Oral
Oral 4E LLMs
Straus 1-3
Position: Do pretrained Transformers Learn In-Context by Gradient Descent?
Lingfeng Shen · Aayush Mishra · Daniel Khashabi
The emergence of In-Context Learning (ICL) in LLMs remains a remarkable phenomenon that is partially understood. To explain ICL, recent studies have created theoretical connections to Gradient Descent (GD). We ask, do such connections hold up in actual pre-trained language models? We highlight the limiting assumptions in prior works that make their setup considerably different from the practical setup in which language models are trained. For example, their experimental verification uses ICL objective (training models explicitly for ICL), which differs from the emergent ICL in the wild. Furthermore, the theoretical hand-constructed weights used in these studies have properties that don't match those of real LLMs. We also look for evidence in real models. We observe that ICL and GD have different sensitivity to the order in which they observe demonstrations. Finally, we probe and compare the ICL vs. GD hypothesis in a natural setting. We conduct comprehensive empirical analyses on language models pre-trained on natural data (LLaMa-7B). Our comparisons of three performance metrics highlight the inconsistent behavior of ICL and GD as a function of various factors such as datasets, models, and the number of demonstrations. We observe that ICL and GD modify the output distribution of language models differently. These results indicate that the equivalence between ICL and GD remains an open hypothesis and calls for further studies.
ExCP: Extreme LLM Checkpoint Compression via Weight-Momentum Joint Shrinking
Wenshuo Li · Xinghao Chen · Han Shu · Yehui Tang · Yunhe Wang
Large language models (LLM) have recently attracted significant attention in the field of artificial intelligence. However, the training process of these models poses significant challenges in terms of computational and storage capacities, thus compressing checkpoints has become an urgent problem. In this paper, we propose a novel Extreme Checkpoint Compression (ExCP) framework, which significantly reduces the required storage of training checkpoints while achieving nearly lossless performance. We first calculate the residuals of adjacent checkpoints to obtain the essential but sparse information for higher compression ratio. To further excavate the redundancy parameters in checkpoints, we then propose a weight-momentum joint shrinking method to utilize another important information during the model optimization, i.e., momentum. In particular, we exploit the information of both model and optimizer to discard as many parameters as possible while preserving critical information to ensure optimal performance. Furthermore, we utilize non-uniform quantization to further compress the storage of checkpoints. We extensively evaluate our proposed ExCP framework on several models ranging from 410M to 7B parameters and demonstrate significant storage reduction while maintaining strong performance. For instance, we achieve approximately $70\times$ compression for the Pythia-410M model, with the final performance being as accurate as the original model on various downstream tasks. Codes will be available at https://github.com/Gaffey/ExCP.
How do Large Language Models Navigate Conflicts between Honesty and Helpfulness?
Ryan Liu · Theodore R Sumers · Ishita Dasgupta · Thomas Griffiths
In day-to-day communication, people often approximate the truth --- for example, rounding the time or omitting details --- in order to be maximally helpful to the listener. How do large language models (LLMs) handle such nuanced trade-offs? To address this question, we use psychological models and experiments designed to characterize human behavior to analyze LLMs. We test a range of LLMs and explore how optimization for human preferences or inference-time reasoning affects these trade-offs. We find that reinforcement learning from human feedback improves both honesty and helpfulness, while chain-of-thought prompting skews LLMs towards helpfulness over honesty. Finally, GPT-4 Turbo demonstrates human-like response patterns including sensitivity to the conversational framing and listener's decision context. Our findings reveal the conversational values internalized by LLMs and suggest that even these abstract values can, to a degree, be steered by zero-shot prompting.
Flextron: Many-in-One Flexible Large Language Model
Ruisi Cai · Saurav Muralidharan · Greg Heinrich · Hongxu Yin · Zhangyang “Atlas” Wang · Jan Kautz · Pavlo Molchanov
Training modern LLMs is extremely resource intensive, and customizing them for various deployment scenarios characterized by limited compute and memory resources through repeated training is impractical. In this paper, we introduce Flextron, a network architecture and post-training model optimization framework supporting flexible model deployment. The Flextron architecture utilizes a nested elastic structure to rapidly adapt to specific user-defined latency and accuracy targets during inference with no additional fine-tuning required. It is also input-adaptive, and can automatically route tokens through its sub-networks for improved performance and efficiency. We present a sample-efficient training method and associated routing algorithms for systematically transforming an existing trained LLM into a Flextron model. We evaluate Flextron on the GPT-3 and LLama-2 family of LLMs, and demonstrate superior performance over multiple end-to-end trained variants and other state-of-the-art elastic networks, all with a single pretraining run that consumes a mere 7.63% tokens compared to original pretraining.