Skip to yearly menu bar Skip to main content


Poster

Poster Session 4

Hall C 4-9
Wed 24 Jul 4:30 a.m. PDT — 6 a.m. PDT
Abstract:
Chat is not available.


Poster
#100
Statistical Inference Under Constrained Selection Bias

Santiago Cortes-Gomez · Mateo Dulce Rubio · Carlos Miguel Patiño · Bryan Wilder

Large-scale datasets are increasingly being used to inform decision making. While this effort aims to ground policy in real-world evidence, challenges have arisen as selection bias and other forms of distribution shifts often plague observational data. Previous attempts to provide robust inference have given guarantees depending on a user-specified amount of possible distribution shift (e.g., the maximum KL divergence between the observed and target distributions). However, decision makers will often have additional knowledge about the target distribution which constrains the kind of possible shifts. To leverage such information, we propose a framework that enables statistical inference in the presence of selection bias which obeys user-specified constraints in the form of functions whose expectation is known under the target distribution. The output is high-probability bounds on the value of an estimand for the target distribution. Hence, our method leverages domain knowledge in order to partially identify a wide class of estimands. We analyze the computational and statistical properties of methods to estimate these bounds and show that our method can produce informative bounds on a variety of simulated and semisynthetic tasks, as well as in a real-world use case.


Poster
#1000
Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling

Raunaq Bhirangi · Chenyu Wang · Venkatesh Pattabiraman · Carmel Majidi · Abhinav Gupta · Tess Hellebrekers · Lerrel Pinto

Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.


Poster
#1001
Premise Order Matters in Reasoning with Large Language Models

Xinyun Chen · Ryan Chi · Xuezhi Wang · Denny Zhou

Large language models (LLMs) have accomplished remarkable reasoning performance in various domains. However, in the domain of reasoning tasks, we discover a frailty: LLMs are surprisingly brittle to the ordering of the premises, despite the fact that such ordering does not alter the underlying task. In particular, we observe that LLMs achieve the best performance when the premise order aligns with the context required in intermediate reasoning steps. For example, in deductive reasoning tasks, presenting the premises in the same order as the ground truth proof in the prompt (as opposed to random ordering) drastically increases the model's accuracy. We first examine the effect of premise ordering on deductive reasoning on a variety of LLMs, and our evaluation shows that even if the model performance is decent on the optimal order, permuting the premise order can cause a performance drop of over 30%. In addition, we release the benchmark R-GSM, based on GSM8K, to examine the ordering effect for mathematical problem-solving, and we again observe a significant drop in accuracy, relative to the original GSM8K benchmark.


Poster
#1002
Balanced Resonate-and-Fire Neurons

Saya Higuchi · Sebastian Kairat · Sander Bohte · Sebastian Otte

The resonate-and-fire (RF) neuron, introduced over two decades ago, is a simple, efficient, yet biologically plausible spiking neuron model, which can extract frequency patterns within the time domain due to its resonating membrane dynamics. However, previous RF formulations suffer from intrinsic shortcomings that limit effective learning and prevent exploiting the principled advantage of RF neurons. Here, we introduce the balanced RF (BRF) neuron, which alleviates some of the intrinsic limitations of vanilla RF neurons and demonstrates its effectiveness within recurrent spiking neural networks (RSNNs) on various sequence learning tasks. We show that networks of BRF neurons achieve overall higher task performance, produce only a fraction of the spikes, and require significantly fewer parameters as compared to modern RSNNs. Moreover, BRF-RSNN consistently provide much faster and more stable training convergence, even when bridging many hundreds of time steps during backpropagation through time (BPTT). These results underscore that our BRF-RSNN is a strong candidate for future large-scale RSNN architectures, further lines of research in SNN methodology, and more efficient hardware implementations.


Poster
#1003
Stability-Informed Initialization of Neural Ordinary Differential Equations

Theodor Westny · Arman Mohammadi · Daniel Jung · Erik Frisk

This paper addresses the training of Neural Ordinary Differential Equations (neural ODEs), and in particular explores the interplay between numerical integration techniques, stability regions, step size, and initialization techniques. It is shown how the choice of integration technique implicitly regularizes the learned model, and how the solver's corresponding stability region affects training and prediction performance. From this analysis, a stability-informed parameter initialization technique is introduced. The effectiveness of the initialization method is displayed across several learning benchmarks and industrial applications.


Poster
#1004
Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning

Weilin Chen · Ruichu Cai · Zeqin Yang · Jie Qiao · Yuguang Yan · Zijian Li · Zhifeng Hao

Causal effect estimation under networked interference is an important but challenging problem. Available parametric methods are limited in their model space, while previous semiparametric methods, e.g., leveraging neural networks to fit only one single nuisance function, may still encounter misspecification problems under networked interference without appropriate assumptions on the data generation process. To mitigate bias stemming from misspecification, we propose a novel doubly robust causal effect estimator under networked interference, by adapting the targeted learning technique to the training of neural networks. Specifically, we generalize the targeted learning technique into the networked interference setting and establish the condition under which an estimator achieves double robustness. Based on the condition, we devise an end-to-end causal effect estimator by transforming the identified theoretical condition into a targeted loss. Moreover, we provide a theoretical analysis of our designed estimator, revealing a faster convergence rate compared to a single nuisance model. Extensive experimental results on two real-world networks with semisynthetic data demonstrate the effectiveness of our proposed estimators.


Poster
#1005
Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs

Daniel D. Johnson · Daniel Tarlow · David Duvenaud · Chris Maddison

Identifying how much a model $\hat{p}\_{Y|X}^{\theta}$ knows about the stochastic real-world process $p\_{Y|X}$ it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actions. But this is difficult for generative models because probabilistic predictions do not distinguish between per-response noise (aleatoric uncertainty) and lack of knowledge about the process (epistemic uncertainty), and existing epistemic uncertainty quantification techniques tend to be overconfident when the model underfits. We propose a general strategy for teaching a model to both approximate $p\_{Y|X}$ and also estimate the remaining gaps between $\hat{p}_{Y|X}^{\theta}$ and $p\_{Y|X}$: train it to predict *pairs* of independent responses drawn from the true conditional distribution, allow it to "cheat" by observing one response while predicting the other, then measure how much it cheats. Remarkably, we prove that being good at cheating (i.e. cheating whenever it improves your prediction) is equivalent to being *second-order calibrated*, a principled extension of ordinary calibration that allows us to construct provably-correct frequentist confidence intervals for $p\_{Y|X}$ and detect incorrect responses with high probability. We demonstrate empirically that our approach accurately estimates how much models don't know across ambiguous image classification, (synthetic) language modeling, and partially-observable navigation tasks, outperforming existing techniques.


Spotlight Poster
#1006
Extending Test-Time Augmentation with Metamorphic Relations for Combinatorial Problems

Siwei Wei · Xudong Zhang · Zhiyang Zhou · Yan Cai

The application of machine learning methods to solve combinatorial problems has garnered considerable research interest. In this paper, we propose MAgg (Metamorphic Aggregation), a method to augment machine learning models for combinatorial problems at inference time using metamorphic relations. MAgg models metamorphic relations using directed graphs, which are then fed to a Graph Neural Network (GNN) model to improve the aggregation of predictions across transformed input instances. By incorporating metamorphic relations, MAgg essentially extends standard Test-Time Augmentation (TTA), eliminating the necessity of label-preserving transformations and expanding its applicability to a broader range of supervised learning tasks for combinatorial problems. We evaluate the proposed MAgg method on three mainstream machine learning tasks for combinatorial problems, namely Boolean Satisfiability Prediction (SAT), Decision Traveling Salesman Problem Satisfiability Prediction (Decision TSP), and Graph Edit Distance Estimation (GED). The evaluation result shows significant improvements over base models in all three tasks, corroborating the effectiveness and versatility of the proposed method.


Poster
#1007
Towards Causal Foundation Model: on Duality between Optimal Balancing and Attention

Jiaqi Zhang · Joel Jennings · Agrin Hilmkil · Nick Pawlowski · Cheng Zhang · Chao Ma

Foundation models have brought changes to the landscape of machine learning, demonstrating sparks of human-level intelligence across a diverse array of tasks. However, a gap persists in complex tasks such as causal inference, primarily due to challenges associated with intricate reasoning steps and high numerical precision requirements. In this work, we take a first step towards building causally-aware foundation models for treatment effect estimations. We propose a novel, theoretically justified method called Causal Inference with Attention (CInA), which utilizes multiple unlabeled datasets to perform self-supervised causal learning, and subsequently enables zero-shot causal inference on unseen tasks with new data. This is based on our theoretical results that demonstrate the primal-dual connection between optimal covariate balancing and self-attention, facilitating zero-shot causal inference through the final layer of a trained transformer-type architecture. We demonstrate empirically that CInA effectively generalizes to out-of-distribution datasets and various real-world datasets, matching or even surpassing traditional per-dataset methodologies. These results provide compelling evidence that our method has the potential to serve as a stepping stone for the development of causal foundation models.


Poster
#1008
Towards Efficient Spiking Transformer: a Token Sparsification Framework for Training and Inference Acceleration

Zhengyang Zhuge · Peisong Wang · Xingting Yao · Jian Cheng

Nowadays Spiking Transformers have exhibited remarkable performance close to Artificial Neural Networks (ANNs), while enjoying the inherent energy-efficiency of Spiking Neural Networks (SNNs). However, training Spiking Transformers on GPUs is considerably more time-consuming compared to the ANN counterparts, despite the energy-efficient inference through neuromorphic computation. In this paper, we investigate the token sparsification technique for efficient training of Spiking Transformer and find conventional methods suffer from noticeable performance degradation. We analyze the issue and propose our Sparsification with Timestep-wise Anchor Token and dual Alignments (STATA). Timestep-wise Anchor Token enables precise identification of important tokens across timesteps based on standardized criteria. Additionally, dual Alignments incorporate both Intra and Inter Alignment of the attention maps, fostering the learning of inferior attention. Extensive experiments show the effectiveness of STATA thoroughly, which demonstrates up to $\sim$1.53$\times$ training speedup and $\sim$48% energy reduction with comparable performance on various datasets and architectures.


Spotlight Poster
#1009
CLIF: Complementary Leaky Integrate-and-Fire Neuron for Spiking Neural Networks

Yulong Huang · Xiaopeng LIN · Hongwei Ren · Haotian FU · Yue Zhou · Zunchang LIU · biao pan · Bojun Cheng

Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models. Compared to conventional deep Artificial Neural Networks (ANNs), SNNs exhibit superior efficiency and capability to process temporal information. However, it remains a challenge to train SNNs due to their undifferentiable spiking mechanism. The surrogate gradients method is commonly used to train SNNs, but often comes with an accuracy disadvantage over ANNs counterpart. We link the degraded accuracy to the vanishing of gradient on the temporal dimension through the analytical and experimental study of the training process of Leaky Integrate-and-Fire (LIF) Neuron-based SNNs. Moreover, we propose the Complementary Leaky Integrate-and-Fire (CLIF) Neuron. CLIF creates extra paths to facilitate the backpropagation in computing temporal gradient while keeping binary output. CLIF is hyperparameter-free and features broad applicability. Extensive experiments on a variety of datasets demonstrate CLIF's clear performance advantage over other neuron models. Furthermore, the CLIF's performance even slightly surpasses superior ANNs with identical network structure and training conditions. The code is available at https://github.com/HuuYuLong/Complementary-LIF.


Poster
#101
Multi-Factor Adaptive Vision Selection for Egocentric Video Question Answering

Haoyu Zhang · Meng Liu · Zixin Liu · Xuemeng Song · Yaowei Wang · Liqiang Nie

The challenge of interpreting the world from a human perspective in Artificial Intelligence (AI) is particularly evident in egocentric video question answering, which grapples with issues like small object recognition, noise suppression, and spatial-temporal reasoning. To address these challenges, we introduce the Multi-Factor Adaptive vision Selection (MFAS) framework. MFAS integrates a patch partition and merging module for enhanced small object recognition, a prior-guided patch selection module for noise suppression and focused analysis, and a hierarchical aggregation network to aggregate visual semantics guided by questions. Extensive experiments on several public egocentric datasets have validated the effectiveness and generalization of our framework. Code and data are available in https://github.com/Hyu-Zhang/EgoVideoQA.


Poster
#1010
No Wrong Turns: The Simple Geometry Of Neural Networks Optimization Paths

Charles Guille-Escuret · Hiroki Naganuma · Kilian Fatras · Ioannis Mitliagkas

Understanding the optimization dynamics of neural networks is necessary for closing the gap between theory and practice. Stochastic first-order optimization algorithms are known to efficiently locate favorable minima in deep neural networks. This efficiency, however, contrasts with the non-convex and seemingly complex structure of neural loss landscapes. In this study, we delve into the fundamental geometric properties of sampled gradients along optimization paths. We focus on two key quantities, the restricted secant inequality and error bound, as well as their ratio γ, which hold high significance for first-order optimization. Our analysis reveals that these quantities exhibit predictable, consistent behavior throughout training, despite the stochasticity induced by sampling minibatches. Our findings suggest that not only do optimization trajectories never encounter significant obstacles, but they also maintain stable dynamics during the majority of training. These observed properties are sufficiently expressive to theoretically guarantee linear convergence and prescribe learning rate schedules mirroring empirical practices. We conduct our experiments on image classification, semantic segmentation and language modeling across different batch sizes, network architectures, datasets, optimizers, and initialization seeds. We discuss the impact of each factor. Our work provides novel insights into the properties of neural network loss functions, and opens the door to theoretical frameworks more relevant to prevalent practice.


Spotlight Poster
#1011
Learning-Rate-Free Stochastic Optimization over Riemannian Manifolds

Daniel Dodd · Louis Sharrock · Chris Nemeth

In recent years, interest in gradient-based optimization over Riemannian manifolds has surged. However, a significant challenge lies in the reliance on hyperparameters, especially the learning rate, which requires meticulous tuning by practitioners to ensure convergence at a suitable rate. In this work, we introduce innovative learning-rate-free algorithms for stochastic optimization over Riemannian manifolds, eliminating the need for hand-tuning and providing a more robust and user-friendly approach. We establish high probability convergence guarantees that are optimal, up to logarithmic factors, compared to the best-known optimally tuned rate in the deterministic setting. Our approach is validated through numerical experiments, demonstrating competitive performance against learning-rate-dependent algorithms.


Poster
#1012
Understanding the Training Speedup from Sampling with Approximate Losses

Rudrajit Das · Xi Chen · Bertram Ieong · Parikshit Bansal · Sujay Sanghavi

It is well known that selecting samples with large losses/gradients can significantly reduce the number of training steps. However, the selection overhead is often too high to yield any meaningful gains in terms of overall training time. In this work, we focus on the greedy approach of selecting samples with large *approximate losses* instead of exact losses in order to reduce the selection overhead. For smooth convex losses, we show that such a greedy strategy can converge to a constant factor of the minimum value of the average loss in fewer iterations than the standard approach of random selection. We also theoretically quantify the effect of the approximation level. We then develop SIFT which uses early exiting to obtain approximate losses with an intermediate layer's representations for sample selection. We evaluate SIFT on the task of training a 110M parameter 12 layer BERT base model, and show significant gains (in terms of training hours and number of backpropagation steps) without any optimized implementation over vanilla training. For e.g., to reach 64% validation accuracy, SIFT with exit at the first layer takes $\sim$ 43 hours compared to $\sim$ 57 hours of vanilla training.


Poster
#1013
Optimal Hessian/Jacobian-Free Nonconvex-PL Bilevel Optimization

Feihu Huang

Bilevel optimization is widely applied in many machine learning tasks such as hyper-parameter learning, meta learning and reinforcement learning. Although many algorithms recently have been developed to solve the bilevel optimization problems, they generally rely on the (strongly) convex lower-level problems. More recently, some methods have been proposed to solve the nonconvex-PL bilevel optimization problems, where their upper-level problems are possibly nonconvex, and their lower-level problems are also possibly nonconvex while satisfying Polyak-Łojasiewicz (PL) condition. However, these methods still have a high convergence complexity or a high computation complexity such as requiring compute expensive Hessian/Jacobian matrices and its inverses. In the paper, thus, we propose an efficient Hessian/Jacobian-free method (i.e., HJFBiO) with the optimal convergence complexity to solve the nonconvex-PL bilevel problems. Theoretically, under some mild conditions, we prove that our HJFBiO method obtains an optimal convergence rate of $O(\frac{1}{T})$, where $T$ denotes the number of iterations, and has an optimal gradient complexity of $O(\epsilon^{-1})$ in finding an $\epsilon$-stationary solution. We conduct some numerical experiments on the bilevel PL game and hyper-representation learning task to demonstrate efficiency of our proposed method.


Spotlight Poster
#1014
Convergence of Some Convex Message Passing Algorithms to a Fixed Point

Václav Voráček · Tomáš Werner

A popular approach to the MAP inference problem in graphical models is to minimize an upper bound obtained from a dual linear programming or Lagrangian relaxation by (block-)coordinate descent. This is also known as convex/convergent message passing; examples are max-sum diffusion and sequential tree-reweighted message passing (TRW-S). Convergence properties of these methods are currently not fully understood. They have been proved to converge to the set characterized by local consistency of active constraints, with unknown convergence rate; however, it was not clear if the iterates converge at all (to any point). We prove a stronger result (conjectured before but never proved): the iterates converge to a fixed point of the method. Moreover, we show that the algorithm terminates within $\mathcal{O}(1/\varepsilon)$ iterations. We first prove this for a version of coordinate descent applied to a general piecewise-affine convex objective. Then we show that several convex message passing methods are special cases of this method. Finally, we show that a slightly different version of coordinate descent can cycle.


Spotlight Poster
#1015
Optimal Acceleration for Minimax and Fixed-Point Problems is Not Unique

TaeHo Yoon · Jaeyeon Kim · Jaewook Suh · Ernest Ryu

Recently, accelerated algorithms using the anchoring mechanism for minimax optimization and fixed-point problems have been proposed, and matching complexity lower bounds establish their optimality. In this work, we present the surprising observation that the optimal acceleration mechanism in minimax optimization and fixed-point problems is not unique. Our new algorithms achieve exactly the same worst-case convergence rates as existing anchor-based methods while using materially different acceleration mechanisms. Specifically, these new algorithms are dual to the prior anchor-based accelerated methods in the sense of H-duality. This finding opens a new avenue of research on accelerated algorithms since we now have a family of methods that empirically exhibit varied characteristics while having the same optimal worst-case guarantee.


Spotlight Poster
#1016
Dynamic Correlation Clustering in Sublinear Update Time

Vincent Cohen-Addad · Silvio Lattanzi · Andreas Maggiori · Nikos Parotsidis

We study the classic problem of correlation clustering in dynamic vertex streams. In this setting, vertices are either added or randomly deleted over time, and each vertex pair is connected by a positive or negative edge. The objective is to continuously find a partition which minimizes the sum of positive edges crossing clusters and negative edges within clusters. We present an algorithm that maintains an $O(1)$-approximation with $O(\text{polylog} n)$ amortized update time. Prior to our work Behnezhad et al. in SODA 2023 achieved a $5$-approximation with $O(1)$ expected update time in edge streams which translates in vertex streams to an $O(D)$-update time where $D$ is the maximum possible degree. Finally we complement our theoretical analysis with experiments on real world data.


Poster
#1017
Tackling Prevalent Conditions in Unsupervised Combinatorial Optimization: Cardinality, Minimum, Covering, and More

Fanchen Bu · Hyeonsoo Jo · Soo Yong Lee · Sungsoo Ahn · Kijung Shin

Combinatorial optimization (CO) is naturally discrete, making machine-learning techniques based on differentiable optimization inapplicable. Karalias & Loukas (2020) adapted the probabilistic method by Erdős & Spencer (1974), to incorporate CO into differentiable optimization. Their work ignited the research on unsupervised learning for CO, composed of two main components: probabilistic objectives and derandomization. However, each component confronts unique challenges. First, deriving objectives under complex conditions and constraints is nontrivial. Second, the derandomization process is underexplored, and the existing derandomization methods are either random sampling or naive rounding. In this work, we aim to tackle complex conditions in unsupervised CO. First, we concretize the targets for probabilistic objective construction and derandomization with theoretical justification. Then, for various complex conditions commonly involved in different CO problems, we derive nontrivial objectives and derandomization to meet the targets. Finally, we apply the derivations to various CO problems. Via extensive experiments on synthetic and real-world graphs, we validate the correctness of our derivations and show our empirical superiority w.r.t. both optimization quality and speed.


Spotlight Poster
#102
DRCT: Diffusion Reconstruction Contrastive Training towards Universal Detection of Diffusion Generated Images

Baoying Chen · Jishen Zeng · Jianquan Yang · Rui Yang

Diffusion models have made significant strides in visual content generation but also raised increasing demands on generated image detection. Existing detection methods have achieved considerable progress, but they usually suffer a significant decline in accuracy when detecting images generated by an unseen diffusion model. In this paper, we seek to address the generalizability of generated image detectors from the perspective of hard sample classification. The basic idea is that if a classifier can distinguish generated images that closely resemble real ones, then it can also effectively detect less similar samples, potentially even those produced by a different diffusion model. Based on this idea, we propose Diffusion Reconstruction Contrastive Learning (DRCT), a universal framework to enhance the generalizability of the existing detectors. DRCT generates hard samples by high-quality diffusion reconstruction and adopts contrastive training to guide the learning of diffusion artifacts. In addition, we have built a million-scale dataset, DRCT-2M, including 16 types diffusion models for the evaluation of generalizability of detection methods. Extensive experimental results show that detectors enhanced with DRCT achieve over a 10% accuracy improvement in cross-set tests. The code, models, and dataset will soon be available at https://github.com/beibuwandeluori/DRCT.


Spotlight Poster
#103
ERQ: Error Reduction for Post-Training Quantization of Vision Transformers

Yunshan Zhong · Jiawei Hu · You Huang · Yuxin Zhang · Rongrong Ji

Post-training quantization (PTQ) for vision transformers (ViTs) has garnered significant attention due to its efficiency in compressing models. However, existing methods typically overlook the intricate interdependence between quantized weight and activation, leading to considerable quantization error. In this paper, we propose ERQ, a two-step PTQ approach meticulously crafted to sequentially reduce the quantization error arising from activation and weight quantization. ERQ first introduces Activation quantization error reduction (Aqer) that strategically formulates the minimization of activation quantization error as a Ridge Regression problem, tackling it by updating weights with full-precision. Subsequently, ERQ introduces Weight quantization error reduction (Wqer) that adopts an iterative approach to mitigate the quantization error induced by weight quantization. In each iteration, an empirically derived, efficient proxy is employed to refine the rounding directions of quantized weights, coupled with a Ridge Regression solver to curtail weight quantization error. Experimental results attest to the effectiveness of our approach. Notably, ERQ surpasses the state-of-the-art GPTQ by 22.36% in accuracy for W3A4 ViT-S.


Spotlight Poster
#104
Discrete Latent Perspective Learning for Segmentation and Detection

Deyi Ji · Feng Zhao · Lanyun Zhu · Wenwei Jin · Hongtao Lu · Jieping Ye

In this paper, we address the challenge of Perspective-Invariant Learning in machine learning and computer vision, which involves enabling a network to understand images from varying perspectives to achieve consistent semantic interpretation. While standard approaches rely on the labor-intensive collection of multi-view images or limited data augmentation techniques, we propose a novel framework, Discrete Latent Perspective Learning (DLPL), for latent multi-perspective fusion learning using conventional single-view images. DLPL comprises three main modules: Perspective Discrete Decomposition (PDD), Perspective Homography Transformation (PHT), and Perspective Invariant Attention (PIA), which work together to discretize visual features, transform perspectives, and fuse multi-perspective semantic information, respectively. DLPL is a universal perspective learning framework applicable to a variety of scenarios and vision tasks. Extensive experiments demonstrate that DLPL significantly enhances the network's capacity to depict images across diverse scenarios (daily photos, UAV, auto-driving) and tasks (detection, segmentation).


Poster
#105
ESNet: Evolution and Succession Network for High-Resolution Salient Object Detection

Hongyu Liu · Runmin Cong · Hua Li · Qianqian Xu · Qingming Huang · Wei Zhang

Preserving details and avoiding high computational costs are the two main challenges for the High-Resolution Salient Object Detection (HRSOD) task. In this paper, we propose a two-stage HRSOD model from the perspective of evolution and succession, including an evolution stage with Low-resolution Location Model (LrLM) and a succession stage with High-resolution Refinement Model (HrRM). The evolution stage achieves detail-preserving salient objects localization on the low-resolution image through the evolution mechanisms on supervision and feature; the succession stage utilizes the shallow high-resolution features to complement and enhance the features inherited from the first stage in a lightweight manner and generate the final high-resolution saliency prediction. Besides, a new metric named Boundary-Detail-aware Mean Absolute Error (${MAE}_{{BD}}$) is designed to evaluate the ability to detect details in high-resolution scenes. Extensive experiments on five datasets demonstrate that our network achieves superior performance at real-time speed (49 FPS) compared to state-of-the-art methods.


Spotlight Poster
#106
Position: Mission Critical – Satellite Data is a Distinct Modality in Machine Learning

Esther Rolf · Konstantin Klemmer · Caleb Robinson · Hannah Kerner

Satellite data has the potential to inspire a seismic shift for machine learning---one in which we rethink existing practices designed for traditional data modalities. As machine learning for satellite data (SatML) gains traction for its real-world impact, our field is at a crossroads. We can either continue applying ill-suited approaches, or we can initiate a new research agenda that centers around the unique characteristics and challenges of satellite data. This position paper argues that satellite data constitutes a distinct modality for machine learning research and that we must recognize it as such to advance the quality and impact of SatML research across theory, methods, and deployment. We outline research directions, critical discussion questions and actionable suggestions to transform SatML from merely an intriguing application area to a dedicated research discipline that helps move the needle on big challenges for machine learning and society.


Poster
#107
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels

Haoning Wu · Zicheng Zhang · Weixia Zhang · Chaofeng Chen · Liang Liao · Chunyi Li · Yixuan Gao · Annan Wang · Erli Zhang · Wenxiu Sun · Qiong Yan · Xiongkuo Min · Guangtao Zhai · Weisi Lin

The explosion of visual content available online underscores the requirement for an accurate machine assessor to robustly evaluate scores across diverse types of visual contents. While recent studies have demonstrated the exceptional potentials of large multi-modality models (LMMs) on a wide range of related fields, in this work, we explore how to teach them for visual rating aligning with human opinions. Observing that human raters only learn and judge discrete text-defined levels in subjective studies, we propose to emulate this subjective process and teach LMMs with text-defined rating levels instead of scores. The proposed Q-Align achieves state-of-the-art accuracy on image quality assessment (IQA), image aesthetic assessment (IAA), as well as video quality assessment (VQA) under the original LMM structure. With the syllabus, we further unify the three tasks into one model, termed the OneAlign. Our experiments demonstrate the advantage of discrete levels over direct scores on training, and that LMMs can learn beyond the discrete levels and provide effective finer-grained evaluations. Code and weights will be released.


Poster
#108
Visual-Text Cross Alignment: Refining the Similarity Score in Vision-Language Models

Jinhao Li · Haopeng Li · Sarah Erfani · Lei Feng · James Bailey · Feng Liu

It has recently been discovered that using a pre-trained vision-language model (VLM), e.g., CLIP, to align a whole query image with several finer text descriptions generated by a large language model can significantly enhance zero-shot performance. However, in this paper, we empirically find that the finer descriptions tend to align more effectively with local areas of the query image rather than the whole image, and then we theoretically validate this finding. Thus, we present a method called weighted visual-text cross alignment (WCA). This method begins with a localized visual prompting technique, designed to identify local visual areas within the query image. The local visual areas are then cross-aligned with the finer descriptions by creating a similarity matrix using the pre-trained VLM. To determine how well a query image aligns with each category, we develop a score function based on the weighted similarities in this matrix. Extensive experiments demonstrate that our method significantly improves zero-shot performance across various datasets, achieving results that are even comparable to few-shot learning methods.


Poster
#109
Compress Clean Signal from Noisy Raw Image: A Self-Supervised Approach

Zhihao Li · Yufei Wang · Alex Kot · Bihan Wen

Raw images offer unique advantages in many low-level visual tasks due to their unprocessed nature. However, this unprocessed state accentuates noise, making raw images challenging to compress effectively. Current compression methods often overlook the ubiquitous noise in raw space, leading to increased bitrates and reduced quality. In this paper, we propose a novel raw image compression scheme that selectively compresses the noise-free component of the input, while discarding its real noise using a self-supervised approach. By excluding noise from the bitstream, both the coding efficiency and reconstruction quality are significantly enhanced. We curate an full-day dataset of raw images with calibrated noise parameters and reference images to evaluate the performance of models under a wide range of input signal-noise ratios. Experimental results demonstrate that our method surpasses existing compression techniques, achieving a more advantageous rate-distortion balance with improvements ranging from +2 to +10dB and yielding a bit saving of 2 to 50 times. The code will be released upon paper acceptance.


Poster
#110
See More Details: Efficient Image Super-Resolution by Experts Mining

Eduard Zamfir · Zongwei Wu · Nancy Mehta · Yulun Zhang · Radu Timofte

Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce SeemoRe, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of ``see more", allowing our model to achieve an optimal performance with minimal computational costs in efficient settings.


Poster
#1100
Overestimation, Overfitting, and Plasticity in Actor-Critic: the Bitter Lesson of Reinforcement Learning

Michal Nauman · Michał Bortkiewicz · Piotr Milos · Tomasz Trzcinski · Mateusz Ostaszewski · Marek Cygan

Recent advancements in off-policy Reinforcement Learning (RL) have significantly improved sample efficiency, primarily due to the incorporation of various forms of regularization that enable more gradient update steps than traditional agents. However, many of these techniques have been tested in limited settings, often on tasks from single simulation benchmarks and against well-known algorithms rather than a range of regularization approaches. This limits our understanding of the specific mechanisms driving RL improvements. To address this, we implemented over 60 different off-policy agents, each integrating established regularization techniques from recent state-of-the-art algorithms. We tested these agents across 14 diverse tasks from 2 simulation benchmarks, measuring training metrics related to overestimation, overfitting, and plasticity loss — issues that motivate the examined regularization techniques. Our findings reveal that while the effectiveness of a specific regularization setup varies with the task, certain combinations consistently demonstrate robust and superior performance. Notably, a simple Soft Actor-Critic agent, appropriately regularized, reliably finds a better-performing policy within the training regime, which previously was achieved mainly through model-based approaches.


Poster
#1101
Geometric Active Exploration in Markov Decision Processes: the Benefit of Abstraction

Riccardo De Santi · Federico Arangath Joseph · Noah Liniger · Mirco Mutti · Andreas Krause

How can a scientist use a Reinforcement Learning (RL) algorithm to design experiments over a dynamical system's state space? In the case of finite and Markovian systems, an area called Active Exploration (AE) relaxes the optimization problem of experiments design into Convex RL, a generalization of RL admitting a wider notion of reward. Unfortunately, this framework is currently not scalable and the potential of AE is hindered by the vastness of experiments spaces typical of scientific discovery applications. However, these spaces are often endowed with natural geometries, e.g., permutation invariance in molecular design, that an agent could leverage to improve the statistical and computational efficiency of AE. To achieve this, we bridge AE and MDP homomorphisms, which offer a way to exploit known geometric structures via abstraction. Towards this goal, we make two fundamental contributions: we extend MDP homomorphisms formalism to Convex RL, and we present, to the best of our knowledge, the first analysis that formally captures the benefit of abstraction via homomorphisms on sample efficiency. Ultimately, we propose the Geometric Active Exploration (GAE) algorithm, which we analyse theoretically and experimentally in environments motivated by problems in scientific discovery.


Poster
#1102
LQER: Low-Rank Quantization Error Reconstruction for LLMs

Cheng Zhang · Jianyi Cheng · George Constantinides · Yiren Zhao

Post-training quantization of Large Language Models (LLMs) is challenging. In this work, we introduce **L**ow-rank **Q**uantization **E**rror **R**eduction (LQER), which combines quantization and low-rank approximation to recover the model capability. LQER leverages an activation-induced scale matrix to drive the singular value distribution of quantization error towards a desirable distribution, which enables nearly-lossless W4A8 quantization on various LLMs and downstream tasks without the need for knowledge distillation, grid search, or gradient-based iterative optimization. Unlike existing methods, the computation pattern of LQER eliminates the need for specialized Scatter and Gather processes to collect high-precision weights from irregular memory locations. Our W4A8 LLMs achieve near-lossless performance on six popular downstream tasks, while using $1.36 \times$ fewer hardware resources than the leading state-of-the-art method. We will open-source our framework at [https://github.com/ChengZhang-98/lqer](https://github.com/ChengZhang-98/lqer)


Poster
#1103
Federated Optimization with Doubly Regularized Drift Correction

Xiaowen Jiang · Anton Rodomanov · Sebastian Stich

Federated learning is a distributed optimization paradigm that allows training machine learning models across decentralized devices while keeping the data localized. The standard method, FedAvg, suffers from client drift which can hamper performance and increase communication costs over centralized methods. Previous works proposed various strategies to mitigate drift, yet none have shown consistently improved communication-computation trade-offs over vanilla gradient descent across all standard function classes. In this work, we revisit DANE, an established method in distributed optimization. We show that (i) DANE can achieve the desired communication reduction under Hessian similarity constraints. Furthermore, (ii) we present an extension, DANE+, which supports arbitrary inexact local solvers and has more freedom to choose how to aggregate the local updates. We propose (iii) a novel method, FedRed, which has improved local computational complexity and retains the same communication complexity compared to DANE/DANE+. This is achieved by doubly regularized drift correction.


Poster
#1104
Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Chang He · Zhaoye Pan · Xiao Wang · Bo Jiang

Optimization problems with access to only zeroth-order information of the objective function on Riemannian manifolds arise in various applications, spanning from statistical learning to robot learning. While various zeroth-order algorithms have been proposed in Euclidean space, they are not inherently designed to handle the challenging constraints imposed by Riemannian manifolds. The proper adaptation of zeroth-order techniques to Riemannian manifolds remained unknown until the pioneering work of (Li et al., 2023a). However, zeroth-order algorithms are widely observed to converge slowly and be unstable in practice. To alleviate these issues, we propose a Riemannian accelerated zeroth-order algorithm with improved robustness. Regarding efficiency, our accelerated algorithm has the function query complexity of $\mathcal{O}(\epsilon^{-7/4}d)$ for finding an $\epsilon$-approximate first-order stationary point. By introducing a small perturbation, it exhibits a function query complexity of $\tilde{\mathcal{O}}(\epsilon^{-7/4}d)$ for seeking a second-order stationary point with a high probability, matching state-of-the-art result in Euclidean space. Moreover, we further establish the almost sure convergence in the asymptotic sense through the Stable Manifold Theorem. Regarding robustness, our algorithm requires larger smoothing parameters in the order of $\tilde{\mathcal{O}}(\epsilon^{7/8}d^{-1/2})$, improving the existing result by a factor of $\tilde{\mathcal{O}}(\epsilon^{3/4})$.


Poster
#1105
Position: Leverage Foundational Models for Black-Box Optimization

Xingyou Song · Yingtao Tian · Robert Lange · Chansoo Lee · Yujin Tang · Yutian Chen

Undeniably, Large Language Models (LLMs) have stirred an extraordinary wave of innovation in the machine learning research domain, resulting in substantial impact across diverse fields such as reinforcement learning, robotics, and computer vision. Their incorporation has been rapid and transformative, marking a significant paradigm shift in the field of machine learning research. However, the field of experimental design, grounded on black-box optimization, has been much less affected by such a paradigm shift, even though integrating LLMs with optimization presents a unique landscape ripe for exploration. In this position paper, we frame the field of black-box optimization around sequence-based foundation models and organize their relationship with previous literature. We discuss the most promising ways foundational language models can revolutionize optimization, which include harnessing the vast wealth of information encapsulated in free-form text to enrich task comprehension, utilizing highly flexible sequence models such as Transformers to engineer superior optimization strategies, and enhancing performance prediction over previously unseen search spaces.


Poster
#1106
Principled Preferential Bayesian Optimization

Wenjie Xu · Wenbin Wang · Yuning Jiang · Bratislav Svetozarevic · Colin Jones

We study the problem of preferential Bayesian optimization (BO), where we aim to optimize a black-box function with only preference feedback over a pair of candidate solutions. Inspired by the likelihood ratio idea, we construct a confidence set of the black-box function using only the preference feedback. An optimistic algorithm with an efficient computational method is then developed to solve the problem, which enjoys an information-theoretic bound on the total cumulative regret, a first-of-its-kind for preferential BO. This bound further allows us to design a scheme to report an estimated best solution, with a guaranteed convergence rate. Experimental results on sampled instances from Gaussian processes, standard test functions, and a thermal comfort optimization problem all show that our method stably achieves better or competitive performance as compared to the existing state-of-the-art heuristics, which, however, do not have theoretical guarantees on regret bounds or convergence.


Poster
#1107
Posterior Sampling-Based Bayesian Optimization with Tighter Bayesian Regret Bounds

Shion Takeno · Yu Inatsu · Masayuki Karasuyama · Ichiro Takeuchi

Among various acquisition functions (AFs) in Bayesian optimization (BO), Gaussian process upper confidence bound (GP-UCB) and Thompson sampling (TS) are well-known options with established theoretical properties regarding Bayesian cumulative regret (BCR). Recently, it has been shown that a randomized variant of GP-UCB achieves a tighter BCR bound compared with GP-UCB, which we call the tighter BCR bound for brevity. Inspired by this study, this paper first shows that TS achieves the tighter BCR bound. On the other hand, GP-UCB and TS often practically suffer from manual hyperparameter tuning and over-exploration issues, respectively. Therefore, we analyze yet another AF called a probability of improvement from the maximum of a sample path (PIMS). We show that PIMS achieves the tighter BCR bound and avoids the hyperparameter tuning, unlike GP-UCB. Furthermore, we demonstrate a wide range of experiments, focusing on the effectiveness of PIMS that mitigates the practical issues of GP-UCB and TS.


Poster
#1108
Demystifying SGD with Doubly Stochastic Gradients

Kyurae Kim · Joohwan Ko · Yian Ma · Jacob Gardner

Optimization objectives in the form of a sum of intractable expectations are rising in importance (*e.g.,*, diffusion models, variational autoencoders, and many more), a setting also known as "finite sum with infinite data." For these problems, a popular strategy is to employ SGD with *doubly stochastic gradients* (doubly SGD): the expectations are estimated using the gradient estimator of each component, while the sum is estimated by subsampling over these estimators. Despite its popularity, little is known about the convergence properties of doubly SGD, except under strong assumptions such as bounded variance. In this work, we establish the convergence of doubly SGD with independent minibatching and random reshuffling under general conditions, which encompasses dependent component gradient estimators. In particular, for dependent estimators, our analysis allows fined-grained analysis of the effect correlations. As a result, under a per-iteration computational budget of $b \times m$, where $b$ is the minibatch size and $m$ is the number of Monte Carlo samples, our analysis suggests where one should invest most of the budget in general. Furthermore, we prove that random reshuffling (RR) improves the complexity dependence on the subsampling noise.


Poster
#1109
Projection-Free Variance Reduction Methods for Stochastic Constrained Multi-Level Compositional Optimization

Wei Jiang · Sifan Yang · Wenhao Yang · Yibo Wang · Yuanyu Wan · Lijun Zhang

This paper investigates projection-free algorithms for stochastic constrained multi-level optimization. In this context, the objective function is a nested composition of several smooth functions, and the decision set is closed and convex. Existing projection-free algorithms for solving this problem suffer from two limitations: 1) they solely focus on the gradient mapping criterion and fail to match the optimal sample complexities in unconstrained settings; 2) their analysis is exclusively applicable to non-convex functions, without considering convex and strongly convex objectives. To address these issues, we introduce novel projection-free variance reduction algorithms and analyze their complexities under different criteria. For gradient mapping, our complexities improve existing results and match the optimal rates for unconstrained problems. For the widely-used Frank-Wolfe gap criterion, we provide theoretical guarantees that align with those for single-level problems. Additionally, by using a stage-wise adaptation, we further obtain complexities for convex and strongly convex functions. Finally, numerical experiments on different tasks demonstrate the effectiveness of our methods.


Poster
#111
Improving Antibody Humanness Prediction using Patent Data

Talip Ucar · Aubin Ramon · Dino Oglic · Rebecca Croasdale-Wood · Tom Diethe · Pietro Sormanni

We investigate the potential of patent data for improving the antibody humanness prediction using a multi-stage, multi-loss training process. Humanness serves as a proxy for the immunogenic response to antibody therapeutics, one of the major causes of attrition in drug discovery and a challenging obstacle for their use in clinical settings. We pose the initial learning stage as a weakly-supervised contrastive-learning problem, where each antibody sequence is associated with possibly multiple identifiers of function and the objective is to learn an encoder that groups them according to their patented properties. We then freeze a part of the contrastive encoder and continue training it on the patent data using the cross-entropy loss to predict the humanness score of a given antibody sequence. We illustrate the utility of the patent data and our approach by performing inference on three different immunogenicity datasets, unseen during training. Our empirical results demonstrate that the learned model consistently outperforms the alternative baselines and establishes new state-of-the-art on five out of six inference tasks, irrespective of the used metric.


Poster
#1110
Mean-field Underdamped Langevin Dynamics and its Spacetime Discretization

Qiang Fu · Ashia Wilson

We propose a new method called the N-particle underdamped Langevin algorithm for optimizing a special class of non-linear functionals defined over the space of probability measures. Examples of problems with this formulation include training mean-field neural networks, maximum mean discrepancy minimization and kernel Stein discrepancy minimization. Our algorithm is based on a novel spacetime discretization of the mean-field underdamped Langevin dynamics, for which we provide a new, fast mixing guarantee. In addition, we demonstrate that our algorithm converges globally in total variation distance, bridging the theoretical gap between the dynamics and its practical implementation.


Poster
#1111
Non-clairvoyant Scheduling with Partial Predictions

Ziyad Benomar · Vianney Perchet

The non-clairvoyant scheduling problem has gained new interest within learning-augmented algorithms, where the decision-maker is equipped with predictions without any quality guarantees. In practical settings, access to predictions may be reduced to specific instances, due to cost or data limitations. Our investigation focuses on scenarios where predictions for only $B$ job sizes out of $n$ are available to the algorithm. We first establish near-optimal lower bounds and algorithms in the case of perfect predictions. Subsequently, we present a learning-augmented algorithm satisfying the robustness, consistency, and smoothness criteria, and revealing a novel tradeoff between consistency and smoothness inherent in the scenario with a restricted number of predictions.


Poster
#1112
Differentiability and Optimization of Multiparameter Persistent Homology

Luis Scoccola · Siddharth Setlur · David Loiseaux · Mathieu Carrière · Steve Oudot

Real-valued functions on geometric data---such as node attributes on a graph---can be optimized using descriptors from persistent homology, allowing the user to incorporate topological terms in the loss function. When optimizing a single real-valued function (the one-parameter setting), there is a canonical choice of descriptor for persistent homology: the barcode. The operation mapping a real-valued function to its barcode is differentiable almost everywhere, and the convergence of gradient descent for losses using barcodes is relatively well understood. When optimizing a vector-valued function (the multiparameter setting), there is no unique choice of descriptor for multiparameter persistent homology, and many distinct descriptors have been proposed. This calls for the development of a general framework for differentiability and optimization that applies to a wide range of multiparameter homological descriptors. In this article, we develop such a framework and show that it encompasses well-known descriptors of different flavors, such as signed barcodes and the multiparameter persistence landscape. We complement the theory with numerical experiments supporting the idea that optimizing multiparameter homological descriptors can lead to improved performances compared to optimizing one-parameter descriptors, even when using the simplest and most efficiently computable multiparameter descriptors.


Poster
#1113
Understanding Adam Optimizer via Online Learning of Updates: Adam is FTRL in Disguise

Kwangjun Ahn · Zhiyu Zhang · Yunbum Kook · Yan Dai

Despite the success of the Adam optimizer in practice, the theoretical understanding of its algorithmic components still remains limited. In particular, most existing analyses of Adam show the convergence rate that can be simply achieved by non-adative algorithms like SGD. In this work, we provide a different perspective based on online learning that underscores the importance of Adam's algorithmic components. Inspired by Cutkosky et al. (2023), we consider the framework called online learning of updates/increments, where we choose the updates/increments of an optimizer based on an online learner. With this framework, the design of a good optimizer is reduced to the design of a good online learner. Our main observation is that Adam corresponds to a principled online learning framework called Follow-the-Regularized-Leader (FTRL). Building on this observation, we study the benefits of its algorithmic components from the online learning perspective.


Poster
#1114
Zeroth-Order Methods for Constrained Nonconvex Nonsmooth Stochastic Optimization

Zhuanghua Liu · Cheng Chen · Luo Luo · Bryan Kian Hsiang Low

This paper studies the problem of solving nonconvex nonsmooth optimization over a closed convex set. Most previous works tackle such problems by transforming the constrained problem into an unconstrained problem that can be solved by the techniques developed in the unconstrained setting. However, they only provide asymptotic convergence analysis for their methods. In this work, we provide the non-asymptotic analysis for solving constrained nonconvex nonsmooth optimization. We first generalize classical gradient mapping and the Frank–Wolfe gap in the nonsmooth setting. Then we introduce novel notions of approximate stationarity concerning such generalized quantities. We also propose several stochastic zeroth-order algorithms for the problem, along with their non-asymptotic convergence guarantees of obtaining the proposed approximate stationarity. Finally, we conduct numerical experiments that demonstrate the effectiveness of our algorithms.


Poster
#1115
Convergence and Complexity Guarantee for Inexact First-order Riemannian Optimization Algorithms

Yuchen Li · Laura Balzano · Deanna Needell · Hanbaek Lyu

We analyze inexact Riemannian gradient descent (RGD) where Riemannian gradients and retractions are inexactly (and cheaply) computed. Our focus is on understanding when inexact RGD converges and what is the complexity in the general nonconvex and constrained setting. We answer these questions in a general framework of tangential Block Majorization-Minimization (tBMM). We establish that tBMM converges to an $\epsilon$-stationary point within $O(\epsilon^{-2})$ iterations. Under a mild assumption, the results still hold when the subproblem is solved inexactly in each iteration provided the total optimality gap is bounded. Our general analysis applies to a wide range of classical algorithms with Riemannian constraints including inexact RGD and proximal gradient method on Stiefel manifolds. We numerically validate that tBMM shows improved performance over existing methods when applied to various problems, including nonnegative tensor decomposition with Riemannian constraints, regularized nonnegative matrix factorization, and low-rank matrix recovery problems.


Poster
#1116
Measures of diversity and space-filling designs for categorical data

AstraZeneca Pharmaceutica · Emilio Domínguez-Sánchez · Merwan Barlier · Igor Colin · Haitham Bou Ammar · Tom Diethe

Selecting a small subset of items that represent the diversity of a larger population lies at the heart of many data analysis and machine learning applications. However, when it comes to items described by discrete features, the lack of natural ordering and the combinatorial nature of the search space pose significant challenges to the current selection techniques and make existing methods ill-suited. In this paper, we propose to make a step in that direction by proposing novel methods to select subsets of diverse categorical data based on the advances in combinatorial optimization. First, we start to cast the subset selection problem through the lens of the optimization of three diversity metrics. We then provide novel bounds for this problem and present exact solvers that unfortunately come with a high computational cost. To overcome this bottleneck, we go on and show how to employ tools from linear programming and submodular optimization by introducing two computationally plausible methods that still present approximation guarantees about the diversity metrics. Finally, a numerical assessment is provided to illustrate the potential of the designs with respect to state-of-the-art methods.


Poster
#1117
Combinatorial Approximations for Cluster Deletion: Simpler, Faster, and Better

Vicente Balmaseda · Ying Xu · Yixin Cao · Nate Veldt

Cluster deletion is an NP-hard graph clustering objective with applications in computational biology and social network analysis, where the goal is to delete a minimum number of edges to partition a graph into cliques. We first provide a tighter analysis of two previous approximation algorithms, improving their approximation guarantees from 4 to 3. Moreover, we show that both algorithms can be derandomized in a surprisingly simple way, by greedily taking a vertex of maximum degree in an auxiliary graph and forming a cluster around it. One of these algorithms relies on solving a linear program. Our final contribution is to design a new and purely combinatorial approach for doing so that is far more scalable in theory and practice.


Poster
#112
Surface-VQMAE: Vector-quantized Masked Auto-encoders on Molecular Surfaces

Fang Wu · Stan Z Li

Molecular surfaces imply fingerprints of interaction patterns between proteins. However, non-equivalent efforts have been paid to incorporating the abundant protein surface information for analyzing proteins' biological functions in juxtaposition to amino acid sequences and 3D structures. We propose a novel surface-based unsupervised learning algorithm termed Surface-VQMAE to overcome this obstacle. In light of surface point clouds' sparsity and disorder properties, we first partition them into patches and obtain the sequential arrangement via the Morton curve. Successively, a Transformer-based architecture named SurfFormer was introduced to integrate the surface geometry and capture patch-level relations. At last, we enhance the prevalent masked auto-encoder (MAE) with the vector quantization (VQ) technique, which establishes a surface pattern codebook to enforce a discrete posterior distribution of latent variables and achieve more condensed semantics. Our work is the foremost to implement pretraining purely on molecular surfaces and extensive experiments on diverse real-life scenarios including binding site scoring, binding affinity prediction, and mutant effect estimation demonstrate its effectiveness. The code is available at https://github.com/smiles724/VQMAE.


