-Bayesian generalization bounds for KGRL methods. To analyze a broad class of KGRL models, we propose a generic framework named ReED (Relation-aware Encoder-Decoder), which consists of a relation-aware message passing encoder and a triplet classification decoder. Our ReED framework can express at least 15 different existing KGRL models, including not only graph neural network-based models such as R-GCN and CompGCN but also shallow-architecture models such as RotatE and ANALOGY. Our generalization bounds for the ReED framework provide theoretical grounds for the commonly used tricks in KGRL, e.g., parameter-sharing and weight normalization schemes, and guide desirable design choices for practical KGRL methods. We empirically show that the critical factors in our generalization bounds can explain actual generalization errors on three real-world knowledge graphs.
[ Hall C 4-9 ]

Abstract
Graph Transformers, which incorporate self-attention and positional encoding, have recently emerged as a powerful architecture for various graph learning tasks. Despite their impressive performance, the complex non-convex interactions across layers and the recursive graph structure have made it challenging to establish a theoretical foundation for learning and generalization. This study introduces the first theoretical investigation of a shallow Graph Transformer for semi-supervised node classification, comprising a self-attention layer with relative positional encoding and a two-layer perception. Focusing on a graph data model with discriminative nodes that determine node labels and non-discriminative nodes that are class-irrelevant, we characterize the sample complexity required to achieve a desirable generalization error by training with stochastic gradient descent (SGD). This paper provides the quantitative characterization of the sample complexity and number of iterations for convergence dependent on the fraction of discriminative nodes, the dominant patterns, and the initial model errors. Furthermore, we demonstrate that self-attention and positional encoding enhance generalization by making the attention map sparse and promoting the core neighborhood during training, which explains the superior feature representation of Graph Transformers. Our theoretical results are supported by empirical experiments on synthetic and real-world benchmarks.
[ Hall C 4-9 ]
Abstract
Real-world data generation often involves certain geometries (e.g., graphs) that induce instance-level interdependence. This characteristic makes the generalization of learning models more difficult due to the intricate interdependent patterns that impact data-generative distributions and can vary from training to testing. In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging generalization problem with interdependent data. We generalize the diffusion equation with stochastic diffusivity at each time step, which aims to capture the multi-faceted information flows among interdependent data. Furthermore, we derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains. Regarding practical implementation, we introduce three model instantiations that can be considered as the generalized versions of GCN, GAT, and Transformers, respectively, which possess advanced robustness against distribution shifts. We demonstrate their promising efficacy for out-of-distribution generalization on diverse real-world datasets. Source codes are available at https://github.com/fannie1208/GLIND.
[ Hall C 4-9 ]

Abstract
Graph neural networks are popular architectures for graph machine learning, based on iterative computation of node representations of an input graph through a series of invariant transformations. A large class of graph neural networks follow a standard message-passing paradigm: at every layer, each node state is updated based on an aggregate of messages from its neighborhood. In this work, we propose a novel framework for training graph neural networks, where every node is viewed as a player that can choose to either listen
, broadcast
, listen and broadcast
, or to isolate
. The standard message propagation scheme can then be viewed as a special case of this framework where every node listens and broadcasts
to all neighbors. Our approach offers a more flexible and dynamic message-passing paradigm, where each node can determine its own strategy based on their state, effectively exploring the graph topology while learning. We provide a theoretical analysis of the new message-passing scheme which is further supported by an extensive empirical analysis on a synthetic and real-world datasets.
[ Hall C 4-9 ]

Abstract
Uncertainty Sampling is an Active Learning strategy that aims to improve the data efficiency of machine learning models by iteratively acquiring labels of data points with the highest uncertainty. While it has proven effective for independent data its applicability to graphs remains under-explored. We propose the first extensive study of Uncertainty Sampling for node classification: (1) We benchmark Uncertainty Sampling beyond predictive uncertainty and highlight a significant performance gap to other Active Learning strategies. (2) We develop ground-truth Bayesian uncertainty estimates in terms of the data generating process and prove their effectiveness in guiding Uncertainty Sampling toward optimal queries. We confirm our results on synthetic data and design an approximate approach that consistently outperforms other uncertainty estimators on real datasets. (3) Based on this analysis, we relate pitfalls in modeling uncertainty to existing methods. Our analysis enables and informs the development of principled uncertainty estimation on graphs.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Most real-world networks are noisy and incomplete samples from an unknown target distribution. Refining them by correcting corruptions or inferring unobserved regions typically improves downstream performance. Inspired by the impressive generative capabilities that have been used to correct corruptions in images, and the similarities between "in-painting" and filling in missing nodes and edges conditioned on the observed graph, we propose a novel graph generative framework, SGDM, which is based on subgraph diffusion. Our framework not only improves the scalability and fidelity of graph diffusion models, but also leverages the reverse process to perform novel, conditional generation tasks. In particular, through extensive empirical analysis and a set of novel metrics, we demonstrate that our proposed model effectively supports the following refinement tasks for partially observable networks: (T1) denoising extraneous subgraphs, (T2) expanding existing subgraphs and (T3) performing ``style" transfer by regenerating a particular subgraph to match the characteristics of a different node or subgraph.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Diffusion models have revolutionized various application domains, including computer vision and audio generation. Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved. In response, consistency models have been developed to merge multiple steps in the sampling process, thereby significantly boosting the speed of sample generation without compromising quality. This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem. Our analysis yields statistical estimation rates based on the Wasserstein distance for consistency models, matching those of vanilla diffusion models. Additionally, our results encompass the training of consistency models through both distillation and isolation methods, demystifying their underlying advantage.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Diffusion models have established new state of the art in a multitude of computer vision tasks, including image restoration. Diffusion-based inverse problem solvers generate reconstructions of exceptional visual quality from heavily corrupted measurements. However, in what is widely known as the perception-distortion trade-off, the price of perceptually appealing reconstructions is often paid in declined distortion metrics, such as PSNR. Distortion metrics measure faithfulness to the observation, a crucial requirement in inverse problems. In this work, we propose a novel framework for inverse problem solving, namely we assume that the observation comes from a stochastic degradation process that gradually degrades and noises the original clean image. We learn to reverse the degradation process in order to recover the clean image. Our technique maintains consistency with the original measurement throughout the reverse process, and allows for great flexibility in trading off perceptual quality for improved distortion metrics and sampling speedup via early-stopping. We demonstrate the efficiency of our method on different high-resolution datasets and inverse problems, achieving great improvements over other state-of-the-art diffusion-based methods with respect to both perceptual and distortion metrics.
[ Hall C 4-9 ]

Abstract
Diffusion models lend transformative capabilities to the graph generation task, yet controlling the properties of the generated graphs remains challenging. Recent approaches augment support for controlling soft, differentiable properties but they fail to handle user-specified hard constraints that are non-differentiable. This often results in vague control, unsuitable for applications like drug discovery that demand satisfaction of precise constraints, e.g., the maximum number of bonds. To address this, we formalize the problem of controlled graph generation and introduce PRODIGY (PROjected DIffusion for controlled Graph Generation), an innovative plug-and-play approach enabling the generation of graphs with precise control, from any pre-trained diffusion model. PRODIGY employs a novel operator to project the samples at each diffusion step onto the specified constrained space. For a large class of practical constraints and a variety of graphs, our extensive experiments demonstrate that PRODIGY empowers state-of-the-art continuous and discrete diffusion models to produce graphs meeting specific, hard constraints. Our approach achieves up to 100% constraint satisfaction for non-attributed and molecular graphs, under a variety of constraints, marking a significant step forward in precise, interpretable graph generation. Code is provided on the project webpage: https://prodigy-diffusion.github.io/.
[ Hall C 4-9 ]
Abstract
Despite the widespread adoption of prompting, prompt tuning and prefix-tuning of transformer models, our theoretical understanding of these fine-tuning methods remains limited. A key question is whether one can arbitrarily modify the behavior of a pretrained model by prompting or prefix-tuning it. Formally, whether prompting and prefix-tuning a pretrained model can universally approximate sequence-to-sequence functions. This paper answers in the affirmative and demonstrates that much smaller pretrained models than previously thought can be universal approximators when prefixed. In fact, prefix-tuning a single attention head is sufficient to approximate any continuous function making the attention mechanism uniquely suited for universal approximation. Moreover, any sequence-to-sequence function can be approximated by prefixing a transformer with depth linear in the sequence length. Beyond these density-type results, we also offer Jackson-type bounds on the length of the prefix needed to approximate a function to a desired precision.
[ Hall C 4-9 ]
Abstract
We propose a new method to measure the task-specific accuracy of Retrieval-Augmented Large Language Models (RAG). Evaluation is performed by scoring the RAG on an automatically-generated synthetic exam composed of multiple choice questions based on the corpus of documents associated with the task. Our method is an automated, cost-efficient, interpretable, and robust strategy to select the optimal components for a RAG system. We leverage Item Response Theory (IRT) to estimate the quality of an exam and its informativeness on task-specific accuracy. IRT also provides a natural way to iteratively improve the exam by eliminating the exam questions that are not sufficiently informative about a model's ability. We demonstrate our approach on four new open-ended Question-Answering tasks based on Arxiv abstracts, StackExchange questions, AWS DevOps troubleshooting guides, and SEC filings. In addition, our experiments reveal more general insights into factors impacting RAG performance like size, retrieval mechanism, prompting and fine-tuning. Most notably, our findings show that choosing the right retrieval algorithms often leads to bigger performance gains than simply using a larger language model.
[ Hall C 4-9 ]