Spotlight Poster
#113
Representing Molecules as Random Walks Over Interpretable Grammars

Michael Sun · Minghao Guo · Weize Yuan · Veronika Thost · Crystal Owens · Aristotle Grosz · Sharvaa Selvan · Katelyn Zhou · Hassan Mohiuddin · Benjamin Pedretti · Zachary Smith · Jie Chen · Wojciech Matusik

Recent research in molecular discovery has primarily been devoted to small, drug-like molecules, leaving many similarly important applications in material design without adequate technology. These applications often rely on more complex molecular structures with fewer examples that are carefully designed using known substructures. We propose a data-efficient and interpretable model for representing and reasoning over such molecules in terms of graph grammars that explicitly describe the hierarchical design space featuring motifs to be the design basis. We present a novel representation in the form of random walks over the design space, which facilitates both molecule generation and property prediction. We demonstrate clear advantages over existing methods in terms of performance, efficiency, and synthesizability of predicted molecules, and we provide detailed insights into the method's chemical interpretability.


Poster
#114
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?

Agustinus Kristiadi · Felix Strieth-Kalthoff · Marta Skreta · Pascal Poupart · Alan Aspuru-Guzik · Geoff Pleiss

Automation is one of the cornerstones of contemporary material discovery. Bayesian optimization (BO) is an essential part of such workflows, enabling scientists to leverage prior domain knowledge into efficient exploration of a large molecular space. While such prior knowledge can take many forms, there has been significant fanfare around the ancillary scientific knowledge encapsulated in large language models (LLMs). However, existing work thus far has only explored LLMs for heuristic materials searches. Indeed, recent work obtains the uncertainty estimate---an integral part of BO---from point-estimated, non-Bayesian LLMs. In this work, we study the question of whether LLMs are actually useful to accelerate principled Bayesian optimization in the molecular space. We take a sober, dispassionate stance in answering this question. This is done by carefully (i) viewing LLMs as fixed feature extractors for standard but principled BO surrogate models and by (ii) leveraging parameter-efficient finetuning methods and Bayesian neural networks to obtain the posterior of the LLM surrogate. Our extensive experiments with real-world chemistry problems show that LLMs can be useful for BO over molecules, but only if they have been pretrained or finetuned with domain-specific data.


Poster
#115
UniCorn: A Unified Contrastive Learning Approach for Multi-view Molecular Representation Learning

Shikun Feng · Yuyan Ni · Li · Yanwen Huang · Zhiming Ma · Wei-Ying Ma · Yanyan Lan

Recently, a noticeable trend has emerged in developing pre-trained foundation models in the domains of CV and NLP. However, for molecular pre-training, there lacks a universal model capable of effectively applying to various categories of molecular tasks, since existing prevalent pre-training methods exhibit effectiveness for specific types of downstream tasks. Furthermore, the lack of profound understanding of existing pre-training methods, including 2D graph masking, 2D-3D contrastive learning, and 3D denoising, hampers the advancement of molecular foundation models. In this work, we provide a unified comprehension of existing pre-training methods through the lens of contrastive learning. Thus their distinctions lie in clustering different views of molecules, which is shown beneficial to specific downstream tasks. To achieve a complete and general-purpose molecular representation, we propose a novel pre-training framework, named UniCorn, that inherits the merits of the three methods, depicting molecular views in three different levels. SOTA performance across quantum, physicochemical, and biological tasks, along with comprehensive ablation study, validate the universality and effectiveness of UniCorn.


Poster
#116
Advancing DRL Agents in Commercial Fighting Games: Training, Integration, and Agent-Human Alignment

Chen Zhang · Qiang HE · Yuan Zhou · Elvis S. Liu · Hong Wang · Jian Zhao · Yang Wang

Deep Reinforcement Learning (DRL) agents have demonstrated impressive success in a wide range of game genres. However, existing research primarily focuses on optimizing DRL competence rather than addressing the challenge of prolonged player interaction. In this paper, we propose a practical DRL agent system for fighting games named Shūkai, which has been successfully deployed to Naruto Mobile, a popular fighting game with over 100 million registered users. Shūkai quantifies the state to enhance generalizability, introducing Heterogeneous League Training (HELT) to achieve balanced competence, generalizability, and training efficiency. Furthermore, Shūkai implements specific rewards to align the agent's behavior with human expectations. Shūkai's ability to generalize is demonstrated by its consistent competence across all characters, even though it was trained on only 13% of them. Additionally, HELT exhibits a remarkable 22% improvement in sample efficiency. Shūkai serves as a valuable training partner for players in Naruto Mobile, enabling them to enhance their abilities and skills.


Poster
#117
Position: Data-driven Discovery with Large Generative Models

Bodhisattwa Prasad Majumder · Harshit Surana · Dhruv Agarwal · Sanchaita Hazra · Ashish Sabharwal · Peter Clark

With the accumulation of data at an unprecedented rate, its potential to fuel scientific discovery is growing exponentially. This position paper urges the Machine Learning (ML) community to exploit the capabilities of large generative models (LGMs) to develop automated systems for end-to-end data-driven discovery—a paradigm encompassing the search and verification of hypotheses purely from a set of provided datasets, without the need for additional data collection or physical experiments. We first outline several desiderata for an ideal data-driven discovery system. Then, through DataVoyager, a proof-of-concept utilizing GPT-4, we demonstrate how LGMs fulfill several of these desiderata—a feat previously unattainable—while also highlighting important limitations in the current system that open up opportunities for novel ML research. We contend that achieving accurate, reliable, and robust end-to-end discovery systems solely through the current capabilities of LGMs is challenging. We instead advocate for fail-proof tool integration, along with active user moderation through feedback mechanisms, to foster data-driven scientific discoveries with efficiency and reproducibility.


Poster
#1200
PcLast: Discovering Plannable Continuous Latent States

ANURAG KOUL · Shivakanth Sujit · Shaoru Chen · Benjamin Evans · Lili Wu · Byron Xu · Rajan Chari · Riashat Islam · Raihan Seraj · Yonathan Efroni · Lekan Molu · Miroslav Dudik · John Langford · Alex Lamb

Goal-conditioned planning benefits from learned low-dimensional representations of rich observations. While compact latent representations typically learned from variational autoencoders or inverse dynamics enable goal-conditioned decision making, they ignore state reachability, hampering their performance. In this paper, we learn a representation that associates reachable states together for effective planning and goal-conditioned policy learning. We first learn a latent representation with multi-step inverse dynamics (to remove distracting information), and then transform this representation to associate reachable states together in $\ell_2$ space. Our proposals are rigorously tested in various simulation testbeds. Numerical results in reward-based settings show significant improvements in sampling efficiency. Further, in reward-free settings this approach yields layered state abstractions that enable computationally efficient hierarchical planning for reaching ad hoc goals with zero additional samples.


Poster
#1201
Uncertainty-Aware Reward-Free Exploration with General Function Approximation

Junkai Zhang · Weitong Zhang · Dongruo Zhou · Quanquan Gu

Mastering multiple tasks through exploration and learning in an environment poses a significant challenge in reinforcement learning (RL). Unsupervised RL has been introduced to address this challenge by training policies with intrinsic rewards rather than extrinsic rewards. However, current intrinsic reward designs and unsupervised RL algorithms often overlook the heterogeneous nature of collected samples, thereby diminishing their sample efficiency. To overcome this limitation, in this paper, we proposed a reward-free RL algorithm called GFA-RFE. The key idea behind our algorithm is an uncertainty-aware intrinsic reward for exploring the environment and an uncertainty-weighted learning process to handle heterogeneous uncertainty in different samples. Theoretically, we show that in order to find an $\epsilon$-optimal policy, GFA-RFE needs to collect $\tilde{O} (H^2 \log N_{\mathcal{F}} (\epsilon) \text{dim} (\mathcal{F}) / \epsilon^2 )$ number of episodes, where $\mathcal{F}$ is the value function class with covering number $N_{\mathcal{F}} (\epsilon)$ and generalized eluder dimension $\text{dim} (\mathcal{F})$. Such a result outperforms all existing reward-free RL algorithms. We further implement and evaluate GFA-RFE across various domains and tasks in the DeepMind Control Suite. Experiment results show that GFA-RFE outperforms or is comparable to the performance of state-of-the-art unsupervised RL algorithms.


Poster
#1202
Mollification Effects of Policy Gradient Methods

Tao Wang · Sylvia Herbert · Sicun Gao

Policy gradient methods have enabled deep reinforcement learning (RL) to approach challenging continuous control problems, even when the underlying systems involve highly nonlinear dynamics that generate complex non-smooth optimization landscapes. We develop a rigorous framework for understanding how policy gradient methods mollify non-smooth optimization landscapes to enable effective policy search, as well as the downside of it: while making the objective function smoother and easier to optimize, the stochastic objective deviates further from the original problem. We demonstrate the equivalence between policy gradient methods and solving backward heat equations. Following the ill-posedness of backward heat equations from PDE theory, we present a fundamental challenge to the use of policy gradient under stochasticity. Moreover, we make the connection between this limitation and the uncertainty principle in harmonic analysis to understand the effects of exploration with stochastic policies in RL. We also provide experimental results to illustrate both the positive and negative aspects of mollification effects in practice.


Poster
#1203
MusicRL: Aligning Music Generation to Human Preferences

Geoffrey Cideron · Sertan Girgin · Mauro Verzetti · Damien Vincent · Matej Kastelic · Zalán Borsos · Brian McWilliams · Victor Ungureanu · Olivier Bachem · Olivier Pietquin · Matthieu Geist · Léonard Hussenot · Neil Zeghidour · Andrea Agostinelli

We propose MusicRL, the first music generation system finetuned from human feedback. Appreciation of text-to-music models is particularly subjective since the concept of musicality as well as the specific intention behind a caption are user-dependent (e.g. a caption such as “upbeat workout music” can map to a retro guitar solo or a technopop beat). Not only this makes supervised training of such models challenging, but it also calls for integrating continuous human feedback in their post-deployment finetuning. MusicRL is a pretrained autoregressive MusicLM model of discrete audio tokens finetuned with reinforcement learning to maximize sequence-level rewards. We design reward functions related specifically to text-adherence and audio quality with the help from selected raters, and use those to finetune MusicLM into MusicRL-R. We deploy MusicLM to users and collect a substantial dataset comprising 300,000 pairwise preferences. Using Reinforcement Learning from Human Feedback (RLHF), we train MusicRL-U, the first text-to-music model that incorporates human feedback at scale. Human evaluations show that both MusicRL-R and MusicRL-U are preferred to the baseline. Ultimately, MusicRL-RU combines the two approaches and results in the best model according to human raters. Ablation studies shed light on the musical attributes influencing human preferences, indicating that text adherence and quality only account for a part of it. This underscores the prevalence of subjectivity in musical appreciation and calls for further involvement of human listeners in the finetuning of music generation models. Samples can be found at google-research.github.io/seanet/musiclm/rlhf/.


Poster
#1204
Planning, Fast and Slow: Online Reinforcement Learning with Action-Free Offline Data via Multiscale Planners

Chengjie Wu · Hao Hu · yiqin yang · Ning Zhang · Chongjie Zhang

The surge in volumes of video data offers unprecedented opportunities for advancing reinforcement learning (RL). This growth has motivated the development of passive RL, seeking to convert passive observations into actionable insights. This paper explores the prerequisites and mechanisms through which passive data can be utilized to improve online RL. We show that, in identifiable dynamics, where action impact can be distinguished from stochasticity, learning on passive data is statistically beneficial. Building upon the theoretical insights, we propose a novel algorithm named Multiscale State-Centric Planners (MSCP) that leverages two planners at distinct scales to offer guidance across varying levels of abstraction. The algorithm's fast planner targets immediate objectives, while the slow planner focuses on achieving longer-term goals. Notably, the fast planner incorporates pessimistic regularization to address the distributional shift between offline and online data. MSCP effectively handles the practical challenges involving imperfect pretraining and limited dataset coverage. Our empirical evaluations across multiple benchmarks demonstrate that MSCP significantly outperforms existing approaches, underscoring its proficiency in addressing complex, long-horizon tasks through the strategic use of passive data.


Poster
#1205
Efficient Value Iteration for s-rectangular Robust Markov Decision Processes

Navdeep Kumar · Kaixin Wang · Kfir Levy · Shie Mannor

We focus on s-rectangular robust Markov decision processes (MDPs), which capture interconnected uncertainties across different actions within each state. This framework is more general compared to sa-rectangular robust MDPs, where uncertainties in each action are independent. However, the introduced interdependence significantly amplifies the complexity of the problem. Existing methods either have slow performance guarantees or are inapplicable to even moderately large state spaces. In this work, we derive optimal robust Bellman operators in explicit forms. This leads to robust value iteration methods with significantly faster time complexities than existing approaches, which can be used in large state spaces. Further, our findings reveal that the optimal policies demonstrate a novel threshold behavior, selectively favoring a limited set of actions based on their respective advantage functions. Additionally, our study uncovers a noteworthy connection between the robustness of a policy and the variance in its value function, highlighting that policies with lower variance exhibit greater resilience.


Poster
#1206
An Information Theoretic Approach to Interaction-Grounded Learning

Xiaoyan Hu · Farzan Farnia · Ho-fung Leung

Reinforcement learning (RL) problems where the learner attempts to infer an unobserved reward from some feedback variables have been studied in several recent papers. The setting of Interaction-Grounded Learning (IGL) is an example of such feedback-based reinforcement learning tasks where the learner optimizes the return by inferring latent binary rewards from the interaction with the environment. In the IGL setting, a relevant assumption used in the RL literature is that the feedback variable $Y$ is conditionally independent of the context-action $(X,A)$ given the latent reward $R$. In this work, we propose *Variational Information-based IGL (VI-IGL)* as an information-theoretic method to enforce the conditional independence assumption in the IGL-based RL problem. The VI-IGL framework learns a reward decoder using an information-based objective based on the conditional mutual information (MI) between the context-action $(X,A)$ and the feedback variable $Y$ observed from the environment. To estimate and optimize the information-based terms for the continuous random variables in the RL problem, VI-IGL leverages the variational representation of mutual information and results in a min-max optimization problem. Theoretical analysis shows that the optimization problem can be sample-efficiently solved. Furthermore, we extend the VI-IGL framework to general $f$-Information measures in the information theory literature, leading to the generalized $f$-VI-IGL framework to address the RL problem under the IGL condition. Finally, the empirical results on several reinforcement learning settings indicate an improved performance in comparison to the previous IGL-based RL algorithm.


Poster
#1207
Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin Representation

Wanpeng Zhang · Yilin Li · Boyu Yang · Zongqing Lu

In real-world scenarios, the application of reinforcement learning is significantly challenged by complex non-stationarity. Most existing methods attempt to model changes in the environment explicitly, often requiring impractical prior knowledge of environments. In this paper, we propose a new perspective, positing that non-stationarity can propagate and accumulate through complex causal relationships during state transitions, thereby compounding its sophistication and affecting policy learning. We believe that this challenge can be more effectively addressed by implicitly tracing the causal origin of non-stationarity. To this end, we introduce the Causal-Origin REPresentation (COREP) algorithm. COREP primarily employs a guided updating mechanism to learn a stable graph representation for the state, termed as causal-origin representation. By leveraging this representation, the learned policy exhibits impressive resilience to non-stationarity. We supplement our approach with a theoretical analysis grounded in the causal interpretation for non-stationary reinforcement learning, advocating for the validity of the causal-origin representation. Experimental results further demonstrate the superior performance of COREP over existing methods in tackling non-stationarity problems. The code is available at https://github.com/PKU-RL/COREP.


Poster
#1208
ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL

Yifei Zhou · Andrea Zanette · Jiayi Pan · Sergey Levine · Aviral Kumar

Large language models (LLMs) have the potential to tackle sequential decision-making problems due to their generalist capabilities. Instead of optimizing ``myopic'' surrogate objectives such as human preferences within a single turn, in such problems, we wish to directly optimize long-term objectives, such as user satisfaction over an entire dialogue with an LLM or delayed success metrics in web navigation. Multi-turn reinforcement learning (RL) provides an appealing approach to directly optimize long-term objectives, but how can we design effective and efficient multi-turn RL algorithms for LLMs? In this work, we propose an algorithmic framework to multi-turn RL for LLMs that preserves the flexibility of token-by-token RL used in single-turn RL problems, while still accommodating long horizons and delayed rewards more effectively. Our framework, the Actor-Critic Framework with a Hierarchical Structure (ArCHer), combines a high-level off-policy RL algorithm that trains a value function with a low-level RL algorithm that trains a token-by-token policy. While ArCHer can be instantiated with multiple RL algorithms, a particularly convenient instantiation is to use temporal difference (TD) learning at the high level and on-policy token-level policy gradient at the low level. Empirically, we show that ArCHer significantly improves efficiency and performance of multi-turn LLM tasks, attaining sample efficiency boosts of about 100x over prior on-policy methods and converging to a much better performance than other off-policy methods.


Poster
#1209
Policy-conditioned Environment Models are More Generalizable

Ruifeng Chen · Xiong-Hui Chen · Yihao Sun · Siyuan Xiao · Minhui Li · Yang Yu

In reinforcement learning, it is crucial to have an accurate environment dynamics model to evaluate different policies' value in downstream tasks like offline policy optimization and policy evaluation. However, the learned model is known to be inaccurate in predictions when evaluating target policies different from data-collection policies. In this work, we found that utilizing policy representation for model learning, called policy-conditioned model (PCM) learning, is useful to mitigate the problem, especially when the offline dataset is collected from diversified behavior policies. The reason beyond that is in this case, PCM becomes a meta-dynamics model that is trained to be aware of and focus on the evaluation policies that on-the-fly adjust the model to be suitable to the evaluation policies’ state-action distribution, thus improving the prediction accuracy. Based on that intuition, we propose an easy-to-implement yet effective algorithm of PCM for accurate model learning. We also give a theoretical analysis and experimental evidence to demonstrate the feasibility of reducing value gaps by adapting the dynamics model under different policies. Experiment results show that PCM outperforms the existing SOTA off-policy evaluation methods in the DOPE benchmark by a large margin, and derives significantly better policies in offline policy selection and model predictive control compared with the standard model learning method.


Poster
#1210
Robust Inverse Constrained Reinforcement Learning under Model Misspecification

Sheng Xu · Guiliang Liu

To solve safety-critical decision-making problems, Inverse Constrained Reinforcement Learning (ICRL) infers constraints from expert demonstrations and seeks to imitate expert preference by utilizing these constraints. While prior ICRL research commonly overlooks the discrepancy between the training and deploying environments, we demonstrate that such a discrepancy can significantly compromise the reliability of the inferred constraints and thus induce unsafe movements. Motivated by this finding, we propose the Robust Constraint Inference (RCI) problem and an Adaptively Robust ICRL (AR-ICRL) algorithm to solve RCI efficiently. Specifically, we model the impact of misspecified dynamics with an opponent policy and learn a robust policy to facilitate safe control in a Markov Game. Subsequently, we adjust our constraint model to align the learned policies to expert demonstrations, accommodating both soft and hard optimality in our behavioral models. Empirical results demonstrate the significance of robust constraints and the effectiveness of the proposed AR-ICRL algorithm under continuous and discrete domains. The code is available at https://github.com/Jasonxu1225/AR-ICRL.


Poster
#1211
Provably Efficient Reinforcement Learning for Adversarial Restless Multi-Armed Bandits with Unknown Transitions and Bandit Feedback

GUOJUN XIONG · Jian Li

Restless multi-armed bandits (RMAB) play a central role in modeling sequential decision making problems under an instantaneous activation constraint that at most $B$ arms can be activated at any decision epoch. Each restless arm is endowed with a state that evolves independently according to a Markov decision process regardless of being activated or not. In this paper, we consider the task of learning in episodic RMAB with unknown transition functions, bandit feedback, and adversarial rewards, which can change arbitrarily across episodes. The goal of the decision maker is to maximize its total adversarial rewards during the learning process while the instantaneous activation constraint must be satisfied in each decision epoch. We develop a novel reinforcement learning algorithm with two key contributors: a novel biased adversarial reward estimator to deal with bandit feedback and unknown transitions, and a low-complexity index policy to satisfy the instantaneous activation constraint. We show $\tilde{\mathcal{O}}(H\sqrt{T})$ regret bound for our algorithm, where $T$ is the number of episodes and $H$ is the episode length. To our best knowledge, this is the first algorithm to ensure $\tilde{\mathcal{O}}(\sqrt{T})$ regret for adversarial RMAB in our considered challenging settings.


Poster
#1212
Model-based Reinforcement Learning for Parameterized Action Spaces

Renhao Zhang · Haotian Fu · Yilin Miao · George Konidaris

We propose a novel model-based reinforcement learning algorithm---Dynamics Learning and predictive control with Parameterized Actions (DLPA)---for Parameterized Action Markov Decision Processes (PAMDPs). The agent learns a parameterized-action-conditioned dynamics model and plans with a modified Model Predictive Path Integral control. We theoretically quantify the difference between the generated trajectory and the optimal trajectory during planning in terms of the value they achieved through the lens of Lipschitz Continuity. Our empirical results on several standard benchmarks show that our algorithm achieves superior sample efficiency and asymptotic performance than state-of-the-art PAMDP methods.


Poster
#1213
Sequential Asynchronous Action Coordination in Multi-Agent Systems: A Stackelberg Decision Transformer Approach

Bin Zhang · Hangyu Mao · Lijuan Li · Zhiwei Xu · dapeng Li · Rui Zhao · Guoliang Fan

Asynchronous action coordination presents a pervasive challenge in Multi-Agent Systems (MAS), which can be represented as a Stackelberg game (SG). However, the scalability of existing Multi-Agent Reinforcement Learning (MARL) methods based on SG is severely restricted by network architectures or environmental settings. To address this issue, we propose the Stackelberg Decision Transformer (STEER). It efficiently manages decision-making processes by incorporating the hierarchical decision structure of SG, the modeling capability of autoregressive sequence models, and the exploratory learning methodology of MARL. Our approach exhibits broad applicability across diverse task types and environmental configurations in MAS. Experimental results demonstrate both the convergence of our method towards Stackelberg equilibrium strategies and its superiority over strong baselines in complex scenarios.


Poster
#1214
Optimal Batched Linear Bandits

Xuanfei Ren · Tianyuan Jin · Pan Xu

We introduce the E$^4$ algorithm for the batched linear bandit problem, incorporating an Explore-Estimate-Eliminate-Exploit framework. With a proper choice of exploration rate, we prove E$^4$ achieves the finite-time minimax optimal regret with only $O(\log\log T)$ batches, and the asymptotically optimal regret with only $3$ batches as $T\rightarrow\infty$, where $T$ is the time horizon. We further prove a lower bound on the batch complexity of liner contextual bandits showing that any asymptotically optimal algorithm must require at least $3$ batches in expectation as $T\rightarrow \infty$, which indicates E$^4$ achieves the asymptotic optimality in regret and batch complexity simultaneously. To the best of our knowledge, E$^4$ is the first algorithm for linear bandits that simultaneously achieves the minimax and asymptotic optimality in regret with the corresponding optimal batch complexities. In addition, we show that with another choice of exploration rate E$^4$ achieves an instance-dependent regret bound requiring at most $O(\log T)$ batches, and maintains the minimax optimality and asymptotic optimality. We conduct thorough experiments to evaluate our algorithm on randomly generated instances and the challenging *End of Optimism* instances (Lattimore & Szepesvari, 2017) which were shown to be hard to learn for optimism based algorithms. Empirical results show that E$^4$ consistently outperforms baseline algorithms with respect to regret minimization, batch complexity, and computational efficiency.


Poster
#1215
Model-based Reinforcement Learning for Confounded POMDPs

Mao Hong · Zhengling Qi · Yanxun Xu

We propose a model-based offline reinforcement learning (RL) algorithm for confounded partially observable Markov decision processes (POMDPs) under general function approximations and show it is provably efficient under some technical conditions such as the partial coverage imposed on the offline data distribution. Specifically, we first establish a novel model-based identification result for learning the effect of any action on the reward and future transitions in the confounded POMDP. Using this identification result, we then design a nonparametric two-stage estimation procedure to construct an estimator for off-policy evaluation (OPE), which permits general function approximations. Finally, we learn the optimal policy by performing a conservative policy optimization within the confidence regions based on the proposed estimation procedure for OPE. Under some mild conditions, we establish a finite-sample upper bound on the suboptimality of the learned policy in finding the optimal one, which depends on the sample size and the length of horizons polynomially.


Poster
#1216
Scalable Safe Policy Improvement for Factored Multi-Agent MDPs

Federico Bianchi · Edoardo Zorzi · Alberto Castellini · Thiago Simão · Matthijs T. J. Spaan · Alessandro Farinelli

In this work, we focus on safe policy improvement in multi-agent domains where current state-of-the-art methods cannot be effectively applied because of large state and action spaces. We consider recent results using Monte Carlo Tree Search for Safe Policy Improvement with Baseline Bootstrapping and propose a novel algorithm that scales this approach to multi-agent domains, exploiting the factorization of the transition model and value function. Given a centralized behavior policy and a dataset of trajectories, our algorithm generates an improved policy by selecting joint actions using a novel extension of Max-Plus (or Variable Elimination) that constrains local actions to guarantee safety criteria. An empirical evaluation on multi-agent SysAdmin and multi-UAV Delivery shows that the approach scales to very large domains where state-of-the-art methods cannot work.


Poster
#1217
Contrastive Representation for Data Filtering in Cross-Domain Offline Reinforcement Learning

Xiaoyu Wen · Chenjia Bai · Kang Xu · Xudong Yu · Yang Zhang · Xuelong Li · Zhen Wang

Cross-domain offline reinforcement learning leverages source domain data with diverse transition dynamics to alleviate the data requirement for the target domain. However, simply merging the data of two domains leads to performance degradation due to the dynamics mismatch. Existing methods address this problem by measuring the dynamics gap via domain classifiers while relying on the assumptions of the transferability of paired domains. In this paper, we propose a novel representation-based approach to measure the domain gap, where the representation is learned through a contrastive objective by sampling transitions from different domains. We show that such an objective recovers the mutual-information gap of transition functions in two domains without suffering from the unbounded issue of the dynamics gap in handling significantly different domains. Based on the representations, we introduce a data filtering algorithm that selectively shares transitions from the source domain according to the contrastive score functions. Empirical results on various tasks demonstrate that our method achieves superior performance, using only 10% of the target data to achieve 89.2% of the performance on 100% target dataset with state-of-the-art methods.


Poster
#1300
FuRL: Visual-Language Models as Fuzzy Rewards for Reinforcement Learning

Yuwei Fu · Haichao Zhang · di wu · Wei Xu · Benoit Boulet

In this work, we investigate how to leverage pre-trained visual-language models (VLM) for online Reinforcement Learning (RL). In particular, we focus on sparse reward tasks with pre-defined textual task descriptions. We first identify the problem of reward misalignment when applying VLM as a reward in RL tasks. To address this issue, we introduce a lightweight fine-tuning method, named Fuzzy VLM reward-aided RL (FuRL), based on reward alignment and relay RL. Specifically, we enhance the performance of SAC/DrQ baseline agents on sparse reward tasks by fine-tuning VLM representations and using relay RL to avoid local minima. Extensive experiments on the Meta-world benchmark tasks demonstrate the efficacy of the proposed method. Code is available at: https://github.com/fuyw/FuRL.


Poster
#1301
Position: Evolving AI Collectives Enhance Human Diversity and Enable Self-Regulation

Shiyang Lai · Yujin Potter · Junsol Kim · Richard Zhuang · Dawn Song · James Evans

Large language model behavior is shaped by the language of those with whom they interact. This capacity and their increasing prevalence online portend that they will intentionally or unintentionally "program" one another and form emergent AI subjectivities, relationships, and collectives. Here, we call upon the research community to investigate these "societies" of interacting artificial intelligences to increase their rewards and reduce their risks for human society and the health of online environments. We use a small "community" of models and their evolving outputs to illustrate how such emergent, decentralized AI collectives can spontaneously expand the bounds of human diversity and reduce the risk of toxic, anti-social behavior online. Finally, we discuss opportunities for AI cross-moderation and address ethical issues and design challenges associated with creating and maintaining free-formed AI collectives.


Poster
#1302
Detecting Influence Structures in Multi-Agent Reinforcement Learning

Fabian Raoul Pieroth · Katherine Fitch · Lenz Belzner

We consider the problem of quantifying the amount of influence one agent can exert on another in the setting of multi-agent reinforcement learning (MARL). As a step towards a unified approach to express agents' interdependencies, we introduce the total and state influence measurement functions. Both of these are valid for all common MARL systems, such as the discounted reward setting. Additionally, we propose novel quantities, called the total impact measurement (TIM) and state impact measurement (SIM), that characterize one agent's influence on another by the maximum impact it can have on the other agents' expected returns and represent instances of impact measurement functions in the average reward setting. Furthermore, we provide approximation algorithms for TIM and SIM with simultaneously learning approximations of agents' expected returns, error bounds, stability analyses under changes of the policies, and convergence guarantees. The approximation algorithm relies only on observing other agents' actions and is, other than that, fully decentralized. Through empirical studies, we validate our approach's effectiveness in identifying intricate influence structures in complex interactions. Our work appears to be the first study of determining influence structures in the multi-agent average reward setting with convergence guarantees.


Poster
#1303
Multi-Agent Reinforcement Learning with Hierarchical Coordination for Emergency Responder Stationing

Amutheezan Sivagnanam · Ava Pettet · Hunter Lee · Ayan Mukhopadhyay · Abhishek Dubey · Aron Laszka

An emergency responder management (ERM) system dispatches responders, such as ambulances, when it receives requests for medical aid. ERM systems can also proactively reposition responders between predesignated waiting locations to cover any gaps that arise due to the prior dispatch of responders or significant changes in the distribution of anticipated requests. Optimal repositioning is computationally challenging due to the exponential number of ways to allocate responders between locations and the uncertainty in future requests. The state-of-the-art approach in proactive repositioning is a hierarchical approach based on spatial decomposition and online Monte Carlo tree search, which may require minutes of computation for each decision in a domain where seconds can save lives. We address the issue of long decision times by introducing a novel reinforcement learning (RL) approach, based on the same hierarchical decomposition, but replacing online search with learning. To address the computational challenges posed by large, variable-dimensional, and discrete state and action spaces, we propose: (1) actor-critic based agents that incorporate transformers to handle variable-dimensional states and actions, (2) projections to fixed-dimensional observations to handle complex states, and (3) combinatorial techniques to map continuous actions to discrete allocations. We evaluate our approach using real-world data from two U.S. cities, Nashville, TN and Seattle, WA. Our experiments show that compared to the state of the art, our approach reduces computation time per decision by three orders of magnitude, while also slightly reducing average ambulance response time by 5 seconds.


Poster
#1304
Imitation Learning from Purified Demonstrations

Yunke Wang · Minjing Dong · Yukun Zhao · Bo Du · Chang Xu

Imitation learning has emerged as a promising approach for addressing sequential decision-making problems, with the assumption that expert demonstrations are optimal. However, in real-world scenarios, most demonstrations are often imperfect, leading to challenges in the effectiveness of imitation learning. While existing research has focused on optimizing with imperfect demonstrations, the training typically requires a certain proportion of optimal demonstrations to guarantee performance. To tackle these problems, we propose to purify the potential noises in imperfect demonstrations first, and subsequently conduct imitation learning from these purified demonstrations. Motivated by the success of diffusion model, we introduce a two-step purification via diffusion process. In the first step, we apply a forward diffusion process to smooth potential noises in imperfect demonstrations by introducing additional noise. Subsequently, a reverse generative process is utilized to recover the optimal demonstration from the diffused ones. We provide theoretical evidence supporting our approach, demonstrating that the distance between the purified and optimal demonstration can be bounded. Empirical results on MuJoCo and RoboSuite demonstrate the effectiveness of our method from different aspects.


Poster
#1305
A Unified Linear Programming Framework for Offline Reward Learning from Human Demonstrations and Feedback

Kihyun Kim · Jiawei Zhang · Asuman Ozdaglar · Pablo A. Parrilo

Inverse Reinforcement Learning (IRL) and Reinforcement Learning from Human Feedback (RLHF) are pivotal methodologies in reward learning, which involve inferring and shaping the underlying reward function of sequential decision-making problems based on observed human demonstrations and feedback. Most prior work in reward learning has relied on prior knowledge or assumptions about decision or preference models, potentially leading to robustness issues. In response, this paper introduces a novel linear programming (LP) framework tailored for offline reward learning. Utilizing pre-collected trajectories without online exploration, this framework estimates a feasible reward set from the primal-dual optimality conditions of a suitably designed LP, and offers an optimality guarantee with provable sample efficiency. Our LP framework also enables aligning the reward functions with human feedback, such as pairwise trajectory comparison data, while maintaining computational tractability and sample efficiency. We demonstrate that our framework potentially achieves better performance compared to the conventional maximum likelihood estimation (MLE) approach through analytical examples and numerical experiments.


Poster
#1306
Confidence Aware Inverse Constrained Reinforcement Learning

Sriram Ganapathi Subramanian · Guiliang Liu · Mohammed Elmahgiubi · Kasra Rezaee · Pascal Poupart

In coming up with solutions to real-world problems, humans implicitly adhere to constraints that are too numerous and complex to be specified completely. However, reinforcement learning (RL) agents need these constraints to learn the correct optimal policy in these settings. The field of Inverse Constraint Reinforcement Learning (ICRL) deals with this problem and provides algorithms that aim to estimate the constraints from expert demonstrations collected offline. Practitioners prefer to know a measure of confidence in the estimated constraints, before deciding to use these constraints, which allows them to only use the constraints that satisfy a desired level of confidence. However, prior works do not allow users to provide the desired level of confidence for the inferred constraints. This work provides a principled ICRL method that can take a confidence level with a set of expert demonstrations and outputs a constraint that is at least as constraining as the true underlying constraint with the desired level of confidence. Further, unlike previous methods, this method allows a user to know if the number of expert trajectories is insufficient to learn a constraint with a desired level of confidence, and therefore collect more expert trajectories as required to simultaneously learn constraints with the desired level of confidence and a policy that achieves the desired level of performance.


Poster
#1307
Rate-Optimal Policy Optimization for Linear Markov Decision Processes

Uri Sherman · Alon Cohen · Tomer Koren · Yishay Mansour

We study regret minimization in online episodic linear Markov Decision Processes, and propose a policy optimization algorithm that is computationally efficient, and obtains rate optimal $\widetilde O (\sqrt K)$ regret where $K$ denotes the number of episodes. Our work is the first to establish the optimal rate (in terms of $K$) of convergence in the stochastic setting with bandit feedback using a policy optimization based approach, and the first to establish the optimal rate in the adversarial setup with full information feedback, for which no algorithm with an optimal rate guarantee was previously known.


Poster
#1308
In value-based deep reinforcement learning, a pruned network is a good network

Johan Obando Ceron · Aaron Courville · Pablo Samuel Castro

Recent work has shown that deep reinforcement learning agents have difficulty in effectively using their network parameters. We leverage prior insights into the advantages of sparse training techniques and demonstrate that gradual magnitude pruning enables value-based agents to maximize parameter effectiveness. This results in networks that yield dramatic performance improvements over traditional networks, using only a small fraction of the full network parameters. Our code is publicly available, see Appendix A for details.


Poster
#1309
In-Context Reinforcement Learning for Variable Action Spaces

Viacheslav Sinii · Alexander Nikulin · Vladislav Kurenkov · Ilya Zisman · Sergey Kolesnikov

Recently, it has been shown that transformers pre-trained on diverse datasets with multi-episode contexts can generalize to new reinforcement learning tasks in-context. A key limitation of previously proposed models is their reliance on a predefined action space size and structure. The introduction of a new action space often requires data re-collection and model re-training, which can be costly for some applications. In our work, we show that it is possible to mitigate this issue by proposing the Headless-AD model that, despite being trained only once, is capable of generalizing to discrete action spaces of variable size, semantic content and order. By experimenting with Bernoulli and contextual bandits, as well as a gridworld environment, we show that Headless-AD exhibits significant capability to generalize to action spaces it has never encountered, even outperforming specialized models trained for a specific set of actions on several environment configurations.


Spotlight Poster
#1310
Craftax: A Lightning-Fast Benchmark for Open-Ended Reinforcement Learning

Michael Matthews · Michael Beukman · Benjamin Ellis · Mikayel Samvelyan · Matthew T Jackson · Samuel Coward · Jakob Foerster

Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms. We identify that existing benchmarks used for research into open-ended learning fall into one of two categories. Either they are too slow for meaningful research to be performed without enormous computational resources, like Crafter, NetHack and Minecraft, or they are not complex enough to pose a significant challenge, like Minigrid and Procgen. To remedy this, we first present Craftax-Classic: a ground-up rewrite of Crafter in JAX that runs up to 250x faster than the Python-native original. A run of PPO using 1 billion environment interactions finishes in under an hour using only a single GPU and averages 90% of the optimal reward. To provide a more compelling challenge we present the main Craftax benchmark, a significant extension of the Crafter mechanics with elements inspired from NetHack. Solving Craftax requires deep exploration, long term planning and memory, as well as continual adaptation to novel situations as more of the world is discovered. We show that existing methods including global and episodic exploration, as well as unsupervised environment design fail to make material progress on the benchmark. We therefore believe that Craftax can for the first time allow researchers to experiment in a complex, open-ended environment with limited computational resources.


Poster
#1311
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL

Jesse Farebrother · Jordi Orbay · Quan Vuong · Adrien Ali Taiga · Yevgen Chebotar · Ted Xiao · Alexander Irpan · Sergey Levine · Pablo Samuel Castro · Aleksandra Faust · Aviral Kumar · Rishabh Agarwal

Value functions are an essential component in deep reinforcement learning (RL), that are typically trained via mean squared error regression to match bootstrapped target values. However, scaling value-based RL methods to large networks has proven challenging. This difficulty is in stark contrast to supervised learning: by leveraging a cross-entropy classification loss, supervised methods have scaled reliably to massive networks. Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions. We show that training value functions with categorical cross-entropy significantly enhances performance and scalability across various domains, including single-task RL on Atari 2600 games, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers, achieving state-of-the-art results on these domains. Through careful analysis, we show that categorical cross-entropy mitigates issues inherent to value-based RL, such as noisy targets and non-stationarity. We argue that shifting to categorical cross-entropy for training value functions can substantially improve the scalability of deep RL at little-to-no cost.


Poster
#1312
VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling

Siyuan Li · Zedong Wang · Zicheng Liu · Di Wu · Cheng Tan · Jiangbin Zheng · Yufei Huang · Stan Z Li

Similar to natural language models, pre-trained genome language models are proposed to capture the underlying intricacies within genomes with unsupervised sequence modeling. They have become essential tools for researchers and practitioners in biology. However, the hand-crafted tokenization policies used in these models may not encode the most discriminative patterns from the limited vocabulary of genomic data. In this paper, we introduce VQDNA, a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning. By leveraging vector-quantized codebook as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings in an end-to-end manner. To further push its limits, we propose Hierarchical Residual Quantization (HRQ), where varying scales of codebooks are designed in a hierarchy to enrich the genome vocabulary in a coarse-to-fine manner. Extensive experiments on 32 genome datasets demonstrate VQDNA's superiority and favorable parameter efficiency compared to existing genome language models. Notably, empirical analysis of SARS-CoV-2 mutations reveals the fine-grained pattern awareness and biological significance of learned HRQ vocabulary, highlighting its untapped potential for broader applications in genomics.


Poster
#1313
Quality-Diversity with Limited Resources

Ren-Jian Wang · Ke Xue · Cong Guan · Chao Qian

Quality-Diversity (QD) algorithms have emerged as a powerful optimization paradigm with the aim of generating a set of high-quality and diverse solutions. To achieve such a challenging goal, QD algorithms require maintaining a large archive and a large population in each iteration, which brings two main issues, sample and resource efficiency. Most advanced QD algorithms focus on improving the sample efficiency, while the resource efficiency is overlooked to some extent. Particularly, the resource overhead during the training process has not been touched yet, hindering the wider application of QD algorithms. In this paper, we highlight this important research question, i.e., how to efficiently train QD algorithms with limited resources, and propose a novel and effective method called RefQD to address it. RefQD decomposes a neural network into representation and decision parts, and shares the representation part with all decision parts in the archive to reduce the resource overhead. It also employs a series of strategies to address the mismatch issue between the old decision parts and the newly updated representation part. Experiments on different types of tasks from small to large resource consumption demonstrate the excellent performance of RefQD: it not only uses significantly fewer resources (e.g., 16% GPU memories on QDax and 3.7% on Atari) but also achieves comparable or better performance compared to sample-efficient QD algorithms. Our code is available at https://github.com/lamda-bbo/RefQD.


Poster
#1314
SAPG: Split and Aggregate Policy Gradients

Jayesh Singla · Ananye Agarwal · Deepak Pathak

Despite extreme sample inefficiency, on-policy reinforcement learning, aka policy gradients, has become a fundamental tool in decision-making problems. With the recent advances in GPU-driven simulation, the ability to collect large amounts of data for RL training has scaled exponentially. However, we show that current RL methods, e.g. PPO, fail to ingest the benefit of parallelized environments beyond a certain point and their performance saturates. To address this, we propose a new on-policy RL algorithm that can effectively leverage large-scale environments by splitting them into chunks and fusing them back together via importance sampling. Our algorithm, termed SAPG, shows significantly higher performance across a variety of challenging environments where vanilla PPO and other strong baselines fail to achieve high performance. Webpage at https://sapg-rl.github.io/.


Poster
#1315
Learning a Diffusion Model Policy from Rewards via Q-Score Matching

Michael Psenka · Alejandro Escontrela · Pieter Abbeel · Yi Ma

Diffusion models have become a popular choice for representing actor policies in behavior cloning and offline reinforcement learning. This is due to their natural ability to optimize an expressive class of distributions over a continuous space. However, previous works fail to exploit the score-based structure of diffusion models, and instead utilize a simple behavior cloning term to train the actor, limiting their ability in the actor-critic setting. In this paper, we present a theoretical framework linking the structure of diffusion model policies to a learned Q-function, by linking the structure between the score of the policy to the action gradient of the Q-function. We focus on off-policy reinforcement learning and propose a new policy update method from this theory, which we denote Q-score matching. Notably, this algorithm only needs to differentiate through the denoising model rather than the entire diffusion model evaluation, and converged policies through Q-score matching are implicitly multi-modal and explorative in continuous domains. We conduct experiments in simulated environments to demonstrate the viability of our proposed method and compare to popular baselines. Source code is available from the project website: https://scorematchingrl.com/.


Poster
#1316
Adaptive Horizon Actor-Critic for Policy Learning in Contact-Rich Differentiable Simulation

Ignat Georgiev · Krishnan Srinivasan · Jie Xu · Eric Heiden · Animesh Garg

Model-Free Reinforcement Learning (MFRL), leveraging the policy gradient theorem, has demonstrated considerable success in continuous control tasks. However, these approaches are plagued by high gradient variance due to zeroth-order gradient estimation, resulting in suboptimal policies. Conversely, First-Order Model-Based Reinforcement Learning (FO-MBRL) methods employing differentiable simulation provide gradients with reduced variance but are susceptible to sampling error in scenarios involving stiff dynamics, such as physical contact. This paper investigates the source of this error and introduces Adaptive Horizon Actor-Critic (AHAC), an FO-MBRL algorithm that reduces gradient error by adapting the model-based horizon to avoid stiff dynamics. Empirical findings reveal that AHAC outperforms MFRL baselines, attaining 40% more reward across a set of locomotion tasks and efficiently scaling to high-dimensional control environments with improved wall-clock-time efficiency. adaptive-horizon-actor-critic.github.io


Poster
#1317
INViT: A Generalizable Routing Problem Solver with Invariant Nested View Transformer

Han Fang · Zhihao Song · Paul Weng · Yutong Ban

Recently, deep reinforcement learning has shown promising results for learning fast heuristics to solve routing problems. Meanwhile, most of the solvers suffer from generalizing to an unseen distribution or distributions with different scales. To address this issue, we propose a novel architecture, called Invariant Nested View Transformer (INViT), which is designed to enforce a nested design together with invariant views inside the encoders to promote the generalizability of the learned solver. It applies a modified policy gradient algorithm enhanced with data augmentations. We demonstrate that the proposed INViT achieves a dominant generalization performance on both TSP and CVRP problems with various distributions and different problem scales. Our source code and datasets are available in supplementary materials.


Poster
#1400
A Bayesian Approach to Online Planning

Nir Greshler · David Ben Eli · Carmel Rabinovitz · Gabi Guetta · Liran Gispan · Guy Zohar · Aviv Tamar

The combination of Monte Carlo tree search and neural networks has revolutionized online planning. As neural network approximations are often imperfect, we ask whether uncertainty estimates about the network outputs could be used to improve planning. We develop a Bayesian planning approach that facilitates such uncertainty quantification, inspired by classical ideas from the meta-reasoning literature. We propose a Thompson sampling based algorithm for searching the tree of possible actions, for which we prove the first (to our knowledge) finite time Bayesian regret bound, and propose an efficient implementation for a restricted family of posterior distributions. In addition we propose a variant of the Bayes-UCB method applied to trees. Empirically, we demonstrate that on the ProcGen Maze and Leaper environments, when the uncertainty estimates are accurate but the neural network output is inaccurate, our Bayesian approach searches the tree much more effectively. In addition, we investigate whether popular uncertainty estimation methods are accurate enough to yield significant gains in planning.


Poster
#1401
Highway Value Iteration Networks

Yuhui Wang · Weida Li · Francesco Faccio · Qingyuan Wu · Jürgen Schmidhuber

Value iteration networks (VINs) enable end-to-end learning for planning tasks by employing a differentiable "planning module" that approximates the value iteration algorithm. However, long-term planning remains a challenge because training very deep VINs is difficult. To address this problem, we embed highway value iteration---a recent algorithm designed to facilitate long-term credit assignment---into the structure of VINs. This improvement augments the "planning module" of the VIN with three additional components: 1) an "aggregate gate," which constructs skip connections to improve information flow across many layers; 2) an "exploration module," crafted to increase the diversity of information and gradient flow in spatial dimensions; 3) a "filter gate" designed to ensure safe exploration. The resulting novel highway VIN can be trained effectively with hundreds of layers using standard backpropagation. In long-term planning tasks requiring hundreds of planning steps, deep highway VINs outperform both traditional VINs and several advanced, very deep NNs.


Poster
#1402
Accelerated Policy Gradient for s-rectangular Robust MDPs with Large State Spaces

Ziyi Chen · Heng Huang

Robust Markov decision process (robust MDP) is an important machine learning framework to make a reliable policy that is robust to environmental perturbation. Despite empirical success and popularity of policy gradient methods, existing policy gradient methods require at least iteration complexity $\mathcal{O}(\epsilon^{-4})$ to converge to the global optimal solution of s-rectangular robust MDPs with $\epsilon$-accuracy and are limited to deterministic setting with access to exact gradients and small state space that are impractical in many applications. In this work, we propose an accelerated policy gradient algorithm with iteration complexity $\mathcal{O}(\epsilon^{-3}\ln\epsilon^{-1})$ in the deterministic setting using entropy regularization. Furthermore, we extend this algorithm to stochastic setting with access to only stochastic gradients and large state space which achieves the sample complexity $\mathcal{O}(\epsilon^{-7}\ln\epsilon^{-1})$. In the meantime, our algorithms are also the first scalable policy gradient methods to entropy-regularized robust MDPs, which provide an important but underexplored machine learning framework.


Poster
#1403
Reinforcement Learning from Reachability Specifications: PAC Guarantees with Expected Conditional Distance

Jakub Svoboda · Suguman Bansal · Krishnendu Chatterjee

Reinforcement Learning (RL) from temporal logical specifications is a fundamental problem in sequential decision making. One of the basic and core such specification is the reachability specification that requires a target set to be eventually visited. Despite strong empirical results for RL from such specifications, the theoretical guarantees are bleak, including the impossibility of Probably Approximately Correct (PAC) guarantee for reachability specifications. Given the impossibility result, in this work we consider the problem of RL from reachability specifications along with the information of expected conditional distance (ECD). We present (a) lower bound results which establish the necessity of ECD information for PAC guarantees and (b) an algorithm that establishes PAC-guarantees given the ECD information. To the best of our knowledge, this is the first RL from reachability specifications that does not make any assumptions on the underlying environment to learn policies.


Poster
#1404
To the Max: Reinventing Reward in Reinforcement Learning

Grigorii Veviurko · Wendelin Boehmer · Mathijs de Weerdt

In reinforcement learning (RL), different reward functions can define the same optimal policy but result in drastically different learning performance. For some, the agent gets stuck with a suboptimal behavior, and for others, it solves the task efficiently. Choosing a good reward function is hence an extremely important yet challenging problem. In this paper, we explore an alternative approach for using rewards for learning. We introduce max-reward RL, where an agent optimizes the maximum rather than the cumulative reward. Unlike earlier works, our approach works for deterministic and stochastic environments and can be easily combined with state-of-the-art RL algorithms. In the experiments, we study the performance of max-reward RL algorithms in two goal-reaching environments from Gymnasium-Robotics and demonstrate its benefits over standard RL. The code is available at https://github.com/veviurko/To-the-Max.


Spotlight Poster
#1405
A Distributional Analogue to the Successor Representation

Harley Wiltzer · Jesse Farebrother · Arthur Gretton · Yunhao Tang · Andre Barreto · Will Dabney · Marc Bellemare · Mark Rowland

This paper contributes a new approach for distributional reinforcement learning which elucidates a clean separation of transition structure and reward in the learning process. Analogous to how the successor representation (SR) describes the expected consequences of behaving according to a given policy, our distributional successor measure (SM) describes the distributional consequences of this behaviour. We formulate the distributional SM as a distribution over distributions and provide theory connecting it with distributional and model-based reinforcement learning. Moreover, we propose an algorithm that learns the distributional SM from data by minimizing a two-level maximum mean discrepancy. Key to our method are a number of algorithmic techniques that are independently valuable for learning generative models of state. As an illustration of the usefulness of the distributional SM, we show that it enables zero-shot risk-sensitive policy evaluation in a way that was not previously possible.


Spotlight Poster
#1406
Estimating Unknown Population Sizes Using the Hypergeometric Distribution

Liam Hodgson · Danilo Bzdok

The multivariate hypergeometric distribution describes sampling without replacement from a discrete population of elements divided into multiple categories. Addressing a gap in the literature, we tackle the challenge of estimating discrete distributions when both the total population size and the category sizes are unknown. Here, we propose a novel solution using the hypergeometric likelihood to solve this estimation problem, even in the presence of severe under-sampling. Our approach accounts for a data generating process where the ground-truth is a mixture of distributions conditional on a continuous latent variable, as seen in collaborative filtering, using the variational autoencoder framework. Empirical data simulation demonstrates that our method outperforms other likelihood functions used to model count data, both in terms of accuracy of population size estimate and learning an informative latent space. We showcase our method's versatility through applications in NLP, by inferring and estimating the complexity of latent vocabularies in reading passage excerpts, and in biology, by accurately recovering the true number of gene transcripts from sparse single-cell genomics data.


Poster
#1407
Random matrix theory improved Fréchet mean of symmetric positive definite matrices

Florent Bouchard · Ammar Mian · Malik TIOMOKO · Guillaume GINOLHAC · Frederic Pascal

In this study, we consider the realm of covariance matrices in machine learning, particularly focusing on computing Fréchet means on the manifold of symmetric positive definite matrices, commonly referred to as Karcher or geometric means. Such means are leveraged in numerous machine learning tasks. Relying on advanced statistical tools, we introduce a random matrix theory based method that estimates Fréchet means, which is particularly beneficial when dealing with low sample support and a high number of matrices to average. Our experimental evaluation, involving both synthetic and real-world EEG and hyperspectral datasets, shows that we largely outperform state-of-the-art methods.


Poster
#1408
A Computational Framework for Solving Wasserstein Lagrangian Flows

Kirill Neklyudov · Rob Brekelmans · Alexander Tong · Lazar Atanackovic · qiang liu · Alireza Makhzani

The dynamical formulation of the optimal transport can be extended through various choices of the underlying geometry (kinetic energy), and the regularization of density paths (potential energy). These combinations yield different variational problems (Lagrangians), encompassing many variations of the optimal transport problem such as the Schrödinger bridge, unbalanced optimal transport, and optimal transport with physical constraints, among others. In general, the optimal density path is unknown, and solving these variational problems can be computationally challenging. We propose a novel deep learning based framework approaching all of these problems from a unified perspective. Leveraging the dual formulation of the Lagrangians, our method does not require simulating or backpropagating through the trajectories of the learned dynamics, and does not need access to optimal couplings. We showcase the versatility of the proposed framework by outperforming previous approaches for the single-cell trajectory inference, where incorporating prior knowledge into the dynamics is crucial for correct predictions.


Poster
#1409
Nonlinear Filtering with Brenier Optimal Transport Maps

Mohammad Al-Jarrah · Niyizhen Jin · Bamdad Hosseini · Amirhossein Taghvaei

This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a stochastic dynamical system given a history of noisy partial observations. Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states, due to the weight degeneracy issue. In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step. Unlike SIR particle filters, the OT formulation does not require the analytical form of the likelihood. Moreover, it allows us to harness the approximation power of neural networks to model complex and multi-modal distributions and employ stochastic optimization algorithms to enhance scalability. Extensive numerical experiments are presented that compare the OT method to the SIR particle filter and the ensemble Kalman filter, evaluating the performance in terms of sample efficiency, high-dimensional scalability, and the ability to capture complex and multi-modal distributions.


Poster
#1410
Deep Functional Factor Models: Forecasting High-Dimensional Functional Time Series via Bayesian Nonparametric Factorization

Yirui Liu · Xinghao Qiao · Yulong Pei · Liying Wang

This paper introduces the Deep Functional Factor Model (DF2M), a Bayesian nonparametric model designed for analysis of high-dimensional functional time series. DF2M is built upon the Indian Buffet Process and the multi-task Gaussian Process, incorporating a deep kernel function that captures non-Markovian and nonlinear temporal dynamics. Unlike many black-box deep learning models, DF2M offers an explainable approach to utilizing neural networks by constructing a factor model and integrating deep neural networks within the kernel function. Additionally, we develop a computationally efficient variational inference algorithm to infer DF2M. Empirical results from four real-world datasets demonstrate that DF2M provides better explainability and superior predictive accuracy compared to conventional deep learning models for high-dimensional functional time series.


Poster
#1411
Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?

Emanuel Sommer · Lisa Wimmer · Theodore Papamarkou · Ludwig Bothmann · Bernd Bischl · David Rügamer

A major challenge in sample-based inference (SBI) for Bayesian neural networks is the size and structure of the networks’ parameter space. Our work shows that successful SBI is possible by embracing the characteristic relationship between weight and function space, uncovering a systematic link between overparameterization and the difficulty of the sampling problem. Through extensive experiments, we establish practical guidelines for sampling and convergence diagnosis. As a result, we present a deep ensemble initialized approach as an effective solution with competitive performance and uncertainty quantification.


Poster
#1412
Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

Thomas Wedenig · Rishub Nagpal · Gaëtan Cassiers · Stefan Mangard · Robert Peharz

Detecting weaknesses in cryptographic algorithms is of utmost importance for designing secure information systems. The state-of-the-art soft analytical side-channel attack (SASCA) uses physical leakage information to make probabilistic predictions about intermediate computations and combines these "guesses" with the known algorithmic logic to compute the posterior distribution over the key. This attack is commonly performed via loopy belief propagation, which, however, lacks guarantees in terms of convergence and inference quality. In this paper, we develop a fast and exact inference method for SASCA, denoted as ExSASCA, by leveraging knowledge compilation and tractable probabilistic circuits. When attacking the Advanced Encryption Standard (AES), the most widely used encryption algorithm to date, ExSASCA outperforms SASCA by more than 31% top-1 success rate absolute. By leveraging sparse belief messages, this performance is achieved with little more computational cost than SASCA, and about 3 orders of magnitude less than exact inference via exhaustive enumeration. Even with dense belief messages, ExSASCA still uses 6 times less computations than exhaustive inference.


Poster
#1413
A connection between Tempering and Entropic Mirror Descent

Nicolas Chopin · Francesca R Crucinio · Anna Korba

This paper explores the connections between tempering (for Sequential Monte Carlo; SMC) and entropic mirror descent to sample from a target probability distribution whose unnormalized density is known. We establish that tempering SMC corresponds to entropic mirror descent applied to the reverse Kullback-Leibler (KL) divergence and obtain convergence rates for the tempering iterates. Our result motivates the tempering iterates from an optimization point of view, showing that tempering can be seen as a descent scheme of the KL divergence with respect to the Fisher-Rao geometry, in contrast to Langevin dynamics that perform descent of the KL with respect to the Wasserstein-2 geometry. We exploit the connection between tempering and mirror descent iterates to justify common practices in SMC and derive adaptive tempering rules that improve over other alternative benchmarks in the literature.


Poster
#1414
Improving Gradient-Guided Nested Sampling for Posterior Inference

Pablo Lemos · Nikolay Malkin · Will Handley · Yoshua Bengio · Yashar Hezaveh · Laurence Perreault-Levasseur

We present a performant, general-purpose gradient-guided nested sampling (GGNS) algorithm, combining the state of the art in differentiable programming, Hamiltonian slice sampling, clustering, mode separation, dynamic nested sampling, and parallelization. This unique combination allows GGNS to scale well with dimensionality and perform competitively on a variety of synthetic and real-world problems. We also show the potential of combining nested sampling with generative flow networks to obtain large amounts of high-quality samples from the posterior distribution. This combination leads to faster mode discovery and more accurate estimates of the partition function.


Poster
#1415
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities

Tara Akhound-Sadegh · Jarrid Rector-Brooks · Joey Bose · Sarthak Mittal · Pablo Lemos · Chenghao Liu · Marcin Sendera · Siamak Ravanbakhsh · Gauthier Gidel · Yoshua Bengio · Nikolay Malkin · Alexander Tong

Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient---and no data samples---to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is *simulation-free*, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant $n$-body particle systems. We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5\times$ faster, which allows it to be the first method to train using energy on the challenging $55$-particle Lennard-Jones system.


Poster
#1416
Sampling in Unit Time with Kernel Fisher-Rao Flow

Aimee Maurais · Youssef Marzouk

We introduce a new mean-field ODE and corresponding interacting particle systems (IPS) for sampling from an unnormalized target density. The IPS are gradient-free, available in closed form, and only require the ability to sample from a reference density and compute the (unnormalized) target-to-reference density ratio. The mean-field ODE is obtained by solving a Poisson equation for a velocity field that transports samples along the geometric mixture of the two densities, $\pi_0^{1-t} \pi_1^t$, which is the path of a particular Fisher-Rao gradient flow. We employ a RKHS ansatz for the velocity field, which makes the Poisson equation tractable and enables discretization of the resulting mean-field ODE over finite samples. The mean-field ODE can be additionally be derived from a discrete-time perspective as the limit of successive linearizations of the Monge-Ampère equations within a framework known as sample-driven optimal transport. We introduce a stochastic variant of our approach and demonstrate empirically that our IPS can produce high-quality samples from varied target distributions, outperforming comparable gradient-free particle systems and competitive with gradient-based alternatives.


Poster
#1417
Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling

Brooks(Ruijia) Niu · Dongxia Wu · Kai Kim · Yian Ma · Duncan Watson-Parris · Rose Yu

Multi-fidelity surrogate modeling aims to learn an accurate surrogate at the highest fidelity level by combining data from multiple sources. Traditional methods relying on Gaussian processes can hardly scale to high-dimensional data. Deep learning approaches utilize neural network based encoders and decoders to improve scalability. These approaches share encoded representations across fidelities without including corresponding decoder parameters. This hinders inference performance, especially in out-of-distribution scenarios when the highest fidelity data has limited domain coverage. To address these limitations, we propose Multi-fidelity Residual Neural Processes (MFRNP), a novel multi-fidelity surrogate modeling framework. MFRNP explicitly models the residual between the aggregated output from lower fidelities and ground truth at the highest fidelity. The aggregation introduces decoders into the information sharing step and optimizes lower fidelity decoders to accurately capture both in-fidelity and cross-fidelity information. We show that MFRNP significantly outperforms state-of-the-art in learning partial differential equations and a real-world climate modeling task. Our code is published at: https://github.com/Rose-STL-Lab/MFRNP


Poster
#1500
Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States

Noam Razin · Yotam Alexander · Edo Cohen-Karlik · Raja Giryes · Amir Globerson · Nadav Cohen

In modern machine learning, models can often fit training data in numerous ways, some of which perform well on unseen (test) data, while others do not. Remarkably, in such cases gradient descent frequently exhibits an implicit bias that leads to excellent performance on unseen data. This implicit bias was extensively studied in supervised learning, but is far less understood in optimal control (reinforcement learning). There, learning a controller applied to a system via gradient descent is known as policy gradient, and a question of prime importance is the extent to which a learned controller extrapolates to unseen initial states. This paper theoretically studies the implicit bias of policy gradient in terms of extrapolation to unseen initial states. Focusing on the fundamental Linear Quadratic Regulator (LQR) problem, we establish that the extent of extrapolation depends on the degree of exploration induced by the system when commencing from initial states included in training. Experiments corroborate our theory, and demonstrate its conclusions on problems beyond LQR, where systems are non-linear and controllers are neural networks. We hypothesize that real-world optimal control may be greatly improved by developing methods for informed selection of initial states to train on.


Poster
#1501
Universal Consistency of Wide and Deep ReLU Neural Networks and Minimax Optimal Convergence Rates for Kolmogorov-Donoho Optimal Function Classes

Hyunouk Ko · Xiaoming Huo

In this paper, we prove the universal consistency of wide and deep ReLU neural network classifiers. We also give sufficient conditions for a class of probability measures for which classifiers based on neural networks achieve minimax optimal rates of convergence. The result applies to a wide range of known function classes. In particular, while most previous works impose explicit smoothness assumptions on the regression function, our framework encompasses more general settings. The proposed neural networks are either the minimizers of the $0$-$1$ loss that exhibit a benign overfitting behavior.


Poster
#1502
Understanding Unimodal Bias in Multimodal Deep Linear Networks

Yedi Zhang · Peter Latham · Andrew Saxe

Using multiple input streams simultaneously to train multimodal neural networks is intuitively advantageous but practically challenging. A key challenge is unimodal bias, where a network overly relies on one modality and ignores others during joint training. We develop a theory of unimodal bias with multimodal deep linear networks to understand how architecture and data statistics influence this bias. This is the first work to calculate the duration of the unimodal phase in learning as a function of the depth at which modalities are fused within the network, dataset statistics, and initialization. We show that the deeper the layer at which fusion occurs, the longer the unimodal phase. A long unimodal phase can lead to a generalization deficit and permanent unimodal bias in the overparametrized regime. Our results, derived for multimodal linear networks, extend to nonlinear networks in certain settings. Taken together, this work illuminates pathologies of multimodal learning under joint training, showing that late and intermediate fusion architectures can give rise to long unimodal phases and permanent unimodal bias. Our code is available at: https://yedizhang.github.io/unimodal-bias.html.


Poster
#1503
Hyperbolic Active Learning for Semantic Segmentation under Domain Shift

Luca Franco · Paolo Mandica · Konstantinos Kallidromitis · Devin Guillory · Yu-Teng Li · Trevor Darrell · Fabio Galasso

We introduce a hyperbolic neural network approach to pixel-level active learning for semantic segmentation. Analysis of the data statistics leads to a novel interpretation of the hyperbolic radius as an indicator of data scarcity. In HALO (Hyperbolic Active Learning Optimization), for the first time, we propose the use of epistemic uncertainty as a data acquisition strategy, following the intuition of selecting data points that are the least known. The hyperbolic radius, complemented by the widely-adopted prediction entropy, effectively approximates epistemic uncertainty. We perform extensive experimental analysis based on two established synthetic-to-real benchmarks, i.e. GTAV $\rightarrow$ Cityscapes and SYNTHIA $\rightarrow$ Cityscapes. Additionally, we test HALO on Cityscape $\rightarrow$ ACDC for domain adaptation under adverse weather conditions, and we benchmark both convolutional and attention-based backbones. HALO sets a new state-of-the-art in active learning for semantic segmentation under domain shift and it is the first active learning approach that surpasses the performance of supervised domain adaptation while using only a small portion of labels (i.e., 1%).


Poster
#1504
O$n$ Learning Deep O($n$)-Equivariant Hyperspheres

Pavlo Melnyk · Michael Felsberg · Mårten Wadenbäck · Andreas Robinson · Cuong Le

In this paper, we utilize hyperspheres and regular $n$-simplexes and propose an approach to learning deep features equivariant under the transformations of $n$D reflections and rotations, encompassed by the powerful group of O$(n)$. Namely, we propose O$(n)$-equivariant neurons with spherical decision surfaces that generalize to any dimension $n$, which we call Deep Equivariant Hyperspheres. We demonstrate how to combine them in a network that directly operates on the basis of the input points and propose an invariant operator based on the relation between two points and a sphere, which as we show, turns out to be a Gram matrix. Using synthetic and real-world data in $n$D, we experimentally verify our theoretical contributions and find that our approach is superior to the competing methods for O$(n)$-equivariant benchmark datasets (classification and regression), demonstrating a favorable speed/performance trade-off. The code is available on [GitHub](https://github.com/pavlo-melnyk/equivariant-hyperspheres).


Poster
#1505
Online Learning and Information Exponents: The Importance of Batch size & Time/Complexity Tradeoffs

Luca Arnaboldi · Yatin Dandi · FLORENT KRZAKALA · Bruno Loureiro · Luca Pesce · Ludovic Stephan

We study the impact of the batch size $n_b$ on the iteration time $T$ of training two-layer neural networks with one-pass stochastic gradient descent (SGD) on multi-index target functions of isotropic covariates. We characterize the optimal batch size minimizing the iteration time as a function of the hardness of the target, as characterized by the information exponents. We show that performing gradient updates with large batches $n_b \lesssim d^{\frac{\ell}{2}}$ minimizes the training time without changing the total sample complexity, where $\ell$ is the information exponent of the target to be learned and $d$ is the input dimension. However, larger batch sizes than $n_b \gg d^{\frac{\ell}{2}}$ are detrimental for improving the time complexity of SGD. We provably overcome this fundamental limitation via a different training protocol, *Correlation loss SGD*, which suppresses the auto-correlation terms in the loss function. We show that one can track the training progress by a system of low-dimensional ordinary differential equations (ODEs). Finally, we validate our theoretical results with numerical experiments.


Poster
#1506
Winner-takes-all learners are geometry-aware conditional density estimators

Victor Letzelter · David Perera · C√©dric Rommel · Mathieu Fontaine · Slim Essid · Gaël Richard · Patrick Perez

Winner-takes-all training is a simple learning paradigm, which handles ambiguous tasks by predicting a set of plausible hypotheses. Recently, a connection was established between Winner-takes-all training and centroidal Voronoi tessellations, showing that, once trained, hypotheses should quantize optimally the shape of the conditional distribution to predict. However, the best use of these hypotheses for uncertainty quantification is still an open question. In this work, we show how to leverage the appealing geometric properties of the Winner-takes-all learners for conditional density estimation, without modifying its original training scheme. We theoretically establish the advantages of our novel estimator both in terms of quantization and density estimation, and we demonstrate its competitiveness on synthetic and real-world datasets, including audio data.


Poster
#1507
Sobolev Space Regularised Pre Density Models

Mark Kozdoba · Binyamin Perets · Shie Mannor

We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density. This method is statistically consistent, and makes the inductive bias of the model clear and interpretable. While there is no closed analytic form for the associated kernel, we show that one can approximate it using sampling. The optimization problem needed to determine the density is non-convex, and standard gradient methods do not perform well. However, we show that with an appropriate initialization and using natural gradients, one can obtain well performing solutions. Finally, while the approach provides pre-densities (i.e. not necessarily integrating to 1), which prevents the use of log-likelihood for cross validation, we show that one can instead adapt Fisher divergence based score matching methods for this task. We evaluate the resulting method on the comprehensive recent anomaly detection benchmark suite, ADBench, and find that it ranks second best, among more than 15 algorithms.


Poster
#1508
Reparameterized Importance Sampling for Robust Variational Bayesian Neural Networks

Yunfei Long · Zilin Tian · Liguo Zhang · Huosheng Xu

Mean-field variational inference (MFVI) methods provide computationally cheap approximations to the posterior of Bayesian Neural Networks (BNNs) when compared to alternatives like MCMC. However, applying MFVI to BNNs encounters limitations due to the Monte Carlo sampling problem. This problem stems from two main issues. First, most samples do not accurately represent the most probable weights. Second, random sampling from variational distributions introduces high variance in gradient estimates, which can hinder the optimization process, leading to slow convergence or even failure. In this paper, we introduce a novel sampling method called Reparameterized Importance Sampling (RIS) to estimate the first moment in neural networks, reducing variance during feed-forward propagation. We begin by analyzing the generalized form of the optimal proposal distribution and presenting an inexpensive approximation. Next, we describe the sampling process from the proposal distribution as a transformation that combines exogenous randomness with the variational parameters. Our experimental results demonstrate the effectiveness of the proposed RIS method in three critical aspects: improved convergence, enhanced predictive performance, and successful uncertainty estimation for out-of-distribution data.


Poster
#1600
How Transformers Learn Causal Structure with Gradient Descent

Eshaan Nichani · Alex Damian · Jason Lee

The incredible success of transformers on sequence modeling tasks can be largely attributed to the self-attention mechanism, which allows information to be transferred between different parts of a sequence. Self-attention allows transformers to encode causal structure which makes them particularly suitable for sequence modeling. However, the process by which transformers learn such causal structure via gradient-based training algorithms remains poorly understood. To better understand this process, we introduce an in-context learning task that requires learning latent causal structure. We prove that gradient descent on a simplified two-layer transformer learns to solve this task by encoding the latent causal graph in the first attention layer. The key insight of our proof is that the gradient of the attention matrix encodes the mutual information between tokens. As a consequence of the data processing inequality, the largest entries of this gradient correspond to edges in the latent causal graph. As a special case, when the sequences are generated from in-context Markov chains, we prove that transformers learn an induction head (Olsson et al., 2022). We confirm our theoretical findings by showing that transformers trained on our in-context learning task are able to recover a wide variety of causal structures.


Poster
#1601
Learning High-Frequency Functions Made Easy with Sinusoidal Positional Encoding

Chuanhao Sun · Zhihang Yuan · Kai Xu · Luo Mai · Siddharth N · Shuo Chen · Mahesh Marina

Fourier features based positional encoding (PE) is commonly used in machine learning tasks that involve learning high-frequency features from low-dimensional inputs, such as 3D view synthesis and time series regression with neural tangent kernels. Despite their effectiveness, existing PEs require manual, empirical adjustment of crucial hyperparameters, specifically the Fourier features, tailored to each unique task. Further, PEs face challenges in efficiently learning high-frequency functions, particularly in tasks with limited data. In this paper, we introduce sinusoidal PE (SPE), designed to efficiently learn adaptive frequency features closely aligned with the true underlying function. Our experiments demonstrate that SPE, without hyperparameter tuning, consistently achieves enhanced fidelity and faster training across various tasks, including 3D view synthesis, Text-to-Speech generation, and 1D regression. SPE is implemented as a direct replacement for existing PEs. Its plug-and-play nature lets numerous tasks easily adopt and benefit from SPE.


Poster
#1602
One Size Fits All for Semantic Shifts: Adaptive Prompt Tuning for Continual Learning

Doyoung Kim · Susik Yoon · Dongmin Park · Youngjun Lee · Hwanjun Song · Jihwan Bang · Jae-Gil Lee

In real-world continual learning (CL) scenarios, tasks often exhibit intricate and unpredictable semantic shifts, posing challenges for fixed prompt management strategies which are tailored to only handle semantic shifts of uniform degree (i.e., uniformly mild or uniformly abrupt). To address this limitation, we propose an adaptive prompting approach that effectively accommodates semantic shifts of varying degree where mild and abrupt shifts are mixed. AdaPromptCL employs the assign-and-refine semantic grouping mechanism that dynamically manages prompt groups in accordance with the semantic similarity between tasks, enhancing the quality of grouping through continuous refinement. Our experiment results demonstrate that AdaPromptCL outperforms existing prompting methods by up to 21.3%, especially in the benchmark datasets with diverse semantic shifts between tasks.


Poster
#1603
Graphon Mean Field Games with a Representative Player: Analysis and Learning Algorithm

Fuzhong Zhou · Chenyu Zhang · Xu Chen · Xuan Di

We propose a discrete time graphon game formulation on continuous state and action spaces using a representative player to study stochastic games with heterogeneous interaction among agents. This formulation admits both conceptual and mathematical advantages, compared to a widely adopted formulation using a continuum of players. We prove the existence and uniqueness of the graphon equilibrium with mild assumptions, and show that this equilibrium can be used to construct an approximate solution for the finite player game, which is challenging to analyze and solve due to curse of dimensionality. An online oracle-free learning algorithm is developed to solve the equilibrium numerically, and sample complexity analysis is provided for its convergence.


Poster
#1604
Algorithmic Stability Unleashed: Generalization Bounds with Unbounded Losses

Shaojie Li · Bowei Zhu · Yong Liu

One of the central problems of statistical learning theory is quantifying the generalization ability of learning algorithms within a probabilistic framework. Algorithmic stability is a powerful tool for deriving generalization bounds, however, it typically builds on a critical assumption that losses are bounded. In this paper, we relax this condition to unbounded loss functions with subweibull diameter. This gives new generalization bounds for algorithmic stability and also includes existing results of subgaussian and subexponential diameters as specific cases. Furthermore, we provide a refined stability analysis by developing generalization bounds which can be $\sqrt{n}$-times faster than the previous results, where $n$ is the sample size. Our main technical contribution is general concentration inequalities for subweibull random variables, which may be of independent interest.


Poster
#1605
On the Asymptotic Distribution of the Minimum Empirical Risk

Jacob Westerhout · TrungTin Nguyen · Xin Guo · Hien Nguyen

Empirical risk minimization (ERM) is a foundational framework for the estimation of solutions to statistical and machine learning problems. Characterizing the distributional properties of the minimum empirical risk (MER) provides valuable tools for conducting inference and assessing the goodness of model fit. We provide a comprehensive account of the asymptotic distribution for the order-$\sqrt{n}$ blowup of the MER under generic and abstract assumptions, and present practical conditions under which our theorems hold. Our results improve upon and relax the assumptions made in previous works. Specifically, we provide asymptotic distributions for MERs for non-independent and identically distributed data, and when the loss functions may be discontinuous or indexed by non-Euclidean spaces. We further present results that enable the application of these asymptotics for statistical inference. Specifically, the construction of consistent confidence sets using the bootstrap and consistent hypothesis tests using penalized model selection. We illustrate the utility of our approach by applying our results to neural network problems.


Poster
#1606
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum

Tin Sum Cheng · Aurelien Lucchi · Anastasis Kratsios · David Belius

We derive new bounds for the condition number of kernel matrices, which we then use to enhance existing non-asymptotic test error bounds for kernel ridgeless regression in the over-parameterized regime for a fixed input dimension. For kernels with polynomial spectral decay, we recover the bound from previous work; for exponential decay, our bound is non-trivial and novel. Our conclusion is two-fold: (i) kernel regressors whose eigenspectrum decays polynomially must generalize well, even in the presence of noisy labeled training data; these models exhibit so-called tempered overfitting; (ii) if the eigenspectrum of any kernel ridge regressor decays exponentially, then it generalizes poorly, i.e., it exhibits catastrophic overfitting. This adds to the available characterization of kernel ridge regressors exhibiting benign overfitting as the extremal case where the eigenspectrum of the kernel decays sub-polynomially. Our analysis combines new random matrix theory (RMT) techniques with recent tools in the kernel ridge regression (KRR) literature.


Poster
#1607
Stability and Generalization for Stochastic Recursive Momentum-based Algorithms for (Strongly-)Convex One to $K$-Level Stochastic Optimizations

Xiaokang Pan · Xingyu Li · Jin Liu · Tao Sun · Kai Sun · Lixing Chen · Zhe Qu

STOchastic Recursive Momentum (STORM)-based algorithms have been widely developed to solve one to $K$-level ($K \geq 3$) stochastic optimization problems. Specifically, they use estimators to mitigate the biased gradient issue and achieve near-optimal convergence results. However, there is relatively little work on understanding their generalization performance, particularly evident during the transition from one to $K$-level optimization contexts. This paper provides a comprehensive generalization analysis of three representative STORM-based algorithms: STORM, COVER, and SVMR, for one, two, and $K$-level stochastic optimizations under both convex and strongly convex settings based on algorithmic stability. Firstly, we define stability for $K$-level optimizations and link it to generalization. Then, we detail the stability results for three prominent STORM-based algorithms. Finally, we derive their excess risk bounds by balancing stability results with optimization errors. Our theoretical results provide strong evidence to complete STORM-based algorithms: (1) Each estimator may decrease their stability due to variance with its estimation target. (2) Every additional level might escalate the generalization error, influenced by the stability and the variance between its cumulative stochastic gradient and the true gradient. (3) Increasing the batch size for the initial computation of estimators presents a favorable trade-off, enhancing the generalization performance.


Poster
#1608
No Double Descent in Principal Component Regression: A High-Dimensional Analysis

Daniel Gedon · Antonio Ribeiro · Thomas Schön

Understanding the generalization properties of large-scale models necessitates incorporating realistic data assumptions into the analysis. Therefore, we consider Principal Component Regression (PCR)---combining principal component analysis and linear regression---on data from a low-dimensional manifold. We present an analysis of PCR when the data is sampled from a spiked covariance model, obtaining fundamental asymptotic guarantees for the generalization risk of this model. Our analysis is based on random matrix theory and allows us to provide guarantees for high-dimensional data. We additionally present an analysis of the distribution shift between training and test data. The results allow us to disentangle the effects of (1) the number of parameters, (2) the data-generating model and, (3) model misspecification on the generalization risk. The use of PCR effectively regularizes the model and prevents the interpolation peak of the double descent. Our theoretical findings are empirically validated in simulation, demonstrating their practical relevance.


Poster
#1700
Online Learning with Bounded Recall

Jon Schneider · Kiran Vodrahalli

We study the problem of full-information online learning in the ``bounded recall'' setting popular in the study of repeated games. An online learning algorithm $\mathcal{A}$ is $M$-*bounded-recall* if its output at time $t$ can be written as a function of the $M$ previous rewards (and not e.g. any other internal state of $\mathcal{A}$). We first demonstrate that a natural approach to constructing bounded-recall algorithms from mean-based no-regret learning algorithms (e.g., running Hedge over the last $M$ rounds) fails, and that any such algorithm incurs constant regret per round. We then construct a stationary bounded-recall algorithm that achieves a per-round regret of $\Theta(1/\sqrt{M})$, which we complement with a tight lower bound. Finally, we show that unlike the perfect recall setting, any low regret bound bounded-recall algorithm must be aware of the ordering of the past $M$ losses -- any bounded-recall algorithm which plays a symmetric function of the past $M$ losses must incur constant regret per round.


Poster
#1701
Faster Streaming and Scalable Algorithms for Finding Directed Dense Subgraphs in Large Graphs

Slobodan Mitrovic · Theodore Pan

Finding dense subgraphs is a fundamental algorithmic tool in data mining, community detection, and clustering. In this problem, the aim is to find an induced subgraph whose edge-to-vertex ratio is maximized. We show how to find a $(2+\epsilon)$ approximation of the directed densest subgraph on randomized streams in a single pass while using $O(n \cdot {\rm poly} \log n)$ memory on $n$-vertex graphs. In contrast, the approach by Bahmani et al. (VLDB 2012) uses $O(\log n)$ passes and by Esfandiari et al. (2015) makes one pass but uses $O(n^{3/2})$ memory; both algorithms also apply to arbitrary-ordered streams. Our techniques extend to Massively Parallel Computation (MPC), yielding quadratic improvement over state-of-the-art by Bahmani et al. (VLDB 2012 and WAW 2014). We empirically show that the quality of our output is essentially the same as that of Bahmani et al. (VLDB 2012) while being $2$ times faster on large graphs, even on non-randomly ordered streams.


Poster
#1702
Characterizing ResNet's Universal Approximation Capability

Chenghao Liu · Enming Liang · Minghua Chen

Since its debut in 2016, ResNet has become arguably the most favorable architecture in deep neural network (DNN) design. It effectively addresses the gradient vanishing/exploding issue in DNN training, allowing engineers to fully unleash DNN's potential in tackling challenging problems in various domains. Despite its practical success, an essential theoretical question remains largely open: how well/best can ResNet approximate functions? In this paper, we answer this question for several important function classes, including polynomials and smooth functions. In particular, we show that ResNet with constant width can approximate Lipschitz continuous function with a Lipschitz constant $\mu$ using $\mathcal{O}(c(d)(\varepsilon/\mu)^{-d/2})$ tunable weights, where $c(d)$ is a constant depending on the input dimension $d$ and $\epsilon>0$ is the target approximation error. Further, we extend such a result to Lebesgue-integrable functions with the upper bound characterized by the modulus of continuity. These results indicate a factor of $d$ reduction in the number of tunable weights compared with the classical results for ReLU networks. Our results are also order-optimal in $\varepsilon$, thus achieving optimal approximation rate, as they match a generalized lower bound derived in this paper. This work adds to the theoretical justifications for ResNet's stellar practical performance.


Poster
#1703
$H$-Consistency Guarantees for Regression

Anqi Mao · Mehryar Mohri · Yutao Zhong

We present a detailed study of $H$-consistency bounds for regression. We first present new theorems that generalize the tools previously given to establish $H$-consistency bounds. This generalization proves essential for analyzing $H$-consistency bounds specific to regression. Next, we prove a series of novel $H$-consistency bounds for surrogate loss functions of the squared loss, under the assumption of a symmetric distribution and a bounded hypothesis set. This includes positive results for the Huber loss, all $\ell_p$ losses, $p \geq 1$, the squared $\epsilon$-insensitive loss, as well as a negative result for the $\epsilon$-insensitive loss used in Support Vector Regression (SVR). We further leverage our analysis of $H$-consistency for regression and derive principled surrogate losses for adversarial regression (Section 5). This readily establishes novel algorithms for adversarial regression, for which we report favorable experimental results in Section 6.


Poster
#1704
Agnostic Learning of Mixed Linear Regressions with EM and AM Algorithms

Avishek Ghosh · Arya Mazumdar

Mixed linear regression is a well-studied problem in parametric statistics and machine learning. Given a set of samples, tuples of covariates and labels, the task of mixed linear regression is to find a small list of linear relationships that best fit the samples. Usually it is assumed that the label is generated stochastically by randomly selecting one of two or more linear functions, applying this chosen function to the covariates, and potentially introducing noise to the result. In that situation, the objective is to estimate the ground-truth linear functions up to some parameter error. The popular expectation maximization (EM) and alternating minimization (AM) algorithms have been previously analyzed for this. In this paper, we consider the more general problem of agnostic learning of mixed linear regression from samples, without such generative models. In particular, we show that the AM and EM algorithms, under standard conditions of separability and good initialization, lead to agnostic learning in mixed linear regression by converging to the population loss minimizers, for suitably defined loss functions. In some sense, this shows the strength of AM and EM algorithms that converges to ``optimal solutions'' even in the absence of realizable generative models.


Poster
#1705
Is Temperature Sample Efficient for Softmax Gaussian Mixture of Experts?

Huy Nguyen · Pedram Akbarian · Nhat Ho

Dense-to-sparse gating mixture of experts (MoE) has recently become an effective alternative to a well-known sparse MoE. Rather than fixing the number of activated experts as in the latter model, which could limit the investigation of potential experts, the former model utilizes the temperature to control the softmax weight distribution and the sparsity of the MoE during training in order to stabilize the expert specialization. Nevertheless, while there are previous attempts to theoretically comprehend the sparse MoE, a comprehensive analysis of the dense-to-sparse gating MoE has remained elusive. Therefore, we aim to explore the impacts of the dense-to-sparse gate on the maximum likelihood estimation under the Gaussian MoE in this paper. We demonstrate that due to interactions between the temperature and other model parameters via some partial differential equations, the convergence rates of parameter estimations are slower than any polynomial rates, and could be as slow as $\mathcal{O}(1/\log(n))$, where $n$ denotes the sample size. To address this issue, we propose using a novel activation dense-to-sparse gate, which routes the output of a linear layer to an activation function before delivering them to the softmax function. By imposing linearly independence conditions on the activation function and its derivatives, we show that the parameter estimation rates are significantly improved to polynomial rates. Finally, we conduct a simulation study to empirically validate our theoretical results.


Poster
#1706
Understanding the Impact of Introducing Constraints at Inference Time on Generalization Error

Masaaki Nishino · Kengo Nakamura · Norihito Yasuda

Since machine learning technologies are being used in various practical situations, models with merely low prediction errors might not be satisfactory; prediction errors occurring with a low probability might yield dangerous results in some applications. Therefore, there are attempts to achieve an ML model whose input-output pairs are guaranteed to satisfy given constraints. Among such attempts, many previous works chose the approach of modifying the outputs of an ML model at the inference time to satisfy the constraints. Such a strategy is handy because we can control its output without expensive training or fine-tuning. However, it is unclear whether using constraints only in the inference time degrades a model's predictive performance. This paper analyses how the generalization error bounds change when we only put constraints in the inference time. Our main finding is that a class of loss functions preserves the relative generalization error, i.e., the difference in generalization error compared with the best model will not increase by imposing constraints at the inference time on multi-class classification. Some popular loss functions preserve the relative error, including the softmax cross-entropy loss. On the other hand, we also show that some loss functions do not preserve relative error when we use constraints. Our results suggest the importance of choosing a suitable loss function when we only use constraints in the inference time.


Poster
#1707
Unveiling the Cycloid Trajectory of EM Iterations in Mixed Linear Regression

Zhankun Luo · Abolfazl Hashemi

We study the trajectory of iterations and the convergence rates of the Expectation-Maximization (EM) algorithm for two-component Mixed Linear Regression (2MLR). The fundamental goal of MLR is to learn the regression models from unlabeled observations. The EM algorithm finds extensive applications in solving the mixture of linear regressions. Recent results have established the super-linear convergence of EM for 2MLR in the noiseless and high SNR settings under some assumptions and its global convergence rate with random initialization has been affirmed. However, the exponent of convergence has not been theoretically estimated and the geometric properties of the trajectory of EM iterations are not well-understood. In this paper, first, using Bessel functions we provide explicit closed-form expressions for the EM updates under all SNR regimes. Then, in the noiseless setting, we completely characterize the behavior of EM iterations by deriving a recurrence relation at the population level and notably show that all the iterations lie on a certain cycloid. Based on this new trajectory-based analysis, we exhibit the theoretical estimate for the exponent of super-linear convergence and further improve the statistical error bound at the finite-sample level. Our analysis provides a new framework for studying the behavior of EM for Mixed Linear Regression.


Poster
#1708
Generalization Analysis for Multi-Label Learning

Yi-Fan Zhang · Min-Ling Zhang

Despite great advances in algorithms for multi-label learning, research on the theoretical analysis of generalization is still in the early stage. Some recent theoretical results has investigated the generalization performance of multi-label learning under several evaluation metrics, however, how to reduce the dependency on the number of labels, explicitly introduce label correlations, and quantitatively analyze the impact of various inductive biases in the generalization analysis of multi-label learning is still a crucial and open problem. In an attempt to make up for the gap in the generalization theory of multi-label learning, we develop several novel vector-contraction inequalities, which exploit the Lipschitz continuity of loss functions, and derive generalization bounds with a weaker dependency on the number of labels than the state of the art in the case of decoupling the relationship among different components, which serves as theoretical guarantees for the generalization of multi-label learning. In addition, we derive the generalization bound for Macro-Averaged AUC and analyze its relationship with class-imbalance. The mild bounds without strong assumptions explain the good generalization ability of multi-label learning with first-order label correlations and high-order label correlations induced by norm regularizers.


Poster
#1800
Factored-Reward Bandits with Intermediate Observations

Marco Mussi · Simone Drago · Marcello Restelli · Alberto Maria Metelli

In several real-world sequential decision problems, at every step, the learner is required to select different actions. Every action affects a specific part of the system and generates an observable intermediate effect. In this paper, we introduce the Factored-Reward Bandits (FRBs), a novel setting able to effectively capture and exploit the structure of this class of scenarios, where the reward is computed as the product of the action intermediate observations. We characterize the statistical complexity of the learning problem in the FRBs, by deriving worst-case and asymptotic instance-dependent regret lower bounds. Then, we devise and analyze two regret minimization algorithms. The former, F-UCB, is an anytime optimistic approach matching the worst-case lower bound (up to logarithmic factors) but fails to perform optimally from the instance-dependent perspective. The latter, F-Track, is a bound-tracking approach, that enjoys optimal asymptotic instance-dependent regret guarantees.


Poster
#1801
Nash Incentive-compatible Online Mechanism Learning via Weakly Differentially Private Online Learning

Joon Suk Huh · Kirthevasan Kandasamy

We study a multi-round mechanism design problem, where we interact with a set of agents over a sequence of rounds. We wish to design an incentive-compatible (IC) online learning scheme to maximize an application-specific objective within a given class of mechanisms, without prior knowledge of the agents' type distributions. Even if each mechanism in this class is IC in a single round, if an algorithm naively chooses from this class on each round, the entire learning process may not be IC against non-myopic buyers who appear over multiple rounds. On each round, our method randomly chooses between the recommendation of a weakly differentially private online learning algorithm (e.g., Hedge), and a commitment mechanism which penalizes non-truthful behavior. Our method is IC and achieves $O(T^{\frac{1+h}{2}})$ regret for the application-specific objective in an adversarial setting, where $h$ quantifies the long-sightedness of the agents. When compared to prior work, our approach is conceptually simpler, it applies to general mechanism design problems (beyond auctions), and its regret scales gracefully with the size of the mechanism class.


Poster
#1802
Projection-Free Online Convex Optimization with Time-Varying Constraints

Dan Garber · Ben Kretzu

We consider the setting of online convex optimization with adversarial time-varying constraints in which actions must be feasible w.r.t. a fixed constraint set, and are also required on average to approximately satisfy additional time-varying constraints. Motivated by scenarios in which the fixed feasible set (hard constraint) is difficult to project on, we consider projection-free algorithms that access this set only through a linear optimization oracle (LOO). We present an algorithm that, on a sequence of length $T$ and using overall $T$ calls to the LOO, guarantees $\tilde{O}(T^{3/4})$ regret w.r.t. the losses and $O(T^{7/8})$ constraints violation (ignoring all quantities except for $T$). In particular, these bounds hold w.r.t. any interval of the sequence. This algorithm however also requires access to an oracle for minimizing a strongly convex nonsmooth function over a Euclidean ball. We present a more efficient algorithm that does not require the latter optimization oracle but only first-order access to the time-varying constraints, and achieves similar bounds w.r.t. the entire sequence. We extend the latter to the setting of bandit feedback and obtain similar bounds (as a function of $T$) in expectation.


Poster
#1803
Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization

Kwang-Sung Jun · Jungtaek Kim

Adapting to a priori unknown noise level is a very important but challenging problem in sequential decision-making as efficient exploration typically requires knowledge of the noise level, which is often loosely specified. We report significant progress in addressing this issue in linear bandits in two respects. First, we propose a novel confidence set that is 'semi-adaptive' to the unknown sub-Gaussian parameter $\sigma_*^2$ in the sense that the (normalized) confidence width scales with $\sqrt{d\sigma_*^2 + \sigma_0^2}$ where $d$ is the dimension and $\sigma_0^2$ is the specified sub-Gaussian parameter (known) that can be much larger than $\sigma_*^2$. This is a significant improvement over $\sqrt{d\sigma_0^2}$ of the standard confidence set of Abbasi-Yadkori et al. (2011), especially when $d$ is large. We show that this leads to an improved regret bound in linear bandits. Second, for bounded rewards, we propose a novel variance-adaptive confidence set that has a much improved numerical performance upon prior art. We then apply this confidence set to develop, as we claim, the first practical variance-adaptive linear bandit algorithm via an optimistic approach, which is enabled by our novel regret analysis technique. Both of our confidence sets rely critically on `regret equality' from online learning. Our empirical evaluation in Bayesian optimization tasks shows that our algorithms demonstrate better or comparable performance compared to existing methods.


Poster
#1804
Online Learning under Budget and ROI Constraints via Weak Adaptivity

Matteo Castiglioni · Andrea Celli · Christian Kroer

We study online learning problems in which a decision maker has to make a sequence of costly decisions, with the goal of maximizing their expected reward while adhering to budget and return-on-investment (ROI) constraints. Existing primal-dual algorithms designed for constrained online learning problems under adversarial inputs rely on two fundamental assumptions. First, the decision maker must know beforehand the value of parameters related to the degree of strict feasibility of the problem (i.e. Slater parameters). Second, a strictly feasible solution to the offline optimization problem must exist at each round. Both requirements are unrealistic for practical applications such as bidding in online ad auctions. In this paper, we show how such assumptions can be circumvented by endowing standard primal-dual templates with weakly adaptive regret minimizers. This results in a ``dual-balancing'' framework which ensures that dual variables stay sufficiently small, even in the absence of knowledge about Slater's parameter. We prove the first best-of-both-worlds no-regret guarantees which hold in absence of the two aforementioned assumptions, under stochastic and adversarial inputs. Finally, we show how to instantiate the framework to optimally bid in various mechanisms of practical relevance, such as first- and second-price auctions.


Poster
#1805
Finite Time Logarithmic Regret Bounds for Self-Tuning Regulation

Rahul Singh · Akshay Mete · Avik Kar · P. R. Kumar

We establish the first finite-time logarithmic regret bounds for the self-tuning regulation problem. We introduce a modified version of the certainty equivalence algorithm, which we call PIECE, that clips inputs in addition to utilizing probing inputs for exploration. We show that it has a $C \log T$ upper bound on the regret after $T$ time-steps for bounded noise, and $C\log^3 T$ in the case of sub-Gaussian noise, unlike the LQ problem where logarithmic regret is shown to be not possible. The PIECE algorithm is also designed to address the critical challenge of poor initial transient performance of reinforcement learning algorithms for linear systems. Comparative simulation results illustrate the improved performance of PIECE.


Poster
#1806
Randomized Confidence Bounds for Stochastic Partial Monitoring

Maxime Heuillet · Ola Ahmad · Audrey Durand

The partial monitoring (PM) framework provides a theoretical formulation of sequential learning problems with incomplete feedback. At each round, a learning agent plays an action while the environment simultaneously chooses an outcome. The agent then observes a feedback signal that is only partially informative about the (unobserved) outcome. The agent leverages the received feedback signals to select actions that minimize the (unobserved) cumulative loss. In contextual PM, the outcomes depend on some side information that is observable by the agent before selecting the action. In this paper, we consider the contextual and non-contextual PM settings with stochastic outcomes. We introduce a new class of PM strategies based on the randomization of deterministic confidence bounds. We also extend regret guarantees to settings where existing stochastic strategies are not applicable. Our experiments show that the proposed RandCBP and RandCBPside* strategies have competitive performance against state-of-the-art baselines in multiple PM games. To illustrate how the PM framework can benefit real world applications, we design a use case on the real-world problem of monitoring the error rate of any deployed classification system.


Poster
#1807
Revitalizing Multivariate Time Series Forecasting: Learnable Decomposition with Inter-Series Dependencies and Intra-Series Variations Modeling

Guoqi Yu · Jing Zou · Xiaowei Hu · Angelica I Aviles-Rivero · Jing Qin · Shujun Wang

Predicting multivariate time series is crucial, demanding precise modeling of intricate patterns, including inter-series dependencies and intra-series variations. Distinctive trend characteristics in each time series pose challenges, and existing methods, relying on basic moving average kernels, may struggle with the non-linear structure and complex trends in real-world data. Given that, we introduce a learnable decomposition strategy to capture dynamic trend information more reasonably. Additionally, we propose a dual attention module tailored to capture inter-series dependencies and intra-series variations simultaneously for better time series forecasting, which is implemented by channel-wise self-attention and autoregressive self-attention. To evaluate the effectiveness of our method, we conducted experiments across eight open-source datasets and compared it with the state-of-the-art methods. Through the comparison results, our $\textbf{Leddam}$ ($\textbf{LE}arnable$ $\textbf{D}ecomposition$ and $\textbf{D}ual $ $\textbf{A}ttention$ $\textbf{M}odule$) not only demonstrates significant advancements in predictive performance but also the proposed decomposition strategy can be plugged into other methods with a large performance-boosting, from 11.87% to 48.56% MSE error degradation. Code is available at this link: https://github.com/Levi-Ackman/Leddam.


Poster
#1808
Performance Bounds for Active Binary Testing with Information Maximization

Aditya Chattopadhyay · Benjamin Haeffele · Rene Vidal · Donald Geman

In many applications like experimental design, group testing, and medical diagnosis, the state of a random variable $Y$ is revealed by successively observing the outcomes of binary tests about $Y$. New tests are selected adaptively based on the history of outcomes observed so far. If the number of states of $Y$ is finite, the process ends when $Y$ can be predicted with a desired level of confidence or all available tests have been used. Finding the strategy that minimizes the expected number of tests needed to predict $Y$ is virtually impossible in most real applications. Therefore, the commonly used strategy is the greedy heuristic of Information Maximization (InfoMax) that selects tests sequentially in order of information gain. Despite its widespread use, existing guarantees on its performance are often vacuous when compared to its empirical efficiency. In this paper, for the first time to the best of our knowledge, we establish tight non-vacuous bounds on InfoMax's performance. Our analysis is based on the assumption that at any iteration of the greedy strategy, there is always a binary test available whose conditional probability of being 'true', given the history, is within $\delta$ units of one-half. This assumption is motivated by practical applications where the available set of tests often satisfies this property for modest values of $\delta$, say, ${0.1 \leq \delta \leq 0.4}$. Specifically, we analyze two distinct scenarios: (i) all tests are functions of $Y$, and (ii) test outcomes are corrupted by a binary symmetric channel. For both cases, our bounds guarantee the near-optimal performance of InfoMax for modest $\delta$ values. It requires only a small multiplicative factor of the entropy of $Y$, in terms of the average number of tests needed to make accurate predictions.