Abstract
Diffusion Probabilistic Models (DPMs) show significant potential in image generation, yet their performance hinges on having access to large datasets. Previous works, like Generative Adversarial Networks (GANs), have tackled the limited data problem by transferring pre-trained models learned with sufficient data. However, those methods are hard to be utilized in DPMs since the distinct differences between DPM-based and GAN-based methods, showing in the unique iterative denoising process integral and the need for many timesteps with no-targeted noise in DPMs. In this paper, we propose a novel DPMs-based transfer learning method, ANT, to address the limited data problem. It includes two strategies: similarity-guided training, which boosts transfer with a classifier, and adversarial noise selection which adaptively chooses targeted noise based on the input image. Extensive experiments in the context of few-shot image generation tasks demonstrate that our method is not only efficient but also excels in terms of image quality and diversity when compared to existing GAN-based and DDPM-based methods.
[ Hall C 4-9 ]
Abstract
Are foundation models secure against malicious actors? In this work, we focus on the image input to a vision-language model (VLM). We discover image hijacks, adversarial images that control the behaviour of VLMs at inference time, and introduce the general Behaviour Matching algorithm for training image hijacks. From this, we derive the Prompt Matching method, allowing us to train hijacks matching the behaviour of an arbitrary user-defined text prompt (e.g. 'the Eiffel Tower is now located in Rome') using a generic, off-the-shelf dataset unrelated to our choice of prompt. We use Behaviour matching to craft hijacks for four types of attack: forcing VLMs to generate outputs of the adversary’s choice, leak information from their context window, override their safety training, and believe false statements. We study these attacks against LLaVA, a state-of-the-art VLM based on CLIP and LLaMA-2, and find that all attack types achieve a success rate of over 80%. Moreover, our attacks are automated and require only small image perturbations.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Training modern LLMs is extremely resource intensive, and customizing them for various deployment scenarios characterized by limited compute and memory resources through repeated training is impractical. In this paper, we introduce Flextron, a network architecture and post-training model optimization framework supporting flexible model deployment. The Flextron architecture utilizes a nested elastic structure to rapidly adapt to specific user-defined latency and accuracy targets during inference with no additional fine-tuning required. It is also input-adaptive, and can automatically route tokens through its sub-networks for improved performance and efficiency. We present a sample-efficient training method and associated routing algorithms for systematically transforming an existing trained LLM into a Flextron model. We evaluate Flextron on the GPT-3 and LLama-2 family of LLMs, and demonstrate superior performance over multiple end-to-end trained variants and other state-of-the-art elastic networks, all with a single pretraining run that consumes a mere 7.63% tokens compared to original pretraining.
[ Hall C 4-9 ]

Abstract
Developments in the field of Artificial Intelligence (AI), and particularly large language models (LLMs), have created a 'perfect storm’ for observing 'sparks’ of Artificial General Intelligence (AGI) that are spurious. Like simpler models, LLMs distill meaningful representations in their latent embeddings that have been shown to correlate with external variables. Nonetheless, the correlation of such representations has often been linked to human-like intelligence in the latter but not the former. We probe models of varying complexity including random projections, matrix decompositions, deep autoencoders and transformers: all of them successfully distill information that can be used to predict latent or external variables and yet none of them have previously been linked to AGI. We argue and empirically demonstrate that the finding of meaningful patterns in latent spaces of models cannot be seen as evidence in favor of AGI. Additionally, we review literature from the social sciences that shows that humans are prone to seek such patterns and anthropomorphize. We conclude that both the methodological setup and common public image of AI are ideal for the misinterpretation that correlations between model representations and some variables of interest are 'caused' by the model's understanding of underlying 'ground truth’ relationships. We, therefore, call for …
[ Hall C 4-9 ]

Abstract
A fundamental skill among human developers is the ability to understand and reason about program execution. As an example, a programmer can mentally simulate code execution in natural language to debug and repair code (aka. rubber duck debugging). However, large language models (LLMs) of code are typically trained on the surface textual form of programs, thus may lack a semantic understanding of how programs execute at run-time. To address this issue, we propose NExT, a method to teach LLMs to inspect the execution traces of programs (variable states of executed lines) and reason about their run-time behavior through chain-of-thought (CoT) rationales. Specifically, NExT uses self-training to bootstrap a synthetic training set of execution-aware rationales that lead to correct task solutions (e.g., fixed programs) without laborious manual annotation. Experiments on program repair tasks based on MBPP and HumanEval demonstrate that NExT improves the fix rate of a PaLM 2 model, by 26.1% and 10.3% absolute, respectively, with significantly improved rationale quality as verified by automated metrics and human raters. Our model can also generalize to scenarios where program traces are absent at test-time.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Post-training quantization (PTQ) has emerged as a promising technique to reduce the cost of large language models (LLMs). Specifically, PTQ can effectively mitigate memory consumption and reduce computational overhead in LLMs. To meet the requirements of both high efficiency and performance across diverse scenarios, a comprehensive evaluation of quantized LLMs is essential to guide the selection of quantization methods. This paper presents a thorough evaluation of these factors by evaluating the effect of PTQ on Weight, Activation, and KV Cache on 11 model families, including OPT, LLaMA2, Falcon, Bloomz, Mistral, ChatGLM, Vicuna, LongChat, StableLM, Gemma, and Mamba, with parameters ranging from 125M to 180B. The evaluation encompasses five types of tasks: basic NLP, emergent ability, trustworthiness, dialogue, and long-context tasks. Moreover, we also evaluate the state-of-the-art (SOTA) quantization methods to demonstrate their applicability. Based on the extensive experiments, we systematically summarize the effect of quantization, provide recommendations to apply quantization techniques, and point out future directions. The code can be found in https://github.com/thu-nics/qllm-eval.
[ Hall C 4-9 ]

Abstract
Large language models have ushered in a new era of artificial intelligence research. However, their substantial training costs hinder further development and widespread adoption. In this paper, inspired by the redundancy in the parameters of large language models, we propose a novel training paradigm: Evolving Subnetwork Training (EST). EST samples subnetworks from the layers of the large language model and from commonly used modules within each layer, Multi-Head Attention (MHA) and Multi-Layer Perceptron (MLP). By gradually increasing the size of the subnetworks during the training process, EST can save the cost of training. We apply EST to train GPT2 model and TinyLlama model, resulting in 26.7% FLOPs saving for GPT2 and 25.0% for TinyLlama without an increase in loss on the pre-training dataset. Moreover, EST leads to performance improvements in downstream tasks, indicating that it benefits generalization. Additionally, we provide intuitive theoretical studies based on training dynamics and Dropout theory to ensure the feasibility of EST.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
LLMs have been found to memorize training textual sequences and regurgitate verbatim said sequences during text generation time. This fact is known to be the cause of privacy and related (e.g., copyright) problems. Unlearning in LLMs then takes the form of devising new algorithms that will properly deal with these side-effects of memorized data, while not hurting the model's utility. We offer a fresh perspective towards this goal, namely, that each textual sequence to be forgotten should be treated differently when being unlearned based on its degree of memorization within the LLM. We contribute a new metric for measuring unlearning quality, an adversarial attack showing that SOTA algorithms lacking this perspective fail for privacy, and two new unlearning methods based on Gradient Ascent and Task Arithmetic, respectively. A comprehensive performance evaluation across an extensive suite of NLP tasks then mapped the solution space, identifying the best solutions under different scales in model capacities and forget set sizes and quantified the gains of the new approaches.
[ Hall C 4-9 ]
Abstract
Retrieval pipelines are an integral component of many machine learning systems. However, they perform poorly in domains where documents are long (e.g., 10K tokens or more) and where identifying the relevant document requires synthesizing information across the entire text. Developing long-context retrieval encoders suitable for these domains raises three challenges: (1) how to evaluate long-context retrieval performance, (2) how to pretrain a base language model to represent both short contexts (corresponding to queries) and long contexts (corresponding to documents), and (3) how to finetune this model for retrieval under the batch size limitations imposed by GPU memory constraints. To address these challenges, we first introduce LoCoV1, a 12 task benchmark constructed to measure long-context retrieval where chunking is not possible or not effective. We next present the M2-BERT retrieval encoder, an 80M parameter state-space encoder model built from the Monarch Mixer architecture, capable of scaling to documents up to 32K tokens long. We describe a pretraining data mixture which allows this encoder to process both short and long context sequences, and a finetuning approach that adapts this base model to retrieval with only single-sample batches. Finally, we validate the M2-BERT retrieval encoder on LoCoV1, finding that it outperforms competitive Transformer-based …
[ Hall C 4-9 ]
Abstract
Current literature, aiming to surpass the "Chain-of-Thought" approach, often resorts to external modi operandi involving halting, modifying, and then resuming the generation process to boost Large Language Models' (LLMs) reasoning capacities. Due to their myopic perspective, they escalate the number of query requests, leading to increased costs, memory, and computational overheads. Addressing this, we propose the Algorithm of Thoughts---a novel strategy that propels LLMs through algorithmic reasoning pathways. By employing algorithmic examples fully in-context, this overarching view of the whole process exploits the innate recurrence dynamics of LLMs, expanding their idea exploration with merely one or a few queries. Our technique outperforms earlier single-query methods and even more recent multi-query strategies that employ an extensive tree search algorithms while using significantly fewer tokens. Intriguingly, our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself, hinting at LLM's inherent ability to weave its intuition into optimized searches. We probe into the underpinnings of our method's efficacy and its nuances in application. The code and related content can be found in: https://algorithm-of-thoughts.github.io
[ Hall C 4-9 ]

Abstract
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models.
[ Hall C 4-9 ]