Poster
#1900
Reducing Balancing Error for Causal Inference via Optimal Transport

Yuguang Yan · Hao Zhou · Zeqin Yang · Weilin Chen · Ruichu Cai · Zhifeng Hao

Most studies on causal inference tackle the issue of confounding bias by reducing the distribution shift between the control and treated groups. However, it remains an open question to adopt an appropriate metric for distribution shift in practice. In this paper, we define a generic balancing error on reweighted samples to characterize the confounding bias, and study the connection between the balancing error and the Wasserstein discrepancy derived from the theory of optimal transport. We not only regard the Wasserstein discrepancy as the metric of distribution shift, but also explore the association between the balancing error and the underlying cost function involved in the Wasserstein discrepancy. Motivated by this, we propose to reduce the balancing error under the framework of optimal transport with learnable marginal distributions and the cost function, which is implemented by jointly learning weights and representations associated with factual outcomes. The experiments on both synthetic and real-world datasets demonstrate the effectiveness of our proposed method.


Poster
#1901
Jacobian Regularizer-based Neural Granger Causality

Wanqi Zhou · Shuanghao Bai · Shujian Yu · Qibin Zhao · Badong Chen

With the advancement of neural networks, diverse methods for neural Granger causality have emerged, which demonstrate proficiency in handling complex data, and nonlinear relationships. However, the existing framework of neural Granger causality has several limitations. It requires the construction of separate predictive models for each target variable, and the relationship depends on the sparsity on the weights of the first layer, resulting in challenges in effectively modeling complex relationships between variables as well as unsatisfied estimation accuracy of Granger causality. Moreover, most of them cannot grasp full-time Granger causality. To address these drawbacks, we propose a Jacobian Regularizer-based Neural Granger Causality (JRNGC) approach, a straightforward yet highly effective method for learning multivariate summary Granger causality and full-time Granger causality by constructing a single model for all target variables. Specifically, our method eliminates the sparsity constraints of weights by leveraging an input-output Jacobian matrix regularizer, which can be subsequently represented as the weighted causal matrix in the post-hoc analysis. Extensive experiments show that our proposed approach achieves competitive performance with the state-of-the-art methods for learning summary Granger causality and full-time Granger causality while maintaining lower model complexity and high scalability.


Poster
#1902
Causal Effect Identification in LiNGAM Models with Latent Confounders

Daniele Tramontano · Yaroslav Kivva · Saber Salehkaleybar · Mathias Drton · Negar Kiyavash

We study the generic identifiability of causal effects in linear non-Gaussian acyclic models (LiNGAM) with latent variables. We consider the problem in two main settings: When the causal graph is known a priori, and when it is unknown. In both settings, we provide a complete graphical characterization of the identifiable direct or total causal effects among observed variables. Moreover, we propose efficient algorithms to certify the graphical conditions. Finally, we propose an adaptation of the reconstruction independent component analysis (RICA) algorithm that estimates the causal effects from the observational data given the causal graph. Experimental results show the effectiveness of the proposed method in estimating the causal effects.


Poster
#1903
Effect-Invariant Mechanisms for Policy Generalization

Sorawit Saengkyongam · Niklas Pfister · Predag Klasnja · Susan Murphy · Jonas Peters

Policy learning is an important component of many real-world learning systems. A major challenge in policy learning is how to adapt efficiently to unseen environments or tasks. Recently, it has been suggested to exploit invariant conditional distributions to learn models that generalize better to unseen environments. However, assuming invariance of entire conditional distributions (which we call full invariance) may be too strong of an assumption in practice. In this paper, we introduce a relaxation of full invariance called effect-invariance (e-invariance for short) and prove that it is sufficient, under suitable assumptions, for zero-shot policy generalization. We also discuss an extension that exploits e-invariance when we have a small sample from the test environment, enabling few-shot policy generalization. Our work does not assume an underlying causal graph or that the data are generated by a structural causal model; instead, we develop testing procedures to test e-invariance directly from data. We present empirical results using simulated data and a mobile health intervention dataset to demonstrate the effectiveness of our approach.


Poster
#1904
Balancing Feature Similarity and Label Variability for Optimal Size-Aware One-shot Subset Selection

Abhinab Acharya · Dayou Yu · Qi Yu · Xumin Liu

Subset or core-set selection offers a data-efficient way for training deep learning models. One-shot subset selection poses additional challenges as subset selection is only performed once and full set data become unavailable after the selection. However, most existing methods tend to choose either diverse or difficult data samples, which fail to faithfully represent the joint data distribution that is comprised of both feature and label information. The selection is also performed independently from the subset size, which plays an essential role in choosing what types of samples. To address this critical gap, we propose to conduct Feature similarity and Label variability Balanced One-shot Subset Selection (BOSS), aiming to construct an optimal size-aware subset for data-efficient deep learning. We show that a novel balanced core-set loss bound theoretically justifies the need to simultaneously consider both diversity and difficulty to form an optimal subset. It also reveals how the subset size influences the bound. We further connect the inaccessible bound to a practical surrogate target which is tailored to subset sizes and varying levels of overall difficulty. We design a novel Beta-scoring importance function to delicately control the optimal balance of diversity and difficulty. Comprehensive experiments conducted on both synthetic and real data justify the important theoretical properties and demonstrate the superior performance of BOSS as compared with the competitive baselines.


Poster
#1905
Reweighted Solutions for Weighted Low Rank Approximation

David Woodruff · Taisuke Yasuda

Weighted low rank approximation (WLRA) is an important yet computationally challenging primitive with applications ranging from statistical analysis, model compression, and signal processing. To cope with the NP-hardness of this problem, prior work considers heuristics, bicriteria, or parameterized tractable algorithms to solve this problem. In this work, we introduce a new relaxed solution to WLRA which outputs a matrix that is not necessarily low rank, but can be stored using very few parameters and gives provable approximation guarantees when the weight matrix has low rank. Our central idea is to use the weight matrix itself to reweight a low rank solution, which gives an extremely simple algorithm with remarkable empirical performance in applications to model compression and on synthetic datasets. Our algorithm also gives nearly optimal communication complexity bounds for a natural distributed problem associated with this problem, for which we show matching communication lower bounds. Together, our communication complexity bounds show that the rank of the weight matrix provably parameterizes the communication complexity of WLRA. We also obtain the first relative error guarantees for feature selection with a weighted objective.


Poster
#1906
Efficient Exploration in Average-Reward Constrained Reinforcement Learning: Achieving Near-Optimal Regret With Posterior Sampling

Danil Provodin · Maurits Kaptein · Mykola Pechenizkiy

We present a new algorithm based on posterior sampling for learning in Constrained Markov Decision Processes (CMDP) in the infinite-horizon undiscounted setting. The algorithm achieves near-optimal regret bounds while being advantageous empirically compared to the existing algorithms. Our main theoretical result is a Bayesian regret bound for each cost component of $\tilde{O} (DS\sqrt{AT})$ for any communicating CMDP with $S$ states, $A$ actions, and diameter $D$. This regret bound matches the lower bound in order of time horizon $T$ and is the best-known regret bound for communicating CMDPs achieved by a computationally tractable algorithm. Empirical results show that our posterior sampling algorithm outperforms the existing algorithms for constrained reinforcement learning.


Poster
#1907
A Primal-Dual Algorithm for Offline Constrained Reinforcement Learning with Linear MDPs

Kihyuk Hong · Ambuj Tewari

We study offline reinforcement learning (RL) with linear MDPs under the infinite-horizon discounted setting which aims to learn a policy that maximizes the expected discounted cumulative reward using a pre-collected dataset. Existing algorithms for this setting either require a uniform data coverage assumptions or are computationally inefficient for finding an $\epsilon$-optimal policy with $\mathcal{O}(\epsilon^{-2})$ sample complexity. In this paper, we propose a primal dual algorithm for offline RL with linear MDPs in the infinite-horizon discounted setting. Our algorithm is the first computationally efficient algorithm in this setting that achieves sample complexity of $\mathcal{O}(\epsilon^{-2})$ with partial data coverage assumption. Our work is an improvement upon a recent work that requires $\mathcal{O}(\epsilon^{-4})$ samples. Moreover, we extend our algorithm to work in the offline constrained RL setting that enforces constraints on additional reward signals.


Poster
#1908
Run-Time Task Composition with Safety Semantics

Kevin Leahy · Makai Mann · Zachary Serlin

Compositionality is a critical aspect of scalable system design. Here, we focus on Boolean composition of learned tasks as opposed to functional or sequential composition. Existing Boolean composition for Reinforcement Learning focuses on reaching a satisfying absorbing state in environments with discrete action spaces, but does not support composable safety (i.e., avoidance) constraints. We provide three contributions: i) introduce two distinct notions of compositional safety semantics; ii) show how to enforce either safety semantics, prove correctness, and analyze the trade-offs between the two safety notions; and iii) extend Boolean composition from discrete action spaces to continuous action spaces. We demonstrate these techniques using modified versions of value iteration in a grid world, Deep Q-Network (DQN) in a grid world with image observations, and Twin Delayed DDPG (TD3) in a continuous-observation and continuous-action Bullet physics environment


Poster
#200
$\bf{\Phi}_\textrm{Flow}$: Differentiable Simulations for PyTorch, TensorFlow and Jax

Philipp Holl · Nils Thuerey

Differentiable processes have proven an invaluable tool for machine learning (ML) in scientific and engineering settings, but most ML libraries are not primarily designed for such applications. We present $\Phi_\textrm{Flow}$, a Python toolkit that seamlessly integrates with PyTorch, TensorFlow, Jax and NumPy, simplifying the process of writing differentiable simulation code at every step. $\Phi_\textrm{Flow}$ provides many essential features that go beyond the capabilities of the base libraries, such as differential operators, boundary conditions, the ability to write dimensionality-agnostic code, floating-point precision management, fully differentiable preconditioned (sparse) linear solves, automatic matrix generation via function tracing, integration of SciPy optimizers, simulation vectorization, and visualization tools. At the same time, $\Phi_\textrm{Flow}$ inherits all important traits of the base ML libraries, such as GPU / TPU support, just-in-time compilation, and automatic differentiation. Put together, these features drastically simplify scientific code like PDE or ODE solvers on grids or unstructured meshes, and $\Phi_\textrm{Flow}$ even includes out-of-the-box support for fluid simulations. $\Phi_\textrm{Flow}$ has been used in various publications and as a ground-truth solver in multiple scientific data sets.


Poster
#2000
Causal Customer Churn Analysis with Low-rank Tensor Block Hazard Model

Chenyin Gao · ZHIMING ZHANG · Shu Yang

This study introduces an innovative method for analyzing the impact of various interventions on customer churn, using the potential outcomes framework. We present a new causal model, the tensorized latent factor block hazard model, which incorporates tensor completion methods for a principled causal analysis of customer churn. A crucial element of our approach is the formulation of a 1-bit tensor completion for the parameter tensor. This captures hidden customer characteristics and temporal elements from churn records, effectively addressing the binary nature of churn data and its time-monotonic trends. Our model also uniquely categorizes interventions by their similar impacts, enhancing the precision and practicality of implementing customer retention strategies. For computational efficiency, we apply a projected gradient descent algorithm combined with spectral clustering. We lay down the theoretical groundwork for our model, including its non-asymptotic properties. The efficacy and superiority of our model are further validated through comprehensive experiments on both simulated and real-world applications.


Poster
#2001
Off-policy Evaluation Beyond Overlap: Sharp Partial Identification Under Smoothness

Samir Khan · Martin Saveski · Johan Ugander

Off-policy evaluation, and the complementary problem of policy learning, use historical data collected under a logging policy to estimate and/or optimize the value of a target policy. Methods for these tasks typically assume overlap between the target and logging policy, enabling solutions based on importance weighting and/or imputation. Absent such an overlap assumption, existing work either relies on a well-specified model or optimizes needlessly conservative bounds. In this work, we develop methods for no-overlap policy evaluation without a well-specified model, relying instead on non-parametric assumptions on the expected outcome, with a particular focus on Lipschitz smoothness. Under such assumptions we are able to provide sharp bounds on the off-policy value, along with optimal estimators of those bounds. For Lipschitz smoothness, we construct a pair of linear programs that upper and lower bound the contribution of the no-overlap region to the off-policy value. We show that these programs have a concise closed form solution, and that their solutions converge under the Lipschitz assumption to the sharp partial identification bounds at a minimax optimal rate, up to log factors. We demonstrate the effectiveness our methods on two semi-synthetic examples, and obtain informative and valid bounds that are tighter than those possible without smoothness assumptions.


Poster
#2002
Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments

Jonas Schweisthal · Dennis Frauen · M van der Schaar · Stefan Feuerriegel

Estimating the conditional average treatment effect (CATE) from observational data is relevant for many applications such as personalized medicine. Here, we focus on the widespread setting where the observational data come from multiple environments, such as different hospitals, physicians, or countries. Furthermore, we allow for violations of standard causal assumptions, namely, overlap within the environments and unconfoundedness. To this end, we move away from point identification and focus on partial identification. Specifically, we show that current assumptions from the literature on multiple environments allow us to interpret the environment as an instrumental variable (IV). This allows us to adapt bounds from the IV literature for partial identification of CATE by leveraging treatment assignment mechanisms across environments. Then, we propose different model-agnostic learners (so-called meta-learners) to estimate the bounds that can be used in combination with arbitrary machine learning models. We further demonstrate the effectiveness of our meta-learners across various experiments using both simulated and real-world data. Finally, we discuss the applicability of our meta-learners to partial identification in instrumental variable settings, such as randomized controlled trials with non-compliance.


Poster
#2003
Interplay of ROC and Precision-Recall AUCs: Theoretical Limits and Practical Implications in Binary Classification

Martin Mihelich · François Castagnos · Charles Dognin

In this paper, we present two key theorems that should have significant implications for machine learning practitioners working with binary classification models. The first theorem provides a formula to calculate the maximum and minimum Precision-Recall AUC ($AUC_{PR}$) for a fixed Receiver Operating Characteristic AUC ($AUC_{ROC}$), demonstrating the variability of $AUC_{PR}$ even with a high $AUC_{ROC}$. This is particularly relevant for imbalanced datasets, where a good $AUC_{ROC}$ does not necessarily imply a high $AUC_{PR}$. The second theorem inversely establishes the bounds of $AUC_{ROC}$ given a fixed $AUC_{PR}$. Our findings highlight that in certain situations, especially for imbalanced datasets, it is more informative to prioritize $AUC_{PR}$ over $AUC_{ROC}$. Additionally, we introduce a method to determine when a higher $AUC_{ROC}$ in one model implies a higher $AUC_{PR}$ in another and vice versa, streamlining the model evaluation process.


Poster
#2004
CurBench: Curriculum Learning Benchmark

Yuwei Zhou · Zirui Pan · Xin Wang · Hong Chen · Haoyang Li · Yanwen Huang · Zhixiao Xiong · Fangzhou Xiong · Peiyang Xu · Shengnan liu · Wenwu Zhu

Curriculum learning is a training paradigm where machine learning models are trained in a meaningful order, inspired by the way humans learn curricula. Due to its capability to improve model generalization and convergence, curriculum learning has gained considerable attention and has been widely applied to various research domains. Nevertheless, as new curriculum learning methods continue to emerge, it remains an open issue to benchmark them fairly. Therefore, we develop CurBench, the first benchmark that supports systematic evaluations for curriculum learning. Specifically, it consists of 15 datasets spanning 3 research domains: computer vision, natural language processing, and graph machine learning, along with 3 settings: standard, noise, and imbalance. To facilitate a comprehensive comparison, we establish the evaluation from 2 dimensions: performance and complexity. CurBench also provides a unified toolkit that plugs automatic curricula into general machine learning processes, enabling the implementation of 15 core curriculum learning methods. On the basis of this benchmark, we conduct comparative experiments and make empirical analyses of existing methods. CurBench is open-source and publicly available at https://github.com/THUMNLab/CurBench.


Poster
#2005
COPAL: Continual Pruning in Large Language Generative Models

Srikanth Malla · Joon Hee Choi · Chiho Choi

Adapting pre-trained large language models to different domains in natural language processing requires two key considerations: high computational demands and model's inability to continual adaptation. To simultaneously address both issues, this paper presents COPAL (COntinual Pruning in Adaptive Language settings), an algorithm developed for pruning large language generative models under a continual model adaptation setting. While avoiding resource-heavy finetuning or retraining, our pruning process is guided by the proposed sensitivity analysis. The sensitivity effectively measures model's ability to withstand perturbations introduced by the new dataset and finds model's weights that are relevant for all encountered datasets. As a result, COPAL allows seamless model adaptation to new domains while enhancing the resource efficiency. Our empirical evaluation on a various size of LLMs show that COPAL outperforms baseline models, demonstrating its efficacy in efficiency and adaptability.


Poster
#2006
Socialized Learning: Making Each Other Better Through Multi-Agent Collaboration

Xinjie Yao · Yu Wang · Pengfei Zhu · Wanyu LIN · Li Jialu · Weihao Li · Qinghua Hu

Learning new knowledge frequently occurs in our dynamically changing world, e.g., humans culturally evolve by continuously acquiring new abilities to sustain their survival, leveraging collective intelligence rather than a large number of individual attempts. The effective learning paradigm during cultural evolution is termed socialized learning (SL). Consequently, a straightforward question arises: Can multi-agent systems acquire more new abilities like humans? In contrast to most existing methods that address continual learning and multi-agent collaboration, our emphasis lies in a more challenging problem: we prioritize the knowledge in the original expert classes, and as we adeptly learn new ones, the accuracy in the original expert classes stays superior among all in a directional manner. Inspired by population genetics and cognitive science, leading to unique and complete development, we propose Multi-Agent Socialized Collaboration (MASC), which achieves SL through interactions among multiple agents. Specifically, we introduce collective collaboration and reciprocal altruism modules, organizing collaborative behaviors, promoting information sharing, and facilitating learning and knowledge interaction among individuals. We demonstrate the effectiveness of multi-agent collaboration in an extensive empirical study. Our code will be publicly available at https://github.com/yxjdarren/SL.


Poster
#2007
Mind the Boundary: Coreset Selection via Reconstructing the Decision Boundary

Shuo Yang · Zhe Cao · Sheng Guo · Ruiheng Zhang · Ping Luo · Shengping Zhang · Liqiang Nie

Existing paradigms of pushing the state of the art require exponentially more training data in many fields. Coreset selection seeks to mitigate this growing demand by identifying the most efficient subset of training data. In this paper, we delve into geometry-based coreset methods and preliminarily link the geometry of data distribution with models' generalization capability in theoretics. Leveraging these theoretical insights, we propose a novel coreset construction method by selecting training samples to reconstruct the decision boundary of a deep neural network learned on the full dataset. Extensive experiments across various popular benchmarks demonstrate the superiority of our method over multiple competitors. For the first time, our method achieves a 50% data pruning rate on the ImageNet-1K dataset while sacrificing less than 1% in accuracy. Additionally, we showcase and analyze the remarkable cross-architecture transferability of the coresets derived from our approach.


Poster
#2008
HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning

Shengchao Hu · Ziqing Fan · Li Shen · Ya Zhang · Yanfeng Wang · Dacheng Tao

The purpose of offline multi-task reinforcement learning (MTRL) is to develop a unified policy applicable to diverse tasks without the need for online environmental interaction. Recent advancements approach this through sequence modeling, leveraging the Transformer architecture's scalability and the benefits of parameter sharing to exploit task similarities. However, variations in task content and complexity pose significant challenges in policy formulation, necessitating judicious parameter sharing and management of conflicting gradients for optimal policy performance. In this work, we introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task. We approach this as a bi-level optimization problem, employing a meta-learning framework that leverages gradient-based techniques. The upper level of this framework is dedicated to learning a task-specific mask that delineates the harmony subspace, while the inner level focuses on updating parameters to enhance the overall performance of the unified policy. Empirical evaluations on a series of benchmarks demonstrate the superiority of HarmoDT, verifying the effectiveness of our approach.


Poster
#201
Towards a Self-contained Data-driven Global Weather Forecasting Framework

Yi Xiao · LEI BAI · Wei Xue · Hao Chen · Kun Chen · kang chen · Tao Han · Wanli Ouyang

Data-driven weather forecasting models are advancing rapidly, yet they rely on initial states (i.e., analysis states) typically produced by traditional data assimilation algorithms. Four-dimensional variational assimilation (4DVar) is one of the most widely adopted data assimilation algorithms in numerical weather prediction centers; it is accurate but computationally expensive. In this paper, we aim to couple the AI forecasting model, FengWu, with 4DVar to build a self-contained data-driven global weather forecasting framework, FengWu-4DVar. To achieve this, we propose an AI-embedded 4DVar algorithm that includes three components: (1) a 4DVar objective function embedded with the FengWu forecasting model and its error representation to enhance efficiency and accuracy; (2) a spherical-harmonic-transform-based (SHT-based) approximation strategy for capturing the horizontal correlation of background error; and (3) an auto-differentiation (AD) scheme for determining the optimal analysis fields. Experimental results show that under the ERA5 simulated observational data with varying proportions and noise levels, FengWu-4DVar can generate accurate analysis fields; remarkably, it has achieved stable self-contained global weather forecasts for an entire year for the first time, demonstrating its potential for real-world applications. Additionally, our framework is approximately 100 times faster than the traditional 4DVar algorithm under similar experimental conditions, highlighting its significant computational efficiency.


Poster
#202
Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Chandra Mouli Sekar · Danielle Robinson · Shima Alizadeh · Gaurav Gupta · Andrew Stuart · Michael Mahoney · Yuyang Wang

Existing work in scientific machine learning (SciML) has shown that data-driven learning of solution operators can provide a fast approximate alternative to classical numerical partial differential equation (PDE) solvers. Of these, Neural Operators (NOs) have emerged as particularly promising. We observe that several uncertainty quantification (UQ) methods for NOs fail for test inputs that are even moderately out-of-domain (OOD), even when the model approximates the solution well for in-domain tasks. To address this limitation, we show that ensembling several NOs can identify high-error regions and provide good uncertainty estimates that are well-correlated with prediction errors. Based on this, we propose a cost-effective alternative, DiverseNO, that mimics the properties of the ensemble by encouraging diverse predictions from its multiple heads in the last feed-forward layer. We then introduce Operator-ProbConserv, a method that uses these well-calibrated UQ estimates within the ProbConserv framework to update the model. Our empirical results show that Operator-ProbConserv enhances OOD model performance for a variety of challenging PDE problems and satisfies physical constraints such as conservation laws.


Poster
#203
Equivariant Graph Neural Operator for Modeling 3D Dynamics

Minkai Xu · Jiaqi Han · Aaron Lou · Jean Kossaifi · Arvind Ramanathan · Kamyar Azizzadenesheli · Jure Leskovec · Stefano Ermon · Anima Anandkumar

Modeling the complex three-dimensional (3D) dynamics of relational systems is an important problem in the natural sciences, with applications ranging from molecular simulations to particle mechanics. Machine learning methods have achieved good success by learning graph neural networks to model spatial interactions. However, these approaches do not faithfully capture temporal correlations since they only model next-step predictions. In this work, we propose Equivariant Graph Neural Operator (EGNO), a novel and principled method that directly models dynamics as trajectories instead of just next-step prediction. Different from existing methods, EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it. To capture the temporal correlations while keeping the intrinsic SE(3)-equivariance, we develop equivariant temporal convolutions parameterized in the Fourier space and build EGNO by stacking the Fourier layers over equivariant networks. EGNO is the first operator learning framework that is capable of modeling solution dynamics functions over time while retaining 3D equivariance. Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods, thanks to the equivariant temporal modeling. Our code is available at https://github.com/MinkaiXu/egno.


Poster
#204
3D-VLA: A 3D Vision-Language-Action Generative World Model

Haoyu Zhen · Xiaowen Qiu · Peihao Chen · Jincheng Yang · Xin Yan · Yilun Du · Yining Hong · Chuang Gan

Recent vision-language-action (VLA) models rely on 2D inputs, lacking integration with the broader realm of the 3D physical world. Furthermore, they perform action prediction by learning a direct mapping from perception to action, neglecting the vast dynamics of the world and the relations between actions and dynamics. In contrast, human beings are endowed with world models that depict imagination about future scenarios to plan action accordingly. To this end, we propose 3D-VLA by introducing a new family of embodied foundation models that seamlessly link 3D perception, reasoning, and action through a generative world model. Specifically, 3D-VLA is built on top of a 3D-based large language model (LLM) and a set of action tokens is introduced to engage with the embodied environment. Furthermore, to inject generation abilities into the model, we train the embodied diffusion models and align them into the LLM for predicting the goal image and point cloud. To train our 3D-VLA, we curate a large-scale 3D embodied instruction dataset by extracting vast 3D-related information from existing robotics datasets. Our experiments on held-in datasets demonstrate that 3D-VLA significantly improves the reasoning, multimodality generation and planning capabilities in embodied environments, showcasing its potential in real-world applications.


Poster
#205
Position: Scaling Simulation is Neither Necessary Nor Sufficient for In-the-Wild Robot Manipulation

Homanga Bharadhwaj

In this paper, we develop a structured critique of robotic simulations for real-world manipulation, by arguing that scaling simulators is neither necessary nor sufficient for making progress in general-purpose real-world robotic manipulation agents that are compliant with human preferences. With the ubiquity of robotic simulators, and recent efforts to scale them for diverse tasks, and at the same time the interest in generally capable real-world manipulation systems, we believe it is important to address the limitations of using simulation for real-world manipulation, so that as a community, we can focus our collective resources, energy, and time on approaches that have more principled odds of success. We further demonstrate the unique challenges that real-world manipulation presents, and show through examples and arguments why scaling simulation doesn't get us closer to solving these challenges required for diverse real-world deployment.


Poster
#206
Learning Reward for Robot Skills Using Large Language Models via Self-Alignment

Yuwei Zeng · Yao Mu · Lin Shao

Learning reward functions remains the bottleneck to equip a robot with a broad repertoire of skills. Large Language Models (LLM) contain valuable task-related knowledge that can potentially aid in the learning of reward functions. However, the proposed reward function can be imprecise, thus ineffective which requires to be further grounded with environment information. We proposed a method to learn rewards more efficiently in the absence of humans. Our approach consists of two components: We first use the LLM to propose features and parameterization of the reward, then update the parameters through an iterative self-alignment process. In particular, the process minimizes the ranking inconsistency between the LLM and the learnt reward functions based on the execution feedback. The method was validated on 9 tasks across 2 simulation environments. It demonstrates a consistent improvement in training efficacy and efficiency, meanwhile consuming significantly fewer GPT tokens compared to the alternative mutation-based method.


Poster
#207
CATS: Enhancing Multivariate Time Series Forecasting by Constructing Auxiliary Time Series as Exogenous Variables

Jiecheng Lu · Xu Han · Sun · Shihao Yang

For Multivariate Time Series Forecasting (MTSF), recent deep learning applications show that univariate models frequently outperform multivariate ones. To address the deficiency in multivariate models, we introduce a method to Construct Auxiliary Time Series (CATS) that functions like a 2D temporal-contextual attention mechanism, which generates Auxiliary Time Series (ATS) from Original Time Series (OTS) to effectively represent and incorporate inter-series relationships for forecasting. Key principles of ATS—continuity, sparsity, and variability—are identified and implemented through different modules. Even with a basic 2-layer MLP as the core predictor, CATS achieves state-of-the-art, significantly reducing complexity and parameters compared to previous multivariate models, marking it as an efficient and transferable MTSF solution.


Poster
#208
Learning Optimal Projection for Forecast Reconciliation of Hierarchical Time Series

Asterios Tsiourvas · Wei Sun · Georgia Perakis · Pin-Yu Chen · Yada Zhu

Hierarchical time series forecasting requires not only prediction accuracy but also coherency, i.e., forecasts add up appropriately across the hierarchy. Recent literature has shown that reconciliation via projection outperforms prior methods such as top-down or bottom-up approaches. Unlike existing work that pre-specifies a projection matrix (e.g., orthogonal), we study the problem of learning the optimal oblique projection from data for coherent forecasting of hierarchical time series. In addition to the unbiasedness-preserving property, oblique projection implicitly accounts for the hierarchy structure and assigns different weights to individual time series, providing significant adaptability over orthogonal projection which treats base forecast errors equally. We examine two broad classes of projections, namely Euclidean projection and general oblique projections. We propose to model the reconciliation step as a learnable, structured, projection layer in the neural forecaster architecture. The proposed approach allows for the efficient learning of the optimal projection in an end-to-end framework where both the neural forecaster and the projection layer are learned simultaneously. An empirical evaluation of real-world hierarchical time series datasets demonstrates the superior performance of the proposed method over existing state-of-the-art approaches.


Poster
#209
MF-CLR: Multi-Frequency Contrastive Learning Representation for Time Series

Jufang Duan · Wei Zheng · Yangzhou Du · Wenfa Wu · Haipeng Jiang · Hongsheng Qi

Learning a decent representation from unlabeled time series is a challenging task, especially when the time series data is derived from diverse channels at different sampling rates. Our motivation stems from the financial domain, where sparsely labeled covariates are commonly collected at different frequencies, e.g., daily stock market index, monthly unemployment rate and quarterly net revenue of a certain listed corporation. This paper presents Multi-Frequency Contrastive Learning Representation (MF-CLR), aimed at learning a good representation of multi-frequency time series in a self-supervised paradigm by leveraging the ability of contrastive learning. MF-CLR introduces a hierarchical mechanism that spans across different frequencies along the feature dimension. Within each contrastive block, two groups of subseries with adjacent frequencies are embedded based on our proposed cross-frequency consistency. To validate the effectiveness of MF-CLR, we conduct extensive experiments on five downstream tasks, including long-term and short-term forecasting, classification, anomaly detection and imputation. Experimental evidence shows that MF-CLR delivers a leading performance in all the downstream tasks and keeps consistent performance across different target dataset scales in the transfer learning scenario.


Poster
#210
A decoder-only foundation model for time-series forecasting

Abhimanyu Das · Weihao Kong · Rajat Sen · Yichen Zhou

Motivated by recent advances in large language models for Natural Language Processing (NLP), we design a time-series foundation model for forecasting whose out-of-the-box zero-shot performance on a variety of public datasets comes close to the accuracy of state-of-the-art supervised forecasting models for each individual dataset. Our model is based on pretraining a decoder style attention model with input patching, using a large time-series corpus comprising both real-world and synthetic datasets. Experiments on a diverse set of previously unseen forecasting datasets suggests that the model can yield accurate zero-shot forecasts across different domains, forecasting horizons and temporal granularities.


Poster
#2100
Language-Driven Cross-Modal Classifier for Zero-Shot Multi-Label Image Recognition

Yicheng Liu · Jie Wen · Chengliang Liu · xiaozhao fang · Zuoyong Li · Yong Xu · Zheng Zhang

Large-scale pre-trained vision-language models (e.g., CLIP) have shown powerful zero-shot transfer capabilities in image recognition tasks. Recent approaches typically employ supervised fine-tuning methods to adapt CLIP for zero-shot multi-label image recognition tasks. However, obtaining sufficient multi-label annotated image data for training is challenging and not scalable. In this paper, we propose a new language-driven framework for zero-shot multi-label recognition that eliminates the need for annotated images during training. Leveraging the aligned CLIP multi-modal embedding space, our method utilizes language data generated by LLMs to train a cross-modal classifier, which is subsequently transferred to the visual modality. During inference, directly applying the classifier to visual inputs may limit performance due to the modality gap. To address this issue, we introduce a cross-modal mapping method that maps image embeddings to the language modality while retaining crucial visual information. Comprehensive experiments demonstrate that our method outperforms other zero-shot multi-label recognition methods and achieves competitive results compared to few-shot methods.


Poster
#2101
Multi-Source Conformal Inference Under Distribution Shift

Yi Liu · Alexander Levis · Sharon-Lise Normand · Larry Han

Recent years have experienced increasing utilization of complex machine learning models across multiple sources of data to inform more generalizable decision-making. However, distribution shifts across data sources and privacy concerns related to sharing individual-level data, coupled with a lack of uncertainty quantification from machine learning predictions, make it challenging to achieve valid inferences in multi-source environments. In this paper, we consider the problem of obtaining distribution-free prediction intervals for a target population, leveraging multiple potentially biased data sources. We derive the efficient influence functions for the quantiles of unobserved outcomes in the target and source populations, and show that one can incorporate machine learning prediction algorithms in the estimation of nuisance functions while still achieving parametric rates of convergence to nominal coverage probabilities. Moreover, when conditional outcome invariance is violated, we propose a data-adaptive strategy to upweight informative data sources for efficiency gain and downweight non-informative data sources for bias reduction. We highlight the robustness and efficiency of our proposals for a variety of conformal scores and data-generating mechanisms via extensive synthetic experiments. Hospital length of stay prediction intervals for pediatric patients undergoing a high-risk cardiac surgical procedure between 2016-2022 in the U.S. illustrate the utility of our methodology.


Poster
#2102
Meta-Reinforcement Learning Robust to Distributional Shift Via Performing Lifelong In-Context Learning

TengYe Xu · Zihao Li · Qinyuan Ren

A key challenge in Meta-Reinforcement Learning (meta-RL) is the task distribution shift, since the generalization ability of most current meta-RL methods is limited to tasks sampled from the training distribution. In this paper, we propose Posterior Sampling Bayesian Lifelong In-Context Reinforcement Learning (PSBL), which is robust to task distribution shift. PSBL meta-trains a variant of transformer to directly perform amortized inference about the Predictive Posterior Distribution (PPD) of the optimal policy. Once trained, the network can infer the PPD online with frozen parameters. The agent then samples actions from the approximate PPD to perform online exploration, which progressively reduces uncertainty and enhances performance in the interaction with the environment. This property is known as in-context learning. Experimental results demonstrate that PSBL significantly outperforms standard Meta RL methods both in tasks with sparse rewards and dense rewards when the test task distribution is strictly shifted from the training distribution.


Poster
#2103
Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms

Ye Tian · Haolei Weng · Yang Feng

While supervised federated learning approaches have enjoyed significant success, the domain of unsupervised federated learning remains relatively underexplored. Several federated EM algorithms have gained popularity in practice, however, their theoretical foundations are often lacking. In this paper, we first introduce a federated gradient EM algorithm (FedGrEM) designed for the unsupervised learning of mixture models, which supplements the existing federated EM algorithms by considering task heterogeneity and potential adversarial attacks. We present a comprehensive finite-sample theory that holds for general mixture models, then apply this general theory on specific statistical models to characterize the explicit estimation error of model parameters and mixture proportions. Our theory elucidates when and how FedGrEM outperforms local single-task learning with insights extending to existing federated EM algorithms. This bridges the gap between their practical success and theoretical understanding. Our numerical results validate our theory, and demonstrate FedGrEM's superiority over existing unsupervised federated learning benchmarks.


Poster
#2104
Enhancing Cross-Modal Fine-Tuning with Gradually Intermediate Modality Generation

Lincan Cai · Shuang Li · Wenxuan Ma · Jingxuan Kang · Binhui Xie · Zixun Sun · Chengwei Zhu

Large-scale pretrained models have proven immensely valuable in handling data-intensive modalities like text and image. However, fine-tuning these models for certain specialized modalities, such as protein sequence and cosmic ray, poses challenges due to the significant modality discrepancy and scarcity of labeled data. In this paper, we propose an end-to-end method, PaRe, to enhance cross-modal fine-tuning, aiming to transfer a large-scale pretrained model to various target modalities. PaRe employs a gating mechanism to select key patches from both source and target data. Through a modality-agnostic Patch Replacement scheme, these patches are preserved and combined to construct data-rich intermediate modalities ranging from easy to hard. By gradually intermediate modality generation, we can not only effectively bridge the modality gap to enhance stability and transferability of cross-modal fine-tuning, but also address the challenge of limited data in the target modality by leveraging enriched intermediate modality data. Compared with hand-designed, general-purpose, task-specific, and state-of-the-art cross-modal fine-tuning approaches, PaRe demonstrates superior performance across three challenging benchmarks, encompassing more than ten modalities.


Poster
#2105
Pseudo-Calibration: Improving Predictive Uncertainty Estimation in Unsupervised Domain Adaptation

Dapeng Hu · Jian Liang · Xinchao Wang · Chuan-Sheng Foo

Unsupervised domain adaptation (UDA) has seen substantial efforts to improve model accuracy for an unlabeled target domain with the help of a labeled source domain. However, UDA models often exhibit poorly calibrated predictive uncertainty on target data, a problem that remains under-explored and poses risks in safety-critical UDA applications. The calibration problem in UDA is particularly challenging due to the absence of labeled target data and severe distribution shifts between domains. In this paper, we approach UDA calibration as a target-domain-specific unsupervised problem, different from mainstream solutions based on covariate shift. We introduce Pseudo-Calibration (PseudoCal), a novel post-hoc calibration framework. Our innovative use of inference-stage mixup synthesizes a labeled pseudo-target set capturing the structure of the real unlabeled target data. This turns the unsupervised calibration problem into a supervised one, easily solvable with temperature scaling. Extensive empirical evaluations across 5 diverse UDA scenarios involving 10 UDA methods consistently demonstrate the superior performance and versatility of PseudoCal over existing solutions.


Poster
#2106
Non-parametric Online Change Point Detection on Riemannian Manifolds

Xiuheng Wang · Ricardo Borsoi · Cédric Richard

Non-parametric detection of change points in streaming time series data that belong to Euclidean spaces has been extensively studied in the literature. Nevertheless, when the data belongs to a Riemannian manifold, existing approaches are no longer applicable as they fail to account for the structure and geometry of the manifold. In this paper, we introduce a non-parametric algorithm for online change point detection in manifold-valued data streams. This algorithm monitors the generalized Karcher mean of the data, computed using stochastic Riemannian optimization. We provide theoretical bounds on the detection and false alarm rate performances of the algorithm, using a new result on the non-asymptotic convergence of the stochastic Riemannian gradient descent. We apply our algorithm to two different Riemannian manifolds. Experimental results with both synthetic and real data illustrate the performance of the proposed method.


Poster
#2107
Federated Combinatorial Multi-Agent Multi-Armed Bandits

Fares Fourati · Mohamed-Slim Alouini · Vaneet Aggarwal

This paper introduces a federated learning framework tailored for online combinatorial optimization with bandit feedback. In this setting, agents select subsets of arms, observe noisy rewards for these subsets without accessing individual arm information, and can cooperate and share information at specific intervals. Our framework transforms any offline resilient single-agent $(\alpha-\epsilon)$-approximation algorithm—having a complexity of $\tilde{\mathcal{O}}\left(\frac{\psi}{\epsilon^\beta}\right)$, where the logarithm is omitted, for some function $\psi$ and constant $\beta$—into an online multi-agent algorithm with $m$ communicating agents and an $\alpha$-regret of no more than $\tilde{\mathcal{O}}\left(m^{-\frac{1}{3+\beta}} \psi^\frac{1}{3+\beta} T^\frac{2+\beta}{3+\beta}\right)$. Our approach not only eliminates the $\epsilon$ approximation error but also ensures sublinear growth with respect to the time horizon $T$ and demonstrates a linear speedup with an increasing number of communicating agents. Additionally, the algorithm is notably communication-efficient, requiring only a sublinear number of communication rounds, quantified as $\tilde{\mathcal{O}}\left(\psi T^\frac{\beta}{\beta+1}\right)$. Furthermore, the framework has been successfully applied to online stochastic submodular maximization using various offline algorithms, yielding the first results for both single-agent and multi-agent settings and recovering specialized single-agent theoretical guarantees. We empirically validate our approach to a stochastic data summarization problem, illustrating the effectiveness of the proposed framework, even in single-agent scenarios.


Poster
#2108
Positive and Unlabeled Learning with Controlled Probability Boundary Fence

Changchun Li · Yuanchao Dai · Lei Feng · Ximing Li · Bing Wang · Jihong Ouyang

Positive and Unlabeled (PU) learning refers to a special case of binary classification, and technically, it aims to induce a binary classifier from a few labeled positive training instances and loads of unlabeled instances. In this paper, we derive a theorem indicating that the probability boundary of the asymmetric disambiguation-free expected risk of PU learning is controlled by its asymmetric penalty, and we further empirically evaluated this theorem. Inspired by the theorem and its empirical evaluations, we propose an easy-to-implement two-stage PU learning method, namely Positive and Unlabeled Learning with Controlled Probability Boundary Fence (PULCPBF). In the first stage, we train a set of weak binary classifiers concerning different probability boundaries by minimizing the asymmetric disambiguation-free empirical risks with specific asymmetric penalty values. We can interpret these induced weak binary classifiers as a probability boundary fence. For each unlabeled instance, we can use the predictions to locate its class posterior probability and generate a stochastic label. In the second stage, we train a strong binary classifier over labeled positive training instances and all unlabeled instances with stochastic labels in a self-training manner. Extensive empirical results demonstrate that PULCPBF can achieve competitive performance compared with the existing PU learning baselines.


Poster
#2109
Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning

Kai Gan · Tong Wei

Semi-supervised learning (SSL) has witnessed remarkable progress, resulting in the emergence of numerous method variations. However, practitioners often encounter challenges when attempting to deploy these methods due to their subpar performance. In this paper, we present a novel SSL approach named FineSSL that significantly addresses this limitation by adapting pre-trained foundation models. We identify the aggregated biases and cognitive deviation problems inherent in foundation models, and propose a simple yet effective solution by imposing balanced margin softmax and decoupled label smoothing. Through extensive experiments, we demonstrate that FineSSL sets a new state of the art for SSL on multiple benchmark datasets, reduces the training cost by over six times, and can seamlessly integrate various fine-tuning and modern SSL algorithms. The source code is available at https://github.com/Gank0078/FineSSL.


Poster
#211
Modelling Microbial Communities with Graph Neural Networks

Albane Ruaud · Cansu Sancaktar · Marco Bagatella · Christoph Ratzke · Georg Martius

Understanding the interactions and interplay of microorganisms is a great challenge with many applications in medical and environmental settings. In this work, we model bacterial communities directly from their genomes using graph neural networks (GNNs). GNNs leverage the inductive bias induced by the set nature of bacteria, enforcing permutation invariance and granting combinatorial generalization. We propose to learn the dynamics implicitly by directly predicting community relative abundance profiles at steady state, thus escaping the need for growth curves. On two real-world datasets, we show for the first time generalization to unseen bacteria and different community structures. To investigate the prediction results more deeply, we create a simulation for flexible data generation and analyze effects of bacteria interaction strength, community size, and training data amount.


Poster
#2110
MC-GTA: Metric-Constrained Model-Based Clustering using Goodness-of-fit Tests with Autocorrelations

Zhangyu Wang · Gengchen Mai · Krzysztof Janowicz · Ni Lao

A wide range of (multivariate) temporal (1D) and spatial (2D) data analysis tasks, such as grouping vehicle sensor trajectories, can be formulated as clustering with given metric constraints. Existing metric-constrained clustering algorithms overlook the rich correlation between feature similarity and metric distance, i.e., metric autocorrelation. The model-based variations of these clustering algorithms (e.g. TICC and STICC) achieve SOTA performance, yet suffer from computational instability and complexity by using a metric-constrained Expectation-Maximization procedure. In order to address these two problems, we propose a novel clustering algorithm, MC-GTA (Model-based Clustering via Goodness-of-fit Tests with Autocorrelations). Its objective is only composed of pairwise weighted sums of feature similarity terms (square Wasserstein-2 distance) and metric autocorrelation terms (a novel multivariate generalization of classic semivariogram). We show that MC-GTA is effectively minimizing the total hinge loss for intra-cluster observation pairs not passing goodness-of-fit tests, i.e., statistically not originating from the same distribution. Experiments on 1D/2D synthetic and real-world datasets demonstrate that MC-GTA successfully incorporates metric autocorrelation. It outperforms strong baselines by large margins (up to 14.3% in ARI and 32.1% in NMI) with faster and stabler optimization (>10x speedup).


Poster
#2111
Diffusion-based Missing-view Generation With the Application on Incomplete Multi-view Clustering

Jie Wen · Shijie Deng · Waikeung Wong · Guoqing Chao · Chao Huang · Lunke Fei · Yong Xu

As a branch of clustering, multi-view clustering has received much attention in recent years. In practical applications, a common phenomenon is that partial views of some samples may be missing in the collected multi-view data, which poses a severe challenge to design the multi-view learning model and explore complementary and consistent information. Currently, most of the incomplete multi-view clustering methods only focus on exploring the information of available views while few works study the missing view recovery for incomplete multi-view learning. To this end, we propose an innovative diffusion-based missing view generation (DMVG) network. Moreover, for the scenarios with high missing rates, we further propose an incomplete multi-view data augmentation strategy to enhance the recovery quality for the missing views. Extensive experimental results show that the proposed DMVG can not only accurately predict missing views, but also further enhance the subsequent clustering performance in comparison with several state-of-the-art incomplete multi-view clustering methods.


Poster
#2112
Long-Tail Learning with Foundation Model: Heavy Fine-Tuning Hurts

Jiang-Xin Shi · Tong Wei · Zhi Zhou · Jie-Jing Shao · Xin-Yan Han · Yu-Feng Li

The fine-tuning paradigm in addressing long-tail learning tasks has sparked significant interest since the emergence of foundation models. Nonetheless, how fine-tuning impacts performance in long-tail learning was not explicitly quantified. In this paper, we disclose that heavy fine-tuning may even lead to non-negligible performance deterioration on tail classes, and lightweight fine-tuning is more effective. The reason is attributed to inconsistent class conditions caused by heavy fine-tuning. With the observation above, we develop a low-complexity and accurate long-tail learning algorithms LIFT with the goal of facilitating fast prediction and compact models by adaptive lightweight fine-tuning. Experiments clearly verify that both the training time and the learned parameters are significantly reduced with more accurate predictive performance compared with state-of-the-art approaches. The implementation code is available at https://github.com/shijxcs/LIFT.


Poster
#2113
Implicit Representations for Constrained Image Segmentation

Jan Philipp Schneider · Mishal Fatima · Jovita Lukasik · Andreas Kolb · Margret Keuper · Michael Moeller

Implicit representations allow to use a parametric function that maps (spatial) coordinates to the value that is traditionally stored in each pixel, e.g. RGB values, instead of a discrete grid. This has recently proven quite advantageous as an internal representation for images or scenes for deep learning models. Yet, its potential to ensure certain properties of the solution has not yet been fully explored. In this work, we demonstrate that implicit representations are a powerful tool for enforcing a variety of different geometric constraints in image segmentation. While convexity, star-shape, path-connectedness, periodicity, or symmetry of the (spatial or space-time) region to be segmented are very challenging to enforce for pixel-wise discretizations, a suitable parametrization of an implicit representation, mapping spatial or spatio-temporal coordinates to the likeliness of a pixel belonging to the fore- or background, allows to provably ensure such constraints. Several numerical examples demonstrate that challenging segmentation scenarios can benefit from the inclusion of application-specific constraints, e.g. when occlusions prevent a faithful segmentation with classical approaches.


Poster
#2114
Neural-Kernel Conditional Mean Embeddings

Eiki Shimizu · Kenji Fukumizu · Dino Sejdinovic

Kernel conditional mean embeddings (CMEs) offer a powerful framework for representing conditional distributions, but they often face scalability and expressiveness challenges. In this work, we propose a new method that effectively combines the strengths of deep learning with CMEs in order to address these challenges. Specifically, our approach leverages the end-to-end neural network (NN) optimization framework using a kernel-based objective. This design circumvents the computationally expensive Gram matrix inversion required by current CME methods. To further enhance performance, we provide efficient strategies to optimize the remaining kernel hyperparameters. In conditional density estimation tasks, our NN-CME hybrid achieves competitive performance and often surpasses existing deep learning-based methods. Lastly, we showcase its remarkable versatility by seamlessly integrating it into reinforcement learning (RL) contexts. Building on Q-learning, our approach naturally leads to a new variant of distributional RL methods, which demonstrates consistent effectiveness across different environments.


Poster
#2115
Adaptive Learning of Density Ratios in RKHS

Werner Zellinger · Stefan Kindermann · Sergei V. Pereverzyev

Estimating the ratio of two probability densities from finitely many observations of the densities is a central problem in machine learning and statistics with applications in two-sample testing, divergence estimation, generative modeling, covariate shift adaptation, conditional density estimation, and novelty detection. In this work, we analyze a large class of density ratio estimation methods that minimize a regularized Bregman divergence between the true density ratio and a model in a reproducing kernel Hilbert space (RKHS). We derive new finite-sample error bounds, and we propose a Lepskii type parameter choice principle that minimizes the bounds without knowledge of the regularity of the density ratio. In the special case of square loss, our method adaptively achieves a minimax optimal error rate. A numerical illustration is provided.


Poster
#2116
Ambiguity-Aware Abductive Learning

Hao-Yuan He · Hui Sun · Zheng Xie · Ming Li

Abductive Learning (ABL) is a promising framework for integrating sub-symbolic perception and logical reasoning through abduction. In this case, the abduction process provides supervision for the perception model from the background knowledge. Nevertheless, this process naturally contains uncertainty, since the knowledge base may be satisfied by numerous potential candidates. This implies that the result of the abduction process, i.e., a set of candidates, is ambiguous; both correct and incorrect candidates are mixed in this set. The prior art of abductive learning selects the candidate that has the minimal inconsistency of the knowledge base. However, this method overlooks the ambiguity in the abduction process and is prone to error when it fails to identify the correct candidates. To address this, we propose Ambiguity-Aware Abductive Learning ($\textrm{A}^3\textrm{BL}$), which evaluates all potential candidates and their probabilities, thus preventing the model from falling into sub-optimal solutions. Both experimental results and theoretical analyses prove that $\textrm{A}^3\textrm{BL}$ markedly enhances ABL by efficiently exploiting the ambiguous abduced supervision.


Poster
#2117
Operator SVD with Neural Networks via Nested Low-Rank Approximation

Jongha (Jon) Ryu · Xiangxiang Xu · Hasan Sabri Melihcan Erol · Yuheng Bu · Lizhong Zheng · Gregory Wornell

Computing eigenvalue decomposition (EVD) of a given linear operator, or finding its leading eigenvalues and eigenfunctions, is a fundamental task in many machine learning and scientific simulation problems. For high-dimensional eigenvalue problems, training neural networks to parameterize the eigenfunctions is considered as a promising alternative to the classical numerical linear algebra techniques. This paper proposes a new optimization framework based on the low-rank approximation characterization of a truncated singular value decomposition, accompanied by new techniques called *nesting* for learning the top-$L$ singular values and singular functions in the correct order. The proposed method promotes the desired orthogonality in the learned functions implicitly and efficiently via an unconstrained optimization formulation, which is easy to solve with off-the-shelf gradient-based optimization algorithms. We demonstrate the effectiveness of the proposed optimization framework for use cases in computational physics and machine learning.


Poster
#212
Speech Self-Supervised Learning Using Diffusion Model Synthetic Data

Heting Gao · Kaizhi Qian · Junrui Ni · Chuang Gan · Mark Hasegawa-Johnson · Shiyu Chang · Yang Zhang

While self-supervised learning (SSL) in speech has greatly reduced the reliance of speech processing systems on annotated corpora, the success of SSL still hinges on the availability of a large-scale unannotated corpus, which is still often impractical for many low-resource languages or under privacy concerns. Some existing work seeks to alleviate the problem by data augmentation, but most works are confined to introducing perturbations to real speech and do not introduce new variations in speech prosody, speakers, and speech content, which are important for SSL. Motivated by the recent finding that diffusion models have superior capabilities for modeling data distributions, we propose DiffS4L, a pretraining scheme that augments the limited unannotated data with synthetic data with different levels of variations, generated by a diffusion model trained on the limited unannotated data. Finally, an SSL model is pre-trained on the real and the synthetic speech. Our experiments show that DiffS4L can significantly improve the performance of SSL models, such as reducing the WER of the HuBERT pretrained model by 6.26 percentage points in the English ASR task. Notably, we find that the synthetic speech with all levels of variations, i.e. new prosody, new speakers, and even new content (despite the new content being mostly babble), accounts for significant performance improvement. The code is available at github.com/Hertin/DiffS4L.


Poster
#213
LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery

Pingchuan Ma · Johnson Tsun-Hsuan Wang · Minghao Guo · Zhiqing Sun · Josh Tenenbaum · Daniela Rus · Chuang Gan · Wojciech Matusik

Large Language Models have recently gained significant attention in scientific discovery for their extensive knowledge and advanced reasoning capabilities. However, they encounter challenges in effectively simulating observational feedback and grounding it with language to propel advancements in physical scientific discovery. Conversely, human scientists undertake scientific discovery by formulating hypotheses, conducting experiments, and revising theories through observational analysis. Inspired by this, we propose to enhance the knowledge-driven, abstract reasoning abilities of LLMs with the computational strength of simulations. We introduce Scientific Generative Agent (SGA), a bilevel optimization framework: LLMs act as knowledgeable and versatile thinkers, proposing scientific hypotheses and reason about discrete components, such as physics equations or molecule structures; meanwhile, simulations function as experimental platforms, providing observational feedback and optimizing via differentiability for continuous parts, such as physical parameters. We conduct extensive experiments to demonstrate our framework's efficacy in constitutive law discovery and molecular design, unveiling novel solutions that differ from conventional human expectations yet remain coherent upon analysis.


Poster
#214
Efficient and Effective Time-Series Forecasting with Spiking Neural Networks

Changze Lv · Yansen Wang · Dongqi Han · Xiaoqing Zheng · Xuanjing Huang · Dongsheng Li

Spiking neural networks (SNNs), inspired by the spiking behavior of biological neurons, provide a unique pathway for capturing the intricacies of temporal data. However, applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection. In this paper, we propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information. Through a series of experiments, we demonstrate that our proposed SNN-based approaches achieve comparable or superior results to traditional time-series forecasting methods on diverse benchmarks with much less energy consumption. Furthermore, we conduct detailed analysis experiments to assess the SNN's capacity to capture temporal dependencies within time-series data, offering valuable insights into its nuanced strengths and effectiveness in modeling the intricate dynamics of temporal data. Our study contributes to the expanding field of SNNs and offers a promising alternative for time-series forecasting tasks, presenting a pathway for the development of more biologically inspired and temporally aware forecasting models. Our code is available at https://github.com/microsoft/SeqSNN.


Poster
#215
Predictive Coding beyond Correlations

Tommaso Salvatori · Luca Pinchetti · Amine M'Charrak · Beren Millidge · Thomas Lukasiewicz

Biologically plausible learning algorithms offer a promising alternative to traditional deep learning techniques, especially in overcoming the limitations of backpropagation in fast and low-energy neuromorphic implementations. To this end, there has been extensive research in understanding what their capabilities are. In this work, we show how one of such algorithms, called predictive coding, is able to perform causal inference tasks. First, we show how a simple change in the inference process of predictive coding enables to compute interventions without the need to mutilate or redefine a causal graph. Then, we explore applications in cases where the graph is unknown, and has to be inferred from observational data. Empirically, we show how such findings can be used to improve the performance of predictive coding in image classification tasks, and conclude that such models are naturally able to perform causal inference tasks using a biologically plausible kind of message passing.


Poster
#216
AutoOS: Make Your OS More Powerful by Exploiting Large Language Models

Huilai Chen · Yuanbo Wen · Limin Cheng · Shouxu Kuang · Yumeng Liu · Weijia Li · Ling Li · Rui Zhang · Xinkai Song · Wei Li · Qi Guo · Yunji Chen

With the rapid development of Artificial Intelligence of Things (AIoT), customizing and optimizing operating system (OS) kernel configurations for various AIoT application scenarios is crucial for maximizing system performance. However, existing approaches falter due to the overwhelming problem complexity (i.e., over 15,000 configuration options in the Linux kernel), together with the huge evaluation costs and error-prone options that may result in OS boot-up failure, which all make it an unresolved problem to optimize the Linux kernel automatically. In this paper, we introduce AutoOS, a novel framework exploiting Large Language Models for customizing and optimizing OS kernel configurations automatically for various AIoT application scenarios.Inspired by the inherently directory-structured kernel configuration process, we first formulate our research problem as optimizing on a dynamic tree. We then propose a novel framework integrating a state machine-based traversal algorithm as the observe-prune-propose-act-correct loop, which can effectively refine the optimization space and ensure a successful OS boot-up.Experimental results show that AutoOS can automatically customize and optimize the OS kernel configurations without human effort. More importantly, AutoOS even achieves better performance by up to 25% than vendor-provided configuration.


Poster
#217
A Unified Adaptive Testing System Enabled by Hierarchical Structure Search

Junhao Yu · Yan Zhuang · Zhenya Huang · Qi Liu · Xin Li · Rui Li · Enhong Chen

Adaptive Testing System (ATS) is a promising testing mode, extensively utilized in standardized tests like the GRE. It offers personalized ability assessment by dynamically adjusting questions based on individual ability levels. Compared to traditional exams, ATS can improve the accuracy of ability estimates while simultaneously reducing the number of questions required. Despite the diverse testing formats of ATS, tailored to different adaptability requirements in various testing scenarios, there is a notable absence of a unified framework for modeling them. In this paper, we introduce a unified data-driven ATS framework that conceptualizes the various testing formats as a hierarchical test structure search problem. It can learn directly from data to solve for the optimal questions for each student, eliminating the need for manual test design. The proposed solution algorithm comes with theoretical guarantees for estimation error and convergence. Empirical results show that our framework maintains assessment accuracy while reducing question count by 20% on average and improving training stability.


Poster
#2200
On the Origins of Linear Representations in Large Language Models

Yibo Jiang · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam · Victor Veitch

An array of recent works have argued that high-level semantic concepts are encoded "linearly" in the representation space of large language models. In this work, we study the origins of such linear representations. To that end, we introduce a latent variable model to abstract and formalize the concept dynamics of the next token prediction. We use this formalism to prove that linearity arises as a consequence of the loss function and the implicit bias of gradient descent. The theory is further substantiated empirically via experiments.


Poster
#2201
Position: Why We Must Rethink Empirical Research in Machine Learning

Moritz Herrmann · F. Julian D. Lange · Katharina Eggensperger · Giuseppe Casalicchio · Marcel Wever · Matthias Feurer · David Rügamer · Eyke Hüllermeier · Anne-Laure Boulesteix · Bernd Bischl

We warn against a common but incomplete understanding of empirical research in machine learning that leads to non-replicable results, makes findings unreliable, and threatens to undermine progress in the field. To overcome this alarming situation, we call for more awareness of the plurality of ways of gaining knowledge experimentally but also of some epistemic limitations. In particular, we argue most current empirical machine learning research is fashioned as confirmatory research while it should rather be considered exploratory.


Poster
#2202
The Role of Learning Algorithms in Collective Action

Omri Ben-Dov · Jake Fawkes · Samira Samadi · Amartya Sanyal

Collective action in machine learning is the study of the control that a coordinated group can have over machine learning algorithms. While previous research has concentrated on assessing the impact of collectives against Bayes (sub-)optimal classifiers, this perspective is limited in that it does not account for the choice of learning algorithm. Since classifiers seldom behave like Bayes classifiers and are influenced by the choice of learning algorithms along with their inherent biases, in this work we initiate the study of how the choice of the learning algorithm plays a role in the success of a collective in practical settings. Specifically, we focus on distributionally robust optimization (DRO), popular for improving a worst group error, and on the ubiquitous stochastic gradient descent (SGD), due to its inductive bias for "simpler" functions. Our empirical results, supported by a theoretical foundation, show that the effective size and success of the collective are highly dependent on properties of the learning algorithm. This highlights the necessity of taking the learning algorithm into account when studying the impact of collective action in machine learning.


Spotlight Poster
#2203
Locally Estimated Global Perturbations are Better than Local Perturbations for Federated Sharpness-aware Minimization

Ziqing Fan · Shengchao Hu · Jiangchao Yao · Gang Niu · Ya Zhang · Masashi Sugiyama · Yanfeng Wang

In federated learning (FL), the multi-step update and data heterogeneity among clients often lead to a loss landscape with sharper minima, degenerating the performance of the resulted global model. Prevalent federated approaches incorporate sharpness-aware minimization (SAM) into local training to mitigate this problem. However, the local loss landscapes may not accurately reflect the flatness of global loss landscape in heterogeneous environments; as a result, minimizing local sharpness and calculating perturbations on client data might not align the efficacy of SAM in FL with centralized training. To overcome this challenge, we propose FedLESAM, a novel algorithm that locally estimates the direction of global perturbation on client side as the difference between global models received in the previous active and current rounds. Besides the improved quality, FedLESAM also speed up federated SAM-based approaches since it only performs once backpropagation in each iteration. Theoretically, we prove a slightly tighter bound than its original FedSAM by ensuring consistent perturbation. Empirically, we conduct comprehensive experiments on four federated benchmark datasets under three partition strategies to demonstrate the superior performance and efficiency of FedLESAM.


Poster
#2204
Delving into Differentially Private Transformer

Youlong Ding · Xueyang Wu · Yining meng · Yonggang Luo · Hao Wang · Pan Weike

Deep learning with differential privacy (DP) has garnered significant attention over the past years, leading to the development of numerous methods aimed at enhancing model accuracy and training efficiency. This paper delves into the problem of training Transformer models with differential privacy. Our treatment is modular: the logic is to 'reduce' the problem of training DP Transformer to the more basic problem of training DP vanilla neural nets. The latter is better understood and amenable to many model-agnostic methods. Such 'reduction' is done by first identifying the hardness unique to DP Transformer training: the attention distraction phenomenon and a lack of compatibility with existing techniques for efficient gradient clipping. To deal with these two issues, we propose the Re-Attention Mechanism and Phantom Clipping, respectively. We believe that our work not only casts new light on training DP Transformers but also promotes a modular treatment to advance research in the field of differentially private deep learning.


Poster
#2205
The Fundamental Limits of Least-Privilege Learning

Theresa Stadler · Bogdan Kulynych · Michael Gastpar · Nicolas Papernot · Carmela Troncoso

The promise of least-privilege learning – to find feature representations that are useful for a learning task but prevent inference of any sensitive information unrelated to this task – is highly appealing. However, so far this concept has only been stated informally. It thus remains an open question whether and how we can achieve this goal. In this work, we provide the first formalisation of the least-privilege principle for machine learning and characterise its feasibility. We prove that there is a fundamental trade-off between a representation's utility for a given task and its leakage beyond the intended task: it is not possible to learn representations that have high utility for the intended task but, at the same time, prevent inference of any attribute other than the task label itself. This trade-off holds regardless of the technique used to learn the feature mappings that produce these representations. We empirically validate this result for a wide range of learning techniques, model architectures, and datasets.


Poster
#2206
Trained Random Forests Completely Reveal your Dataset

Julien Ferry · Ricardo Fukasawa · Timothée Pascal · Thibaut Vidal

We introduce an optimization-based reconstruction attack capable of completely or near-completely reconstructing a dataset utilized for training a random forest. Notably, our approach relies solely on information readily available in commonly used libraries such as scikit-learn. To achieve this, we formulate the reconstruction problem as a combinatorial problem under a maximum likelihood objective. We demonstrate that this problem is NP-hard, though solvable at scale using constraint programming - an approach rooted in constraint propagation and solution-domain reduction. Through an extensive computational investigation, we demonstrate that random forests trained without bootstrap aggregation but with feature randomization are susceptible to a complete reconstruction. This holds true even with a small number of trees. Even with bootstrap aggregation, the majority of the data can also be reconstructed. These findings underscore a critical vulnerability inherent in widely adopted ensemble methods, warranting attention and mitigation. Although the potential for such reconstruction attacks has been discussed in privacy research, our study provides clear empirical evidence of their practicability.


Poster
#2207
Mean Estimation in the Add-Remove Model of Differential Privacy

Alex Kulesza · Ananda Suresh · Yuyan Wang

Differential privacy is often studied under two different models of neighboring datasets: the add-remove model and the swap model. While the swap model is frequently used in the academic literature to simplify analysis, many practical applications rely on the more conservative add-remove model, where obtaining tight results can be difficult. Here, we study the problem of one-dimensional mean estimation under the add-remove model. We propose a new algorithm and show that it is min-max optimal, achieving the best possible constant in the leading term of the mean squared error for all $\epsilon$, and that this constant is the same as the optimal algorithm under the swap model. These results show that the add-remove and swap models give nearly identical errors for mean estimation, even though the add-remove model cannot treat the size of the dataset as public information. We also demonstrate empirically that our proposed algorithm yields at least a factor of two improvement in mean squared error over algorithms frequently used in practice. One of our main technical contributions is a new hourglass mechanism, which might be of independent interest in other scenarios.


Poster
#2208
Differentially Private Bias-Term Fine-tuning of Foundation Models

Zhiqi Bu · Yu-Xiang Wang · Sheng Zha · George Karypis

We study the problem of differentially private (DP) fine-tuning of large pre-trained models — a recent privacy-preserving approach suitable for solving downstream tasks with sensitive data. Existing work has demonstrated that high accuracy is possible under strong privacy constraint, yet requires significant computational overhead or modifications to the network architecture. We propose differentially private bias-term fine-tuning (DP-BiTFiT), which matches the state-of-the-art accuracy for DP algorithms and the efficiency of the standard BiTFiT. DP-BiTFiT is model agnostic (not modifying the network architecture), parameter efficient (only training about 0.1% of the parameters), and computation efficient (almost removing the overhead caused by DP, in both the time and space complexity). On a wide range of tasks, DP-BiTFiT is 2 - 30X faster and uses 2 - 8X less memory than DP full fine-tuning, even faster than the standard full fine-tuning. This amazing efficiency enables us to conduct DP fine-tuning on language and vision tasks with long-sequence texts and high-resolution images, which were computationally difficult using existing methods.


Poster
#2209
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy

Georgios Kaissis · Stefan Kolek · Borja de Balle Pigem · Jamie Hayes · Daniel Rueckert

In differentially private (DP) machine learning, the privacy guarantees of DP mechanisms are often reported and compared on the basis of a single $(\varepsilon, \delta)$-pair. This practice overlooks that DP guarantees can vary substantially even between mechanisms sharing a given $(\varepsilon, \delta)$, and potentially introduces privacy vulnerabilities which can remain undetected. This motivates the need for robust, rigorous methods for comparing DP guarantees in such cases. Here, we introduce the $\Delta$-divergence between mechanisms which quantifies the worst-case excess privacy vulnerability of choosing one mechanism over another in terms of $(\varepsilon, \delta)$, $f$-DP and in terms of a newly presented Bayesian interpretation. Moreover, as a generalisation of the Blackwell theorem, it is endowed with strong decision-theoretic foundations. Through application examples, we show that our techniques can facilitate informed decision-making and reveal gaps in the current understanding of privacy risks, as current practices in DP-SGD often result in choosing mechanisms with high excess privacy vulnerabilities.


Spotlight Poster
#2210
PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses

Adel Javanmard · Matthew Fahrbach · Vahab Mirrokni

This work studies algorithms for learning from aggregate responses. We focus on the construction of aggregation sets (called *bags* in the literature) for event-level loss functions. We prove for linear regression and generalized linear models (GLMs) that the optimal bagging problem reduces to one-dimensional size-constrained $k$-means clustering. Further, we theoretically quantify the advantage of using curated bags over random bags. We then propose the $\texttt{PriorBoost}$ algorithm, which adaptively forms bags of samples that are increasingly homogeneous with respect to (unobserved) individual responses to improve model quality. We study label differential privacy for aggregate learning, and we also provide extensive experiments showing that $\texttt{PriorBoost}$ regularly achieves optimal model quality for event-level predictions, in stark contrast to non-adaptive algorithms.


Poster
#2211
Low-Cost High-Power Membership Inference Attacks

Sajjad Zarifzadeh · Philippe Liu · Reza Shokri

Membership inference attacks aim to detect if a particular data point was used in training a model. We design a novel statistical test to perform robust membership inference attacks (RMIA) with low computational overhead. We achieve this by a fine-grained modeling of the null hypothesis in our likelihood ratio tests, and effectively leveraging both reference models and reference population data samples. RMIA has superior test power compared with prior methods, throughout the TPR-FPR curve (even at extremely low FPR, as low as 0). Under computational constraints, where only a limited number of pre-trained reference models (as few as 1) are available, and also when we vary other elements of the attack (e.g., data distribution), our method performs exceptionally well, unlike prior attacks that approach random guessing. RMIA lays the groundwork for practical yet accurate data privacy risk assessment in machine learning.


Poster
#2212
Differentially Private Sum-Product Networks

Xenia Heilmann · Mattia Cerrato · Ernst Althaus

Differentially private ML approaches seek to learn models which may be publicly released while guaranteeing that the input data is kept private. One issue with this construction is that further model releases based on the same training data (e.g. for a new task) incur a further privacy budget cost. Privacy-preserving synthetic data generation is one possible solution to this conundrum. However, models trained on synthetic private data struggle to approach the performance of private, ad-hoc models. In this paper, we present a novel method based on sum-product networks that is able to perform both privacy-preserving classification and privacy-preserving data generation with a single model. To the best of our knowledge, ours is the first approach that provides both discriminative and generative capabilities to differentially private ML. We show that our approach outperforms the state of the art in terms of stability (i.e. number of training runs required for convergence) and utility of the generated data.


Poster
#2213
PID: Prompt-Independent Data Protection Against Latent Diffusion Models

Ang Li · Yichuan Mo · Mingjie Li · Yisen Wang

The few-shot fine-tuning of Latent Diffusion Models (LDMs) has enabled them to grasp new concepts from a limited number of images. However, given the vast amount of personal images accessible online, this capability raises critical concerns about civil privacy. While several previous defense methods have been developed to prevent such misuse of LDMs, they typically assume that the textual prompts used by data protectors exactly match those employed by data exploiters. In this paper, we first empirically demonstrate that breaking this assumption, i.e., in cases where discrepancies exist between the textual conditions used by protectors and exploiters, could substantially reduces the effectiveness of these defenses. Furthermore, considering the visual encoder's independence from textual prompts, we delve into the visual encoder and thoroughly investigate how manipulating the visual encoder affects the few-shot fine-tuning process of LDMs. Drawing on these insights, we propose a simple yet effective method called Prompt-Independent Defense (PID) to safeguard privacy against LDMs. We show that PID can act as a strong privacy shield on its own while requiring significantly less computational power. We believe our studies, along with the comprehensive understanding and new defense method, provide a notable advance toward reliable data protection against LDMs.


Poster
#2214
PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR

Kartik Patwari · Chen-Nee Chuah · Lingjuan Lyu · Vivek Sharma

Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks information present in the entire image post-anonymization that can compromise privacy, such as specific locations, objects/items, or unique attributes. Acknowledging the pivotal role of human judgment in anonymity, our study conducts a thorough analysis of perceptual anonymization, exploring its spectral nature and its critical implications for image privacy assessment, particularly in light of regulations such as the General Data Protection Regulation (GDPR). To facilitate this, we curated a dataset specifically tailored for assessing anonymized images. We introduce a learning-based metric, PerceptAnon, which is tuned to align with the human Perception of Anonymity. PerceptAnon evaluates both original-anonymized image pairs and solely anonymized images. Trained using human annotations, our metric encompasses both anonymized subjects and their contextual backgrounds, thus providing a comprehensive evaluation of privacy vulnerabilities. We envision this work as a milestone for understanding and assessing image anonymization, and establishing a foundation for future research. The codes and dataset are available in https://github.com/SonyResearch/gdpr_perceptanon.


Poster
#2215
Conformal Prediction Sets Improve Human Decision Making

Jesse Cresswell · yi sui · Bhargava Kumar · Noël Vouitsis

In response to everyday queries, humans explicitly signal uncertainty and offer alternative answers when they are unsure. Machine learning models that output calibrated prediction sets through conformal prediction mimic this human behaviour; larger sets signal greater uncertainty while providing alternatives. In this work, we study the usefulness of conformal prediction sets as an aid for human decision making by conducting a pre-registered randomized controlled trial with conformal prediction sets provided to human subjects. With statistical significance, we find that when humans are given conformal prediction sets their accuracy on tasks improves compared to fixed-size prediction sets with the same coverage guarantee. The results show that quantifying model uncertainty with conformal prediction is helpful for human-in-the-loop decision making and human-AI teams.


Poster
#2216
Tilt and Average : Geometric Adjustment of the Last Layer for Recalibration

Gyusang Cho · Chan-Hyun Youn

After the revelation that neural networks tend to produce overconfident predictions, the problem of calibration, which aims to align confidence with accuracy to enhance the reliability of predictions, has gained significant importance. Several solutions based on calibration maps have been proposed to address the problem of recalibrating a trained classifier using additional datasets. In this paper, we offer an algorithm that transforms the weights of the last layer of the classifier, distinct from the calibration-map-based approach. We concentrate on the geometry of the final linear layer, specifically its angular aspect, and adjust the weights of the corresponding layer. We name the method Tilt and Average, and validate the calibration effect empirically and theoretically. Through this, we demonstrate that our approach, in addition to the existing calibration-map-based techniques, can yield improved calibration performance.


Poster
#2217
How do Large Language Models Navigate Conflicts between Honesty and Helpfulness?

Ryan Liu · Theodore R Sumers · Ishita Dasgupta · Thomas Griffiths

In day-to-day communication, people often approximate the truth --- for example, rounding the time or omitting details --- in order to be maximally helpful to the listener. How do large language models (LLMs) handle such nuanced trade-offs? To address this question, we use psychological models and experiments designed to characterize human behavior to analyze LLMs. We test a range of LLMs and explore how optimization for human preferences or inference-time reasoning affects these trade-offs. We find that reinforcement learning from human feedback improves both honesty and helpfulness, while chain-of-thought prompting skews LLMs towards helpfulness over honesty. Finally, GPT-4 Turbo demonstrates human-like response patterns including sensitivity to the conversational framing and listener's decision context. Our findings reveal the conversational values internalized by LLMs and suggest that even these abstract values can, to a degree, be steered by zero-shot prompting.


Poster
#2300
Extracting Training Data From Document-Based VQA Models

Francesco Pinto · Nathalie Rauschmayr · Florian Tramer · Phil Torr · Federico Tombari

Vision-Language Models (VLMs) have made remarkable progress in document-based Visual Question Answering (i.e., responding to queries about the contents of an input document provided as an image). In this work, we show these models can memorize responses for training samples and regurgitate them even when the relevant visual information has been removed. This includes Personal Identifiable Information (PII) repeated once in the training set, indicating these models could divulge memorised sensitive information and therefore pose a privacy risk. We quantitatively measure the extractability of information in controlled experiments and differentiate between cases where it arises from generalization capabilities or from memorization. We further investigate the factors that influence memorization across multiple state-of-the-art models and propose an effective heuristic countermeasure that empirically prevents the extractability of PII.


Poster
#2301
TERD: A Unified Framework for Safeguarding Diffusion Models Against Backdoors

Yichuan Mo · Hui Huang · Mingjie Li · Ang Li · Yisen Wang

Diffusion models have achieved notable success in image generation, but they remain highly vulnerable to backdoor attacks, which compromise their integrity by producing specific undesirable outputs when presented with a pre-defined trigger. In this paper, we investigate how to protect diffusion models from this dangerous threat. Specifically, we propose TERD, a backdoor defense framework that builds unified modeling for current attacks, which enables us to derive an accessible reversed loss. A trigger reversion strategy is further employed: an initial approximation of the trigger through noise sampled from a prior distribution, followed by refinement through differential multi-step samplers. Additionally, with the reversed trigger, we propose backdoor detection from the noise space, introducing the first backdoor input detection approach for diffusion models and a novel model detection algorithm that calculates the KL divergence between reversed and benign distributions. Extensive evaluations demonstrate that TERD secures a 100% True Positive Rate (TPR) and True Negative Rate (TNR) across datasets of varying resolutions. TERD also demonstrates nice adaptability to other Stochastic Differential Equation (SDE)-based models. Our code is available at https://github.com/PKU-ML/TERD.


Poster
#2302
Intersecting-Boundary-Sensitive Fingerprinting for Tampering Detection of DNN Models

Xiaofan Bai · Chaoxiang He · Xiaojing Ma · Bin Zhu · Hai Jin

Cloud-based AI services offer numerous benefits but also introduce vulnerabilities, allowing for tampering with deployed DNN models, ranging from injecting malicious behaviors to reducing computing resources. Fingerprint samples are generated to query models to detect such tampering. In this paper, we present Intersecting-Boundary-Sensitive Fingerprinting (IBSF), a novel method for black-box integrity verification of DNN models using only top-1 labels. Recognizing that tampering with a model alters its decision boundary, IBSF crafts fingerprint samples from normal samples by maximizing the partial Shannon entropy of a selected subset of categories to position the fingerprint samples near decision boundaries where the categories in the subset intersect. These fingerprint samples are almost indistinguishable from their source samples. We theoretically establish and confirm experimentally that these fingerprint samples' expected sensitivity to tampering increases with the cardinality of the subset. Extensive evaluation demonstrates that IBSF surpasses existing state-of-the-art fingerprinting methods, particularly with larger subset cardinality, establishing its state-of-the-art performance in black-box tampering detection using only top-1 labels. The IBSF code is available at https://github.com/CGCL-codes/IBSF.


Poster
#2303
Score-Based Causal Discovery of Latent Variable Causal Models

Ignavier Ng · Xinshuai Dong · Haoyue Dai · Biwei Huang · Peter Spirtes · Kun Zhang

Identifying latent variables and the causal structure involving them is essential across various scientific fields. While many existing works fall under the category of constraint-based methods (with e.g. conditional independence or rank deficiency tests), they may face empirical challenges such as testing-order dependency, error propagation, and choosing an appropriate significance level. These issues can potentially be mitigated by properly designed score-based methods, such as Greedy Equivalence Search (GES) (Chickering, 2002) in the specific setting without latent variables. Yet, formulating score-based methods with latent variables is highly challenging. In this work, we develop score-based methods that are capable of identifying causal structures containing causally-related latent variables with identifiability guarantees. Specifically, we show that a properly formulated scoring function can achieve score equivalence and consistency for structure learning of latent variable causal models. We further provide a characterization of the degrees of freedom for the marginal over the observed variables under multiple structural assumptions considered in the literature, and accordingly develop both exact and continuous score-based methods. This offers a unified view of several existing constraint-based methods with different structural assumptions. Experimental results validate the effectiveness of the proposed methods.


Poster
#2304
AI Alignment with Changing and Influenceable Reward Functions

Micah Carroll · Davis Foote · Anand Siththaranjan · Stuart Russell · Anca Dragan

Existing AI alignment approaches assume that preferences are static, which is unrealistic: our preferences change, and may even be influenced by our interactions with AI systems themselves. To clarify the consequences of incorrectly assuming static preferences, we introduce Dynamic Reward Markov Decision Processes (DR-MDPs), which explicitly model preference changes and the AI's influence on them. We show that despite its convenience, the static-preference assumption may undermine the soundness of existing alignment techniques, leading them to implicitly reward AI systems for influencing user preferences in ways users may not truly want. We then explore potential solutions. First, we offer a unifying perspective on how an agent's optimization horizon may partially help reduce undesirable AI influence. Then, we formalize different notions of AI alignment that account for preference change from the outset. Comparing the strengths and limitations of 8 such notions of alignment, we find that they all either err towards causing undesirable AI influence, or are overly risk-averse, suggesting that a straightforward solution to the problems of changing preferences may not exist. As there is no avoiding grappling with changing preferences in real-world settings, this makes it all the more important to handle these issues with care, balancing risks and capabilities. We hope our work can provide conceptual clarity and constitute a first step towards AI alignment practices which explicitly account for (and contend with) the changing and influenceable nature of human preferences.


Poster
#2305
Progressive Inference: Explaining Decoder-Only Sequence Classification Models Using Intermediate Predictions

Sanjay Kariyappa · Freddy Lecue · Saumitra Mishra · Christopher Pond · Daniele Magazzeni · Manuela Veloso

This paper proposes Progressive inference--a framework to explain the predictions of decoder-only transformer models trained to perform sequence classification tasks. Our work is based on the insight that the classification head of a decoder-only model can be used to make intermediate predictions by evaluating them at different points in the input sequence. Due to the masked attention mechanism used in decoder-only models, these intermediate predictions only depend on the tokens seen before the inference point, allowing us to obtain the model's prediction on a masked input sub-sequence, with negligible computational overheads. We develop two methods to provide sub-sequence level attributions using this core insight. First, we propose Single Pass-Progressive Inference (SP-PI) to compute attributions by simply taking the difference between intermediate predictions. Second, we exploit a connection with Kernel SHAP to develop Multi Pass-Progressive Inference (MP-PI); this uses intermediate predictions from multiple masked versions of the input to compute higher-quality attributions that approximate SHAP values. We perform studies on several text classification datasets to demonstrate that our proposal provides better explanations compared to prior work, both in the single-pass and multi-pass settings.


Poster
#2306
Deletion-Anticipative Data Selection with a Limited Budget

Rachael Hwee Ling Sim · Jue Fan · Xiao Tian · Patrick Jaillet · Bryan Kian Hsiang Low

Learners with a limited budget can use supervised data subset selection and active learning techniques to select a smaller training set and reduce the cost of acquiring data and training _machine learning_ (ML) models. However, the resulting high model performance, measured by a data utility function, may not be preserved when some data owners, enabled by the GDPR's right to erasure, request their data to be deleted from the ML model. This raises an important question for learners who are temporarily unable or unwilling to acquire data again: _During the initial data acquisition of a training set of size $k$, can we proactively maximize the data utility after future unknown deletions?_ We propose that the learner anticipates/estimates the probability that (i) each data owner in the feasible set will independently delete its data or (ii) a number of deletions occur out of $k$, and justify our proposal with concrete real-world use cases. Then, instead of directly maximizing the data utility function, the learner can maximize the expected or risk-averse post-deletion utility based on the anticipated probabilities. We further propose how to construct these _deletion-anticipative data selection_ ($\texttt{DADS}$) maximization objectives to preserve monotone submodularity and near-optimality of greedy solutions, how to optimize the objectives and empirically evaluate $\texttt{DADS}$' performance on real-world datasets.


Poster
#2307
Stability and Multigroup Fairness in Ranking with Uncertain Predictions

Siddartha Devic · Aleksandra Korolova · David Kempe · Vatsal Sharan

Rankings are ubiquitous across many applications, from search engines to hiring committees. In practice, many rankings are derived from the output of predictors. However, when predictors trained for classification tasks have intrinsic uncertainty, it is not obvious how this uncertainty should be represented in the derived rankings. Our work considers ranking functions: maps from individual predictions for a classification task to distributions over rankings. We focus on two aspects of ranking functions: stability to perturbations in predictions and fairness towards both individuals and subgroups. Not only is stability an important requirement for its own sake, but --- as we show --- it composes harmoniously with individual fairness in the sense of Dwork et al. (2012). While deterministic ranking functions cannot be stable aside from trivial scenarios, we show that the recently proposed uncertainty aware (UA) ranking functions of Singh et al. (2021) are stable. Our main result is that UA rankings also achieve group fairness through successful composition with multiaccurate or multicalibrated predictors. Our work demonstrates that UA rankings naturally interpolate between group and individual level fairness guarantees, while simultaneously satisfying stability guarantees important whenever machine-learned predictions are used.


Poster
#2308
Best Paper
Stealing part of a production language model

Nicholas Carlini · Daniel Paleka · Krishnamurthy Dvijotham · Thomas Steinke · Jonathan Hayase · A. Feder Cooper · Katherine Lee · Matthew Jagielski · Milad Nasr · Arthur Conmy · Eric Wallace · David Rolnick · Florian Tramer

We introduce the first model-stealing attack that extracts precise, nontrivial information from black-box production language models like OpenAI's ChatGPT or Google's PaLM-2. Specifically, our attack recovers the embedding projection layer (up to symmetries) of a transformer model, given typical API access. For under $20 USD, our attack extracts the entire projection matrix of OpenAI's Ada and Babbage language models. We thereby confirm, for the first time, that these black-box models have a hidden dimension of 1024 and 2048, respectively. We also recover the exact hidden dimension size of the GPT-3.5-turbo model, and estimate it would cost under \\$2,000 in queries to recover the entire projection matrix. We conclude with potential defenses and mitigations, and discuss the implications of possible future work that could extend our attack.


Spotlight Poster
#2309
A Theoretical Analysis of Backdoor Poisoning Attacks in Convolutional Neural Networks

Boqi Li · Weiwei Liu

The rising threat of backdoor poisoning attacks (BPAs) on Deep Neural Networks (DNNs) has become a significant concern in recent years. In such attacks, the adversaries strategically target a specific class and generate a poisoned training set. The neural network (NN), well-trained on the poisoned training set, is able to predict any input with the trigger pattern as the targeted label, while maintaining accurate outputs for clean inputs. However, why the BPAs work remains less explored. To fill this gap, we employ a dirty-label attack and conduct a detailed analysis of BPAs in a two-layer convolutional neural network. We provide theoretical insights and results on the effectiveness of BPAs. Our experimental results on two real-world datasets validate our theoretical findings.


Poster
#2310
Robust Universal Adversarial Perturbations

Changming Xu · Gagandeep Singh

Universal Adversarial Perturbations (UAPs) are imperceptible, image-agnostic vectors that cause deep neural networks (DNNs) to misclassify inputs with high probability. In practical attack scenarios, adversarial perturbations may undergo transformations such as changes in pixel intensity, scaling, etc. before being added to DNN inputs. Existing methods do not create UAPs robust to these real-world transformations, thereby limiting their applicability in practical attack scenarios. In this work, we introduce and formulate UAPs robust against real-world transformations. We build an iterative algorithm using probabilistic robustness bounds and construct UAPs robust to transformations generated by composing arbitrary sub-differentiable transformation functions. We perform an extensive evaluation on the popular CIFAR-10 and ILSVRC 2012 datasets measuring our UAPs' robustness under a wide range common, real-world transformations such as rotation, contrast changes, etc. We further show that by using a set of primitive transformations our method generalizes well to unseen transformations such as fog, JPEG compression, etc. Our results show that our method can generate UAPs up to 23% more robust than state-of-the-art baselines.


Poster
#2311
Structure Your Data: Towards Semantic Graph Counterfactuals

Angeliki Dimitriou · Maria Lymperaiou · Giorgos Filandrianos · Konstantinos Thomas · Giorgos Stamou

Counterfactual explanations (CEs) based on concepts are explanations that consider alternative scenarios to understand which high-level semantic features contributed to particular model predictions. In this work, we propose CEs based on the semantic graphs accompanying input data to achieve more descriptive, accurate, and human-aligned explanations. Building upon state-of-the-art (SotA) conceptual attempts, we adopt a model-agnostic edit-based approach and introduce leveraging GNNs for efficient Graph Edit Distance (GED) computation. With a focus on the visual domain, we represent images as scene graphs and obtain their GNN embeddings to bypass solving the NP-hard graph similarity problem for all input pairs, an integral part of CE computation process. We apply our method to benchmark and real-world datasets with varying difficulty and availability of semantic annotations. Testing on diverse classifiers, we find that our CEs outperform previous SotA explanation models based on semantics, including both white and black-box as well as conceptual and pixel-level approaches. Their superiority is proven quantitatively and qualitatively, as validated by human subjects, highlighting the significance of leveraging semantic edges in the presence of intricate relationships. Our model-agnostic graph-based approach is widely applicable and easily extensible, producing actionable explanations across different contexts. The code is available at https://github.com/aggeliki-dimitriou/SGCE.


Poster
#2312
Compact Optimality Verification for Optimization Proxies

Wenbo Chen · Haoruo Zhao · Mathieu Tanneau · Pascal Van Hentenryck

Recent years have witnessed increasing interest in optimization proxies, i.e., machine learning models that approximate the input-output mapping of parametric optimization problems and return near-optimal feasible solutions. Following recent work by (Nellikkath & Chatzivasileiadis, 2021), this paper reconsiders the optimality verification problem for optimization proxies, i.e., the determination of the worst-case optimality gap over the instance distribution. The paper proposes a compact formulation for optimality verification and a gradient-based primal heuristic that brings significant computational benefits to the original formulation. The compact formulation is also more general and applies to non-convex optimization problems. The benefits of the compact formulation are demonstrated on large-scale DC Optimal Power Flow and knapsack problems.


Poster
#2313
Robust Yet Efficient Conformal Prediction Sets

Soroush H. Zargarbashi · Mohammad Sadegh Akhondzadeh · Aleksandar Bojchevski

Conformal prediction (CP) can convert any model's output into prediction sets guaranteed to include the true label with any user-specified probability. However, same as the model itself, CP is vulnerable to adversarial test examples (evasion) and perturbed calibration data (poisoning). We derive provably robust sets by bounding the worst-case change in conformity scores. Our tighter bounds lead to more efficient sets. We cover both continuous and discrete (sparse) data and our guarantees work both for evasion and poisoning attacks (on both features and labels).


Poster
#2314
Agent Smith: A Single Image Can Jailbreak One Million Multimodal LLM Agents Exponentially Fast

Xiangming Gu · Xiaosen Zheng · Tianyu Pang · Chao Du · Qian Liu · Ye Wang · Jing Jiang · Min Lin

A multimodal large language model (MLLM) agent can receive instructions, capture images, retrieve histories from memory, and decide which tools to use. Nonetheless, red-teaming efforts have revealed that adversarial images/prompts can jailbreak an MLLM and cause unaligned behaviors. In this work, we report an even more severe safety issue in multi-agent environments, referred to as infectious jailbreak. It entails the adversary simply jailbreaking a single agent, and without any further intervention from the adversary, (almost) all agents will become infected exponentially fast and exhibit harmful behaviors. To validate the feasibility of infectious jailbreak, we simulate multi-agent environments containing up to one million LLaVA-1.5 agents, and employ randomized pair-wise chat as a proof-of-concept instantiation for multi-agent interaction. Our results show that feeding an (infectious) adversarial image into the memory of any randomly chosen agent is sufficient to achieve infectious jailbreak. Finally, we derive a simple principle for determining whether a defense mechanism can provably restrain the spread of infectious jailbreak, but how to design a practical defense that meets this principle remains an open question to investigate.


Spotlight Poster
#2315
DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation

Yinjun Wu · Mayank Keoliya · Kan Chen · Neelay Velingker · Ziyang Li · Emily Getzen · Qi Long · Mayur Naik · Ravi Parikh · Eric Wong

Designing faithful yet accurate AI models is challenging, particularly in the field of individual treatment effect estimation (ITE). ITE prediction models deployed in critical settings such as healthcare should ideally be (i) accurate, and (ii) provide faithful explanations. However, current solutions are inadequate: state-of-the-art black-box models do not supply explanations, post-hoc explainers for black-box models lack faithfulness guarantees, and self-interpretable models greatly compromise accuracy. To address these issues, we propose DISCRET, a self-interpretable ITE framework that synthesizes faithful, rule-based explanations for each sample. A key insight behind DISCRET is that explanations can serve dually as database queries to identify similar subgroups of samples. We provide a novel RL algorithm to efficiently synthesize these explanations from a large search space. We evaluate DISCRET on diverse tasks involving tabular, image, and text data. DISCRET outperforms the best self-interpretable models and has accuracy comparable to the best black-box models while providing faithful explanations. DISCRET is available at https://github.com/wuyinjun-1993/DISCRET-ICML2024.


Poster
#2316
Augmenting Decision with Hypothesis in Reinforcement Learning

Nguyen Minh Quang · Hady Lauw

Value-based reinforcement learning is the current State-Of-The-Art due to high sampling efficiency. However, our study shows it suffers from low exploitation in early training period and bias sensitiveness. To address these issues, we propose to augment the decision-making process with hypothesis, a weak form of environment description. Our approach relies on prompting the learning agent with accurate hypotheses, and designing a ready-to-adapt policy through incremental learning. We propose the ALH algorithm, showing detailed analyses on a typical learning scheme and a diverse set of Mujoco benchmarks. Our algorithm produces a significant improvement over value-based learning algorithms and other strong baselines. Our code is available at Github URL.


Poster
#2317
Fair Federated Learning via the Proportional Veto Core

Bhaskar Ray Chaudhury · Aniket Murhekar · Zhuowen Yuan · Bo Li · Ruta Mehta · Ariel Procaccia

Previous work on fairness in federated learning introduced the notion of core stability, which provides utility-based fairness guarantees to any subset of participating agents. However, these guarantees require strong assumptions on agent utilities that render them impractical. To address this shortcoming, we measure the quality of output models in terms of their ordinal rank instead of their cardinal utility, and use this insight to adapt the classical notion of proportional veto core (PVC) from social choice theory to the federated learning setting. We prove that models that are PVC-stable exist in very general learning paradigms, even allowing non-convex model sets, as well as non-convex and non-concave loss functions. We also design Rank-Core-Fed, a distributed federated learning algorithm, to train a PVC-stable model. Finally, we demonstrate that Rank-Core-Fed outperforms baselines in terms of fairness on different datasets.


Poster
#2400
TimeX++: Learning Time-Series Explanations with Information Bottleneck

Zichuan Liu · Tianchun Wang · Jimeng Shi · Xu Zheng · Zhuomin Chen · Lei Song · Wenqian Dong · Jayantha Obeysekera · Farhad Shirani · Dongsheng Luo

Explaining deep learning models operating on time series data is crucial in various applications of interest which require interpretable and transparent insights from time series signals. In this work, we investigate this problem from an information theoretic perspective and show that most existing measures of explainability may suffer from trivial solutions and distributional shift issues. To address these issues, we introduce a simple yet practical objective function for time series explainable learning. The design of the objective function builds upon the principle of information bottleneck (IB), and modifies the IB objective function to avoid trivial solutions and distributional shift issues. We further present TimeX++, a novel explanation framework that leverages a parametric network to produce explanation-embedded instances that are both in-distributed and label-preserving. We evaluate TimeX++ on both synthetic and real-world datasets comparing its performance against leading baselines, and validate its practical efficacy through case studies in a real-world environmental application. Quantitative and qualitative evaluations show that TimeX++ outperforms baselines across all datasets, demonstrating a substantial improvement in explanation quality for time series data. The source code is available at https://github.com/zichuan-liu/TimeXplusplus.


Poster
#2401
Performative Prediction with Bandit Feedback: Learning through Reparameterization

Yatong Chen · Wei Tang · Chien-Ju Ho · Yang Liu

Performative prediction, as introduced by Perdomo et al., is a framework for studying social prediction in which the data distribution itself changes in response to the deployment of a model. Existing work in this field usually hinges on three assumptions that are easily violated in practice: that the performative risk is convex over the deployed model, that the mapping from the model to the data distribution is known to the model designer in advance, and the first-order information of the performative risk is available. In this paper, we initiate the study of performative prediction problems that do not require these assumptions. Specifically, we develop a parameterization framework that parametrizes the performative prediction objective as a function of the induced data distribution. We also develop a two-level zeroth-order optimization procedure, where the first level performs iterative optimization on the distribution parameter space, and the second level learns the model that induced a particular target distribution parameter at each iteration. Under mild conditions, this reparameterization allows us to transform the non-convex objective into a convex one and achieve provable regret guarantees. In particular, we provide a regret bound that is sublinear in the total number of performative samples taken and is only polynomial in the dimension of the model parameter.


Poster
#2402
SignSGD with Federated Defense: Harnessing Adversarial Attacks through Gradient Sign Decoding

Chanho Park · Namyoon Lee

Distributed learning is an effective approach to accelerate model training by using parallel computing power of multiple workers. However, substantial communication delays arise between workers and a parameter server due to the massive costs associated with communicating gradients. SignSGD with majority voting (signSGD-MV) is a simple yet effective optimizer that reduces communication costs through sign quantization, but its convergence rate significantly decreases when adversarial workers arbitrarily manipulate datasets or local gradient updates. In this paper, we consider a distributed learning problem where the workforce comprises a mixture of honest and adversarial workers. In this setting, we show that the convergence rate can remain invariant as long as the number of honest workers providing trustworthy local updates to the parameter server exceeds the number of adversarial workers. The key idea behind this counter-intuitive result is our novel aggregation method, signSGD with federated defense (signSGD-FD). Unlike traditional approaches, signSGD-FD utilizes the gradient information sent by adversarial workers with appropriate weights, obtained through gradient sign decoding. Experimental results demonstrate that signSGD-FD achieves superior convergence rates compared to traditional algorithms in various adversarial attack scenarios.


Poster
#2403
Hidden Traveling Waves bind Working Memory Variables in Recurrent Neural Networks

Arjun Karuvally · Terrence Sejnowski · Hava Siegelmann

Traveling waves are a fundamental phenomenon in the brain, playing a crucial role in short-term information storage. In this study, we leverage the concept of traveling wave dynamics within a neural lattice to formulate a theoretical model of neural working memory in Recurrent Neural Networks (RNNs), study its properties, and its real world implications in AI. The proposed model diverges from traditional approaches, which assume information storage in static, register-like locations updated by interference. Instead, the model stores data as waves that is updated by the wave's boundary conditions. We rigorously examine the model's capabilities in representing and learning state histories, which are vital for learning history-dependent dynamical systems. The findings reveal that the model reliably stores external information and enhances the learning process by addressing the diminishing gradient problem of RNNs. To understand the model's real-world applicability, we explore two cases: linear boundary condition and non-linear, self-attention-driven boundary condition. The experiments reveal that the linear scenario is effectively learned by RNNs through backpropagation when modeling history-dependent dynamical systems. Conversely, the non-linear scenario parallels an attention-only transformer. Collectively, our findings suggest the broader relevance of traveling waves in AI and its potential in advancing neural network architectures.