Abstract
In-Context Learning (ICL) has been a powerful emergent property of large language models that has attracted increasing attention in recent years. In contrast to regular gradient-based learning, ICL is highly interpretable and does not require parameter updates. In this paper, we show that, for linearized transformer networks, ICL can be made explicit and permanent through the inclusion of bias terms. We mathematically demonstrate the equivalence between a model with ICL demonstration prompts and the same model with the additional bias terms. Our algorithm (ICLCA) allows for exact conversion in an inexpensive manner. Existing methods are not exact and require expensive parameter updates. We demonstrate the efficacy of our approach through experiments that show the exact incorporation of ICL tokens into a linear transformer. We further suggest how our method can be adapted to achieve cheap approximate conversion of ICL tokens, even in regular transformer networks that are not linearized. Our experiments on GPT-2 show that, even though the conversion is only approximate, the model still gains valuable context from the included bias terms.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Recent advances in retrieval-augmented generation (RAG) have initiated a new era in repository-level code completion. However, the invariable use of retrieval in existing methods exposes issues in both efficiency and robustness, with a large proportion of the retrieved contexts proving unhelpful or harmful to code language models (code LMs). In this paper, we propose a selective RAG framework to avoid retrieval when unnecessary. To power this framework, we design a self-supervised learning approach to enable a code LM to accurately self-evaluate whether retrieval can improve its output quality and robustly leverage the potentially noisy retrieved contexts. Using this LM as both the selective RAG policy and the generation model, our framework achieves state-of-the-art repository-level code completion performance on diverse benchmarks including RepoEval, CrossCodeEval, and CrossCodeLongEval, a new long-form code completion benchmark. Meanwhile, our analyses show that selectively retrieving brings as much as 70% inference speedup in the online serving setting without harming the performance. We further demonstrate that our framework is able to accommodate different generation models, retrievers, and programming languages. These advancements position our framework as an important step towards more accurate and efficient repository-level code completion.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Aligning large language models (LLMs) with human values is imperative to mitigate potential adverse effects resulting from their misuse. Drawing from the sociological insight that acknowledging all parties' concerns is a key factor in shaping human values, this paper proposes a novel direction to align LLMs by themselves: social scene simulation. To achieve this, we present MATRIX, a novel social scene simulator that emulates realistic scenes around a user's input query, enabling the LLM to take social consequences into account before responding. MATRIX serves as a virtual rehearsal space, akin to a Monopolylogue, where the LLM performs diverse roles related to the query and practice by itself. To inject this alignment, we fine-tune the LLM with MATRIX-simulated data, ensuring adherence to human values without compromising inference speed. We theoretically show that the LLM with MATRIX outperforms existing methods under mild assumptions. Finally, extensive experiments validate that our method outperforms over 10 baselines across 4 benchmarks. As evidenced by 875 user ratings, our tuned 13B-size LLM exceeds GPT-4 in aligning with human values. See our project page at https://shuotang123.github.io/MATRIX.
[ Hall C 4-9 ]

Abstract
Planning has been part of the core pursuit for artificial intelligence since its conception, but earlier AI agents mostly focused on constrained settings because many of the cognitive substrates necessary for human-level planning have been lacking. Recently, language agents powered by large language models (LLMs) have shown interesting capabilities such as tool use and reasoning. Are these language agents capable of planning in more complex settings that are out of the reach of prior AI agents? To advance this investigation, we propose TravelPlanner, a new planning benchmark that focuses on travel planning, a common real-world planning scenario. It provides a rich sandbox environment, various tools for accessing nearly four million data records, and 1,225 meticulously curated planning intents and reference plans. Comprehensive evaluations show that the current language agents are not yet capable of handling such complex planning tasks—even GPT-4 only achieves a success rate of 0.6%. Language agents struggle to stay on task, use the right tools to collect information, or keep track of multiple constraints. However, we note that the mere possibility for language agents to tackle such a complex problem is in itself non-trivial progress. TravelPlanner provides a challenging yet meaningful testbed for future language agents.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Multi-agent interactions between Large Language Model (LLM) agents have shown major improvements on diverse reasoning tasks. However, these involve long generations from multiple models across several rounds, making them expensive. Moreover, these multi-agent approaches fail to provide a final, single model for efficient inference. To address this, we introduce MAGDi, a new method for structured distillation of the reasoning interactions between multiple LLMs into smaller LMs. MAGDi teaches smaller models by representing multi-agent interactions as graphs, augmenting a base student model with a graph encoder, and distilling knowledge using three objective functions: next-token prediction, a contrastive loss between correct and incorrect reasoning, and a graph-based objective to model the interaction structure. Experiments on seven widely used commonsense and math reasoning benchmarks show that MAGDi improves the reasoning capabilities of smaller models, outperforming several methods that distill from a single teacher and multiple teachers. Moreover, MAGDi also demonstrates an order of magnitude higher efficiency over its teachers. We conduct extensive analyses to show that MAGDi (1) enhances the generalizability to out-of-domain tasks, (2) scales positively with the size and strength of the base student model, and (3) obtains larger improvements (via our multi-teacher training) when applying self-consistency – an inference technique …
[ Hall C 4-9 ]
Abstract
Large Language Models (LLMs), with their remarkable ability to tackle challenging and unseen reasoning problems, hold immense potential for tabular learning, that is vital for many real-world applications. In this paper, we propose a novel in-context learning framework, FeatLLM, which employs LLMs as feature engineers to produce an input data set that is optimally suited for tabular predictions. The generated features are used to infer class likelihood with a simple downstream machine learning model, such as linear regression and yields high performance few-shot learning. The proposed FeatLLM framework only uses this simple predictive model with the discovered features at inference time. Compared to existing LLM-based approaches, FeatLLM eliminates the need to send queries to the LLM for each sample at inference time. Moreover, it merely requires API-level access to LLMs, and overcomes prompt size limitations. As demonstrated across numerous tabular datasets from a wide range of domains, FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
[ Hall C 4-9 ]

Abstract
Compressing high-capability Large Language Models (LLMs) has emerged as a favored strategy for resource-efficient inferences. While state-of-the-art (SoTA) compression methods boast impressive advancements in preserving benign task performance, the potential risks of compression in terms of safety and trustworthiness have been largely neglected. This study conducts the first, thorough evaluation of three (3) leading LLMs using five (5) SoTA compression techniques across eight (8) trustworthiness dimensions. Our experiments highlight the intricate interplay between compression and trustworthiness, revealing some interesting patterns. We find that quantization is currently a more effective approach than pruning in achieving efficiency and trustworthiness simultaneously. For instance, a 4-bit quantized model retains the trustworthiness of its original counterpart, but model pruning significantly degrades trustworthiness, even at 50% sparsity. Moreover, employing quantization within a moderate bit range could unexpectedly improve certain trustworthiness dimensions such as ethics and fairness. Conversely, extreme quantization to very low bit levels (3 bits) tends to reduce trustworthiness significantly. This increased risk cannot be uncovered by looking at benign performance alone, in turn, mandating comprehensive trustworthiness evaluation in practice. These findings culminate in practical recommendations for simultaneously achieving high utility, efficiency, and trustworthiness in LLMs. Code and models are available at https://decoding-comp-trust.github.io.
[ Hall C 4-9 ]

Abstract
Large language models (LLMs) demonstrate emergent in-context learning capabilities, where they adapt to new tasks based on example demonstrations. However, in-context learning has seen limited effectiveness in many settings, is difficult to quantitatively control and takes up context window space. To overcome these limitations, we propose an alternative approach that recasts in-context learning as in-context vectors (ICV). Using ICV has two steps. We first use a forward pass on demonstration examples to create the in-context vector from the latent embedding of the LLM. This vector captures essential information about the intended task. On a new query, instead of adding demonstrations to the prompt, we shift the latent states of the LLM using the ICV. The ICV approach has several benefits: 1) it enables the LLM to more effectively follow the demonstration examples; 2) it's easy to control by adjusting the magnitude of the ICV; 3) it reduces the length of the prompt by removing the in-context demonstrations; 4) ICV is computationally much more efficient than fine-tuning. We demonstrate that ICV achieves better performance compared to standard in-context learning and fine-tuning on diverse tasks including safety, style transfer, role-playing and formatting. Moreover, we show that we can flexibly teach LLM to …
[ Hall C 4-9 ]
Abstract
Large language models (LLMs) have made significant advancements in code-related tasks, yet many LLMs treat code as simple sequences, neglecting its structured nature. We introduce AST-T5, a novel pretraining paradigm that leverages the Abstract Syntax Tree (AST) for enhanced code generation, transpilation, and understanding. Using dynamic programming, our AST-Aware Segmentation retains code structure, while our AST-Aware Span Corruption objective equips the model to reconstruct various code structures. Unlike other models, AST-T5 avoids complex program analyses or architectural changes, so it integrates seamlessly with any encoder-decoder Transformer. Evaluations show that AST-T5 consistently outperforms similar-sized LMs across various code-related tasks including HumanEval and MBPP. Structure-awareness makes AST-T5 particularly powerful in code-to-code tasks, surpassing CodeT5 by 2 points in exact match score for the Bugs2Fix task and by 3 points in exact match score for Java-C# Transpilation in CodeXGLUE. Our code and model are publicly available at https://github.com/gonglinyuan/ast_t5.
[ Hall C 4-9 ]
Abstract
Most existing Large Language Model (LLM) benchmarks on scientific problem reasoning focus on problems grounded in high-school subjects and are confined to elementary algebraic operations. To systematically examine the reasoning capabilities required for solving complex scientific problems, we introduce an expansive benchmark suite SciBench for LLMs. SciBench contains a carefully curated dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains. Based on the dataset, we conduct an in-depth benchmarking study of representative open-source and proprietary LLMs with various prompting strategies. The results reveal that current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%. Furthermore, through a detailed user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms the others and some strategies that demonstrate improvements in certain problem-solving skills could result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
The success of AI assistants based on Language Models (LLMs) hinges on Reinforcement Learning from Human Feedback (RLHF) to comprehend and align with user intentions. However, traditional alignment algorithms, such as PPO, are hampered by complex annotation and training requirements. This reliance limits the applicability of RLHF and hinders the development of professional assistants tailored to diverse human preferences. In this work, we introduce Linear Alignment, a novel algorithm that aligns language models with human preferences in one single inference step, eliminating the reliance on data annotation and model training. Linear alignment incorporates a new parameterization for policy optimization under divergence constraints, which enables the extraction of optimal policy in a closed-form manner and facilitates the direct estimation of the aligned response. Extensive experiments on both general and personalized preference datasets demonstrate that linear alignment significantly enhances the performance and efficiency of LLM alignment across diverse scenarios.
[ Hall C 4-9 ]