Poster
#2404
Dissecting Multimodality in VideoQA Transformer Models by Impairing Modality Fusion

Ishaan Rawal · Alexander Matyasko · Shantanu Jaiswal · Basura Fernando · Cheston Tan

While VideoQA Transformer models demonstrate competitive performance on standard benchmarks, the reasons behind their success are not fully understood. Do these models capture the rich multimodal structures and dynamics from video and text jointly? Or are they achieving high scores by exploiting biases and spurious features? Hence, to provide insights, we design QUAG (QUadrant AveraGe), a lightweight and non-parametric probe, to conduct dataset-model combined representation analysis by impairing modality fusion. We find that the models achieve high performance on many datasets without leveraging multimodal representations. To validate QUAG further, we design QUAG-attention, a less-expressive replacement of self-attention with restricted token interactions. Models with QUAG-attention achieve similar performance with significantly fewer multiplication operations without any finetuning. Our findings raise doubts about the current models' abilities to learn highly-coupled multimodal representations. Hence, we design the CLAVI (Complements in LAnguage and VIdeo) dataset, a stress-test dataset curated by augmenting real-world videos to have high modality coupling. Consistent with the findings of QUAG, we find that most of the models achieve near-trivial performance on CLAVI. This reasserts the limitations of current models for learning highly-coupled multimodal representations, that is not evaluated by the current datasets.


Poster
#2405
Interpretability Illusions in the Generalization of Simplified Models

Dan Friedman · Andrew Lampinen · Lucas Dixon · Danqi Chen · Asma Ghandeharioun

A common method to study deep learning systems is to use simplified model representations—for example, using singular value decomposition to visualize the model’s hidden states in a lower dimensional space. This approach assumes that the results of these simplifications are faithful to the original model. Here, we illustrate an important caveat to this assumption: even if the simplified representations can accurately approximate the full model on the training set, they may fail to accurately capture the model’s behavior out of distribution. We illustrate this by training Transformer models on controlled datasets with systematic generalization splits, including the Dyck balanced-parenthesis languages and a code completion task. We simplify these models using tools like dimensionality reduction and clustering, and then explicitly test how these simplified proxies match the behavior of the original model. We find consistent generalization gaps: cases in which the simplified proxies are more faithful to the original model on the in-distribution evaluations and less faithful on various tests of systematic generalization. This includes cases where the original model generalizes systematically but the simplified proxies fail, and cases where the simplified proxies generalize better. Together, our results raise questions about the extent to which mechanistic interpretations derived using tools like SVD can reliably predict what a model will do in novel situations.


Poster
#2406
On the Tractability of SHAP Explanations under Markovian Distributions

Reda Marzouk · De la Higuera

Thanks to its solid theoretical foundation, the SHAP framework is arguably one the most widely utilized frameworks for local explainability of ML models. Despite its popularity, its exact computation is known to be very challenging, proven to be NP-Hard in various configurations. Recent works have unveiled positive complexity results regarding the computation of the SHAP score for specific model families, encompassing decision trees, random forests, and some classes of boolean circuits. Yet, all these positive results hinge on the assumption of feature independence, often simplistic in real-world scenarios. In this article, we investigate the computational complexity of the SHAP score by relaxing this assumption and introducing a Markovian perspective. We show that, under the Markovian assumption, computing the SHAP score for the class of Weighted automata, Disjoint DNFs and Decision Trees can be performed in polynomial time, offering a first positive complexity result for the problem of SHAP score computation that transcends the limitations of the feature independence assumption.


Poster
#2407
A Multimodal Automated Interpretability Agent

Tamar Rott Shaham · Sarah Schwettmann · Franklin Wang · Achyuta Rajaram · Evan Hernandez · Jacob Andreas · Antonio Torralba

This paper describes MAIA, a Multimodal Automated Interpretability Agent. MAIA is a system that uses neural models to automate neural model understanding tasks like feature interpretation and failure mode discovery. It equips a pre-trained vision-language model with a set of tools that support iterative experimentation on subcomponents of other models to explain their behavior. These include tools commonly used by human interpretability researchers: for synthesizing and editing inputs, computing maximally activating exemplars from real-world datasets, and summarizing and describing experimental results. Interpretability experiments proposed by MAIA compose these tools to describe and explain system behavior. We evaluate applications of MAIA to computer vision models. We first characterize MAIA’s ability to describe (neuron-level) features in learned representations of images. Across several trained models and a novel dataset of synthetic vision neurons with paired ground-truth descriptions, MAIA produces descriptions comparable to those generated by expert human experimenters. We then show that MAIA can aid in two additional interpretability tasks: reducing sensitivity to spurious features, and automatically identifying inputs likely to be mis-classified.


Poster
#2408
Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution

Eslam Zaher · Maciej Trzaskowski · Quan Nguyen · Fred Roosta

In this paper, we dive into the reliability concerns of Integrated Gradients (IG), a prevalent feature attribution method for black-box deep learning models. We particularly address two predominant challenges associated with IG: the generation of noisy feature visualizations for vision models and the vulnerability to adversarial attributional attacks. Our approach involves an adaptation of path-based feature attribution, aligning the path of attribution more closely to the intrinsic geometry of the data manifold. Our experiments utilise deep generative models applied to several real-world image datasets. They demonstrate that IG along the geodesics conforms to the curved geometry of the Riemannian data manifold, generating more perceptually intuitive explanations and, subsequently, substantially increasing robustness to targeted attributional attacks.


Poster
#2409
MD tree: a model-diagnostic tree grown on loss landscape

Yefan Zhou · Jianlong Chen · Qinxue Cao · Konstantin Schürholt · Yaoqing Yang

This paper considers ''model diagnosis'', which we formulate as a classification problem. Given a pre-trained neural network (NN), the goal is to predict the source of failure from a set of failure modes (such as a wrong hyperparameter, inadequate model size, and insufficient data) without knowing the training configuration of the pre-trained NN. The conventional diagnosis approach uses training and validation errors to determine whether the model is underfitting or overfitting. However, we show that rich information about NN performance is encoded in the optimization loss landscape, which provides more actionable insights than validation-based measurements. Therefore, we propose a diagnosis method called MD tree based on loss landscape metrics and experimentally demonstrate its advantage over classical validation-based approaches. We verify the effectiveness of MD tree in multiple practical scenarios: (1) use several models trained on one dataset to diagnose a model trained on another dataset, essentially a few-shot dataset transfer problem; (2) use small models (or models trained with small data) to diagnose big models (or models trained with big data), essentially a scale transfer problem. In a dataset transfer task, MD tree achieves an accuracy of 87.7%, outperforming validation-based approaches by 14.88%. Our code is available at https://github.com/YefanZhou/ModelDiagnosis.


Spotlight Poster
#2410
Local vs. Global Interpretability: A Computational Complexity Perspective

Shahaf Bassan · Guy Amir · Guy Katz

The local and global interpretability of various ML models has been studied extensively in recent years. However, despite significant progress in the field, many known results remain informal or lack sufficient mathematical rigor. We propose a framework for bridging this gap, by using computational complexity theory to assess local and global perspectives of interpreting ML models. We begin by proposing proofs for two novel insights that are essential for our analysis: (1) a duality between local and global forms of explanations; and (2) the inherent uniqueness of certain global explanation forms. We then use these insights to evaluate the complexity of computing explanations, across three model types representing the extremes of the interpretability spectrum: (1) linear models; (2) decision trees; and (3) neural networks. Our findings offer insights into both the local and global interpretability of these models. For instance, under standard complexity assumptions such as P != NP, we prove that selecting global sufficient subsets in linear models is computationally harder than selecting local subsets. Interestingly, with neural networks and decision trees, the opposite is true: it is harder to carry out this task locally than globally. We believe that our findings demonstrate how examining explainability through a computational complexity lens can help us develop a more rigorous grasp of the inherent interpretability of ML models.


Poster
#2411
Attention Meets Post-hoc Interpretability: A Mathematical Perspective

Gianluigi Lopardo · Frederic Precioso · Damien Garreau

Attention-based architectures, in particular transformers, are at the heart of a technological revolution. Interestingly, in addition to helping obtain state-of-the-art results on a wide range of applications, the attention mechanism intrinsically provides meaningful insights on the internal behavior of the model. Can these insights be used as explanations? Debate rages on. In this paper, we mathematically study a simple attention-based architecture and pinpoint the differences between post-hoc and attention-based explanations. We show that they provide quite different results, and that, despite their limitations, post-hoc methods are capable of capturing more useful insights than merely examining the attention weights.


Poster
#2412
Remembering to Be Fair: Non-Markovian Fairness in Sequential Decision Making

Parand A. Alamdari · Toryn Q. Klassen · Elliot Creager · Sheila McIlraith

Fair decision making has largely been studied with respect to a single decision. Here we investigate the notion of fairness in the context of sequential decision making where multiple stakeholders can be affected by the outcomes of decisions. We observe that fairness often depends on the history of the sequential decision-making process, and in this sense that it is inherently non-Markovian. We further observe that fairness often needs to be assessed at time points within the process, not just at the end of the process. To advance our understanding of this class of fairness problems, we explore the notion of non-Markovian fairness in the context of sequential decision making. We identify properties of non-Markovian fairness, including notions of long-term, anytime, periodic, and bounded fairness. We explore the interplay between non-Markovian fairness and memory and how memory can support construction of fair policies. Finally, we introduce the FairQCM algorithm, which can automatically augment its training data to improve sample efficiency in the synthesis of fair policies via reinforcement learning.


Poster
#2413
Monotone Individual Fairness

Yahav Bechavod

We revisit the problem of online learning with individual fairness, where an online learner strives to maximize predictive accuracy while ensuring that similar individuals are treated similarly. We first extend the frameworks of Gillen et al. (2018); Bechavod et al. (2020), which rely on feedback from human auditors regarding fairness violations, to allow for auditing schemes that can aggregate feedback from any number of auditors, using a rich class we term monotone aggregation functions, for which we also prove a useful characterization. Using our generalized framework, we present an oracle-efficient algorithm guaranteeing a bound of $\mathcal{O}(T^\frac{3}{4})$ simultaneously for regret and number of fairness violations. We then study an online classification setting where label feedback is available for positively-predicted individuals only, and present an algorithm guaranteeing a bound of $\mathcal{O}(T^\frac{5}{6})$ simultaneously for regret and number of fairness violations. In both settings, our algorithms improve on the best known bounds for oracle-efficient algorithms. Furthermore, our algorithms offer significant improvements in computational efficiency, greatly reducing the number of required calls to an (offline) optimization oracle, as opposed to previous algorithms which required $T$ such calls every round.


Poster
#2414
MaxMin-RLHF: Alignment with Diverse Human Preferences

Souradip Chakraborty · Jiahao Qiu · Hui Yuan · Alec Koppel · Dinesh Manocha · Furong Huang · Amrit Singh Bedi · Mengdi Wang

Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data. However, the single reward model overlooks the rich diversity of human preferences inherent in data collected from multiple users. In this work, we first derive an impossibility result of alignment with single reward RLHF, thereby highlighting its insufficiency in representing diverse human preferences. Next, we propose to learn a mixture of reward models via an expectation-maximization algorithm and solve a MaxMin alignment objective inspired by the Egalitarian principle in social choice theory to better honor diverse human preferences. We present comprehensive experimental results on small-scale (GPT-2) and large-scale language (with Tulu2-7B)) and show the efficacy of the proposed approach in the presence of diversity among human preferences. We remark that our findings in this work are not only limited to language models but also extend to reinforcement learning in general.


Poster
#2415
Centralized Selection with Preferences in the Presence of Biases

L. Elisa Celis · Amit Kumar · Nisheeth K. Vishnoi · Shangyu Andrew Xu

This paper considers the scenario in which there are multiple institutions, each with a limited capacity for candidates, and candidates, each with preferences over the institutions. A central entity evaluates the utility of each candidate to the institutions, and the goal is to select candidates for each institution in a way that maximizes utility while also considering the candidates' preferences. The paper focuses on the setting in which candidates are divided into multiple groups and the observed utilities of candidates in some groups are biased--systematically lower than their true utilities. The first result is that, in these biased settings, prior algorithms can lead to selections with sub-optimal true utility and significant discrepancies in the fraction of candidates from each group that get their preferred choices. Subsequently, an algorithm is presented along with proof that it produces selections that achieve near-optimal group fairness with respect to preferences while also nearly maximizing the true utility under distributional assumptions. Further, extensive empirical validation of these results in real-world and synthetic settings, in which the distributional assumptions may not hold, are presented.


Poster
#2416
Intersectional Unfairness Discovery

Gezheng Xu · Qi CHEN · Charles X. Ling · Boyu Wang · Changjian Shui

AI systems have been shown to produce unfair results for certain subgroups of population, highlighting the need to understand bias on certain sensitive attributes. Current research often falls short, primarily focusing on the subgroups characterized by a single sensitive attribute, while neglecting the nature of intersectional fairness of multiple sensitive attributes. This paper focuses on its one fundamental aspect by discovering diverse high-bias intersectional sensitive attributes. Specifically, we propose a Bias-Guided Generative Network (BGGN). By treating each bias value as a reward, BGGN efficiently generates high-bias intersectional sensitive attributes. Experiments on real-world text and image datasets demonstrate a diverse and efficient discovery of BGGN. To further evaluate the generated unseen but possible unfair intersectional sensitive attributes, we formulate them as prompts and use modern generative AI to produce new text and images. The results of frequently generating biased data provides new insights of discovering potential unfairness in popular modern generative AI systems. Warning: This paper contains examples that are offensive in nature.


Poster
#2417
AI Control: Improving Safety Despite Intentional Subversion

Ryan Greenblatt · Buck Shlegeris · Kshitij Sachan · Fabien Roger

As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. To do so, safety measures either aim at making LLMs try to avoid harmful outcomes or aim at preventing LLMs from causing harmful outcomes, even if they try to cause them. In this paper, we focus on this second layer of defense. We develop and evaluate pipelines of safety techniques (protocols) that try to ensure safety despite intentional subversion - an approach we call AI control. We investigate a setting in which we want to solve a sequence of programming problems without ever submitting subtly wrong code, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate a range of protocols and red-team them by exploring strategies that the untrusted model could use to subvert them. We find that using the trusted model to edit untrusted-model code or using the untrusted model as a monitor substantially improves on simple baselines.


Poster
#2500
Orthogonal Bootstrap: Efficient Simulation of Input Uncertainty

Kaizhao Liu · Jose Blanchet · Lexing Ying · Yiping Lu

Bootstrap is a popular methodology for simulating input uncertainty. However, it can be computationally expensive when the number of samples is large. We propose a new approach called Orthogonal Bootstrap that reduces the number of required Monte Carlo replications. We decomposes the target being simulated into two parts: the non-orthogonal part which has a closed-form result known as Infinitesimal Jackknife and the orthogonal part which is easier to be simulated. We theoretically and numerically show that Orthogonal Bootstrap significantly reduces the computational cost of Bootstrap while improving empirical accuracy and maintaining the same width of the constructed interval.


Poster
#2501
Retrieval Across Any Domains via Large-scale Pre-trained Model

Jiexi Yan · Zhihui Yin · Chenghao Xu · Cheng Deng · Heng Huang

In order to enhance the generalization ability towards unseen domains, universal cross-domain image retrieval methods require a training dataset encompassing diverse domains, which is costly to assemble. Given this constraint, we introduce a novel problem of data-free adaptive cross-domain retrieval, eliminating the need for real images during training. Towards this goal, we propose a novel Text-driven Knowledge Integration (TKI) method, which exclusively utilizes a pre-trained vision-language model to implement an ``aggregation after expansion" training strategy. Specifically, we extract diverse implicit domain-specific information through a set of learnable domain word vectors. Subsequently, a domain-agnostic universal projection, equipped with a non-Euclidean multi-layer perceptron, can be optimized using these assorted text descriptions through the text-proxied domain aggregation. Leveraging the cross-modal transferability phenomenon of the shared latent space, we can integrate the trained domain-agnostic universal projection with the pre-trained visual encoder to extract the features of the input image for the following retrieval during testing. Extensive experimental results on several benchmark datasets demonstrate the superiority of our method.


Poster
#2502
Learning Pseudo-Contractive Denoisers for Inverse Problems

Deliang Wei · Peng Chen · Fang Li

Deep denoisers have shown excellent performance in solving inverse problems in signal and image processing. In order to guarantee the convergence, the denoiser needs to satisfy some Lipschitz conditions like non-expansiveness. However, enforcing such constraints inevitably compromises recovery performance. This paper introduces a novel training strategy that enforces a weaker constraint on the deep denoiser called pseudo-contractiveness. By studying the spectrum of the Jacobian matrix, relationships between different denoiser assumptions are revealed. Effective algorithms based on gradient descent and Ishikawa process are derived, and further assumptions of strict pseudo-contractiveness yield efficient algorithms using half-quadratic splitting and forward-backward splitting. The proposed algorithms theoretically converge strongly to a fixed point. A training strategy based on holomorphic transformation and functional calculi is proposed to enforce the pseudo-contractive denoiser assumption. Extensive experiments demonstrate superior performance of the pseudo-contractive denoiser compared to related denoisers. The proposed methods are competitive in terms of visual effects and quantitative values.


Poster
#2503
Detecting and Identifying Selection Structure in Sequential Data

Yujia Zheng · Zeyu Tang · Yiwen Qiu · Bernhard Schölkopf · Kun Zhang

We argue that the selective inclusion of data points based on latent objectives is common in practical situations, such as music sequences. Since this selection process often distorts statistical analysis, previous work primarily views it as a bias to be corrected and proposes various methods to mitigate its effect. However, while controlling this bias is crucial, selection also offers an opportunity to provide a deeper insight into the hidden generation process, as it is a fundamental mechanism underlying what we observe. In particular, overlooking selection in sequential data can lead to an incomplete or overcomplicated inductive bias in modeling, such as assuming a universal autoregressive structure for all dependencies. Therefore, rather than merely viewing it as a bias, we explore the causal structure of selection in sequential data to delve deeper into the complete causal process. Specifically, we show that selection structure is identifiable without any parametric assumptions or interventional experiments. Moreover, even in cases where selection variables coexist with latent confounders, we still establish the nonparametric identifiability under appropriate structural conditions. Meanwhile, we also propose a provably correct algorithm to detect and identify selection structures as well as other types of dependencies. The framework has been validated empirically on both synthetic data and real-world music.


Poster
#2504
Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Neta Shaul · Uriel Singer · Ricky T. Q. Chen · Matthew Le · Ali Thabet · Albert Pumarola · Yaron Lipman

This paper introduces Bespoke Non-Stationary (BNS) Solvers, a solver distillation approach to improve sample efficiency of Diffusion and Flow models. BNS solvers are based on a family of non-stationary solvers that provably subsumes existing numerical ODE solvers and consequently demonstrate considerable improvement in sample approximation (PSNR) over these baselines. Compared to model distillation, BNS solvers benefit from a tiny parameter space ($<$200 parameters), fast optimization (two orders of magnitude faster), maintain diversity of samples, and in contrast to previous solver distillation approaches nearly close the gap from standard distillation methods such as Progressive Distillation in the low-medium NFE regime. For example, BNS solver achieves 45 PSNR / 1.76 FID using 16 NFE in class-conditional ImageNet-64. We experimented with BNS solvers for conditional image generation, text-to-image generation, and text-2-audio generation showing significant improvement in sample approximation (PSNR) in all.


Poster
#2505
Compute Better Spent: Replacing Dense Layers with Structured Matrices

Shikai Qiu · Andres Potapczynski · Marc Finzi · Micah Goldblum · Andrew Wilson

Dense linear layers are the dominant computational bottleneck in foundation models. Identifying more efficient alternatives to dense matrices has enormous potential for building more compute-efficient models, as exemplified by the success of convolutional networks in the image domain. In this work, we systematically explore structured matrices as replacements for dense matrices. We show that different structures often require drastically different initialization scales and learning rates, which are crucial to performance, especially as models scale. Using insights from the Maximal Update Parameterization, we determine the optimal scaling for initialization and learning rates of these unconventional layers. Finally, we measure the scaling laws of different structures to compare how quickly their performance improves with compute. We propose a novel matrix family containing Monarch matrices, the Block Tensor-Train (BTT), which we show performs better than dense matrices for the same compute on multiple tasks. On CIFAR-10/100 with augmentation, BTT achieves exponentially lower training loss than dense when training MLPs and ViTs. BTT matches dense ViT-S/32 performance on ImageNet-1k with 3.8 times less compute and is more efficient than dense for training small GPT-2 language models.


Poster
#2506
Learning Latent Dynamic Robust Representations for World Models

Ruixiang Sun · Hongyu Zang · Xin Li · Riashat Islam

Visual Model-Based Reinforcement Learning (MBRL) promises to encapsulate agent's knowledge about the underlying dynamics of the environment, enabling learning a world model as a useful planner. However, top MBRL agents such as Dreamer often struggle with visual pixel-based inputs in the presence of exogenous or irrelevant noise in the observation space, due to failure to capture task-specific features while filtering out irrelevant spatio-temporal details. To tackle this problem, we apply a spatio-temporal masking strategy, a bisimulation principle, combined with latent reconstruction, to capture endogenous task-specific aspects of the environment for world models, effectively eliminating non-essential information. Joint training of representations, dynamics, and policy often leads to instabilities. To further address this issue, we develop a Hybrid Recurrent State-Space Model (HRSSM) structure, enhancing state representation robustness for effective policy learning. Our empirical evaluation demonstrates significant performance improvements over existing methods in a range of visually complex control tasks such as Maniskill with exogenous distractors from the Matterport environment. Our code is avaliable at https://github.com/bit1029public/HRSSM.


Poster
#2507
Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines

Yuchen Li · Alexandre Kirchmeyer · Aashay Mehta · Yilong Qin · Boris Dadachev · Kishore Papineni · Sanjiv Kumar · Andrej Risteski

Autoregressive language models are the currently dominant paradigm for text generation, however they have some fundamental limitations that cannot be remedied by scale---for example inherently sequential and unidirectional generation. While alternate classes of models have been explored, we have limited mathematical understanding of their fundamental power and limitations. In this paper we focus on Generative Masked Language Models (GMLMs), a non-autoregressive paradigm in which we train a model to fit conditional probabilities of the data distribution via masking, which are subsequently used as inputs to a Markov Chain to draw samples from the model. These models empirically strike a promising speed-quality trade-off as each step can be typically parallelized by decoding the entire sequence in parallel. We develop a mathematical framework for analyzing and improving such models which sheds light on questions of sample complexity and inference speed and quality. Empirically, we adapt the T5 model for iteratively-refined parallel decoding, achieving 2-3x speedup in machine translation with minimal sacrifice in quality compared with autoregressive models. We run careful ablation experiments to give recommendations on key design choices, and make fine-grained observations on the common error modes in connection with our theory. Our mathematical analyses and empirical observations characterize both potentials and limitations of this approach, and can be applied to future works on improving understanding and performance of GMLMs. We released codes for our experiments.


Poster
#2508
A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction

Keqiang Yan · Alexandra Saxton · Xiaofeng Qian · Xiaoning Qian · Shuiwang Ji

We consider the prediction of general tensor properties of crystalline materials, including dielectric, piezoelectric, and elastic tensors. A key challenge here is how to make the predictions satisfy the unique tensor equivariance to both O(3) and crystal space groups. To this end, we propose a General Materials Tensor Network (GMTNet), which is carefully designed to satisfy the required symmetries. To evaluate our method, we curate a dataset and establish evaluation metrics that are tailored to the intricacies of crystal tensor predictions. Experimental results show that our GMTNet not only achieves promising performance on crystal tensors of various orders but also generates predictions fully consistent with the intrinsic crystal symmetries. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).


Spotlight Poster
#2509
A Geometric Decomposition of Finite Games: Convergence vs. Recurrence under Exponential Weights

Davide Legacci · Panayotis Mertikopoulos · Bary Pradelski

In view of the complexity of the dynamics of learning in games, we seek to decompose a game into simpler components where the dynamics' long-run behavior is well understood. A natural starting point for this is Helmholtz's theorem, which decomposes a vector field into a potential and an incompressible component. However, the geometry of game dynamics - and, in particular, the dynamics of exponential / multiplicative weights (EW) schemes - is not compatible with the Euclidean underpinnings of Helmholtz's theorem. This leads us to consider a specific Riemannian framework based on the so-called Shahshahani metric, and introduce the class of incompressible games, for which we establish the following results: First, in addition to being volume-preserving, the continuous-time EW dynamics in incompressible games admit a constant of motion and are Poincaré recurrent - i.e., almost every trajectory of play comes arbitrarily close to its starting point infinitely often. Second, we establish a deep connection with a well-known decomposition of games into a potential and harmonic component (where the players' objectives are aligned and anti-aligned respectively): a game is incompressible if and only if it is harmonic, implying in turn that the EW dynamics lead to Poincaré recurrence in harmonic games.


Poster
#2510
Kepler codebook

Junrong Lian · Ziyue Dong · Pengxu Wei · Wei Ke · Chang Liu · Qixiang Ye · Xiangyang Ji · Liang Lin

A codebook designed for learning discrete distributions in latent space has demonstrated state-of-the-art results on generation tasks. This inspires us to explore what distribution of codebook is better. Following the spirit of Kepler's Conjecture, we cast the codebook training as solving the sphere packing problem and derive a Kepler codebook with a compact and structured distribution to obtain a codebook for image representations. Furthermore, we implement the Kepler codebook training by simply employing this derived distribution as regularization and using the codebook partition method. We conduct extensive experiments to evaluate our trained codebook for image reconstruction and generation on natural and human face datasets, respectively, achieving significant performance improvement. Besides, our Kepler codebook has demonstrated superior performance when evaluated across datasets and even for reconstructing images with different resolutions. Our trained models and source codes will be publicly released.


Poster
#2511
High-dimensional Linear Bandits with Knapsacks

Wanteng Ma · Dong Xia · Jiashuo Jiang

We study the contextual bandits with knapsack (CBwK) problem under the high-dimensional setting where the dimension of the feature is large. We investigate how to exploit the sparsity structure to achieve improved regret for the CBwK problem. To this end, we first develop an online variant of the hard thresholding algorithm that performs the optimal sparse estimation. We further combine our online estimator with a primal-dual framework, where we assign a dual variable to each knapsack constraint and utilize an online learning algorithm to update the dual variable, thereby controlling the consumption of the knapsack capacity. We show that this integrated approach allows us to achieve a sublinear regret that depends logarithmically on the feature dimension, thus improving the polynomial dependency established in the previous literature. We also apply our framework to the high-dimension contextual bandit problem without the knapsack constraint and achieve optimal regret in both the data-poor regime and the data-rich regime.


Poster
#2512
Certifiably Byzantine-Robust Federated Conformal Prediction

Mintong Kang · Zhen Lin · Jimeng Sun · Cao Xiao · Bo Li

Conformal prediction has shown impressive capacity in constructing statistically rigorous prediction sets for machine learning models with exchangeable data samples. The siloed datasets, coupled with the escalating privacy concerns related to local data sharing, have inspired recent innovations extending conformal prediction into federated environments with distributed data samples. However, this framework for distributed uncertainty quantification is susceptible to Byzantine failures. A minor subset of malicious clients can significantly compromise the practicality of coverage guarantees. To address this vulnerability, we introduce a novel framework Rob-FCP, which executes robust federated conformal prediction, effectively countering malicious clients capable of reporting arbitrary statistics with the conformal calibration process. We theoretically provide the conformal coverage bound of Rob-FCP in the Byzantine setting and show that the coverage of Rob-FCP is asymptotically close to the desired coverage level. We also propose a malicious client number estimator to tackle a more challenging setting where the number of malicious clients is unknown to the defender and theoretically shows its effectiveness. We empirically demonstrate the robustness of Rob-FCP against diverse proportions of malicious clients under a variety of Byzantine attacks on five standard benchmark and real-world healthcare datasets.


Poster
#2513
On the Nonlinearity of Layer Normalization

Yunhao Ni · Yuxin Guo · Junlong Jia · Lei Huang

Layer normalization (LN) is a ubiquitous technique in deep learning but our theoretical understanding to it remains elusive. This paper investigates a new theoretical direction for LN, regarding to its nonlinearity and representation capacity. We investigate the representation capacity of a network with layerwise composition of linear and LN transformations, referred to as LN-Net. We theoretically show that, given $m$ samples with any label assignment, an LN-Net with only 3 neurons in each layer and $O(m)$ LN layers can correctly classify them. We further show the lower bound of the VC dimension of an LN-Net. The nonlinearity of LN can be amplified by group partition, which is also theoretically demonstrated with mild assumption and empirically supported by our experiments. Based on our analyses, we consider to design neural architecture by exploiting and amplifying the nonlinearity of LN, and the effectiveness is supported by our experiments.


Poster
#2514
On the Calibration of Human Pose Estimation

Kerui Gu · Rongyu Chen · Xuanlong Yu · Angela Yao

2D human pose estimation predicts keypoint locations and the corresponding confidence. Calibration-wise, the confidence should be aligned with the pose accuracy. Yet existing pose estimation methods tend to estimate confidence with heuristics such as the maximum value of heatmaps. This work shows, through theoretical analysis and empirical verification, a calibration gap in current pose estimation frameworks. Our derivations directly lead to closed-form adjustments in the confidence based on additionally inferred instance size and visibility. Given the black-box nature of deep neural networks, however, it is not possible to close the gap with only closed-form adjustments. We go one step further and propose a Calibrated ConfidenceNet (CCNet) to explicitly learn network-specific adjustments with a confidence prediction branch. The proposed CCNet, as a lightweight post-hoc addition, improves the calibration of standard off-the-shelf pose estimation frameworks.


Poster
#2515
Large Scale Dataset Distillation with Domain Shift

Noel Loo · Alaa Maalouf · Ramin Hasani · Mathias Lechner · Alexander Amini · Daniela Rus

Dataset Distillation seeks to summarize a large dataset by generating a reduced set of synthetic samples. While there has been much success at distilling small datasets such as CIFAR-10 on smaller neural architectures, Dataset Distillation methods fail to scale to larger high-resolution datasets and architectures. In this work, we introduce Dataset Distillation with Domain Shift (D3S), a scalable distillation algorithm, made by reframing the dataset distillation problem as a domain shift one. In doing so, we derive a universal bound on the distillation loss, and provide a method for efficiently approximately optimizing it. We achieve state-of-the-art results on Tiny-ImageNet, ImageNet-1k, and ImageNet-21K over a variety of recently proposed baselines, including high cross-architecture generalization. Additionally, our ablation studies provide lessons on the importance of validation-time hyperparameters on distillation performance, motivating the need for standardization.


Spotlight Poster
#2516
Position: Intent-aligned AI Systems Must Optimize for Agency Preservation

Catalin Mitelut · Benjamin Smith · Peter Vamplew

A central approach to AI-safety research has been to generate aligned AI systems: i.e. systems that do not deceive users and yield actions or recommendations that humans might judge as consistent with their intentions and goals. Here we argue that truthful AIs aligned solely to human intent are insufficient and that preservation of long-term agency of humans may be a more robust standard that may need to be separated and explicitly optimized for. We discuss the science of intent and control and how human intent can be manipulated and we provide a formal definition of agency-preserving AI-human interactions focusing on forward-looking explicit agency evaluations. Our work points to a novel pathway for human harm in AI-human interactions and proposes solutions to this challenge.


Poster
#2517
Position: Fundamental Limitations of LLM Censorship Necessitate New Approaches

David Glukhov · Ilia Shumailov · Yarin Gal · Nicolas Papernot · Vardan Papyan

Large language models (LLMs) have exhibited impressive capabilities in comprehending complex instructions. However, their blind adherence to provided instructions has led to concerns regarding risks of malicious use. Existing defence mechanisms, such as model fine-tuning or output censorship methods have proven to be fallible at ensuring that LLMs do not return semantically impermissible responses. We present fundamental limitations of verifying the semantic properties of LLM outputs and identifying compositional threats, illustrating inherent challenges of current approaches to censoring LLM outputs. Specifically, we demonstrate that semantic censorship can be perceived as an undecidable problem, and semantic properties of LLM outputs can become impossible to verify when the LLM is capable of providing "encrypted" outputs. We further show challenges of censorship can extend beyond just semantic censorship, as attackers can reconstruct impermissible outputs from a collection of permissible ones. Consequently, we call for a re-evaluation of the problem of censorship and its goals, stressing the need for new definitions and approaches to censorship. In addition, we provide an initial attempt toward achieving this goal through syntactic censorship, drawing from a security perspective to design censorship methods that can provide guarantees.


Poster
#2600
Training-Free Long-Context Scaling of Large Language Models

Chenxin An · Fei Huang · Jun Zhang · Shansan Gong · Xipeng Qiu · Chang Zhou · Lingpeng Kong

The ability of Large Language Models (LLMs) to process and generate coherent text is markedly weakened when the number of input tokens exceeds their pretraining length. Given the expensive overhead of finetuning large-scale models with longer sequences, we propose a training-free approach named Dual Chunk Attention (DCA), which enables Llama2 70B to support context windows of up to 100k tokens. By decomposing the attention computation for long sequences into chunk-based modules, DCA manages to effectively capture the relative positional information of tokens within the same chunk (Intra-Chunk) and across distinct chunks (Inter-Chunk), as well as integrates seamlessly with Flash Attention. In addition to its impressive extrapolation capability, DCA achieves performance on practical long-context tasks that is comparable to or even better than that of models built through continual training. All code and data used in this work are released at https://github.com/HKUNLP/ChunkLlama.


Poster
#2601
Disentangled 3D Scene Generation with Layout Learning

Dave Epstein · Ben Poole · Ben Mildenhall · Alexei Efros · Aleksander Holynski

We introduce a method to generate 3D scenes that are disentangled into their component objects. This disentanglement is unsupervised, relying only on the knowledge of a large pretrained text-to-image model. Our key insight is that objects can be discovered by finding parts of a 3D scene that, when rearranged spatially, still produce valid configurations of the same scene. Concretely, our method jointly optimizes multiple NeRFs---each representing its own object---along with a set of layouts that composite these objects into scenes. We then encourage these composited scenes to be in-distribution according to the image generator. We show that despite its simplicity, our approach successfully generates 3D scenes decomposed into individual objects, enabling new capabilities in text-to-3D content creation.


Poster
#2602
SAM as the Guide: Mastering Pseudo-Label Refinement in Semi-Supervised Referring Expression Segmentation

Danni Yang · Jiayi Ji · Yiwei Ma · Tianyu Guo · Haowei Wang · Xiaoshuai Sun · Rongrong Ji

In this paper, we introduce SemiRES, a semi-supervised framework that effectively leverages a combination of labeled and unlabeled data to perform RES. A significant hurdle in applying semi-supervised techniques to RES is the prevalence of noisy pseudo-labels, particularly at the boundaries of objects. SemiRES incorporates the Segment Anything Model (SAM), renowned for its precise boundary demarcation, to improve the accuracy of these pseudo-labels. Within SemiRES, we offer two alternative matching strategies: IoU-based Optimal Matching (IOM) and Composite Parts Integration (CPI). These strategies are designed to extract the most accurate masks from SAM's output, thus guiding the training of the student model with enhanced precision. In instances where a precise mask cannot be matched from the available candidates, we develop the Pixel-Wise Adjustment (PWA) strategy, guiding the student model's training directly by the pseudo-labels. Extensive experiments on three RES benchmarks—RefCOCO, RefCOCO+, and G-Ref reveal its superior performance compared to fully supervised methods, especially in low-data scenarios. Remarkably, with only 1% labeled data, our SemiRES outperforms the supervised baseline by a large margin, e.g. +18.64% gains on RefCOCO val set.


Poster
#2603
LoRA+: Efficient Low Rank Adaptation of Large Models

Soufiane Hayou · Nikhil Ghosh · Bin Yu

In this paper, we show that Low Rank Adaptation (LoRA) as originally introduced in (Hu et al., 2021) leads to suboptimal finetuning of models with large width. This is due to the fact that adapter matrices A and B in LoRA are updated with the same learning rate in ADAM. Using scaling arguments for large width networks, we demonstrate that the same learning rate does not allow efficient feature learning. We then show that this suboptimality of LoRA can be corrected simply by setting different learning rates for the LoRA adapter matrices A and B with a well-chosen fixed ratio. We call this proposed algorithm LoRA+. In our extensive experiments, LoRA+ improves finetuning speed (up to ∼ 2X SpeedUp) and performance (1% − 2% improvements), at the same computational cost as LoRA. The code is available at https://github.com/nikhil-ghosh-berkeley/loraplus


Poster
#2604
Learning 1-Bit Tiny Object Detector with Discriminative Feature Refinement

Sheng Xu · Mingze Wang · Yanjing Li · Mingbao Lin · Baochang Zhang · David Doermann · Xiao Sun

1-bit detectors show impressive performance comparable to their real-valued counterparts when detecting commonly sized objects while exhibiting significant performance degradation on tiny objects. The challenge stems from the fact that high-level features extracted by 1-bit convolutions seem less compelling to reveal the discriminative foreground features. To address these issues, we introduce a Discriminative Feature Refinement method for 1-bit Detectors (DFR-Det), aiming to enhance the discriminative ability of foreground representation for tiny objects in aerial images. This is accomplished by refining the feature representation using an information bottleneck (IB) to achieve a distinctive representation of tiny objects. Specifically, we introduce a new decoder with a foreground mask, aiming to enhance the discriminative ability of high-level features for the target but suppress the background impact. Additionally, our decoder is simple but effective and can be easily mounted on existing detectors without extra burden added to the inference procedure. Extensive experiments on various tiny object detection (TOD) tasks demonstrate DFR-Det's superiority over state-of-the-art 1-bit detectors. For example, 1-bit FCOS achieved by DFR-Det achieves the 12.8% AP on AI-TOD dataset, approaching the performance of the real-valued counterpart.


Poster
#2605
DetKDS: Knowledge Distillation Search for Object Detectors

Lujun Li · Yufan Bao · Peijie Dong · Chuanguang Yang · Anggeng Li · Wenhan Luo · Qifeng Liu · Wei Xue · Yike Guo

In this paper, we present DetKDS, the first framework that searches for optimal detection distillation policies. Manual design of detection distillers becomes challenging and time-consuming due to significant disparities in distillation behaviors between detectors with different backbones, paradigms, and label assignments. To tackle these challenges, we leverage search algorithms to discover optimal distillers for homogeneous and heterogeneous student-teacher pairs. Firstly, our search space encompasses global features, foreground-background features, instance features, logits response, and localization response as inputs. Then, we construct omni-directional cascaded transformations and obtain the distiller by selecting the advanced distance function and common weight value options. Finally, we present a divide-and-conquer evolutionary algorithm to handle the explosion of the search space. In this strategy, we first evolve the best distiller formulations of individual knowledge inputs and then optimize the combined weights of these multiple distillation losses. DetKDS automates the distillation process without requiring expert design or additional tuning, effectively reducing the teacher-student gap in various scenarios. Based on the analysis of our search results, we provide valuable guidance that contributes to detection distillation designs. Comprehensive experiments on different detectors demonstrate that DetKDS outperforms state-of-the-art methods in detection and instance segmentation tasks. For instance, DetKDS achieves significant gains than baseline detectors: $+3.7$, $+4.1$, $+4.0$, $+3.7$, and $+3.5$ AP on RetinaNet, Faster-RCNN, FCOS, RepPoints, and GFL, respectively. Code at: https://github.com/lliai/DetKDS.


Poster
#2606
Gaussian Plane-Wave Neural Operator for Electron Density Estimation

Seongsu Kim · Sungsoo Ahn

This work studies machine learning for electron density prediction, which is fundamental for understanding chemical systems and density functional theory (DFT) simulations. To this end, we introduce the Gaussian plane-wave neural operator (GPWNO), which operates in the infinite-dimensional functional space using the plane-wave and Gaussian-type orbital bases, widely recognized in the context of DFT. In particular, both high- and low-frequency components of the density can be effectively represented due to the complementary nature of the two bases. Extensive experiments on QM9, MD, and material project datasets demonstrate GPWNO's superior performance over ten baselines.


Poster
#2607
How to Trace Latent Generative Model Generated Images without Artificial Watermark?

Zhenting Wang · Vikash Sehwag · Chen Chen · Lingjuan Lyu · Dimitris Metaxas · Shiqing Ma

Latent generative models (e.g., Stable Diffusion) have become more and more popular, but concerns have arisen regarding potential misuse related to images generated by these models. It is, therefore, necessary to analyze the origin of images by inferring if a particular image was generated by a specific latent generative model. Most existing methods (e.g., image watermark and model fingerprinting) require extra steps during training or generation. These requirements restrict their usage on the generated images without such extra operations, and the extra required operations might compromise the quality of the generated images. In this work, we ask whether it is possible to effectively and efficiently trace the images generated by a specific latent generative model without the aforementioned requirements. To study this problem, we design a latent inversion based method called LatentTracer to trace the generated images of the inspected model by checking if the examined images can be well-reconstructed with an inverted latent input. We leverage gradient based latent inversion and identify a encoder-based initialization critical to the success of our approach. Our experiments on the state-of-the-art latent generative models, such as Stable Diffusion, show that our method can distinguish the images generated by the inspected model and other images with a high accuracy and efficiency. Our findings suggest the intriguing possibility that today's latent generative generated images are naturally watermarked by the decoder used in the source models. Code: https://github.com/ZhentingWang/LatentTracer.


Poster
#2608
Explain Temporal Black-Box Models via Functional Decomposition

Linxiao Yang · Yunze Tong · Xinyue Gu · Liang Sun

How to explain temporal models is a significant challenge due to the inherent characteristics of time series data, notably the strong temporal dependencies and interactions between observations. Unlike ordinary tabular data, data at different time steps in time series usually interact dynamically, forming influential patterns that shape the model’s predictions, rather than only acting in isolation. Existing explanatory approaches for time series often overlook these crucial temporal interactions by treating time steps as separate entities, leading to a superficial understanding of model behavior. To address this challenge, we introduce FDTempExplainer, an innovative model-agnostic explanation method based on functional decomposition, tailored to unravel the complex interplay within black-box time series models. Our approach disentangles the individual contributions from each time step, as well as the aggregated influence of their interactions, in a rigorous framework. FDTempExplainer accurately measures the strength of interactions, yielding insights that surpass those from baseline models. We demonstrate the effectiveness of our approach in a wide range of time series applications, including anomaly detection, classification, and forecasting, showing its superior performance to the state-of-the-art algorithms.


Poster
#2609
Simplicity Bias via Global Convergence of Sharpness Minimization

Khashayar Gatmiry · Zhiyuan Li · Sashank J. Reddi · Stefanie Jegelka

The remarkable generalization ability of neural networks is usually attributed to the implicit bias of SGD, which often yields models with lower complexity using simpler (e.g. linear) and low-rank features. Recent works have provided empirical and theoretical evidence for the bias of particular variants of SGD (such as label noise SGD) toward flatter regions of the loss landscape. Despite the folklore intuition that flat solutions are 'simple', the connection with the simplicity of the final trained model (e.g. low-rank) is not well understood. In this work, we take a step toward bridging this gap by studying the simplicity structure that arises from minimizers of the sharpness for a class of two-layer neural networks. We show that, for any high dimensional training data and certain activations, with small enough step size, label noise SGD always converges to a network that replicates a single linear feature across all neurons; thereby implying a simple rank one feature matrix. To obtain this result, our main technical contribution is to show that label noise SGD always minimizes the sharpness on the manifold of models with zero loss for two-layer networks. Along the way, we discover a novel property --- a local geodesic convexity --- of the trace of Hessian of the loss at approximate stationary points on the manifold of zero loss, which links sharpness to the geometry of the manifold. This tool may be of independent interest.


Poster
#2610
BAGEL: Bootstrapping Agents by Guiding Exploration with Language

Shikhar Murty · Christopher Manning · Peter Shaw · Mandar Joshi · Kenton Lee

Following natural language instructions by executing actions in digital environments (e.g. web-browsers and REST APIs) is a challenging task for language model (LM) agents. Unfortunately, LM agents often fail to generalize to new environments without human demonstrations. This work presents BAGEL, a method for bootstrapping LM agents without human supervision. BAGEL converts a seed set of randomly explored trajectories to synthetic demonstrations via round-trips between two noisy LM components: an LM labeler which converts a trajectory into a synthetic instruction, and a zero-shot LM agent which maps the synthetic instruction into a refined trajectory. By performing these round-trips iteratively, BAGEL quickly converts the initial distribution of trajectories towards those that are well-described by natural language. We adapt the base LM agent at test time with in-context learning by retrieving relevant BAGEL demonstrations based on the instruction, and find improvements of over 2-13% absolute on ToolQA and MiniWob++, with up to 13x reduction in execution failures.


Poster
#2611
Iterative Data Smoothing: Mitigating Reward Overfitting and Overoptimization in RLHF

Banghua Zhu · Michael Jordan · Jiantao Jiao

Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique that aligns language models closely with human-centric values. The initial phase of RLHF involves learning human values using a reward model from ranking data. It is observed that the performance of the reward model degrades after one epoch of training, and optimizing too much against the learned reward model eventually hinders the true objective. This paper analyzes potential reasons behind the issues, and designs improved reward learning algorithm termed 'Iterative Data Smoothing' (IDS). The core idea is that during each training epoch, we not only update the model with the data, but also update the date using the model, replacing hard labels with soft labels. Our empirical findings highlight the superior performance of this approach over the traditional methods.


Poster
#2612
Position: Do pretrained Transformers Learn In-Context by Gradient Descent?

Lingfeng Shen · Aayush Mishra · Daniel Khashabi

The emergence of In-Context Learning (ICL) in LLMs remains a remarkable phenomenon that is partially understood. To explain ICL, recent studies have created theoretical connections to Gradient Descent (GD). We ask, do such connections hold up in actual pre-trained language models? We highlight the limiting assumptions in prior works that make their setup considerably different from the practical setup in which language models are trained. For example, their experimental verification uses ICL objective (training models explicitly for ICL), which differs from the emergent ICL in the wild. Furthermore, the theoretical hand-constructed weights used in these studies have properties that don't match those of real LLMs. We also look for evidence in real models. We observe that ICL and GD have different sensitivity to the order in which they observe demonstrations. Finally, we probe and compare the ICL vs. GD hypothesis in a natural setting. We conduct comprehensive empirical analyses on language models pre-trained on natural data (LLaMa-7B). Our comparisons of three performance metrics highlight the inconsistent behavior of ICL and GD as a function of various factors such as datasets, models, and the number of demonstrations. We observe that ICL and GD modify the output distribution of language models differently. These results indicate that the equivalence between ICL and GD remains an open hypothesis and calls for further studies.


Poster
#2613
Generalization Analysis of Stochastic Weight Averaging with General Sampling

Wang Peng · Li Shen · Zerui Tao · Shuaida He · Dacheng Tao

Stochastic weight averaging (SWA) method has empirically proven its advantages compared to stochastic gradient descent (SGD). Despite it is widespread used, theoretical investigations have been limited, particularly in scenarios beyond the ideal setting of convex and sampling with replacement. However, non-convex cases and sampling without replacement are very practical in real-world applications. The main challenges under the above settings are two-folds: (i) All the historical gradient information introduced by SWA is considered, while the analysis of SGD using the tool of uniform stability requires only to bound the current gradient. (ii) The $(1+\alpha\beta)$-expansion property causes the boundary of each gradient step dependent on the previous step, making the boundary of each historical gradient in SWA nested and the theoretical analysis even harder. To address the theoretical challenges, we adopt mathematical induction to find a recursive representation that bounds the gradient at each step. Based on this, we establish stability bounds supporting sampling with and without replacement in the non-convex setting. Furthermore, the derived generalization bounds of SWA are sharper than SGD. At last, experimental results on several benchmarks verify our theoretical results.


Poster
#2614
What Can Transformer Learn with Varying Depth? Case Studies on Sequence Learning Tasks

Xingwu Chen · Difan Zou

We study the capabilities of the transformer architecture with varying depth. Specifically, we designed a novel set of sequence learning tasks to systematically evaluate and comprehend how the depth of transformer affects its ability to perform memorization, reasoning, generalization, and contextual generalization. We show a transformer with only one attention layer can excel in memorization but falls short in other tasks. Then, we show that exhibiting reasoning and generalization ability requires the transformer to have at least two attention layers, while context generalization ability may necessitate three attention layers. Additionally, we identify a class of simple operations that a single attention layer can execute, and show that the complex tasks can be approached as the combinations of these simple operations and thus can be resolved by stacking multiple attention layers. This sheds light on studying more practical and complex tasks beyond our design. Numerical experiments corroborate our theoretical findings.