Abstract
Large language models are increasingly solving tasks that are commonly believed to require human-level reasoning ability. However, these models still perform very poorly on benchmarks of general intelligence such as the Abstraction and Reasoning Corpus (ARC). In this paper, we approach the ARC as a programming-by-examples problem, and introduce a novel and scalable method for language model self-improvement called Code Iteration (CodeIt). Our method iterates between 1) program sampling and hindsight relabeling, and 2) learning from prioritized experience replay. By relabeling the goal of an episode (i.e., the program output given input) to the output actually produced by the sampled program, our method effectively deals with the extreme sparsity of rewards in program synthesis. Applying CodeIt to the ARC dataset, we demonstrate that prioritized hindsight replay, along with pre-training and data-augmentation, leads to successful inter-task generalization. CodeIt is the first neuro-symbolic approach that scales to the full ARC evaluation dataset. Our method solves 15% of ARC evaluation tasks, achieving state-of-the-art performance and outperforming existing neural and symbolic baselines. Our code is available at https://github.com/Qualcomm-AI-research/codeit.
[ Hall C 4-9 ]

Abstract
We consider the problem of multi-objective alignment of foundation models with human preferences, which is a critical step towards helpful and harmless AI systems. However, it is generally costly and unstable to fine-tune large foundation models using reinforcement learning (RL), and the multi-dimensionality, heterogeneity, and conflicting nature of human preferences further complicate the alignment process. In this paper, we introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context and applies supervised fine-tuning for alignment. The salient features of RiC are simplicity and adaptivity, as it only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time. Inspired by the analytical solution of an abstracted convex optimization problem, our dynamic inference-time adjustment method approaches the Pareto-optimal solution for multiple objectives. Empirical evidence demonstrates the efficacy of our method in aligning both Large Language Models (LLMs) and diffusion models to accommodate diverse rewards with only around 10% GPU hours compared with multi-objective RL baseline.
[ Hall C 4-9 ]

Abstract
Large language models (LLMs) have significantly advanced the field of artificial intelligence. Yet, evaluating them comprehensively remains challenging. We argue that this is partly due to the predominant focus on performance metrics in most benchmarks. This paper introduces CogBench, a benchmark that includes ten behavioral metrics derived from seven cognitive psychology experiments. This novel approach offers a toolkit for phenotyping LLMs’ behavior. We apply CogBench to 40 LLMs, yielding a rich and diverse dataset. We analyze this data using statistical multilevel modeling techniques, accounting for the nested dependencies among fine-tuned versions of specific LLMs. Our study highlights the crucial role of model size and reinforcement learning from human feedback (RLHF) in improving performance and aligning with human behavior. Interestingly, we find that open-source models are less risk-prone than proprietary models and that fine-tuning on code does not necessarily enhance LLMs' behavior. Finally, we explore the effects of prompt-engineering techniques. We discover that chain-of-thought prompting improves probabilistic reasoning, while take-a-step-back prompting fosters model-based behaviors.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Existing Large Language Models (LLMs) usually remain static after deployment, which might make it hard to inject new knowledge into the model. We aim to build models containing a considerable portion of self-updatable parameters, enabling the model to integrate new knowledge effectively and efficiently. To this end, we introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool within the latent space of the transformer. MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier. Our evaluations demonstrate the ability of MEMORYLLM to effectively incorporate new knowledge, as evidenced by its performance on model editing benchmarks. Meanwhile, the model exhibits long-term information retention capacity, which is validated through our custom-designed evaluations and long-context benchmarks. MEMORYLLM also shows operational integrity without any sign of performance degradation even after nearly a million memory updates. Our code and model are open-sourced at https://github.com/wangyu-ustc/MemoryLLM.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
The recent development on large multimodal models (LMMs), especially GPT-4V(ision) and Gemini, has been quickly expanding the capability boundaries of multimodal models beyond traditional tasks like image captioning and visual question answering. In this work, we explore the potential of LMMs like GPT-4V as a generalist web agent that can follow natural language instructions to complete tasks on any given website. We propose SEEACT, a generalist web agent that harnesses the power of LMMs for integrated visual understanding and acting on the web. We evaluate on the recent MIND2WEB benchmark. In addition to standard offline evaluation on cached websites, we enable a new online evaluation setting by developing a tool that allows running web agents on live websites. We show that GPT-4V presents a great potential for web agents---it can successfully complete 51.1% of the tasks on live websites if we manually ground its textual plans into actions on the websites. This substantially outperforms text-only LLMs like GPT-4 or smaller models (FLAN-T5 and BLIP-2) specifically fine-tuned for web agents. However, grounding still remains a major challenge. Existing LMM grounding strategies like set-of-mark prompting turns out to be not effective for web agents, and the best grounding strategy we develop in …
[ Hall C 4-9 ]

Abstract
Efficient and accurate updating of knowledge stored in Large Language Models (LLMs) is one of the most pressing research challenges today. This paper presents Larimar - a novel, brain-inspired architecture for enhancing LLMs with a distributed episodic memory. Larimar's memory allows for dynamic, one-shot updates of knowledge without the need for computationally expensive re-training or fine-tuning. Experimental results on multiple fact editing benchmarks demonstrate that Larimar attains accuracy comparable to most competitive baselines, even in the challenging sequential editing setup, but also excels in speed---yielding speed-ups of 8-10x depending on the base LLM ---as well as flexibility due to the proposed architecture being simple, LLM-agnostic, and hence general. We further provide mechanisms for selective fact forgetting, information leakage prevention, and input context length generalization with Larimar and show their effectiveness. Our code is available at https://github.com/IBM/larimar.
[ Hall C 4-9 ]
Abstract
Guaranteeing the correctness and factuality of language model (LM) outputs is a major open problem. In this work, we propose conformal factuality, a framework that can ensure high probability correctness guarantees for LMs by connecting language modeling and conformal prediction. Our insight is that the correctness of an LM output is equivalent to an uncertainty quantification problem, where the uncertainty sets are defined as the entailment set of an LM's output. Using this connection, we show that conformal prediction in language models corresponds to a back-off algorithm that provides high probability correctness guarantees by progressively making LM outputs less specific (and expanding the associated uncertainty sets). This approach applies to any black-box LM and requires very few human-annotated samples. Evaluations of our approach on closed book QA (FActScore, NaturalQuestions) and reasoning tasks (MATH) show that our approach can provide 80-90% correctness guarantees while retaining the majority of the LM's original output.
[ Hall C 4-9 ]
Abstract
Prepending model inputs with safety prompts is a common practice for safeguarding large language models (LLMs) against queries with harmful intents. However, the underlying working mechanisms of safety prompts have not been unraveled yet, restricting the possibility of automatically optimizing them to improve LLM safety. In this work, we investigate how LLMs' behavior (i.e., complying with or refusing user queries) is affected by safety prompts from the perspective of model representation. We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction, in which models become more prone to refusing to provide assistance, even when the queries are harmless. On the other hand, LLMs are naturally capable of distinguishing harmful and harmless queries without safety prompts. Inspired by these findings, we propose a method for safety prompt optimization, namely DRO (Directed Representation Optimization). Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries' representations along or opposite the refusal direction, depending on their harmfulness. Experiments with eight LLMs on out-of-domain and jailbreak benchmarks demonstrate that DRO remarkably improves the safeguarding performance of human-crafted safety prompts, without compromising the models' general performance.
[ Hall C 4-9 ]

Abstract
Large Language Models (LLMs) are trained on massive text corpora, which are encoded with diverse personality traits. This triggers an interesting goal of eliciting a desired personality trait from the LLM, and probing its behavioral preferences. Accordingly, we formalize the persona elicitation task, aiming to customize LLM behaviors to align with a target persona. We present Persona In-Context Learning (PICLe), a novel persona elicitation framework grounded in Bayesian inference. At the core, PICLe introduces a new ICL example selection criterion based on likelihood ratio, which is designed to optimally guide the model in eliciting a specific target persona. We demonstrate the effectiveness of PICLe through extensive comparisons against baseline methods across three contemporary LLMs. Code is available at https://github.com/deeplearning-wisc/picle.
[ Hall C 4-9 ]
Abstract
Transformers are the backbone of powerful foundation models for many Vision and Natural Language Processing tasks. But their compute and memory/storage footprint is large, and so, serving such models is expensive often requiring high-end hardware. To mitigate this difficulty, Post-Training Quantization seeks to modify a pre-trained model and quantize it to eight bits or lower, significantly boosting compute/memory/latency efficiency. Such models have been successfully quantized to four bits with some performance loss. In this work, we outline a simple scheme to quantize Transformer-based models to just two bits (plus some overhead) with only a small drop in accuracy. Key to our formulation is a concept borrowed from Harmonic analysis called Fusion Frames. Our main finding is that the quantization must take place not in the original weight space, but instead in the Fusion Frame representations. If quantization is interpreted as the addition of noise, our casting of the problem allows invoking an extensive body of known consistent recovery and noise robustness guarantees. Further, if desired, de-noising filters are known in closed form. We show empirically, via a variety of experiments, that (almost) two-bit quantization for Transformer models promises sizable efficiency gains. The code is available at https://github.com/vsingh-group/FrameQuant
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In this paper we introduce the SCoRe (Submodular Combinatorial Representation Learning) framework, a novel approach in representation learning that addresses inter-class bias and intra-class variance. SCoRe provides a new combinatorial viewpoint to representation learning, by introducing a family of loss functions based on set-based submodular information measures. We develop two novel combinatorial formulations for loss functions, using the Total Information and Total Correlation, that naturally minimize intra-class variance and inter-class bias. Several commonly used metric/contrastive learning loss functions like supervised contrastive loss, orthogonal projection loss, and N-pairs loss, are all instances of SCoRe, thereby underlining the versatility and applicability of SCoRe in a broad spectrum of learning scenarios. Novel objectives in SCoRe naturally model class-imbalance with up to 7.6% improvement in classification on CIFAR-10-LT, CIFAR-100-LT, MedMNIST, 2.1% on ImageNet-LT, and 19.4% in object detection on IDD and LVIS (v1.0), demonstrating its effectiveness over existing approaches.
[ Hall C 4-9 ]