Poster
#2615
Two Fists, One Heart: Multi-Objective Optimization Based Strategy Fusion for Long-tailed Learning

Zhe Zhao · Pengkun Wang · HaiBin Wen · Wei Xu · LAI Song · Qingfu Zhang · Yang Wang

Real-world data generally follows a long-tailed distribution, which makes traditional high-performance training strategies unable to show their usual effects. Various insights have been proposed to alleviate this challenging distribution. However, some observations indicate that models trained on long-tailed distributions always show a trade-off between the performance of head and tail classes. For a profound understanding of the trade-off, we first theoretically analyze the trade-off problem in long-tailed learning and creatively transform the trade-off problem in long-tailed learning into a multi-objective optimization (MOO) problem. Motivated by these analyses, we propose the idea of strategy fusion for MOO long-tailed learning and point out the potential conflict problem. We further design a Multi-Objective Optimization based Strategy Fusion (MOOSF), which effectively resolves conflicts, and achieves an efficient fusion of heterogeneous strategies. Comprehensive experiments on mainstream datasets show that even the simplest strategy fusion can outperform complex long-tailed strategies. More importantly, it provides a new perspective for generalized long-tailed learning. The code is available in the accompanying supplementary materials.


Poster
#2616
Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity

Lu Yin · You Wu · Zhenyu Zhang · Cheng-Yu Hsieh · Yaqing Wang · Yiling Jia · Gen Li · Ajay Jaiswal · Mykola Pechenizkiy · Yi Liang · Michael Bendersky · Zhangyang “Atlas” Wang · Shiwei Liu

Large Language Models (LLMs), renowned for their remarkable performance across diverse domains, present a challenge due to their colossal model size when it comes to practical deployment. In response to this challenge, efforts have been directed toward the application of traditional network pruning techniques to LLMs, uncovering a massive number of parameters can be pruned in one-shot without hurting performance. Building upon insights gained from pre-LLM models, particularly BERT-level language models, prevailing LLM pruning strategies have consistently adhered to the practice of uniformly pruning all layers at equivalent sparsity levels, resulting in robust performance. However, this observation stands in contrast to the prevailing trends observed in the field of vision models, where non-uniform layerwise sparsity typically yields substantially improved results. To elucidate the underlying reasons for this disparity, we conduct a comprehensive analysis of the distribution of token features within LLMs. In doing so, we discover a strong correlation with the emergence of outliers, defined as features exhibiting significantly greater magnitudes compared to their counterparts in feature dimensions. Inspired by this finding, we introduce a novel LLM pruning methodology that incorporates a tailored set of **non-uniform layerwise sparsity ratios** specifically designed for LLM pruning, termed as **O**utlier **W**eighed **L**ayerwise sparsity (**OWL**). The sparsity ratio of OWL is directly proportional to the outlier ratio observed within each layer, facilitating a more effective alignment between layerwise weight sparsity and outlier ratios. Our empirical evaluation, conducted across the LLaMA-V1/V2, Vicuna, OPT, and Mistral, spanning various benchmarks, demonstrates the distinct advantages offered by OWL over previous methods. For instance, OWL exhibits a remarkable performance gain, surpassing the state-of-the-art Wanda and SparseGPT by **61.22** and **6.80** perplexity at a high sparsity level of 70%, respectively, while delivering **2.6$\times$** end-to-end inference speed-up in the DeepSparse inference engine. Code is available at https://github.com/luuyin/OWL.git.


Poster
#2617
Graph As Point Set

Xiyuan Wang · Pan Li · Muhan Zhang

Graph is a fundamental data structure to model interconnections between entities. Set, on the contrary, stores independent elements. To learn graph representations, current Graph Neural Networks (GNNs) primarily use message passing to encode the interconnections. In contrast, this paper introduces a novel graph-to-set conversion method that bijectively transforms interconnected nodes into a set of independent points and then uses a set encoder to learn the graph representation. This conversion method holds dual significance. Firstly, it enables using set encoders to learn from graphs, thereby significantly expanding the design space of GNNs. Secondly, for Transformer, a specific set encoder, we provide a novel and principled approach to inject graph information losslessly, different from all the heuristic structural/positional encoding methods adopted in previous graph transformers. To demonstrate the effectiveness of our approach, we introduce Point Set Transformer (PST), a transformer architecture that accepts a point set converted from a graph as input. Theoretically, PST exhibits superior expressivity for both short-range substructure counting and long-range shortest path distance tasks compared to existing GNNs. Extensive experiments further validate PST's outstanding real-world performance. Besides Transformer, we also devise a Deepset-based set encoder, which achieves performance comparable to representative GNNs, affirming the versatility of our graph-to-set method.


Poster
#2700
DiffAug: Enhance Unsupervised Contrastive Learning with Domain-Knowledge-Free Diffusion-based Data Augmentation

Zelin Zang · Hao Luo · Kai Wang · Panpan Zhang · Fan Wang · Stan Z Li · Yang You

Unsupervised Contrastive learning has gained prominence in fields such as vision, and biology, leveraging predefined positive/negative samples for representation learning. Data augmentation, categorized into hand-designed and model-based methods, has been identified as a crucial component for enhancing contrastive learning. However, hand-designed methods require human expertise in domain-specific data while sometimes distorting the meaning of the data. In contrast, generative model-based approaches usually require supervised or large-scale external data, which has become a bottleneck constraining model training in many domains. To address the problems presented above, this paper proposes DiffAug, a novel unsupervised contrastive learning technique with diffusion mode-based positive data generation. DiffAug consists of a semantic encoder and a conditional diffusion model; the conditional diffusion model generates new positive samples conditioned on the semantic encoding to serve the training of unsupervised contrast learning. With the help of iterative training of the semantic encoder and diffusion model, DiffAug improves the representation ability in an uninterrupted and unsupervised manner. Experimental evaluations show that DiffAug outperforms hand-designed and SOTA model-based augmentation methods on DNA sequence, visual, and bio-feature datasets. The code for review is released at DiffAug CODE.


Poster
#2701
A Minimaximalist Approach to Reinforcement Learning from Human Feedback

Gokul Swamy · Christoph Dann · Rahul Kidambi · Steven Wu · Alekh Agarwal

We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback. Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training and is therefore rather simple to implement. Our approach is maximalist in that it provably handles non-Markovian, intransitive, and stochastic preferences while being robust to the compounding errors that plague offline approaches to sequential prediction. To achieve the preceding qualities, we build upon the concept of a Minimax Winner (MW), a notion of preference aggregation from the social choice theory literature that frames learning from preferences as a zero-sum game between two policies. By leveraging the symmetry of this game, we prove that rather than using the traditional technique of dueling two policies to compute the MW, we can simply have a single agent play against itself while maintaining strong convergence guarantees. Practically, this corresponds to sampling multiple trajectories from a policy, asking a preference or teacher model to compare them, and then using the proportion of wins as the reward for a particular trajectory. We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches while maintaining robustness to the intransitive and stochastic preferences that frequently occur in practice when aggregating human judgments.


Poster
#2702
Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality

Tri Dao · Albert Gu

While Transformers have been the main architecture behind deep learning's success in language modeling, state-space models (SSMs) such as Mamba have recently been shown to match or outperform Transformers at small to medium scale. We show that these families of models are actually quite closely related, and develop a rich framework of theoretical connections between SSMs and variants of attention, connected through various decompositions of a well-studied class of structured *semiseparable matrices*. Our state space duality (SSD) framework allows us to design a new architecture (**Mamba-2**) whose core layer is an a refinement of Mamba's selective SSM that is 2-8$\times$ faster, while continuing to be competitive with Transformers on language modeling.


Poster
#2703
Flexible Residual Binarization for Image Super-Resolution

Yulun Zhang · Haotong Qin · Zixiang Zhao · Xianglong Liu · Martin Danelljan · Fisher Yu

Binarized image super-resolution (SR) has attracted much research attention due to its potential to drastically reduce parameters and operations. However, most binary SR works binarize network weights directly, which hinders high-frequency information extraction. Furthermore, as a pixel-wise reconstruction task, binarization often results in heavy representation content distortion. To address these issues, we propose a flexible residual binarization (FRB) method for image SR. We first propose a second-order residual binarization (SRB), to counter the information loss caused by binarization. In addition to the primary weight binarization, we also binarize the reconstruction error, which is added as a residual term in the prediction. Furthermore, to narrow the representation content gap between the binarized and full-precision networks, we propose Distillation-guided Binarization Training (DBT). We uniformly align the contents of different bit widths by constructing a normalized attention form. Finally, we generalize our method by applying our FRB to binarize convolution and Transformer-based SR networks, resulting in two binary baselines: FRBC and FRBT. We conduct extensive experiments and comparisons with recent leading binarization methods. Our proposed baselines, FRBC and FRBT, achieve superior performance both quantitatively and visually. The code and model will be released.


Poster
#2704
Graph Neural Stochastic Diffusion for Estimating Uncertainty in Node Classification

Xixun Lin · Wenxiao Zhang · Fengzhao Shi · Chuan Zhou · Lixin Zou · Xiangyu Zhao · Dawei Yin · Shirui Pan · Yanan Cao

Graph neural networks (GNNs) have advanced the state of the art in various domains. Despite their remarkable success, the uncertainty estimation of GNN predictions remains under-explored, which limits their practical applications especially in risk-sensitive areas. Current works suffer from either intractable posteriors or inflexible prior specifications, leading to sub-optimal empirical results. In this paper, we present graph neural stochastic diffusion (GNSD), a novel framework for estimating predictive uncertainty on graphs by establishing theoretical connections between GNNs and stochastic partial differential equation. GNSD represents a GNN-based parameterization of the proposed graph stochastic diffusion equation which includes a $Q$-Wiener process to model the stochastic evolution of node representations. GNSD introduces a drift network to guarantee accurate prediction and a stochastic forcing network to model the propagation of epistemic uncertainty among nodes. Extensive experiments are conducted on multiple detection tasks, demonstrating that GNSD yields the superior performance over existing strong approaches.


Poster
#2705
Understanding Heterophily for Graph Neural Networks

Junfu Wang · Yuanfang Guo · Liang Yang · Yunhong Wang

Graphs with heterophily have been regarded as challenging scenarios for Graph Neural Networks (GNNs), where nodes are connected with dissimilar neighbors through various patterns. In this paper, we present theoretical understandings of heterophily for GNNs by incorporating the graph convolution (GC) operations into fully connected networks via the proposed Heterophilous Stochastic Block Models (HSBM), a general random graph model that can accommodate diverse heterophily patterns. Our theoretical investigation comprehensively analyze the impact of heterophily from three critical aspects. Firstly, for the impact of different heterophily patterns, we show that the separability gains are determined by two factors, i.e., the Euclidean distance of the neighborhood distributions and $\sqrt{\mathbb{E}\left[\operatorname{deg}\right]}$, where $\mathbb{E}\left[\operatorname{deg}\right]$ is the averaged node degree. Secondly, we show that the neighborhood inconsistency has a detrimental impact on separability, which is similar to degrading $\mathbb{E}\left[\operatorname{deg}\right]$ by a specific factor. Finally, for the impact of stacking multiple layers, we show that the separability gains are determined by the normalized distance of the $l$-powered neighborhood distributions, indicating that nodes still possess separability in various regimes, even when over-smoothing occurs. Extensive experiments on both synthetic and real-world data verify the effectiveness of our theory.


Poster
#2706
Flora: Low-Rank Adapters Are Secretly Gradient Compressors

Yongchang Hao · Yanshuai Cao · Lili Mou

Despite large neural networks demonstrating remarkable abilities to complete different tasks, they require excessive memory usage to store the optimization states for training. To alleviate this, the low-rank adaptation (LoRA) is proposed to reduce the optimization states by training fewer parameters. However, LoRA restricts overall weight update matrices to be low-rank, limiting the model performance. In this work, we investigate the dynamics of LoRA and identify that it can be approximated by a random projection. Based on this observation, we propose Flora, which is able to achieve high-rank updates by resampling the projection matrices while enjoying the sublinear space complexity of optimization states. We conduct experiments across different tasks and model architectures to verify the effectiveness of our approach.


Poster
#2707
Offline Actor-Critic Reinforcement Learning Scales to Large Models

Jost Tobias Springenberg · Abbas Abdolmaleki · Jingwei Zhang · Oliver M Groth · Michael Bloesch · Thomas Lampe · Philemon Brakel · Sarah Bechtle · Steven Kapturowski · Roland Hafner · Nicolas Heess · Martin Riedmiller

We show that offline actor-critic reinforcement learning can scale to large models - such as transformers - and follows similar scaling laws as supervised learning. We find that offline actor-critic algorithms can outperform strong, supervised, behavioral cloning baselines for multi-task training on a large dataset; containing both sub-optimal and expert behavior on 132 continuous control tasks. We introduce a Perceiver-based actor-critic model and elucidate the key features needed to make offline RL work with self- and cross-attention modules. Overall, we find that: i) simple offline actor critic algorithms are a natural choice for gradually moving away from the currently predominant paradigm of behavioral cloning, and ii) via offline RL it is possible to learn multi-task policies that master many domains simultaneously, including real robotics tasks, from sub-optimal demonstrations or self-generated data.


Poster
#2708
IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

Luke Melas-Kyriazi · Iro Laina · Christian Rupprecht · Natalia Neverova · Andrea Vedaldi · Oran Gafni · Filippos Kokkinos

Most text-to-3D generators build upon off-the-shelf text-to-image models trained on billions of images. They use variants of Score Distillation Sampling (SDS), which is slow, somewhat unstable, and prone to artifacts. A mitigation is to fine-tune the 2D generator to be multi-view aware, which can help distillation or can be combined with reconstruction networks to output 3D objects directly. In this paper, we further explore the design space of text-to-3D models. We significantly improve multi-view generation by considering video instead of image generators. Combined with a 3D reconstruction algorithm which, by using Gaussian splatting, can optimize a robust image-based loss, we directly produce high-quality 3D outputs from the generated views. Our new method, IM-3D, reduces the number of evaluations of the 2D generator network 10-100$\times$, resulting in a much more efficient pipeline, better quality, fewer geometric inconsistencies, and higher yield of usable 3D assets.


Poster
#2710
Early Time Classification with Accumulated Accuracy Gap Control

Liran Ringel · Regev Cohen · Daniel Freedman · Michael Elad · Yaniv Romano

Early time classification algorithms aim to label a stream of features without processing the full input stream, while maintaining accuracy comparable to that achieved by applying the classifier to the entire input. In this paper, we introduce a statistical framework that can be applied to any sequential classifier, formulating a calibrated stopping rule. This data-driven rule attains finite-sample, distribution-free control of the accuracy gap between full and early-time classification. We start by presenting a novel method that builds on the Learn-then-Test calibration framework to control this gap marginally, on average over i.i.d. instances. As this algorithm tends to yield an excessively high accuracy gap for early halt times, our main contribution is the proposal of a framework that controls a stronger notion of error, where the accuracy gap is controlled conditionally on the accumulated halt times. Numerical experiments demonstrate the effectiveness, applicability, and usefulness of our method. We show that our proposed early stopping mechanism reduces up to 94% of timesteps used for classification while achieving rigorous accuracy gap control.


Poster
#2711
Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods

Hao Di · Haishan Ye · Xiangyu Chang · Guang Dai · Ivor Tsang

In decentralized optimization, $m$ agents form a network and only communicate with their neighbors, which gives advantages in data ownership, privacy, and scalability. At the same time, decentralized stochastic gradient descent ($\texttt{SGD}$) methods, as popular decentralized algorithms for training large-scale machine learning models, have shown their superiority over centralized counterparts. Distributed stochastic gradient tracking $\texttt{DSGT}$ has been recognized as the popular and state-of-the-art decentralized $\texttt{SGD}$ method due to its proper theoretical guarantees. However, the theoretical analysis of $\texttt{DSGT}$ shows that its iteration complexity is $\tilde{\mathcal{O}} \left(\frac{\bar{\sigma}^2}{m\mu \varepsilon} + \frac{\sqrt{L}\bar{\sigma}}{\mu(1 - \lambda_2(W))^{1/2} C_W \sqrt{\varepsilon} }\right)$, where the doubly stochastic matrix $W$ represents the network topology and $ C_W $ is a parameter that depends on $W$. Thus, it indicates that the convergence property of $\texttt{DSGT}$ is heavily affected by the topology of the communication network. To overcome the weakness of $\texttt{DSGT}$, we resort to the snap-shot gradient tracking skill and propose two novel algorithms, snap-shot $\texttt{DSGT}$ ($\texttt{SS-DSGT}$) and accelerated snap-shot $\texttt{DSGT}$ ($\texttt{ASS-DSGT}$). We further justify that $\texttt{SS-DSGT}$ exhibits a lower iteration complexity compared to $\texttt{DSGT}$ in the general communication network topology. Additionally, $\texttt{ASS-DSGT}$ matches $\texttt{DSGT}$'s iteration complexity $\mathcal{O}\left( \frac{\bar{\sigma}^2}{m\mu \varepsilon} + \frac{\sqrt{L}\bar{\sigma}}{\mu (1 - \lambda_2(W))^{1/2}\sqrt{\varepsilon}} \right)$ under the same conditions as $\texttt{DSGT}$. Numerical experiments validate $\texttt{SS-DSGT}$'s superior performance performance in the general communication network topology and exhibit better practical performance of $\texttt{ASS-DSGT}$ on the specified $W$ compared to $\texttt{DSGT}$.


Poster
#2712
Data-free Distillation of Diffusion Models with Bootstrapping

Jiatao Gu · Chen Wang · Shuangfei Zhai · Yizhe Zhang · Lingjie Liu · Joshua M Susskind

Diffusion models have demonstrated great potential for generating diverse images. However, their performance often suffers from slow generation due to iterative denoising. Knowledge distillation has been recently proposed as a remedy which can reduce the number of inference steps to one or a few, without significant quality degradation. However, existing distillation methods either require significant amounts of offline computation for generating synthetic training data from the teacher model, or need to perform expensive online learning with the help of real data. In this work, we present a novel technique called BOOT, that overcomes these limitations with an efficient data-free distillation algorithm. The core idea is to learn a time-conditioned model that predicts the output of a pre-trained diffusion model teacher given any time-step. Such a model can be efficiently trained based on bootstrapping from two consecutive sampled steps. Furthermore, our method can be easily adapted to large-scale text-to-image diffusion models, which are challenging for previous methods given the fact that the training sets are often large and difficult to access. We demonstrate the effectiveness of our approach on several benchmark datasets in the DDIM setting, achieving comparable generation quality while being orders of magnitude faster than the diffusion teacher. The text-to-image results show that the proposed approach is able to handle highly complex distributions, shedding light on more efficient generative modeling.


Poster
#2713
Q-value Regularized Transformer for Offline Reinforcement Learning

Shengchao Hu · Ziqing Fan · Chaoqin Huang · Li Shen · Ya Zhang · Yanfeng Wang · Dacheng Tao

Recent advancements in offline reinforcement learning (RL) have underscored the capabilities of Conditional Sequence Modeling (CSM), a paradigm that learns the action distribution based on history trajectory and target returns for each state. However, these methods often struggle with stitching together optimal trajectories from sub-optimal ones due to the inconsistency between the sampled returns within individual trajectories and the optimal returns across multiple trajectories. Fortunately, Dynamic Programming (DP) methods offer a solution by leveraging a value function to approximate optimal future returns for each state, while these techniques are prone to unstable learning behaviors, particularly in long-horizon and sparse-reward scenarios. Building upon these insights, we propose the Q-value regularized Transformer (QT), which combines the trajectory modeling ability of the Transformer with the predictability of optimal future returns from DP methods. QT learns an action-value function and integrates a term maximizing action-values into the training loss of CSM, which aims to seek optimal actions that align closely with the behavior policy. Empirical evaluations on D4RL benchmark datasets demonstrate the superiority of QT over traditional DP and CSM methods, highlighting the potential of QT to enhance the state-of-the-art in offline RL.


Poster
#2714
Prompting is a Double-Edged Sword: Improving Worst-Group Robustness of Foundation Models

Amrith Setlur · Saurabh Garg · Virginia Smith · Sergey Levine

Machine learning models fail catastrophically under distribution shift, but a surprisingly effective way to empirically improve robustness to some types of shift (e.g., Imagenet-A/C) is to use stronger open-vocabulary classifiers derived from foundation models. In this work, we first note that for shifts governed by spurious correlations (features spuriously correlated with the label on the training data, but not on test), the zero-shot and few-shot performance of foundation models is no better than ERM models, and remains unchanged when pretrained data/model size is scaled. Secondly, even in these situations, foundation models are quite accurate at predicting the value of the spurious feature. In a simplified setup, we theoretically analyze both these findings. Specifically, we show that during contrastive pretraining, the simplicity bias of foundation models tends to result in the learning of features that mostly rely on the spurious attribute, compared to more robust features. We leverage these observations to propose Prompting for Robustness (PfR) which first uses foundation models to zero-shot predict the spurious attribute on labeled examples, and then learns a classifier with balanced performance across different groups of labels and spurious attribute. Across 5 vision and language tasks, we show that PfR's performance nearly equals that of an oracle algorithm (group DRO) that leverages human labeled spurious attributes.


Poster
#2715
Fast Decision Boundary based Out-of-Distribution Detector

Litian Liu · Yao Qin

Efficient and effective Out-of-Distribution (OOD) detection is essential for the safe deployment of AI systems. Existing feature space methods, while effective, often incur significant computational overhead due to their reliance on auxiliary models built from training features. In this paper, we propose a computationally-efficient OOD detector without using auxiliary models while still leveraging the rich information embedded in the feature space. Specifically, we detect OOD samples based on their feature distances to decision boundaries. To minimize computational cost, we introduce an efficient closed-form estimation, analytically proven to tightly lower bound the distance. Based on our estimation, we discover that In-Distribution (ID) features tend to be further from decision boundaries than OOD features. Additionally, ID and OOD samples are better separated when compared at equal deviation levels from the mean of training features. By regularizing the distances to decision boundaries based on feature deviation from the mean, we develop a hyperparameter-free, auxiliary model-free OOD detector. Our method matches or surpasses the effectiveness of state-of-the-art methods in extensive experiments while incurring negligible overhead in inference latency. Overall, our approach significantly improves the efficiency-effectiveness trade-off in OOD detection. Code is available at: https://github.com/litianliu/fDBD-OOD.


Poster
#2716
Scalable Pre-training of Large Autoregressive Image Models

Alaaeldin Ali · Michal Klein · Shuangfei Zhai · Miguel Angel Bautista Martin · Vaishaal Shankar · Alexander Toshev · Joshua M Susskind · Armand Joulin

This paper introduces AIM, a collection of vision models pre-trained with an autoregressive objective. These models are inspired by their textual counterparts, i.e., Large Language Models (LLMs), and exhibit similar scaling properties. Specifically, we highlight two key findings: (1) the performance of the visual features scale with both the model capacity and the quantity of data, (2) the value of the objective function correlates with the performance of the model on downstream tasks. We illustrate the practical implication of these findings by pre-training a 7 billion parameter AIM on 2 billion images, that achieves 84.0% on ImageNet-1k with a frozen trunk. Interestingly, even at this scale, we observe no sign of saturation in performance, suggesting that AIM potentially represents a new frontier for training large-scale vision models. The pre-training of AIM is similar to the pre-training of LLMs, and does not require any image-specific strategy to stabilize the training at scale.


Poster
#2717
A3S: A General Active Clustering Method with Pairwise Constraints

Xun Deng · Junlong Liu · Han Zhong · Fuli Feng · Chen Shen · Xiangnan He · Jieping Ye · Zheng Wang

Active clustering aims to boost the clustering performance by integrating human-annotated pairwise constraints through strategic querying. Conventional approaches with semi-supervised clustering schemes encounter high query costs when applied to large datasets with numerous classes. To address these limitations, we propose a novel Adaptive Active Aggregation and Splitting (A3S) framework, falling within the cluster-adjustment scheme in active clustering. A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm. In particular, our cluster adjustment is inspired by the quantitative analysis of Normalized mutual information gain under the information theory framework and can provably improve the clustering quality. The proposed A3S framework significantly elevates the performance and scalability of active clustering. In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries compared with existing methods.


Poster
#2800
Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective

Cheng Tan · Zhangyang Gao · Hanqun CAO · Xingran Chen · Wang Ge · Lirong Wu · Jun Xia · Jiangbin Zheng · Stan Z Li

The secondary structure of ribonucleic acid (RNA) is more stable and accessible in the cell than its tertiary structure, making it essential for functional prediction. Although deep learning has shown promising results in this field, current methods suffer from poor generalization and high complexity. In this work, we reformulate the RNA secondary structure prediction as a K-Rook problem, thereby simplifying the prediction process into probabilistic matching within a finite solution space. Building on this innovative perspective, we introduce RFold, a simple yet effective method that learns to predict the most matching K-Rook solution from the given sequence. RFold employs a bi-dimensional optimization strategy that decomposes the probabilistic matching problem into row-wise and column-wise components to reduce the matching complexity, simplifying the solving process while guaranteeing the validity of the output. Extensive experiments demonstrate that RFold achieves competitive performance and about eight times faster inference efficiency than the state-of-the-art approaches. The code is available at https://github.com/A4Bio/RFold.


Poster
#300
QUEST: Query-Aware Sparsity for Efficient Long-Context LLM Inference

Jiaming Tang · Yilong Zhao · Kan Zhu · Guangxuan Xiao · Baris Kasikci · Song Han

As the demand for long-context large language models (LLMs) increases, models with context windows of up to 128K or 1M tokens are becoming increasingly prevalent. However, long-context LLM inference is challenging since the inference speed decreases significantly as the sequence length grows. This slowdown is primarily caused by loading a large KV cache during self-attention. Previous works have shown that a small portion of critical tokens will dominate the attention outcomes. However, we observe the criticality of a token highly depends on the query. To this end, we propose Quest, a query-aware KV cache selection algorithm. Quest keeps track of the minimal and maximal Key values in KV cache pages and estimates the criticality of a given page using Query vectors. By only loading the Top-K critical KV cache pages for attention, Quest significantly speeds up self-attention without sacrificing accuracy. We show that Quest can achieve up to 2.23x self-attention speedup, which reduces inference latency by 7.03x while performing well on tasks with long dependencies with negligible accuracy loss. Code is available at https://github.com/mit-han-lab/quest.


Poster
#301
Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes

Yingyi Chen · Qinghua Tao · Francesco Tonin · Johan Suykens

While the great capability of Transformers significantly boosts prediction accuracy, it could also yield overconfident predictions and require calibrated uncertainty estimation, which can be commonly tackled by Gaussian processes (GPs). Existing works apply GPs with symmetric kernels under variational inference to the attention kernel; however, omitting the fact that attention kernels are in essence asymmetric. Moreover, the complexity of deriving the GP posteriors remains high for large-scale data. In this work, we propose Kernel-Eigen Pair Sparse Variational Gaussian Processes (KEP-SVGP) for building uncertainty-aware self-attention where the asymmetry of attention kernels is tackled by Kernel SVD (KSVD) and a reduced complexity is acquired. Through KEP-SVGP, i) the SVGP pair induced by the two sets of singular vectors from KSVD w.r.t. the attention kernel fully characterizes the asymmetry; ii) using only a small set of adjoint eigenfunctions from KSVD, the derivation of SVGP posteriors can be based on the inversion of a diagonal matrix containing singular values, contributing to a reduction in time complexity; iii) an evidence lower bound is derived so that variational parameters and network weights can be optimized with it. Experiments verify our excellent performances and efficiency on in-distribution, distribution-shift and out-of-distribution benchmarks.


Poster
#302
Learning Decision Policies with Instrumental Variables through Double Machine Learning

Bill Daqian Shao · Ashkan Soleymani · Francesco Quinzan · Marta Kwiatkowska

A common issue in learning decision-making policies in data-rich settings is spurious correlations in the offline dataset, which can be caused by hidden confounders. Instrumental variable (IV) regression, which utilises a key uncounfounded variable called the instrument, is a standard technique for learning causal relationships between confounded action, outcome and context variables. Most recent IV regression algorithms use a two-stage approach, where a deep neural network (DNN) estimator learnt in the first stage is directly plugged into the second stage, in which another DNN is used to estimate the causal effect. Naively plugging the estimator can cause heavy bias in the second stage, especially when regularisation bias is present in the first stage estimator. We propose DML-IV, a non-linear IV regression method that reduces the bias in two-stage IV regressions and effectively learns high-performing policies. We derive a novel learning objective to reduce bias and design the DML-IV algorithm following the double/debiased machine learning (DML) framework. The learnt DML-IV estimator has strong convergence rate and $O(N^{-1/2})$ suboptimality guarantees that match those when the dataset is unconfounded. DML-IV outperforms state-of-the-art IV regression methods on IV regression benchmarks and learns high-performing policies in the presence of instruments.


Poster
#303
Plug-and-Play image restoration with Stochastic deNOising REgularization

Marien Renaud · Jean Prost · Arthur Leclaire · Nicolas Papadakis

Plug-and-Play (PnP) algorithms are a class of iterative algorithms that address image inverse problems by combining a physical model and a deep neural network for regularization. Even if they produce impressive image restoration results, these algorithms rely on a non-standard use of a denoiser on images that are less and less noisy along the iterations, which contrasts with recent algorithms based on Diffusion Models (DM), where the denoiser is applied only on re-noised images. We propose a new PnP framework, called Stochastic deNOising REgularization (SNORE), which applies the denoiser only on images with noise of the adequate level. It is based on an explicit stochastic regularization, which leads to a stochastic gradient descent algorithm to solve ill-posed inverse problems. A convergence analysis of this algorithm and its annealing extension is provided. Experimentally, we prove that SNORE is competitive with respect to state-of-the-art methods on deblurring and inpainting tasks, both quantitatively and qualitatively.


Spotlight Poster
#304
Memorization Through the Lens of Curvature of Loss Function Around Samples

Isha Garg · Deepak Ravikumar · Kaushik Roy

Deep neural networks are over-parameterized and easily overfit to and memorize the datasets that they train on. In the extreme case, it has been shown that networks can memorize a randomly labeled dataset. In this paper, we propose using the curvature of the loss function around each training sample, averaged over training epochs, as a measure of memorization of a sample. We show that this curvature metric effectively captures memorization statistics, both qualitatively and quantitatively in popular image datasets. We provide quantitative validation of the proposed metric against memorization scores released by Feldman & Zhang (2020). Further, experiments on mislabeled data detection show that corrupted samples are learned with high curvature and using curvature for identifying mislabelled examples outperforms existing approaches. Qualitatively, we find that high curvature samples correspond to long-tailed, mislabeled, or conflicting instances, indicating a likelihood of memorization. Notably, this analysis helps us find, to the best of our knowledge, a novel failure mode on the CIFAR100 and ImageNet datasets: that of duplicated images with differing labels.


Poster
#305
Wasserstein Wormhole: Scalable Optimal Transport Distance with Transformer

Doron Haviv · Russell Kunes · Thomas Dougherty · Cassandra Burdziak · Tal Nawy · Anna C. Gilbert · Dana Pe'er

Optimal transport (OT) and the related Wasserstein metric ($W$) are powerful and ubiquitous tools for comparing distributions. However, computing pairwise Wasserstein distances rapidly becomes intractable as cohort size grows. An attractive alternative would be to find an embedding space in which pairwise Euclidean distances map to OT distances, akin to standard multidimensional scaling (MDS). We present Wasserstein Wormhole, a transformer-based autoencoder that embeds empirical distributions into a latent space wherein Euclidean distances approximate OT distances. Extending MDS theory, we show that our objective function implies a bound on the error incurred when embedding non-Euclidean distances. Empirically, distances between Wormhole embeddings closely match Wasserstein distances, enabling linear time computation of OT distances. Along with an encoder that maps distributions to embeddings, Wasserstein Wormhole includes a decoder that maps embeddings back to distributions, allowing for operations in the embedding space to generalize to OT spaces, such as Wasserstein barycenter estimation and OT interpolation. By lending scalability and interpretability to OT approaches, Wasserstein Wormhole unlocks new avenues for data analysis in the fields of computational geometry and single-cell biology.


Poster
#306
Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation

Xuexin Chen · Ruichu Cai · Zhengting Huang · Yuxuan Zhu · Julien Horwood · Zhifeng Hao · Zijian Li · Jose Miguel Hernandez-Lobato

We investigate the problem of explainability for machine learning models, focusing on Feature Attribution Methods (FAMs) that evaluate feature importance through perturbation tests. Despite their utility, FAMs struggle to distinguish the contributions of different features, when their prediction changes are similar after perturbation. To enhance FAMs' discriminative power, we introduce Feature Attribution with Necessity and Sufficiency (FANS), which find a neighborhood of the input such that perturbing samples within this neighborhood have a high Probability of being Necessity and Sufficiency (PNS) cause for the change in predictions, and use this PNS as the importance of the feature. Specifically, FANS compute this PNS via a heuristic strategy for estimating the neighborhood and a perturbation test involving two stages (factual and interventional) for counterfactual reasoning. To generate counterfactual samples, we use a resampling-based approach on the observed samples to approximate the required conditional distribution. We demonstrate that FANS outperforms existing attribution methods on six benchmarks. Please refer to the source code via https://github.com/DMIRLAB-Group/FANS.


Spotlight Poster
#307
Beyond Implicit Bias: The Insignificance of SGD Noise in Online Learning

Nikhil Vyas · Depen Morwani · Rosie Zhao · Gal Kaplun · Sham Kakade · Boaz Barak

The success of SGD in deep learning has been ascribed by prior works to the implicit bias induced by finite batch sizes (''SGD noise''). While prior works focused on offline learning (i.e., multiple-epoch training), we study the impact of SGD noise on online (i.e., single epoch) learning. Through an extensive empirical analysis of image and language data, we demonstrate that small batch sizes do not confer any implicit bias advantages in online learning. In contrast to offline learning, the benefits of SGD noise in online learning are strictly computational, facilitating more cost-effective gradient steps. This suggests that SGD in the online regime can be construed as taking noisy steps along the ''golden path'' of the noiseless gradient descent algorithm. We study this hypothesis and provide supporting evidence in loss and function space. Our findings challenge the prevailing understanding of SGD and offer novel insights into its role in online learning.


Poster
#308
Deep Fusion: Efficient Network Training via Pre-trained Initializations

Hanna Mazzawi · Xavi Gonzalvo · Michael Wunder · Sammy Jerome · Benoit Dherin

Training deep neural networks for large language models (LLMs) remains computationally very expensive. To mitigate this, network growing algorithms offer potential cost savings, but their underlying mechanisms are poorly understood. In this paper, we propose a theoretical framework using backward error analysis to illuminate the dynamics of mid-training network growth. Furthermore, we introduce Deep Fusion, an efficient network training approach that leverages pre-trained initializations of smaller networks, facilitating network growth from diverse sources. Our experiments validate the power of our theoretical framework in guiding the optimal use of Deep Fusion. With carefully optimized training dynamics, Deep Fusion demonstrates significant reductions in both training time and resource consumption. Importantly, these gains are achieved without sacrificing performance. We demonstrate reduced computational requirements, and improved generalization performance on a variety of NLP tasks and T5 model sizes.


Poster
#309
InfoNet: Neural Estimation of Mutual Information without Test-Time Optimization

Zhengyang Hu · Song Kang · Qunsong Zeng · Kaibin Huang · Yanchao Yang

Estimating mutual correlations between random variables or data streams is essential for intelligent behavior and decision-making. As a fundamental quantity for measuring statistical relationships, mutual information has been extensively studied and utilized for its generality and equitability. However, existing methods often lack the efficiency needed for real-time applications, such as test-time optimization of a neural network, or the differentiability required for end-to-end learning, like histograms. We introduce a neural network called InfoNet, which directly outputs mutual information estimations of data streams by leveraging the attention mechanism and the computational efficiency of deep learning infrastructures. By maximizing a dual formulation of mutual information through large-scale simulated training, our approach circumvents time-consuming test-time optimization and offers generalization ability. We evaluate the effectiveness and generalization of our proposed mutual information estimation scheme on various families of distributions and applications. Our results demonstrate that InfoNet and its training process provide a graceful efficiency-accuracy trade-off and order-preserving properties. We will make the code and models available as a comprehensive toolbox to facilitate studies in different fields requiring real-time mutual information estimation.


Poster
#310
Latent Space Symmetry Discovery

Jianke Yang · Nima Dehmamy · Robin Walters · Rose Yu

Equivariant neural networks require explicit knowledge of the symmetry group. Automatic symmetry discovery methods aim to relax this constraint and learn invariance and equivariance from data. However, existing symmetry discovery methods are limited to simple linear symmetries and cannot handle the complexity of real-world data. We propose a novel generative model, Latent LieGAN (LaLiGAN), which can discover symmetries of nonlinear group actions. It learns a mapping from the data space to a latent space where the symmetries become linear and simultaneously discovers symmetries in the latent space. Theoretically, we show that our model can express nonlinear symmetries under some conditions about the group action. Experimentally, we demonstrate that our method can accurately discover the intrinsic symmetry in high-dimensional dynamical systems. LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.


Poster
#311
Discovering Features with Synergistic Interactions in Multiple Views

Chohee Kim · M van der Schaar · Changhee Lee

Discovering features with synergistic interactions in multi-view data, that provide more information gain when considered together than when considered separately, is particularly valuable. This fosters a more comprehensive understanding of the target outcome from diverse perspectives (views). However, despite the increasing opportunities presented by multi-view data, surprisingly little attention has been paid to uncovering these crucial interactions. To address this gap, we formally define the problem of selecting synergistic and non-synergistic feature subsets in multi-view data, leveraging an information-theoretic concept known as interaction information. To this end, we introduce a novel deep learning-based feature selection method that identifies different interactions across multiple views, employing a Bernoulli relaxation technique to solve this intractable subset searching problem. Experiments on synthetic, semi-synthetic, and real-world multi-view datasets demonstrate that our model discovers relevant feature subsets with synergistic and non-synergistic interactions, achieving remarkable similarity to the ground truth. Furthermore, we corroborate the discovered features with supporting medical and scientific literature, underscoring its utility in elucidating complex dependencies and interactions in multi-view data.


Poster
#312
VisionGraph: Leveraging Large Multimodal Models for Graph Theory Problems in Visual Context

yunxin li · Baotian Hu · Haoyuan Shi · Wei Wang · Longyue Wang · Min Zhang

Large Multimodal Models (LMMs) have achieved impressive success in visual reasoning, particularly in visual mathematics. However, problem-solving capabilities in graph theory remain less explored for LMMs, despite being a crucial aspect of mathematical reasoning that requires an accurate understanding of graphical structures and multi-step reasoning on visual graphs. To step forward in this direction, we are the first to design a benchmark named VisionGraph, used to explore the capabilities of advanced LMMs in solving multimodal graph theory problems. It encompasses eight complex graph problem tasks, from connectivity to shortest path problems. Subsequently, we present a Description-Program-Reasoning (DPR) chain to enhance the logical accuracy of reasoning processes through graphical structure description generation and algorithm-aware multi-step reasoning. Our extensive study shows that 1) GPT-4V outperforms Gemini Pro in multi-step graph reasoning; 2) All LMMs exhibit inferior perception accuracy for graphical structures, whether in zero/few-shot settings or with supervised fine-tuning (SFT), which further affects problem-solving performance; 3) DPR significantly improves the multi-step graph reasoning capabilities of LMMs and the GPT-4V (DPR) agent achieves SOTA performance.


Poster
#313
Harnessing Hierarchical Label Distribution Variations in Test Agnostic Long-tail Recognition

Zhiyong Yang · Qianqian Xu · Zitai Wang · Sicong Li · Boyu Han · Shilong Bao · Xiaochun Cao · Qingming Huang

This paper explores test-agnostic long-tail recognition, a challenging long-tail task where the test label distributions are unknown and arbitrarily imbalanced. We argue that the variation in these distributions can be broken down hierarchically into global and local levels. The global ones reflect a broad range of diversity, while the local ones typically arise from milder changes, often focused On a particular neighbor. Traditional methods predominantly use a Mixture-of-Expert (MoE) approach, targeting a few fixed test label distributions that exhibit substantial global variations. However, the local variations are left unconsidered. To address this issue, we propose a new MoE strategy, $\mathsf{DirMixE}$, which assigns experts to different Dirichlet meta-distributions of the label distribution, each targeting a specific aspect of local variations. Additionally, the diversity among these Dirichlet meta-distributions inherently captures global variations. This dual-level approach also leads to a more stable objective function, allowing us to sample different test distributions better to quantify the mean and variance of performance outcomes. Theoretically, we show that our proposed objective benefits from enhanced generalization by virtue of the variance-based regularization. Comprehensive experiments across multiple benchmarks confirm the effectiveness of $\mathsf{DirMixE}$.


Poster
#314
An Embodied Generalist Agent in 3D World

Jiangyong Huang · Silong Yong · Xiaojian Ma · Xiongkun Linghu · Puhao Li · Yan Wang · Qing Li · Song-Chun Zhu · Baoxiong Jia · Siyuan Huang

Leveraging massive knowledge from large language models (LLMs), recent machine learning models show notable successes in general-purpose task solving in diverse domains such as computer vision and robotics. However, several significant challenges remain: (i) most of these models rely on 2D images yet exhibit a limited capacity for 3D input; (ii) these models rarely explore the tasks inherently defined in 3D world, e.g., 3D grounding, embodied reasoning and acting. We argue these limitations significantly hinder current models from performing real-world tasks and approaching general intelligence. To this end, we introduce LEO, an embodied multi-modal generalist agent that excels in perceiving, grounding, reasoning, planning, and acting in the 3D world. LEO is trained with a unified task interface, model architecture, and objective in two stages: (i) 3D vision-language (VL) alignment and (ii) 3D vision-language-action (VLA) instruction tuning. We collect large-scale datasets comprising diverse object-level and scene-level tasks, which require considerable understanding of and interaction with the 3D world. Moreover, we meticulously design an LLM-assisted pipeline to produce high-quality 3D VL data. Through extensive experiments, we demonstrate LEO's remarkable proficiency across a wide spectrum of tasks, including 3D captioning, question answering, embodied reasoning, navigation and manipulation. Our ablative studies and scaling analyses further provide valuable insights for developing future embodied generalist agents. Code and data are available on project page.


Poster
#315
Indirectly Parameterized Concrete Autoencoders

Alfred Nilsson · Klas Wijk · Sai bharath chandra Gutha · Erik Englesson · Alexandra Hotti · Carlo Saccardi · Oskar Kviman · Jens Lagergren · Ricardo Vinuesa · Hossein Azizpour

Feature selection is a crucial task in settings where data is high-dimensional or acquiring the full set of features is costly. Recent developments in neural network-based embedded feature selection show promising results across a wide range of applications. Concrete Autoencoders (CAEs), considered state-of-the-art in embedded feature selection, may struggle to achieve stable joint optimization, hurting their training time and generalization. In this work, we identify that this instability is correlated with the CAE learning duplicate selections. To remedy this, we propose a simple and effective improvement: Indirectly Parameterized CAEs (IP-CAEs). IP-CAEs learn an embedding and a mapping from it to the Gumbel-Softmax distributions' parameters. Despite being simple to implement, IP-CAE exhibits significant and consistent improvements over CAE in both generalization and training time across several datasets for reconstruction and classification. Unlike CAE, IP-CAE effectively leverages non-linear relationships and does not require retraining the jointly optimized decoder. Furthermore, our approach is, in principle, generalizable to Gumbel-Softmax distributions beyond feature selection.


Spotlight Poster
#316
Revisiting the Power of Prompt for Visual Tuning

Yuzhu Wang · Lechao Cheng · Chaowei Fang · Dingwen Zhang · Manni Duan · Meng Wang

Visual prompt tuning (VPT) is a promising solution incorporating learnable prompt tokens to customize pre-trained models for downstream tasks. However, VPT and its variants often encounter challenges like prompt initialization, prompt length, and subpar performance in self-supervised pretraining, hindering successful contextual adaptation. This study commences by exploring the correlation evolvement between prompts and patch tokens during proficient training. Inspired by the observation that the prompt tokens tend to share high mutual information with patch tokens, we propose initializing prompts with downstream token prototypes. The strategic initialization, a stand-in for the previous initialization, substantially improves performance. To refine further, we optimize token construction with a streamlined pipeline that maintains excellent performance with almost no increase in computational expenses compared to VPT. Exhaustive experiments show our proposed approach outperforms existing methods by a remarkable margin. For instance, after MAE pre-training, our method improves accuracy by up to 10%$\sim$30% compared to VPT, and outperforms Full fine-tuning 19 out of 24 cases while using less than 0.4% of learnable parameters. Besides, the experimental results demonstrate the proposed SPT is robust to prompt lengths and scales well with model capacity and training data size. We finally provide an insightful exploration into the amount of target data facilitating the adaptation of pre-trained models to downstream tasks. The code is available at https://github.com/WangYZ1608/Self-Prompt-Tuning.


Poster
#317
Breaking through the learning plateaus of in-context learning in Transformer

Jingwen Fu · Tao Yang · Yuwang Wang · Yan Lu · Nanning Zheng

In-context learning, i.e., learning from context examples, is an impressive ability of Transformer. Training Transformers to possess this in-context learning skill is computationally intensive due to the occurrence of learning plateaus, which are periods within the training process where there is minimal or no enhancement in the model's in-context learning capability. To study the mechanism behind the learning plateaus, we conceptually separate a component within the model's internal representation that is exclusively affected by the model's weights. We call this the “weights component”, and the remainder is identified as the “context component”. By conducting meticulous and controlled experiments on synthetic tasks, we note that the persistence of learning plateaus correlates with compromised functionality of the weights component. Recognizing the impaired performance of the weights component as a fundamental behavior that drives learning plateaus, we have developed three strategies to expedite the learning of Transformers. The effectiveness of these strategies is further confirmed in natural language processing tasks. In conclusion, our research demonstrates the feasibility of cultivating a powerful in-context learning ability within AI systems in an eco-friendly manner.


Spotlight Poster
#400
Transformers, parallel computation, and logarithmic depth

Clayton Sanford · Daniel Hsu · Matus Telgarsky

We show that a constant number of self-attention layers can efficiently simulate—and be simulated by—a constant number of communication rounds of Massively Parallel Computation. As a consequence, we show that logarithmic-depth is sufficient for transformers to solve basic computational tasks that cannot be efficiently solved by several other neural sequence models and sub-quadratic transformer approximations. We thus establish parallelism as a key distinguishing property of transformers.


Poster
#401
Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences

Zicheng Liu · Siyuan Li · Li Wang · Zedong Wang · Yunfan Liu · Stan Z Li

To mitigate the computational complexity in the self-attention mechanism on long sequences, linear attention utilizes computation tricks to achieve linear complexity, while state space models (SSMs) popularize a favourable practice of using non-data-dependent memory pattern, i.e., emphasize the near and neglect the distant, to processing sequences. Recent studies have shown the priorities by combining them as one. However, the efficiency of linear attention remains only at the theoretical level in a causal setting, and SSMs require various designed constraints to operate effectively on specific data. Therefore, in order to unveil the true power of the hybrid design, the following two issues need to be addressed: (1) hardware-efficient implementation for linear attention and (2) stabilization of SSMs. To achieve this, we leverage the thought of tiling and hierarchy to propose CHELA (short-long Convolutions with Hardware-Efficient Linear Attention), which replaces SSMs with short-long convolutions and implements linear attention in a divide-and-conquer manner. This approach enjoys global abstraction and data-dependent selection from stable SSM and linear attention while maintaining real linear complexity. Our comprehensive experiments on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.


Poster
#402
LeaPformer: Enabling Linear Transformers for Autoregressive and Simultaneous Tasks via Learned Proportions

Victor Agostinelli III · Sanghyun Hong · Lizhong Chen

A promising approach to preserving model performance in linearized transformers is to employ position-based re-weighting functions. However, state-of-the-art re-weighting functions rely heavily on target sequence lengths, making it difficult or impossible to apply them to autoregressive and simultaneous tasks, where the target and sometimes even the input sequence length are unknown. To address this issue, we propose Learned Proportions (LeaP) and LeaPformers. Our contribution is built on two major components. First, we generalize the dependence on explicit positional representations and sequence lengths into dependence on sequence proportions for re-weighting. Second, we replace static positional representations with dynamic proportions derived via a compact module, enabling more flexible attention concentration patterns. We evaluate LeaPformer against eight representative efficient transformers on the Long-Range Arena benchmark, where we show that LeaPformer achieves the best quality-throughput trade-off, as well as apply LeaPformer to Wikitext-103b autoregressive language modeling and simultaneous speech-to-text translation for two language pairs, achieving competitive results in both tasks.


Poster
#403
Self-attention Networks Localize When QK-eigenspectrum Concentrates

Han Bao · Ryuichiro Hataya · Ryo Karakida

The self-attention mechanism prevails in modern machine learning. It has an interesting functionality of adaptively selecting tokens from an input sequence by modulating the degree of attention localization, which many researchers speculate is the basis of the powerful model performance but complicates the underlying mechanism of the learning dynamics. In recent years, mainly two arguments have connected attention localization to the model performances. One is the rank collapse, where the embedded tokens by a self-attention block become very similar across different tokens, leading to a less expressive network. The other is the entropy collapse, where the attention probability approaches non-uniform and entails low entropy, making the learning dynamics more likely to be trapped in plateaus. These two failure modes may apparently contradict each other because the rank and entropy collapses are relevant to uniform and non-uniform attention, respectively. To this end, we characterize the notion of attention localization by the eigenspectrum of query-key parameter matrices and reveal that a small eigenspectrum variance leads attention to be localized. Interestingly, the small eigenspectrum variance prevents both rank and entropy collapse, leading to better model expressivity and trainability.