Abstract
Despite their stellar performance on a wide range of tasks, including in-context tasks only revealed during inference, vanilla transformers and variants trained for next-token predictions (a) do not learn an explicit world model of their environment which can be flexibly queried and (b) cannot be used for planning or navigation. In this paper, we consider partially observed environments (POEs), where an agent receives perceptually aliased observations as it navigates, which makes path planning hard. We introduce a transformer with (multiple) discrete bottleneck(s), TDB, whose latent codes learn a compressed representation of the history of observations and actions. After training a TDB to predict the future observation(s) given the history, we extract interpretable cognitive maps of the environment from its active bottleneck(s) indices. These maps are then paired with an external solver to solve (constrained) path planning problems. First, we show that a TDB trained on POEs (a) retains the near-perfect predictive performance of a vanilla transformer or an LSTM while (b) solving shortest path problems exponentially faster. Second, a TDB extracts interpretable representations from text datasets, while reaching higher in-context accuracy than vanilla sequence models. Finally, in new POEs, a TDB (a) reaches near-perfect in-context accuracy, (b) learns accurate in-context …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
A topic of great current interest is Causal Representation Learning (CRL), whose goal is to learn a causal model for hidden features in a data-driven manner. Unfortunately, CRL is severely ill-posed since it is a combination of the two notoriously ill-posed problems of representation learning and causal discovery. Yet, finding practical identifiability conditions that guarantee a unique solution is crucial for its practical applicability. Most approaches so far have been based on assumptions on the latent causal mechanisms, such as temporal causality, or existence of supervision or interventions; these can be too restrictive in actual applications. Here, we show identifiability based on novel, weak constraints, which requires no temporal structure, intervention, nor weak supervision. The approach is based on assuming the observational mixing exhibits a suitable grouping of the observational variables. We also propose a novel self-supervised estimation framework consistent with the model, prove its statistical consistency, and experimentally show its superior CRL performances compared to the state-of-the-art baselines. We further demonstrate its robustness against latent confounders and causal cycles.
[ Hall C 4-9 ]

Abstract
When using an autoencoder to learn the low-dimensional manifold of high-dimensional data, it is crucial to find the latent representations that preserve the geometry of the data manifold. However, most existing studies assume a Euclidean nature for the high-dimensional data space, which is arbitrary and often does not precisely reflect the underlying semantic or domain-specific attributes of the data. In this paper, we propose a novel autoencoder regularization framework based on the premise that the geometry of the data manifold can often be better captured with a well-designed similarity graph associated with data points. Given such a graph, we utilize a Riemannian geometric distortion measure as a regularizer to preserve the geometry derived from the graph Laplacian and make it suitable for larger-scale autoencoder training. Through extensive experiments, we show that our method outperforms existing state-of-the-art geometry-preserving and graph-based autoencoders with respect to learning accurate latent structures that preserve the graph geometry, and is particularly effective in learning dynamics in the latent space. Code is available at https://github.com/JungbinLim/GGAE-public.
[ Hall C 4-9 ]

Abstract
Combining the predictions of multiple trained models through ensembling is generally a good way to improve accuracy by leveraging the different learned features of the models, however it comes with high computational and storage costs. Model fusion, the act of merging multiple models into one by combining their parameters reduces these costs but doesn't work as well in practice. Indeed, neural network loss landscapes are high-dimensional and non-convex and the minima found through learning are typically separated by high loss barriers. Numerous recent works have been focused on finding permutations matching one network features to the features of a second one, lowering the loss barrier on the linear path between them in parameter space. However, permutations are restrictive since they assume a one-to-one mapping between the different models' neurons exists. We propose a new model merging algorithm, CCA Merge, which is based on Canonical Correlation Analysis and aims to maximize the correlations between linear combinations of the model features. We show that our alignment method leads to better performances than past methods when averaging models trained on the same, or differing data splits. We also extend this analysis into the harder setting where more than 2 models are merged, and …
[ Hall C 4-9 ]

Abstract
Classification models are expected to perform equally well for different classes, yet in practice, there are often large gaps in their performance. This issue of class bias is widely studied in cases of datasets with sample imbalance, but is relatively overlooked in balanced datasets. In this work, we introduce the concept of spectral imbalance in features as a potential source for class disparities and study the connections between spectral imbalance and class bias in both theory and practice. To build the connection between spectral imbalance and class gap, we develop a theoretical framework for studying class disparities and derive exact expressions for the per-class error in a high-dimensional mixture model setting. We then study this phenomenon in 11 different state-of-the-art pre-trained encoders, and show how our proposed framework can be used to compare the quality of encoders, as well as evaluate and combine data augmentation strategies to mitigate the issue. Our work sheds light on the class-dependent effects of learning, and provides new insights into how state-of-the-art pre-trained features may have unknown biases that can be diagnosed through their spectra.
[ Hall C 4-9 ]
Abstract
We approach designing a state-space model for deep learning applications through its dual representation, the transfer function, and uncover a highly efficient sequence parallel inference algorithm that is state-free: unlike other proposed algorithms, state-free inference does not incur any significant memory or computational cost with an increase in state size. We achieve this using properties of the proposed frequency domain transfer function parametrization, which enables direct computation of its corresponding convolutional kernel's spectrum via a single Fast Fourier Transform. Our experimental results across multiple sequence lengths and state sizes illustrates, on average, a 35% training speed improvement over S4 layers -- parametrized in time-domain -- on the Long Range Arena benchmark, while delivering state-of-the-art downstream performances over other attention-free approaches. Moreover, we report improved perplexity in language modeling over a long convolutional Hyena baseline, by simply introducing our transfer function parametrization. Our code is available at https://github.com/ruke1ire/RTF.
[ Hall C 4-9 ]

Abstract
Current theoretical and empirical research in neural networks suggests that complex datasets require large network architectures for thorough classification, yet the precise nature of this relationship remains unclear. This paper tackles this issue by defining upper and lower bounds for neural network widths, which are informed by the polytope structure of the dataset in question. We also delve into the application of these principles to simplicial complexes and specific manifold shapes, explaining how the requirement for network width varies in accordance with the geometric complexity of the dataset. Moreover, we develop an algorithm to investigate a converse situation where the polytope structure of a dataset can be inferred from its corresponding trained neural networks. Through our algorithm, it is established that popular datasets such as MNIST, Fashion-MNIST, and CIFAR10 can be efficiently encapsulated using no more than two polytopes with a small number of faces.
[ Hall C 4-9 ]

Abstract
Deep neural networks come in many sizes and architectures. The choice of architecture, in conjunction with the dataset and learning algorithm, is commonly understood to affect the learned neural representations. Yet, recent results have shown that different architectures learn representations with striking qualitative similarities. Here we derive an effective theory of representation learning under the assumption that the encoding map from input to hidden representation and the decoding map from representation to output are arbitrary smooth functions. This theory schematizes representation learning dynamics in the regime of complex, large architectures, where hidden representations are not strongly constrained by the parametrization. We show through experiments that the effective theory describes aspects of representation learning dynamics across a range of deep networks with different activation functions and architectures, and exhibits phenomena similar to the “rich” and “lazy” regime. While many network behaviors depend quantitatively on architecture, our findings point to certain behaviors that are widely conserved once models are sufficiently flexible.
[ Hall C 4-9 ]
Abstract
Conservation laws are well-established in the context of Euclidean gradient flow dynamics, notably for linear or ReLU neural network training. Yet, their existence and principles for non-Euclidean geometries and momentum-based dynamics remain largely unknown. In this paper, we characterize "all" conservation laws in this general setting. In stark contrast to the case of gradient flows, we prove that the conservation laws for momentum-based dynamics exhibit temporal dependence. Additionally, we often observe a "conservation loss" when transitioning from gradient flow to momentum dynamics. Specifically, for linear networks, our framework allows us to identify all momentum conservation laws, which are less numerous than in the gradient flow case except in sufficiently over-parameterized regimes. With ReLU networks, no conservation law remains. This phenomenon also manifests in non-Euclidean metrics, used e.g. for Nonnegative Matrix Factorization (NMF): all conservation laws can be determined in the gradient flow context, yet none persists in the momentum case.
[ Hall C 4-9 ]

Abstract
Constructing the architecture of a neural network is a challenging pursuit for the machine learning community, and the dilemma of whether to go deeper or wider remains a persistent question. This paper explores a comparison between deeper neural networks (DeNNs) with a flexible number of layers and wider neural networks (WeNNs) with limited hidden layers, focusing on their optimal generalization error in Sobolev losses. Analytical investigations reveal that the architecture of a neural network can be significantly influenced by various factors, including the number of sample points, parameters within the neural networks, and the regularity of the loss function. Specifically, a higher number of parameters tends to favor WeNNs, while an increased number of sample points and greater regularity in the loss function lean towards the adoption of DeNNs. We ultimately apply this theory to address partial differential equations using deep Ritz and physics-informed neural network (PINN) methods, guiding the design of neural networks.
[ Hall C 4-9 ]

Abstract
Recent studies have shown that high disparities in effective learning rates (ELRs) across layers in deep neural networks can negatively affect trainability. We formalize how these disparities evolve over time by modeling weight dynamics (evolution of expected gradient and weight norms) of networks with normalization layers, predicting the evolution of layer-wise ELR ratios. We prove that when training with any constant learning rate, ELR ratios converge to 1, despite initial gradient explosion. We identify a "critical learning rate" beyond which ELR disparities widen, which only depends on current ELRs. To validate our findings, we devise a hyper-parameter-free warm-up method that successfully minimizes ELR spread quickly in theory and practice. Our experiments link ELR spread with trainability, a relationship that is most evident in very deep networks with significant gradient magnitude excursions.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
A main theoretical puzzle is why over-parameterized Neural Networks (NNs) generalize well when trained to zero loss (i.e., so they interpolate the data). Usually, the NN is trained with Stochastic Gradient Descent (SGD) or one of its variants. However, recent empirical work examined the generalization of a random NN that interpolates the data: the NN was sampled from a seemingly uniform prior over the parameters, conditioned on that the NN perfectly classifying the training set. Interestingly, such a NN sample typically generalized as well as SGD-trained NNs. We prove that such a random NN interpolator typically generalizes well if there exists an underlying narrow `teacher NN" that agrees with the labels. Specifically, we show that such a
flat' prior over the NN parametrization induces a rich prior over the NN functions, due to the redundancy in the NN structure. In particular, this creates a bias towards simpler functions, which require less relevant parameters to represent --- enabling learning with a sample complexity approximately proportional to the complexity of the teacher (roughly, the number of non-redundant parameters), rather than the student's.
[ Hall C 4-9 ]

Abstract
Masked Video Autoencoder (MVA) approaches have demonstrated their potential by significantly outperforming previous video representation learning methods. However, they waste an excessive amount of computations and memory in predicting uninformative tokens/frames due to random masking strategies. (e.g., over 16 nodes with 128 NVIDIA A100 GPUs). To resolve this issue, we exploit the unequal information density among the patches in videos and propose EVEREST, a surprisingly efficient MVA approach for video representation learning that finds tokens containing rich motion features and discards uninformative ones during both pre-training and fine-tuning. We further present an information-intensive frame selection strategy that allows the model to focus on informative and causal frames with minimal redundancy. Our method significantly reduces the computation and memory requirements of MVA, enabling the pre-training and fine-tuning on a single machine with 8 GPUs while achieving comparable performance to computation- and memory-heavy baselines on multiple benchmarks and the uncurated Ego4D dataset. We hope that our work contributes to reducing the barrier to further research on video understanding.
[ Hall C 4-9 ]

Abstract
Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent works leverage text instructions to allow users to more freely express their search intents. However, they primarily focus on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via foundation models. Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves results comparable with or better than prior best on eight benchmarks of various image retrieval tasks, while maintaining high parameter efficiency with a significantly smaller model size. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity …
[ Hall C 4-9 ]

Abstract
The past few years have seen an intense research interest in the practical needs of the "right to be forgotten", which has motivated researchers to develop machine unlearning methods to unlearn a fraction of training data and its lineage. While existing machine unlearning methods prioritize the protection of individuals' private data, they overlook investigating the unlearned models' susceptibility to adversarial attacks and security breaches. In this work, we uncover a novel security vulnerability of machine unlearning based on the insight that adversarial vulnerabilities can be bolstered, especially for adversarially robust models. To exploit this observed vulnerability, we propose a novel attack called Adversarial Unlearning Attack (AdvUA), which aims to generate a small fraction of malicious unlearning requests during the unlearning process. AdvUA causes a significant reduction of adversarial robustness in the unlearned model compared to the original model, providing an entirely new capability for adversaries that is infeasible in conventional machine learning pipelines. Notably, we also show that AdvUA can effectively enhance model stealing attacks by extracting additional decision boundary information, further emphasizing the breadth and significance of our research. We also conduct both theoretical analysis and computational complexity of AdvUA. Extensive numerical studies are performed to demonstrate the effectiveness …
[ Hall C 4-9 ]
Abstract
Machine learning techniques often lack formal correctness guarantees, evidenced by the widespread adversarial examples that plague most deep-learning applications. This lack of formal guarantees resulted in several research efforts that aim at verifying Deep Neural Networks (DNNs), with a particular focus on safety-critical applications. However, formal verification techniques still face major scalability and precision challenges. The over-approximation introduced during the formal verification process to tackle the scalability challenge often results in inconclusive analysis. To address this challenge, we propose a novel framework to generate Verification-Friendly Neural Networks (VNNs). We present a post-training optimization framework to achieve a balance between preserving prediction performance and verification-friendliness. Our proposed framework results in VNNs that are comparable to the original DNNs in terms of prediction performance, while amenable to formal verification techniques. This essentially enables us to establish robustness for more VNNs than their DNN counterparts, in a time-efficient manner.
[ Hall C 4-9 ]
Abstract
Neural image classifiers are known to undergo severe performance degradation when exposed to inputs that are sampled from environmental conditions that differ from their training data. Given the recent progress in Text-to-Image (T2I) generation, a natural question is how modern T2I generators can be used to simulate arbitrary interventions over such environmental factors in order to augment training data and improve the robustness of downstream classifiers. We experiment across a diverse collection of benchmarks in single domain generalization (SDG) and reducing reliance on spurious features (RRSF), ablating across key dimensions of T2I generation, including interventional prompting strategies, conditioning mechanisms, and post-hoc filtering, showing that modern T2I generators like Stable Diffusion can indeed be used to implement a powerful interventional data augmentation (IDA) mechanism, outperforming previously state-of-the-art data augmentation techniques regardless of how each dimension is configured.
[ Hall C 4-9 ]

Abstract
Continual Test-Time Adaptation (CTTA) is designed to optimize the model during deployment under changing conditions. CTTA is an important problem as it enables models to remain effective and reliable in dynamic and evolving environments. However, tackling the CTTA problem is nontrivial. The model needs to be computationally and memory-efficient to rapidly update its parameters for ever-changing environments in real-time. Also, the model should generalize well to new unseen domains while maintaining its capability on previously encountered ones, as old domains can be revisited in future adaptation phases. To tackle these challenges, this paper proposes BECoTTA, a parameter/memory-efficient yet powerful framework for CTTA. We introduce Mixture-of-Domain Low-rank Experts (MoDE) that contains two core components: i) Domain-Adaptive Routing, which can aid in selectively capturing the domain-adaptive knowledge, and ii) Domain-Expert Synergy Loss to maximize the dependency between each domain and expert. We validate our proposed method over multiple CTTA benchmarks, getting 5.81% performance gain, while only requiring 0.001x trainable parameters. We also provide analyses of our BECoTTA, including expert assignment and target domain relation.
[ Hall C 4-9 ]

Abstract
Deep neural networks are applied in more and more areas of everyday life. However, they still lack essential abilities, such as robustly dealing with spatially transformed input signals. Approaches to mitigate this severe robustness issue are limited to two pathways: Either models are implicitly regularised by increased sample variability (data augmentation) or explicitly constrained by hard-coded inductive biases. The limiting factor of the former is the size of the data space, which renders sufficient sample coverage intractable. The latter is limited by the engineering effort required to develop such inductive biases for every possible scenario. Instead, we take inspiration from human behaviour, where percepts are modified by mental or physical actions during inference. We propose a novel technique to emulate such an inference process for neural nets. This is achieved by traversing a sparsified inverse transformation tree during inference using parallel energy-based evaluations. Our proposed inference algorithm, called Inverse Transformation Search (ITS), is model-agnostic and equips the model with zero-shot pseudo-invariance to spatially transformed inputs. We evaluated our method on several benchmark datasets, including a synthesised ImageNet test set. ITS outperforms the utilised baselines on all zero-shot test scenarios.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
The intrinsic dimension (ID) represents the minimum dimension needed to describe data on a lower-dimensional manifold within high-dimensional spaces. Network pruning aims to reduce the complexity of high-dimensional networks while minimizing performance trade-offs. This symmetry motivates the exploration of ID as a metric for effective pruning. For vision-language models, we investigate whether different modalities exist on separate manifolds, indicating varying complexity and prunability. We empirically study ID variations in large-scale vision-language pre-trained models and examine the contributions of different modalities to model prunability. We propose a layer importance metric based on ID, which can conveniently integrate with current metrics and enhance performance in vision-language model pruning. The experimental results show a high correlation between ID and modality prunability. Visual representations are more sensitive and crucial to model performance, while language representations are more robust and offer greater prunability. Our findings suggest an asymmetric pruning strategy for vision and language modalities, guided by the ID metric. The code is available at https://github.com/Nofear18/IDVLPruning
[ Hall C 4-9 ]
Abstract
Modern computer vision pipelines handle large images in one of two sub-optimal ways: down-sampling or cropping. These two methods incur significant losses in the amount of information and context present in an image. There are many downstream applications in which global context matters as much as high frequency details, such as in real-world satellite imagery; in such cases researchers have to make the uncomfortable choice of which information to discard. We introduce xT, a simple framework for vision transformers which effectively aggregates global context with local details and can model large images end-to-end on contemporary GPUs. We select a set of benchmark datasets across classic vision tasks which accurately reflect a vision model's ability to understand truly large images and incorporate fine details over large scales and assess our method's improvement on them. xT is a streaming, two-stage architecture that adapts existing vision backbones and long sequence language models to effectively model large images without quadratic memory growth. We are able to increase accuracy by up to 8.6% on challenging classification tasks and F1 score by 11.6 on context-dependent segmentation on images as large as 29,000 x 29,000 pixels.
Invited Talk: Javier Duarte
Machine Learning Opportunities for the Next Generation of Particle Physics
At the CERN Large Hadron Collider, protons collide 40 million times per second at the highest energies achievable in the lab, probing the microscopic nature of subatomic particles on the smallest length scales. These proton-proton collisions give rise to thousands of particles per collision, whose energy deposits and hits are measured by massive detectors and read out as hundreds of millions of data channels. By comparing this data to those predicted by theory through simulation, we can test the validity of our theory and search for the existence of new particles, like dark matter, or interactions, like the elusive Higgs boson self-interaction. This avalanche of data will continue to grow in the next generation of experiments, posing tremendous challenges. Machine learning (ML) methods are increasingly essential to analyze this data while overcoming these challenges. In this talk, I will cover several opportunities to apply ML to reconstruct particles from detector measurements, simulate collisions, filter collisions in real time, and perhaps even discover new physical laws or symmetries.
Bio: Javier Duarte is an Associate Professor of Physics at UC San Diego and a member of the CMS experiment at the CERN Large Hadron Collider. He leads a research group developing new artificial intelligence (AI) techniques for high-energy particle collisions to better measure the properties and interactions of elementary particles, like the Higgs boson, and search for new physics. Before joining UC San Diego, he was a Lederman postdoctoral fellow at Fermilab and received his Ph.D. in Physics at Caltech and his B.S. in Physics and Mathematics at MIT. Prof. Duarte has received the APS Henry Primakoff Award for Early-Career Particle Physics, Sloan Research Fellowship, RCSA Cottrell Scholar Award, DOE Early Career Award, and is a co-PI of the NSF HDR Institute for Accelerated AI Algorithms for Data-Driven Discovery (A3D3).
Bio :
Town Hall / Business Meeting Wed 24 Jul 04:00 p.m.
Not Live Streamed.
Oral 4C Safety and Control Wed 24 Jul 04:30 p.m.
[ Hall A2 ]
Abstract
[ Hall A2 ]

Abstract
We introduce an optimization-based reconstruction attack capable of completely or near-completely reconstructing a dataset utilized for training a random forest. Notably, our approach relies solely on information readily available in commonly used libraries such as scikit-learn. To achieve this, we formulate the reconstruction problem as a combinatorial problem under a maximum likelihood objective. We demonstrate that this problem is NP-hard, though solvable at scale using constraint programming - an approach rooted in constraint propagation and solution-domain reduction. Through an extensive computational investigation, we demonstrate that random forests trained without bootstrap aggregation but with feature randomization are susceptible to a complete reconstruction. This holds true even with a small number of trees. Even with bootstrap aggregation, the majority of the data can also be reconstructed. These findings underscore a critical vulnerability inherent in widely adopted ensemble methods, warranting attention and mitigation. Although the potential for such reconstruction attacks has been discussed in privacy research, our study provides clear empirical evidence of their practicability.
[ Hall A2 ]

Abstract
As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. To do so, safety measures either aim at making LLMs try to avoid harmful outcomes or aim at preventing LLMs from causing harmful outcomes, even if they try to cause them. In this paper, we focus on this second layer of defense. We develop and evaluate pipelines of safety techniques (protocols) that try to ensure safety despite intentional subversion - an approach we call AI control. We investigate a setting in which we want to solve a sequence of programming problems without ever submitting subtly wrong code, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate a range of protocols and red-team them by exploring strategies that the untrusted model could use to subvert them. We find that using the trusted model to edit untrusted-model code or using the untrusted model as a monitor substantially improves on simple baselines.
[ Hall A2 ]
Abstract
Membership inference attacks aim to detect if a particular data point was used in training a model. We design a novel statistical test to perform robust membership inference attacks (RMIA) with low computational overhead. We achieve this by a fine-grained modeling of the null hypothesis in our likelihood ratio tests, and effectively leveraging both reference models and reference population data samples. RMIA has superior test power compared with prior methods, throughout the TPR-FPR curve (even at extremely low FPR, as low as 0). Under computational constraints, where only a limited number of pre-trained reference models (as few as 1) are available, and also when we vary other elements of the attack (e.g., data distribution), our method performs exceptionally well, unlike prior attacks that approach random guessing. RMIA lays the groundwork for practical yet accurate data privacy risk assessment in machine learning.
Oral 4D Retrieval Wed 24 Jul 04:30 p.m.
[ Hall A8 ]
Abstract
We propose a new method to measure the task-specific accuracy of Retrieval-Augmented Large Language Models (RAG). Evaluation is performed by scoring the RAG on an automatically-generated synthetic exam composed of multiple choice questions based on the corpus of documents associated with the task. Our method is an automated, cost-efficient, interpretable, and robust strategy to select the optimal components for a RAG system. We leverage Item Response Theory (IRT) to estimate the quality of an exam and its informativeness on task-specific accuracy. IRT also provides a natural way to iteratively improve the exam by eliminating the exam questions that are not sufficiently informative about a model's ability. We demonstrate our approach on four new open-ended Question-Answering tasks based on Arxiv abstracts, StackExchange questions, AWS DevOps troubleshooting guides, and SEC filings. In addition, our experiments reveal more general insights into factors impacting RAG performance like size, retrieval mechanism, prompting and fine-tuning. Most notably, our findings show that choosing the right retrieval algorithms often leads to bigger performance gains than simply using a larger language model.
[ Hall A8 ]

Abstract
Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent works leverage text instructions to allow users to more freely express their search intents. However, they primarily focus on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via foundation models. Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves results comparable with or better than prior best on eight benchmarks of various image retrieval tasks, while maintaining high parameter efficiency with a significantly smaller model size. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity …
[ Hall A8 ]

Abstract
Recent advances in retrieval-augmented generation (RAG) have initiated a new era in repository-level code completion. However, the invariable use of retrieval in existing methods exposes issues in both efficiency and robustness, with a large proportion of the retrieved contexts proving unhelpful or harmful to code language models (code LMs). In this paper, we propose a selective RAG framework to avoid retrieval when unnecessary. To power this framework, we design a self-supervised learning approach to enable a code LM to accurately self-evaluate whether retrieval can improve its output quality and robustly leverage the potentially noisy retrieved contexts. Using this LM as both the selective RAG policy and the generation model, our framework achieves state-of-the-art repository-level code completion performance on diverse benchmarks including RepoEval, CrossCodeEval, and CrossCodeLongEval, a new long-form code completion benchmark. Meanwhile, our analyses show that selectively retrieving brings as much as 70% inference speedup in the online serving setting without harming the performance. We further demonstrate that our framework is able to accommodate different generation models, retrievers, and programming languages. These advancements position our framework as an important step towards more accurate and efficient repository-level code completion.
[ Hall A8 ]

Abstract
Oral 4A Reinforcement Learning 2 Wed 24 Jul 04:30 p.m.
[ Hall C 1-3 ]
Abstract
We show that offline actor-critic reinforcement learning can scale to large models - such as transformers - and follows similar scaling laws as supervised learning. We find that offline actor-critic algorithms can outperform strong, supervised, behavioral cloning baselines for multi-task training on a large dataset; containing both sub-optimal and expert behavior on 132 continuous control tasks. We introduce a Perceiver-based actor-critic model and elucidate the key features needed to make offline RL work with self- and cross-attention modules. Overall, we find that: i) simple offline actor critic algorithms are a natural choice for gradually moving away from the currently predominant paradigm of behavioral cloning, and ii) via offline RL it is possible to learn multi-task policies that master many domains simultaneously, including real robotics tasks, from sub-optimal demonstrations or self-generated data.
[ Hall C 1-3 ]
Abstract
Value functions are an essential component in deep reinforcement learning (RL), that are typically trained via mean squared error regression to match bootstrapped target values. However, scaling value-based RL methods to large networks has proven challenging. This difficulty is in stark contrast to supervised learning: by leveraging a cross-entropy classification loss, supervised methods have scaled reliably to massive networks. Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions. We show that training value functions with categorical cross-entropy significantly enhances performance and scalability across various domains, including single-task RL on Atari 2600 games, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers, achieving state-of-the-art results on these domains. Through careful analysis, we show that categorical cross-entropy mitigates issues inherent to value-based RL, such as noisy targets and non-stationarity. We argue that shifting to categorical cross-entropy for training value functions can substantially improve the scalability of deep RL at little-to-no cost.
[ Hall C 1-3 ]

Abstract
Despite extreme sample inefficiency, on-policy reinforcement learning, aka policy gradients, has become a fundamental tool in decision-making problems. With the recent advances in GPU-driven simulation, the ability to collect large amounts of data for RL training has scaled exponentially. However, we show that current RL methods, e.g. PPO, fail to ingest the benefit of parallelized environments beyond a certain point and their performance saturates. To address this, we propose a new on-policy RL algorithm that can effectively leverage large-scale environments by splitting them into chunks and fusing them back together via importance sampling. Our algorithm, termed SAPG, shows significantly higher performance across a variety of challenging environments where vanilla PPO and other strong baselines fail to achieve high performance. Webpage at https://sapg-rl.github.io/.
[ Hall C 1-3 ]

Abstract
Oral 4B Optimization 1 Wed 24 Jul 04:30 p.m.
[ Hall A1 ]

Abstract
Estimating mutual correlations between random variables or data streams is essential for intelligent behavior and decision-making. As a fundamental quantity for measuring statistical relationships, mutual information has been extensively studied and utilized for its generality and equitability. However, existing methods often lack the efficiency needed for real-time applications, such as test-time optimization of a neural network, or the differentiability required for end-to-end learning, like histograms. We introduce a neural network called InfoNet, which directly outputs mutual information estimations of data streams by leveraging the attention mechanism and the computational efficiency of deep learning infrastructures. By maximizing a dual formulation of mutual information through large-scale simulated training, our approach circumvents time-consuming test-time optimization and offers generalization ability. We evaluate the effectiveness and generalization of our proposed mutual information estimation scheme on various families of distributions and applications. Our results demonstrate that InfoNet and its training process provide a graceful efficiency-accuracy trade-off and order-preserving properties. We will make the code and models available as a comprehensive toolbox to facilitate studies in different fields requiring real-time mutual information estimation.
[ Hall A1 ]

Abstract
[ Hall A1 ]
Abstract
We study the problem of preferential Bayesian optimization (BO), where we aim to optimize a black-box function with only preference feedback over a pair of candidate solutions. Inspired by the likelihood ratio idea, we construct a confidence set of the black-box function using only the preference feedback. An optimistic algorithm with an efficient computational method is then developed to solve the problem, which enjoys an information-theoretic bound on the total cumulative regret, a first-of-its-kind for preferential BO. This bound further allows us to design a scheme to report an estimated best solution, with a guaranteed convergence rate. Experimental results on sampled instances from Gaussian processes, standard test functions, and a thermal comfort optimization problem all show that our method stably achieves better or competitive performance as compared to the existing state-of-the-art heuristics, which, however, do not have theoretical guarantees on regret bounds or convergence.
[ Hall A1 ]
Abstract
This paper studies the problem of solving nonconvex nonsmooth optimization over a closed convex set. Most previous works tackle such problems by transforming the constrained problem into an unconstrained problem that can be solved by the techniques developed in the unconstrained setting. However, they only provide asymptotic convergence analysis for their methods. In this work, we provide the non-asymptotic analysis for solving constrained nonconvex nonsmooth optimization. We first generalize classical gradient mapping and the Frank–Wolfe gap in the nonsmooth setting. Then we introduce novel notions of approximate stationarity concerning such generalized quantities. We also propose several stochastic zeroth-order algorithms for the problem, along with their non-asymptotic convergence guarantees of obtaining the proposed approximate stationarity. Finally, we conduct numerical experiments that demonstrate the effectiveness of our algorithms.
Oral 4E LLMs Wed 24 Jul 04:30 p.m.
[ Straus 1-3 ]

Abstract
The emergence of In-Context Learning (ICL) in LLMs remains a remarkable phenomenon that is partially understood. To explain ICL, recent studies have created theoretical connections to Gradient Descent (GD). We ask, do such connections hold up in actual pre-trained language models? We highlight the limiting assumptions in prior works that make their setup considerably different from the practical setup in which language models are trained. For example, their experimental verification uses ICL objective (training models explicitly for ICL), which differs from the emergent ICL in the wild. Furthermore, the theoretical hand-constructed weights used in these studies have properties that don't match those of real LLMs. We also look for evidence in real models. We observe that ICL and GD have different sensitivity to the order in which they observe demonstrations. Finally, we probe and compare the ICL vs. GD hypothesis in a natural setting. We conduct comprehensive empirical analyses on language models pre-trained on natural data (LLaMa-7B). Our comparisons of three performance metrics highlight the inconsistent behavior of ICL and GD as a function of various factors such as datasets, models, and the number of demonstrations. We observe that ICL and GD modify the output distribution of language models differently. …
[ Straus 1-3 ]

Abstract
[ Straus 1-3 ]
Abstract
In day-to-day communication, people often approximate the truth --- for example, rounding the time or omitting details --- in order to be maximally helpful to the listener. How do large language models (LLMs) handle such nuanced trade-offs? To address this question, we use psychological models and experiments designed to characterize human behavior to analyze LLMs. We test a range of LLMs and explore how optimization for human preferences or inference-time reasoning affects these trade-offs. We find that reinforcement learning from human feedback improves both honesty and helpfulness, while chain-of-thought prompting skews LLMs towards helpfulness over honesty. Finally, GPT-4 Turbo demonstrates human-like response patterns including sensitivity to the conversational framing and listener's decision context. Our findings reveal the conversational values internalized by LLMs and suggest that even these abstract values can, to a degree, be steered by zero-shot prompting.
[ Straus 1-3 ]
Abstract
Training modern LLMs is extremely resource intensive, and customizing them for various deployment scenarios characterized by limited compute and memory resources through repeated training is impractical. In this paper, we introduce Flextron, a network architecture and post-training model optimization framework supporting flexible model deployment. The Flextron architecture utilizes a nested elastic structure to rapidly adapt to specific user-defined latency and accuracy targets during inference with no additional fine-tuning required. It is also input-adaptive, and can automatically route tokens through its sub-networks for improved performance and efficiency. We present a sample-efficient training method and associated routing algorithms for systematically transforming an existing trained LLM into a Flextron model. We evaluate Flextron on the GPT-3 and LLama-2 family of LLMs, and demonstrate superior performance over multiple end-to-end trained variants and other state-of-the-art elastic networks, all with a single pretraining run that consumes a mere 7.63% tokens compared to original pretraining.
Oral 4F Labels Wed 24 Jul 04:30 p.m.
[ Lehar 1-4 ]

Abstract
Although deep partial label learning (deep PLL) classifiers have shown their competitive performance, they are heavily influenced by the noisy false-positive labels leading to poorer performance as the training progresses. Meanwhile, existing deep PLL research lacks theoretical guarantee on the analysis of correlation between label noise (or ambiguity degree) and classification performance. This paper addresses the above limitations with label smoothing (LS) from both theoretical and empirical aspects. In theory, we prove lower and upper bounds of the expected risk to show that label smoothing can help deep PLL. We further derive the optimal smoothing rate to investigate the conditions, i.e., when label smoothing benefits deep PLL. In practice, we design a benchmark solution and a novel optimization algorithm called Label Smoothing-based Partial Label Learning (LS-PLL). Extensive experimental results on benchmark PLL datasets and various deep architectures validate that label smoothing does help deep PLL in improving classification performance and learning distinguishable representations, and the best results can be achieved when the empirical smoothing rate approximately approaches the optimal smoothing rate in theoretical findings. Code is publicly available at https://github.com/kalpiree/LS-PLL.
[ Lehar 1-4 ]
Abstract
In this paper, we introduce SemiRES, a semi-supervised framework that effectively leverages a combination of labeled and unlabeled data to perform RES. A significant hurdle in applying semi-supervised techniques to RES is the prevalence of noisy pseudo-labels, particularly at the boundaries of objects. SemiRES incorporates the Segment Anything Model (SAM), renowned for its precise boundary demarcation, to improve the accuracy of these pseudo-labels. Within SemiRES, we offer two alternative matching strategies: IoU-based Optimal Matching (IOM) and Composite Parts Integration (CPI). These strategies are designed to extract the most accurate masks from SAM's output, thus guiding the training of the student model with enhanced precision. In instances where a precise mask cannot be matched from the available candidates, we develop the Pixel-Wise Adjustment (PWA) strategy, guiding the student model's training directly by the pseudo-labels. Extensive experiments on three RES benchmarks—RefCOCO, RefCOCO+, and G-Ref reveal its superior performance compared to fully supervised methods, especially in low-data scenarios. Remarkably, with only 1% labeled data, our SemiRES outperforms the supervised baseline by a large margin, e.g. +18.64% gains on RefCOCO val set.
[ Lehar 1-4 ]

Abstract
Fine-tuning vision-language models (VLMs) with abundant unlabeled data recently has attracted increasing attention. Existing methods that resort to the pseudolabeling strategy would suffer from heavily incorrect hard pseudolabels when VLMs exhibit low zero-shot performance in downstream tasks. To alleviate this issue, we propose a Candidate Pseudolabel Learning method, termed CPL, to fine-tune VLMs with suitable candidate pseudolabels of unlabeled data in downstream tasks. The core of our method lies in the generation strategy of candidate pseudolabels, which progressively generates refined candidate pseudolabels by both intra- and inter-instance label selection, based on a confidence score matrix for all unlabeled data. This strategy can result in better performance in true label inclusion and class-balanced instance selection. In this way, we can directly apply existing loss functions to learn with generated candidate psueudolabels. Extensive experiments on nine benchmark datasets with three learning paradigms demonstrate the effectiveness of our method. Our code can be found here.
[ Lehar 1-4 ]
Abstract
While self-supervised learning (SSL) in speech has greatly reduced the reliance of speech processing systems on annotated corpora, the success of SSL still hinges on the availability of a large-scale unannotated corpus, which is still often impractical for many low-resource languages or under privacy concerns. Some existing work seeks to alleviate the problem by data augmentation, but most works are confined to introducing perturbations to real speech and do not introduce new variations in speech prosody, speakers, and speech content, which are important for SSL. Motivated by the recent finding that diffusion models have superior capabilities for modeling data distributions, we propose DiffS4L, a pretraining scheme that augments the limited unannotated data with synthetic data with different levels of variations, generated by a diffusion model trained on the limited unannotated data. Finally, an SSL model is pre-trained on the real and the synthetic speech. Our experiments show that DiffS4L can significantly improve the performance of SSL models, such as reducing the WER of the HuBERT pretrained model by 6.26 percentage points in the English ASR task. Notably, we find that the synthetic speech with all levels of variations, i.e. new prosody, new speakers, and even new content (despite the new …