Spotlight Poster
#404
Simple linear attention language models balance the recall-throughput tradeoff

Simran Arora · Sabri Eyuboglu · Michael Zhang · Aman Timalsina · Silas Alberti · James Zou · Atri Rudra · Christopher Re

Recent work has shown that attention-based language models excel at "recall", the ability to ground generations in tokens previously seen in context. However, the efficiency of attention-based models is bottle-necked during inference by the KV-cache's aggressive memory consumption. In this work, we explore whether we can improve language model efficiency (e.g. by reducing memory consumption) without compromising on recall. By applying experiments and theory to a broad set of architectures, we identify a key tradeoff between a model's recurrent state size and recall ability. We show that efficient alternatives to attention (e.g. H3, Mamba, RWKV) maintain a fixed-size recurrent state, but struggle at recall. We propose BASED a simple architecture combining linear and sliding window attention. By varying BASED window size and linear attention feature dimension, we can dial the state size and traverse the Pareto frontier of the recall-memory tradeoff curve, recovering the full quality of attention on one end and the small state size of attention-alternatives on the other. We train language models up to $1.3$b parameters and show that BASED matches the strongest sub-quadratic models (e.g. Mamba) in perplexity and outperforms them on real-world recall-intensive tasks by 10.36 accuracy points. We further develop IO-aware algorithms that enable BASED to provide 24× higher throughput on language generation than FlashAttention-2, when generating 1024 tokens using 1.3b parameter models. Overall, BASED expands the Pareto frontier of the throughput-recall tradeoff space beyond prior architectures.


Poster
#405
Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

Jan van den Brand · Zhao Song · Tianyi Zhou

The attention scheme is one of the key components over all the LLMs, such as BERT, GPT-1, Transformers, GPT-2, 3, 3.5 and 4. Inspired by previous theoretical study of static version of the attention multiplication problem [Zandieh, Han, Daliri, and Karbasi ICML 2023, Alman and Song NeurIPS 2023], we formally define a dynamic version of attention matrix multiplication problem. In each iteration we update one entry in key matrix $K \in \mathbb{R}^{n \times d}$ or value matrix $V \in \mathbb{R}^{n \times d}$. In the query stage, we receive $(i,j) \in [n] \times [d]$ as input, and want to answer $(D^{-1} A V)_{i,j}$, where $A:=\exp(QK^\top) \in \mathbb{R}^{n \times n}$ is a square matrix and $D := \mathrm{diag}(A {\bf 1}_n) \in \mathbb{R}^{n \times n}$ is a diagonal matrix and ${\bf 1}_n$ denotes a length-$n$ vector that all the entries are ones. We provide two results: an algorithm and a conditional lower bound. Inspired by the lazy update idea from [Demetrescu and Italiano FOCS 2000, Sankowski FOCS 2004, Cohen, Lee and Song STOC 2019, Brand SODA 2020], we provide a data-structure that uses $O(n^{\omega(1,1,\tau)-\tau})$ amortized update time, and $O(n^{1+\tau})$ worst-case query time, where $n^{\omega(1,1,\tau)}$ denotes $\mathrm(n,n,n^\tau)$ with matrix multiplication exponent $\omega$ and $\tau$ denotes a constant in $(0,1]$. We also show that unless the hinted matrix vector multiplication conjecture [Brand, Nanongkai and Saranurak FOCS 2019] is false, there is no algorithm that can use both $O(n^{\omega(1,1,\tau) - \tau- \Omega(1)})$ amortized update time, and $O(n^{1+\tau-\Omega(1)})$ worst query time.


Poster
#406
Transformers Provably Learn Sparse Token Selection While Fully-Connected Nets Cannot

Zixuan Wang · Stanley Wei · Daniel Hsu · Jason Lee

The transformer architecture has prevailed in various deep learning settings due to its exceptional capabilities to select and compose structural information. Motivated by these capabilities, Sanford et al. (2023) proposed the sparse token selection task, in which transformers excel while fully-connected networks (FCNs) fail in the worst case. Building upon that, we strengthen the FCN lower bound to an average-case setting and establish an algorithmic separation of transformers over FCNs. Specifically, a one-layer transformer trained with gradient descent provably learns the sparse token selection task and, surprisingly, exhibits strong out-of-distribution length generalization. We provide empirical simulations to justify our theoretical findings.


Poster
#407
Memory Efficient Neural Processes via Constant Memory Attention Block

Leo Feng · Frederick Tung · Hossein Hajimirsadeghi · Yoshua Bengio · Mohamed Osama Ahmed

Neural Processes (NPs) are popular meta-learning methods for efficiently modelling predictive uncertainty. Recent state-of-the-art methods, however, leverage expensive attention mechanisms, limiting their applications, particularly in low-resource settings. In this work, we propose Constant Memory Attentive Neural Processes (CMANPs), an NP variant that only requires constant memory. To do so, we first propose an efficient update operation for Cross Attention. Leveraging the update operation, we propose Constant Memory Attention Block (CMAB), a novel attention block that (i) is permutation invariant, (ii) computes its output in constant memory, and (iii) performs constant computation updates. Finally, building on CMAB, we detail Constant Memory Attentive Neural Processes. Empirically, we show CMANPs achieve state-of-the-art results on popular NP benchmarks while being significantly more memory efficient than prior methods.


Poster
#408
The Surprising Effectiveness of Skip-Tuning in Diffusion Sampling

Jiajun Ma · Shuchen Xue · Tianyang Hu · Wenjia Wang · Zhaoqiang Liu · Zhenguo Li · Zhiming Ma · Kenji Kawaguchi

With the incorporation of the UNet architecture, diffusion probabilistic models have become a dominant force in image generation tasks. One key design in UNet is the skip connections between the encoder and decoder blocks. Although skip connections have been shown to improve training stability and model performance, we point out that such shortcuts can be a limiting factor for the complexity of the transformation. As the sampling steps decrease, the generation process and the role of the UNet get closer to the push-forward transformations from Gaussian distribution to the target, posing a challenge for the network's complexity. To address this challenge, we propose Skip-Tuning, a simple yet surprisingly effective training-free tuning method on the skip connections. For instance, our method can achieve 100% FID improvement for pretrained EDM on ImageNet 64 with only 19 NFEs (1.75), breaking the limit of ODE samplers regardless of sampling steps. Surprisingly, the improvement persists when we increase the number of sampling steps and can even surpass the best result from EDM-2 (1.58) with only 39 NFEs (1.57). Comprehensive exploratory experiments are conducted to shed light on the surprising effectiveness of our Skip-Tuning. We observe that while Skip-Tuning increases the score-matching losses in the pixel space, the losses in the feature space are reduced, particularly at intermediate noise levels, which coincide with the most effective range accounting for image quality improvement.


Poster
#409
Compositional Image Decomposition with Diffusion Models

Jocelin Su · Nan Liu · Yanbo Wang · Josh Tenenbaum · Yilun Du

Given an image of a natural scene, we are able to quickly decompose it into a set of components such as objects, lighting, shadows, and foreground. We can then envision a scene where we combine certain components with those from other images, for instance a set of objects from our bedroom and animals from a zoo under the lighting conditions of a forest, even if we have never encountered such a scene before. In this paper, we present a method to decompose an image into such compositional components. Our approach, Decomp Diffusion, is an unsupervised method which, when given a single image, infers a set of different components in the image, each represented by a diffusion model. We demonstrate how components can capture different factors of the scene, ranging from global scene descriptors like shadows or facial expression to local scene descriptors like constituent objects. We further illustrate how inferred factors can be flexibly composed, even with factors inferred from other models, to generate a variety of scenes sharply different than those seen in training time. Code and visualizations are at https://energy-based-model.github.io/decomp-diffusion.


Poster
#410
CCM: Real-Time Controllable Visual Content Creation Using Text-to-Image Consistency Models

Jie Xiao · Kai Zhu · Han Zhang · Zhiheng Liu · Yujun Shen · Zhantao Yang · Ruili Feng · Yu Liu · Xueyang Fu · Zheng-Jun Zha

Consistency Models (CMs) have showed a promise in creating high-quality images with few steps. However, the way to add new conditional controls to the pre-trained CMs has not been explored. In this paper, we explore the pivotal subject of leveraging the generative capacity and efficiency of consistency models to facilitate controllable visual content creation via ControlNet. First, it is observed that ControlNet trained for diffusion models (DMs) can be directly applied to CMs for high-level semantic controls but sacrifice image low-level details and realism. To tackle with this issue, we develop a CMs-tailored training strategy for ControlNet using the consistency training. It is substantiated that ControlNet can be successfully established through the consistency training technique. Besides, a unified adapter can be trained utilizing the consistency training, which enhances the adaptation of DM's ControlNet. We quantitatively and qualitatively evaluate all strategies across various conditional controls, including sketch, hed, canny, depth, human pose, low-resolution image and masked image, with the pre-trained text-to-image latent consistency models.


Poster
#411
GenCO: Generating Diverse Designs with Combinatorial Constraints

Aaron Ferber · Arman Zharmagambetov · Taoan Huang · Bistra Dilkina · Yuandong Tian

Deep generative models like GAN and VAE have shown impressive results in generating unconstrained objects like images. However, many design settings arising in industrial design, material science, computer graphics and more require that the generated objects satisfy hard combinatorial constraints or meet objectives in addition to modeling a data distribution. To address this, we propose GenCO, a generative framework that guarantees constraint satisfaction throughout training by leveraging differentiable combinatorial solvers to enforce feasibility. GenCO imposes the generative loss on provably feasible solutions rather than intermediate soft solutions, meaning that the deep generative network can focus on ensuring the generated objects match the data distribution without having to also capture feasibility. This shift enables practitioners to enforce hard constraints on the generated outputs during end-to-end training, enabling assessments of their feasibility and introducing additional combinatorial loss components to deep generative training. We demonstrate the effectiveness of our approach on a variety of generative combinatorial tasks, including game level generation, map creation for path planning, and photonic device design, consistently demonstrating its capability to yield diverse, high-quality solutions that verifiably adhere to user-specified combinatorial properties.


Poster
#412
A Simple Early Exiting Framework for Accelerated Sampling in Diffusion Models

Taehong Moon · Moonseok Choi · EungGu Yun · Jongmin Yoon · Gayoung Lee · Jaewoong Cho · Juho Lee

Diffusion models have shown remarkable performance in generation problems over various domains including images, videos, text, and audio. A practical bottleneck of diffusion models is their sampling speed, due to the repeated evaluation of score estimation networks during the inference. In this work, we propose a novel framework capable of adaptively allocating compute required for the score estimation, thereby reducing the overall sampling time of diffusion models. We observe that the amount of computation required for the score estimation may vary along the time step for which the score is estimated. Based on this observation, we propose an early-exiting scheme, where we skip the subset of parameters in the score estimation network during the inference, based on a time-dependent exit schedule. Using the diffusion models for image synthesis, we show that our method could significantly improve the sampling throughput of the diffusion models without compromising image quality. Furthermore, we also demonstrate that our method seamlessly integrates with various types of solvers for faster sampling, capitalizing on their compatibility to enhance overall efficiency.


Poster
#413
Improving Adversarial Energy-Based Model via Diffusion Process

Cong Geng · Tian Han · Peng-Tao Jiang · Hao Zhang · Jinwei Chen · Søren Hauberg · Bo Li

Generative models have shown strong generation ability while efficient likelihood estimation is less explored. Energy-based models (EBMs) define a flexible energy function to parameterize unnormalized densities efficiently but are notorious for being difficult to train. Adversarial EBMs introduce a generator to form a minimax training game to avoid expensive MCMC sampling used in traditional EBMs, but a noticeable gap between adversarial EBMs and other strong generative models still exists. Inspired by diffusion-based models, we embedded EBMs into each denoising step to split a long-generated process into several smaller steps. Besides, we employ a symmetric Jeffrey divergence and introduce a variational posterior distribution for the generator's training to address the main challenges that exist in adversarial EBMs. Our experiments show significant improvement in generation compared to existing adversarial EBMs, while also providing a useful energy function for efficient density estimation.


Poster
#414
Guidance with Spherical Gaussian Constraint for Conditional Diffusion

Lingxiao Yang · Shutong Ding · Yifan Cai · Jingyi Yu · Jingya Wang · Ye Shi

Recent advances in diffusion models attempt to handle conditional generative tasks by utilizing a differentiable loss function for guidance without the need for additional training. While these methods achieved certain success, they often compromise on sample quality and require small guidance step sizes, leading to longer sampling processes. This paper reveals that the fundamental issue lies in the manifold deviation during the sampling process when loss guidance is employed. We theoretically show the existence of manifold deviation by establishing a certain lower bound for the estimation error of the loss guidance. To mitigate this problem, we propose Diffusion with Spherical Gaussian constraint (DSG), drawing inspiration from the concentration phenomenon in high-dimensional Gaussian distributions. DSG effectively constrains the guidance step within the intermediate data manifold through optimization and enables the use of larger guidance steps. Furthermore, we present a closed-form solution for DSG denoising with the Spherical Gaussian constraint. Notably, DSG can seamlessly integrate as a plugin module within existing training-free conditional diffusion methods. Implementing DSG merely involves a few lines of additional code with almost no extra computational overhead, yet it leads to significant performance improvements. Comprehensive experimental results in various conditional generation tasks validate the superiority and adaptability of DSG in terms of both sample quality and time efficiency.


Poster
#415
Feedback Efficient Online Fine-Tuning of Diffusion Models

Masatoshi Uehara · Yulai Zhao · Kevin Black · Ehsan Hajiramezanali · Gabriele Scalia · Nathaniel Diamant · Alex Tseng · Sergey Levine · Tommaso Biancalani

Diffusion models excel at modeling complex data distributions, including those of images, proteins, and small molecules. However, in many cases, our goal is to model parts of the distribution that maximize certain properties: for example, we may want to generate images with high aesthetic quality, or molecules with high bioactivity. It is natural to frame this as a reinforcement learning (RL) problem, in which the objective is to finetune a diffusion model to maximize a reward function that corresponds to some property. Even with access to online queries of the ground-truth reward function, efficiently discovering high-reward samples can be challenging: they might have a low probability in the initial distribution, and there might be many infeasible samples that do not even have a well-defined reward (e.g., unnatural images or physically impossible molecules). In this work, we propose a novel reinforcement learning procedure that efficiently explores on the manifold of feasible samples. We present a theoretical analysis providing a regret guarantee, as well as empirical validation across three domains: images, biological sequences, and molecules.


Poster
#416
On Mechanistic Knowledge Localization in Text-to-Image Generative Models

Samyadeep Basu · Keivan Rezaei · Priyatham Kattakinda · Vlad Morariu · Nanxuan Zhao · Ryan A Rossi · Varun Manjunatha · Soheil Feizi

Identifying layers within text-to-image models which control visual attributes can facilitate efficient model editing through closed-form updates. Recent work, leveraging causal tracing show that early Stable-Diffusion variants confine knowledge primarily to the first layer of the CLIP text-encoder, while it diffuses throughout the UNet. Extending this framework, we observe that for recent models (e.g., SD-XL, DeepFloyd), causal tracing fails in pinpointing localized knowledge, highlighting challenges in model editing. To address this issue, we introduce the concept of mechanistic localization in text-to-image models, where knowledge about various visual attributes (e.g., "style", "objects", "facts") can be mechanistically localized to a small fraction of layers in the UNet, thus facilitating efficient model editing. We localize knowledge using our method LocoGen which measures the direct effect of intermediate layers to output generation by performing interventions in the cross-attention layers of the UNet. We then employ LocoEdit, a fast closed-form editing method across popular open-source text-to-image models (including the latest SD-XL) and explore the possibilities of neuron-level model editing. Using mechanistic localization, our work offers a better view of successes and failures in localization-based text-to-image model editing.


Poster
#417
Nearest Neighbour Score Estimators for Diffusion Generative Models

Matthew Niedoba · Dylan Green · Saeid Naderiparizi · Vasileios Lioutas · Jonathan Lavington · Xiaoxuan Liang · Yunpeng Liu · Ke Zhang · Setareh Dabiri · Adam Scibior · Berend Zwartsenberg · Frank Wood

Score function estimation is the cornerstone of both training and sampling from diffusion generative models. Despite this fact, the most commonly used estimators are either biased neural network approximations or high variance Monte Carlo estimators based on the conditional score. We introduce a novel nearest neighbour score function estimator which utilizes multiple samples from the training set to dramatically decrease estimator variance. We leverage our low variance estimator in two compelling applications. Training consistency models with our estimator, we report a significant increase in both convergence speed and sample quality. In diffusion models, we show that our estimator can replace a learned network for probability-flow ODE integration, opening promising new avenues of future research. Code will be released upon paper acceptance.


Poster
#500
Token-level Direct Preference Optimization

Yongcheng Zeng · Guoqing Liu · Weiyu Ma · Ning Yang · Haifeng Zhang · Jun Wang

Fine-tuning pre-trained Large Language Models (LLMs) is essential to align them with human values and intentions. This process often utilizes methods like pairwise comparisons and KL divergence against a reference LLM, focusing on the evaluation of full answers generated by the models. However, the generation of these responses occurs in a token level, following a sequential, auto-regressive fashion. In this paper, we introduce Token-level Direct Preference Optimization (TDPO), a novel approach to align LLMs with human preferences by optimizing policy at the token level. Unlike previous methods, which face challenges in divergence efficiency, TDPO integrates forward KL divergence constraints for each token, improving alignment and diversity. Utilizing the Bradley-Terry model for a token-based reward system, our method enhances the regulation of KL divergence, while preserving simplicity without the need for explicit reward modeling. Experimental results across various text tasks demonstrate TDPO’s superior performance in balancing alignment with generation diversity. Notably, fine-tuning with TDPO strikes a better balance than DPO in the controlled sentiment generation and single-turn dialogue datasets, and significantly improves the quality of generated responses compared to both DPO and PPO-based RLHF methods.


Poster
#501
MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation

Qian Huang · Jian Vora · Percy Liang · Jure Leskovec

A central aspect of machine learning research is experimentation, the process of designing and running experiments, analyzing the results, and iterating towards some positive outcome (e.g., improving accuracy). Could agents driven by powerful language models perform machine learning experimentation effectively? To answer this question, we introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM. For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs. We then construct an agent that can perform ML experimentation based on ReAct framework. We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate. It can build compelling ML models over many tasks in MLAgentBench with 37.5% average success rate. Our agents also display highly interpretable plans and actions. However, the success rates vary considerably; they span from 100% on well-established older datasets to as low as 0% on recent Kaggle challenges created potentially after the underlying LM was trained. Finally, we identify several key challenges for LM-based agents such as long-term planning and reducing hallucination.


Poster
#502
Position: Future Directions in the Theory of Graph Machine Learning

Christopher Morris · Fabrizio Frasca · Nadav Dym · Haggai Maron · Ismail Ceylan · Ron Levie · Derek Lim · Michael Bronstein · Martin Grohe · Stefanie Jegelka

Machine learning on graphs, especially using graph neural networks (GNNs), has seen a surge in interest due to the wide availability of graph data across a broad spectrum of disciplines, from life to social and engineering sciences. Despite their practical success, our theoretical understanding of the properties of GNNs remains highly incomplete. Recent theoretical advancements primarily focus on elucidating the coarse-grained expressive power of GNNs, predominantly employing combinatorial techniques. However, these studies do not perfectly align with practice, particularly in understanding the generalization behavior of GNNs when trained with stochastic first-order optimization techniques. In this position paper, we argue that the graph machine learning community needs to shift its attention to developing a balanced theory of graph machine learning, focusing on a more thorough understanding of the interplay of expressive power, generalization, and optimization.


Poster
#503
Comparing Graph Transformers via Positional Encodings

Mitchell Black · Zhengchao Wan · Gal Mishne · Amir Nayyeri · Yusu Wang

The distinguishing power of graph transformers is tied to the choice of positional encoding: features used to augment the base transformer with information about the graph. There are two primary types of positional encoding: absolute positional encodings (APEs) and relative positional encodings (RPEs). APEs assign features to each node and are given as input to the transformer. RPEs instead assign a feature to each pair of nodes, e.g., shortest-path distance, and are used to augment the attention block. A priori, it is unclear which method is better for maximizing the power of the resulting graph transformer. In this paper, we aim to understand the relationship between these different types of positional encodings. Interestingly, we show that graph transformers using APEs and RPEs are equivalent in their ability to distinguish non-isomorphic graphs. In particular, we demonstrate how to interchange APEs and RPEs while maintaining their distinguishing power in terms of graph transformers. However, in the case of graphs with node features, we show that RPEs may have an advantage over APEs. Based on our theoretical results, we provide a study of different APEs and RPEs---including the shortest-path and resistance distance and the recently introduced stable and expressive positional encoding (SPE)---and compare their distinguishing power in terms of transformers. We believe our work will help navigate the vast number of positional encoding choices and provide guidance on the future design of positional encodings for graph transformers.


Poster
#504
Delaunay Graph: Addressing Over-Squashing and Over-Smoothing Using Delaunay Triangulation

Hugo Attali · Davide Buscaldi · Nathalie Pernelle

GNNs rely on the exchange of messages to distribute information along the edges of the graph. This approach makes the efficiency of architectures highly dependent on the specific structure of the input graph. Certain graph topologies lead to inefficient information propagation, resulting in a phenomenon known as over-squashing. While the majority of existing methods address over-squashing by rewiring the input graph, our novel approach involves constructing a graph directly from features using Delaunay Triangulation. We posit that the topological properties of the resulting graph prove advantageous for mitigate oversmoothing and over-squashing. Our extensive experimentation demonstrates that our method consistently outperforms established graph rewiring methods.


Poster
#505
PAC-Bayesian Generalization Bounds for Knowledge Graph Representation Learning

Jaejun Lee · Minsung Hwang · Joyce Whang

While a number of knowledge graph representation learning (KGRL) methods have been proposed over the past decade, very few theoretical analyses have been conducted on them. In this paper, we present the first PAC-Bayesian generalization bounds for KGRL methods. To analyze a broad class of KGRL models, we propose a generic framework named ReED (Relation-aware Encoder-Decoder), which consists of a relation-aware message passing encoder and a triplet classification decoder. Our ReED framework can express at least 15 different existing KGRL models, including not only graph neural network-based models such as R-GCN and CompGCN but also shallow-architecture models such as RotatE and ANALOGY. Our generalization bounds for the ReED framework provide theoretical grounds for the commonly used tricks in KGRL, e.g., parameter-sharing and weight normalization schemes, and guide desirable design choices for practical KGRL methods. We empirically show that the critical factors in our generalization bounds can explain actual generalization errors on three real-world knowledge graphs.


Poster
#506
What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding

Hongkang Li · Meng Wang · Tengfei Ma · Sijia Liu · Zaixi Zhang · Pin-Yu Chen

Graph Transformers, which incorporate self-attention and positional encoding, have recently emerged as a powerful architecture for various graph learning tasks. Despite their impressive performance, the complex non-convex interactions across layers and the recursive graph structure have made it challenging to establish a theoretical foundation for learning and generalization. This study introduces the first theoretical investigation of a shallow Graph Transformer for semi-supervised node classification, comprising a self-attention layer with relative positional encoding and a two-layer perception. Focusing on a graph data model with discriminative nodes that determine node labels and non-discriminative nodes that are class-irrelevant, we characterize the sample complexity required to achieve a desirable generalization error by training with stochastic gradient descent (SGD). This paper provides the quantitative characterization of the sample complexity and number of iterations for convergence dependent on the fraction of discriminative nodes, the dominant patterns, and the initial model errors. Furthermore, we demonstrate that self-attention and positional encoding enhance generalization by making the attention map sparse and promoting the core neighborhood during training, which explains the superior feature representation of Graph Transformers. Our theoretical results are supported by empirical experiments on synthetic and real-world benchmarks.


Poster
#507
Learning Divergence Fields for Shift-Robust Graph Representations

Qitian Wu · Fan Nie · Chenxiao Yang · Junchi Yan

Real-world data generation often involves certain geometries (e.g., graphs) that induce instance-level interdependence. This characteristic makes the generalization of learning models more difficult due to the intricate interdependent patterns that impact data-generative distributions and can vary from training to testing. In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging generalization problem with interdependent data. We generalize the diffusion equation with stochastic diffusivity at each time step, which aims to capture the multi-faceted information flows among interdependent data. Furthermore, we derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains. Regarding practical implementation, we introduce three model instantiations that can be considered as the generalized versions of GCN, GAT, and Transformers, respectively, which possess advanced robustness against distribution shifts. We demonstrate their promising efficacy for out-of-distribution generalization on diverse real-world datasets. Source codes are available at https://github.com/fannie1208/GLIND.


Poster
#508
Cooperative Graph Neural Networks

Ben Finkelshtein · Xingyue Huang · Michael Bronstein · Ismail Ceylan

Graph neural networks are popular architectures for graph machine learning, based on iterative computation of node representations of an input graph through a series of invariant transformations. A large class of graph neural networks follow a standard message-passing paradigm: at every layer, each node state is updated based on an aggregate of messages from its neighborhood. In this work, we propose a novel framework for training graph neural networks, where every node is viewed as a player that can choose to either listen, broadcast, listen and broadcast, or to isolate. The standard message propagation scheme can then be viewed as a special case of this framework where every node listens and broadcasts to all neighbors. Our approach offers a more flexible and dynamic message-passing paradigm, where each node can determine its own strategy based on their state, effectively exploring the graph topology while learning. We provide a theoretical analysis of the new message-passing scheme which is further supported by an extensive empirical analysis on a synthetic and real-world datasets.


Poster
#509
Uncertainty for Active Learning on Graphs

Dominik Fuchsgruber · Tom Wollschläger · Bertrand Charpentier · Antonio Oroz · Stephan Günnemann

Uncertainty Sampling is an Active Learning strategy that aims to improve the data efficiency of machine learning models by iteratively acquiring labels of data points with the highest uncertainty. While it has proven effective for independent data its applicability to graphs remains under-explored. We propose the first extensive study of Uncertainty Sampling for node classification: (1) We benchmark Uncertainty Sampling beyond predictive uncertainty and highlight a significant performance gap to other Active Learning strategies. (2) We develop ground-truth Bayesian uncertainty estimates in terms of the data generating process and prove their effectiveness in guiding Uncertainty Sampling toward optimal queries. We confirm our results on synthetic data and design an approximate approach that consistently outperforms other uncertainty estimators on real datasets. (3) Based on this analysis, we relate pitfalls in modeling uncertainty to existing methods. Our analysis enables and informs the development of principled uncertainty estimation on graphs.


Poster
#510
Graph2Tac: Online Representation Learning of Formal Math Concepts

Lasse Blaauwbroek · Mirek Olšák · Jason Rute · Fidel I. Schaposnik Massolo · Jelle Piepenbrock · Vasily Pestun

In proof assistants, the physical proximity between two formal mathematical concepts is a strong predictor of their mutual relevance. Furthermore, lemmas with close proximity regularly exhibit similar proof structures. We show that this _locality_ property can be exploited through online learning techniques to obtain solving agents that far surpass offline learners when asked to prove theorems in an unseen mathematical setting. We extensively benchmark two such online solvers implemented in the Tactician platform for the Coq proof assistant: First, Tactician's online $k$-nearest neighbor solver, which can learn from recent proofs, shows a $1.72\times$ improvement in theorems proved over an offline equivalent. Second, we introduce a graph neural network, Graph2Tac, with a novel approach to build hierarchical representations for new definitions. Graph2Tac's online definition task realizes a $1.5\times$ improvement in theorems solved over an offline baseline. The $k$-NN and Graph2Tac solvers rely on orthogonal online data, making them highly complementary. Their combination improves $1.27\times$ over their individual performances. Both solvers outperform all other general purpose provers for Coq, including CoqHammer, Proverbot9001, and a transformer baseline by at least $1.48\times$ and are available for practical use by end-users.


Poster
#511
Equivariant Frames and the Impossibility of Continuous Canonicalization

Nadav Dym · Hannah Lawrence · Jonathan Siegel

Canonicalization provides an architecture-agnostic method for enforcing equivariance, with generalizations such as frame-averaging recently gaining prominence as a lightweight and flexible alternative to equivariant architectures. Recent works have found an empirical benefit to using probabilistic frames instead, which learn weighted distributions over group elements. In this work, we provide strong theoretical justification for this phenomenon: for commonly-used groups, there is no efficiently computable choice of frame that preserves continuity of the function being averaged. In other words, unweighted frame-averaging can turn a smooth, non-symmetric function into a discontinuous, symmetric function. To address this fundamental robustness problem, we formally define and construct *weighted* frames, which provably preserve continuity, and demonstrate their utility by constructing efficient and continuous weighted frames for the actions of $SO(d)$, $O(d)$, and $S_n$ on point clouds.


Poster
#512
Editing Partially Observable Networks via Graph Diffusion Models

Puja Trivedi · Ryan A Rossi · David Arbour · Tong Yu · Franck Dernoncourt · Sungchul Kim · Nedim Lipka · Namyong Park · Nesreen Ahmed · Danai Koutra

Most real-world networks are noisy and incomplete samples from an unknown target distribution. Refining them by correcting corruptions or inferring unobserved regions typically improves downstream performance. Inspired by the impressive generative capabilities that have been used to correct corruptions in images, and the similarities between "in-painting" and filling in missing nodes and edges conditioned on the observed graph, we propose a novel graph generative framework, SGDM, which is based on subgraph diffusion. Our framework not only improves the scalability and fidelity of graph diffusion models, but also leverages the reverse process to perform novel, conditional generation tasks. In particular, through extensive empirical analysis and a set of novel metrics, we demonstrate that our proposed model effectively supports the following refinement tasks for partially observable networks: (T1) denoising extraneous subgraphs, (T2) expanding existing subgraphs and (T3) performing ``style" transfer by regenerating a particular subgraph to match the characteristics of a different node or subgraph.


Poster
#513
Stochastic Conditional Diffusion Models for Robust Semantic Image Synthesis

Juyeon Ko · Inho Kong · Dogyun Park · Hyunwoo Kim

Semantic image synthesis (SIS) is a task to generate realistic images corresponding to semantic maps (labels). However, in real-world applications, SIS often encounters noisy user inputs. To address this, we propose Stochastic Conditional Diffusion Model (SCDM), which is a robust conditional diffusion model that features novel forward and generation processes tailored for SIS with noisy labels. It enhances robustness by stochastically perturbing the semantic label maps through Label Diffusion, which diffuses the labels with discrete diffusion. Through the diffusion of labels, the noisy and clean semantic maps become similar as the timestep increases, eventually becoming identical at $t=T$. This facilitates the generation of an image close to a clean image, enabling robust generation. Furthermore, we propose a class-wise noise schedule to differentially diffuse the labels depending on the class. We demonstrate that the proposed method generates high-quality samples through extensive experiments and analyses on benchmark datasets, including a novel experimental setup simulating human errors during real-world applications. Code is available at https://github.com/mlvlab/SCDM.


Poster
#514
Theory of Consistency Diffusion Models: Distribution Estimation Meets Fast Sampling

Zehao Dou · Minshuo Chen · Mengdi Wang · Zhuoran Yang

Diffusion models have revolutionized various application domains, including computer vision and audio generation. Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved. In response, consistency models have been developed to merge multiple steps in the sampling process, thereby significantly boosting the speed of sample generation without compromising quality. This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem. Our analysis yields statistical estimation rates based on the Wasserstein distance for consistency models, matching those of vanilla diffusion models. Additionally, our results encompass the training of consistency models through both distillation and isolation methods, demystifying their underlying advantage.


Poster
#515
Layer-Aware Analysis of Catastrophic Overfitting: Revealing the Pseudo-Robust Shortcut Dependency

Runqi Lin · Chaojian Yu · Bo Han · Hang Su · Tongliang Liu

Catastrophic overfitting (CO) presents a significant challenge in single-step adversarial training (AT), manifesting as highly distorted deep neural networks (DNNs) that are vulnerable to multi-step adversarial attacks. However, the underlying factors that lead to the distortion of decision boundaries remain unclear. In this work, we delve into the specific changes within different DNN layers and discover that during CO, the former layers are more susceptible, experiencing earlier and greater distortion, while the latter layers show relative insensitivity. Our analysis further reveals that this increased sensitivity in former layers stems from the formation of $\textit{pseudo-robust shortcuts}$, which alone can impeccably defend against single-step adversarial attacks but bypass genuine-robust learning, resulting in distorted decision boundaries. Eliminating these shortcuts can partially restore robustness in DNNs from the CO state, thereby verifying that dependence on them triggers the occurrence of CO. This understanding motivates us to implement adaptive weight perturbations across different layers to hinder the generation of $\textit{pseudo-robust shortcuts}$, consequently mitigating CO. Extensive experiments demonstrate that our proposed method, $\textbf{L}$ayer-$\textbf{A}$ware Adversarial Weight $\textbf{P}$erturbation (LAP), can effectively prevent CO and further enhance robustness.


Poster
#516
DiracDiffusion: Denoising and Incremental Reconstruction with Assured Data-Consistency

Zalan Fabian · Berk Tinaz · Mahdi Soltanolkotabi

Diffusion models have established new state of the art in a multitude of computer vision tasks, including image restoration. Diffusion-based inverse problem solvers generate reconstructions of exceptional visual quality from heavily corrupted measurements. However, in what is widely known as the perception-distortion trade-off, the price of perceptually appealing reconstructions is often paid in declined distortion metrics, such as PSNR. Distortion metrics measure faithfulness to the observation, a crucial requirement in inverse problems. In this work, we propose a novel framework for inverse problem solving, namely we assume that the observation comes from a stochastic degradation process that gradually degrades and noises the original clean image. We learn to reverse the degradation process in order to recover the clean image. Our technique maintains consistency with the original measurement throughout the reverse process, and allows for great flexibility in trading off perceptual quality for improved distortion metrics and sampling speedup via early-stopping. We demonstrate the efficiency of our method on different high-resolution datasets and inverse problems, achieving great improvements over other state-of-the-art diffusion-based methods with respect to both perceptual and distortion metrics.


Poster
#517
Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Kartik Sharma · Srijan Kumar · Rakshit Trivedi

Diffusion models lend transformative capabilities to the graph generation task, yet controlling the properties of the generated graphs remains challenging. Recent approaches augment support for controlling soft, differentiable properties but they fail to handle user-specified hard constraints that are non-differentiable. This often results in vague control, unsuitable for applications like drug discovery that demand satisfaction of precise constraints, e.g., the maximum number of bonds. To address this, we formalize the problem of controlled graph generation and introduce PRODIGY (PROjected DIffusion for controlled Graph Generation), an innovative plug-and-play approach enabling the generation of graphs with precise control, from any pre-trained diffusion model. PRODIGY employs a novel operator to project the samples at each diffusion step onto the specified constrained space. For a large class of practical constraints and a variety of graphs, our extensive experiments demonstrate that PRODIGY empowers state-of-the-art continuous and discrete diffusion models to produce graphs meeting specific, hard constraints. Our approach achieves up to 100% constraint satisfaction for non-attributed and molecular graphs, under a variety of constraints, marking a significant step forward in precise, interpretable graph generation. Code is provided on the project webpage: https://prodigy-diffusion.github.io/.


Poster
#600
Prompting a Pretrained Transformer Can Be a Universal Approximator

Aleksandar Petrov · Phil Torr · Adel Bibi

Despite the widespread adoption of prompting, prompt tuning and prefix-tuning of transformer models, our theoretical understanding of these fine-tuning methods remains limited. A key question is whether one can arbitrarily modify the behavior of a pretrained model by prompting or prefix-tuning it. Formally, whether prompting and prefix-tuning a pretrained model can universally approximate sequence-to-sequence functions. This paper answers in the affirmative and demonstrates that much smaller pretrained models than previously thought can be universal approximators when prefixed. In fact, prefix-tuning a single attention head is sufficient to approximate any continuous function making the attention mechanism uniquely suited for universal approximation. Moreover, any sequence-to-sequence function can be approximated by prefixing a transformer with depth linear in the sequence length. Beyond these density-type results, we also offer Jackson-type bounds on the length of the prefix needed to approximate a function to a desired precision.


Poster
#601
Automated Evaluation of Retrieval-Augmented Language Models with Task-Specific Exam Generation

Gauthier Guinet · Behrooz Tehrani · Anoop Deoras · Laurent Callot

We propose a new method to measure the task-specific accuracy of Retrieval-Augmented Large Language Models (RAG). Evaluation is performed by scoring the RAG on an automatically-generated synthetic exam composed of multiple choice questions based on the corpus of documents associated with the task. Our method is an automated, cost-efficient, interpretable, and robust strategy to select the optimal components for a RAG system. We leverage Item Response Theory (IRT) to estimate the quality of an exam and its informativeness on task-specific accuracy. IRT also provides a natural way to iteratively improve the exam by eliminating the exam questions that are not sufficiently informative about a model's ability. We demonstrate our approach on four new open-ended Question-Answering tasks based on Arxiv abstracts, StackExchange questions, AWS DevOps troubleshooting guides, and SEC filings. In addition, our experiments reveal more general insights into factors impacting RAG performance like size, retrieval mechanism, prompting and fine-tuning. Most notably, our findings show that choosing the right retrieval algorithms often leads to bigger performance gains than simply using a larger language model.


Spotlight Poster
#602
Bridging Data Gaps in Diffusion Models with Adversarial Noise-Based Transfer Learning

Xiyu Wang · Baijiong Lin · Daochang Liu · YINGCONG CHEN · Chang Xu

Diffusion Probabilistic Models (DPMs) show significant potential in image generation, yet their performance hinges on having access to large datasets. Previous works, like Generative Adversarial Networks (GANs), have tackled the limited data problem by transferring pre-trained models learned with sufficient data. However, those methods are hard to be utilized in DPMs since the distinct differences between DPM-based and GAN-based methods, showing in the unique iterative denoising process integral and the need for many timesteps with no-targeted noise in DPMs. In this paper, we propose a novel DPMs-based transfer learning method, ANT, to address the limited data problem. It includes two strategies: similarity-guided training, which boosts transfer with a classifier, and adversarial noise selection which adaptively chooses targeted noise based on the input image. Extensive experiments in the context of few-shot image generation tasks demonstrate that our method is not only efficient but also excels in terms of image quality and diversity when compared to existing GAN-based and DDPM-based methods.


Poster
#603
Image Hijacks: Adversarial Images can Control Generative Models at Runtime

Luke Bailey · Euan Ong · Stuart Russell · Scott Emmons

Are foundation models secure against malicious actors? In this work, we focus on the image input to a vision-language model (VLM). We discover image hijacks, adversarial images that control the behaviour of VLMs at inference time, and introduce the general Behaviour Matching algorithm for training image hijacks. From this, we derive the Prompt Matching method, allowing us to train hijacks matching the behaviour of an arbitrary user-defined text prompt (e.g. 'the Eiffel Tower is now located in Rome') using a generic, off-the-shelf dataset unrelated to our choice of prompt. We use Behaviour matching to craft hijacks for four types of attack: forcing VLMs to generate outputs of the adversary’s choice, leak information from their context window, override their safety training, and believe false statements. We study these attacks against LLaVA, a state-of-the-art VLM based on CLIP and LLaMA-2, and find that all attack types achieve a success rate of over 80%. Moreover, our attacks are automated and require only small image perturbations.


Poster
#604
CLLMs: Consistency Large Language Models

Siqi Kou · Lanxiang Hu · Zhezhi He · Zhijie Deng · Hao Zhang

Jacobi decoding shows promise for more efficient LLM inference as it breaks the sequential nature of the LLM decoding process and transforms it into more parallelizable computation. However, in practice, it achieves little speedup compared to traditional autoregressive (AR) decoding, primarily because Jacobi decoding seldom accurately predicts more than one token in a single fixed-point iteration step. To address this, we develop a new approach aimed at realizing fast convergence from any state to the fixed point in a Jacobi trajectory. This is accomplished by refining the target LLM to consistently predict the fixed point given any state as input. Extensive experiments demonstrate the effectiveness of our method, showing 2.4$\times$ to 3.4$\times$ improvements in generation speed while preserving generation quality across both domain-specific and open-domain benchmarks.


Poster
#605
Flextron: Many-in-One Flexible Large Language Model

Ruisi Cai · Saurav Muralidharan · Greg Heinrich · Hongxu Yin · Zhangyang “Atlas” Wang · Jan Kautz · Pavlo Molchanov

Training modern LLMs is extremely resource intensive, and customizing them for various deployment scenarios characterized by limited compute and memory resources through repeated training is impractical. In this paper, we introduce Flextron, a network architecture and post-training model optimization framework supporting flexible model deployment. The Flextron architecture utilizes a nested elastic structure to rapidly adapt to specific user-defined latency and accuracy targets during inference with no additional fine-tuning required. It is also input-adaptive, and can automatically route tokens through its sub-networks for improved performance and efficiency. We present a sample-efficient training method and associated routing algorithms for systematically transforming an existing trained LLM into a Flextron model. We evaluate Flextron on the GPT-3 and LLama-2 family of LLMs, and demonstrate superior performance over multiple end-to-end trained variants and other state-of-the-art elastic networks, all with a single pretraining run that consumes a mere 7.63% tokens compared to original pretraining.


Poster
#606
Position: Stop Making Unscientific AGI Performance Claims

Patrick Altmeyer · Andrew Demetriou · Antony Bartlett · Cynthia C. S. Liem

Developments in the field of Artificial Intelligence (AI), and particularly large language models (LLMs), have created a 'perfect storm’ for observing 'sparks’ of Artificial General Intelligence (AGI) that are spurious. Like simpler models, LLMs distill meaningful representations in their latent embeddings that have been shown to correlate with external variables. Nonetheless, the correlation of such representations has often been linked to human-like intelligence in the latter but not the former. We probe models of varying complexity including random projections, matrix decompositions, deep autoencoders and transformers: all of them successfully distill information that can be used to predict latent or external variables and yet none of them have previously been linked to AGI. We argue and empirically demonstrate that the finding of meaningful patterns in latent spaces of models cannot be seen as evidence in favor of AGI. Additionally, we review literature from the social sciences that shows that humans are prone to seek such patterns and anthropomorphize. We conclude that both the methodological setup and common public image of AI are ideal for the misinterpretation that correlations between model representations and some variables of interest are 'caused' by the model's understanding of underlying 'ground truth’ relationships. We, therefore, call for the academic community to exercise extra caution, and to be keenly aware of principles of academic integrity, in interpreting and communicating about AI research outcomes.


Poster
#607
NExT: Teaching Large Language Models to Reason about Code Execution

Ansong Ni · Miltiadis Allamanis · Arman Cohan · Yinlin Deng · Kensen Shi · Charles Sutton · Pengcheng Yin

A fundamental skill among human developers is the ability to understand and reason about program execution. As an example, a programmer can mentally simulate code execution in natural language to debug and repair code (aka. rubber duck debugging). However, large language models (LLMs) of code are typically trained on the surface textual form of programs, thus may lack a semantic understanding of how programs execute at run-time. To address this issue, we propose NExT, a method to teach LLMs to inspect the execution traces of programs (variable states of executed lines) and reason about their run-time behavior through chain-of-thought (CoT) rationales. Specifically, NExT uses self-training to bootstrap a synthetic training set of execution-aware rationales that lead to correct task solutions (e.g., fixed programs) without laborious manual annotation. Experiments on program repair tasks based on MBPP and HumanEval demonstrate that NExT improves the fix rate of a PaLM 2 model, by 26.1% and 10.3% absolute, respectively, with significantly improved rationale quality as verified by automated metrics and human raters. Our model can also generalize to scenarios where program traces are absent at test-time.


Poster
#608
Accelerating Iterative Retrieval-augmented Language Model Serving with Speculation

Zhihao Zhang · Alan Zhu · Lijie Yang · Yihua Xu · Lanting Li · Phitchaya Phothilimthana · Zhihao Jia

This paper introduces RaLMSpec, a framework that accelerates iterative retrieval-augmented language model (RaLM) with *speculative retrieval* and *batched verification*. RaLMSpec further introduces several important systems optimizations, including prefetching, optimal speculation stride scheduler, and asynchronous verification. The combination of these techniques allows RaLMSPec to significantly outperform existing systems. For document-level iterative RaLM serving, evaluation over three LLMs on four QA datasets shows that RaLMSpec improves over existing approaches by $1.75$-$2.39\times$, $1.04$-$1.39\times$, and $1.31$-$1.77\times$ when the retriever is an exact dense retriever, approximate dense retriever, and sparse retriever respectively. For token-level iterative RaLM (KNN-LM) serving, RaLMSpec is up to $7.59\times$ and $2.45\times$ faster than existing methods for exact dense and approximate dense retrievers, respectively.


Poster
#609
Evaluating Quantized Large Language Models

Shiyao Li · Xuefei Ning · Luning Wang · Tengxuan Liu · Xiangsheng Shi · Shengen Yan · Guohao Dai · Huazhong Yang · Yu Wang

Post-training quantization (PTQ) has emerged as a promising technique to reduce the cost of large language models (LLMs). Specifically, PTQ can effectively mitigate memory consumption and reduce computational overhead in LLMs. To meet the requirements of both high efficiency and performance across diverse scenarios, a comprehensive evaluation of quantized LLMs is essential to guide the selection of quantization methods. This paper presents a thorough evaluation of these factors by evaluating the effect of PTQ on Weight, Activation, and KV Cache on 11 model families, including OPT, LLaMA2, Falcon, Bloomz, Mistral, ChatGLM, Vicuna, LongChat, StableLM, Gemma, and Mamba, with parameters ranging from 125M to 180B. The evaluation encompasses five types of tasks: basic NLP, emergent ability, trustworthiness, dialogue, and long-context tasks. Moreover, we also evaluate the state-of-the-art (SOTA) quantization methods to demonstrate their applicability. Based on the extensive experiments, we systematically summarize the effect of quantization, provide recommendations to apply quantization techniques, and point out future directions. The code can be found in https://github.com/thu-nics/qllm-eval.


Poster
#610
Evolving Subnetwork Training for Large Language Models

hanqi li · Lu Chen · Da Ma · Zijian Wu · Su Zhu · Kai Yu

Large language models have ushered in a new era of artificial intelligence research. However, their substantial training costs hinder further development and widespread adoption. In this paper, inspired by the redundancy in the parameters of large language models, we propose a novel training paradigm: Evolving Subnetwork Training (EST). EST samples subnetworks from the layers of the large language model and from commonly used modules within each layer, Multi-Head Attention (MHA) and Multi-Layer Perceptron (MLP). By gradually increasing the size of the subnetworks during the training process, EST can save the cost of training. We apply EST to train GPT2 model and TinyLlama model, resulting in 26.7% FLOPs saving for GPT2 and 25.0% for TinyLlama without an increase in loss on the pre-training dataset. Moreover, EST leads to performance improvements in downstream tasks, indicating that it benefits generalization. Additionally, we provide intuitive theoretical studies based on training dynamics and Dropout theory to ensure the feasibility of EST.


Poster
#611
Modeling Language Tokens as Functionals of Semantic Fields

Zhengqi Pei · Anran Zhang · Shuhui Wang · Qingming Huang

Recent advances in natural language processing have relied heavily on using Transformer-based language models. However, Transformers often require large parameter sizes and model depth. Existing Transformer-free approaches using state-space models demonstrate superiority over Transformers, yet they still lack a neuro-biologically connection to the human brain. This paper proposes ${\it LasF}$, representing ${\bf L}$anguage tokens ${\bf as}$ ${\bf F}$unctionals of semantic fields, to simulate the neuronal behaviors for better language modeling. The ${\it LasF}$ module is equivalent to a nonlinear approximator tailored for sequential data. By replacing the final layers of pre-trained language models with the ${\it LasF}$ module, we obtain ${\it LasF}$-based models. Experiments conducted for standard reading comprehension and question-answering tasks demonstrate that the ${\it LasF}$-based models consistently improve accuracy with fewer parameters. Besides, we use CommonsenseQA's blind test set to evaluate a full-parameter tuned ${\it LasF}$-based model, which outperforms the prior best ensemble and single models by $0.4\%$ and $3.1\%$, respectively. Furthermore, our ${\it LasF}$-only language model trained from scratch outperforms existing parameter-efficient language models on standard datasets such as WikiText103 and PennTreebank.


Poster
#612
To Each (Textual Sequence) Its Own: Improving Memorized-Data Unlearning in Large Language Models

George-Octavian Bărbulescu · Peter Triantafillou

LLMs have been found to memorize training textual sequences and regurgitate verbatim said sequences during text generation time. This fact is known to be the cause of privacy and related (e.g., copyright) problems. Unlearning in LLMs then takes the form of devising new algorithms that will properly deal with these side-effects of memorized data, while not hurting the model's utility. We offer a fresh perspective towards this goal, namely, that each textual sequence to be forgotten should be treated differently when being unlearned based on its degree of memorization within the LLM. We contribute a new metric for measuring unlearning quality, an adversarial attack showing that SOTA algorithms lacking this perspective fail for privacy, and two new unlearning methods based on Gradient Ascent and Task Arithmetic, respectively. A comprehensive performance evaluation across an extensive suite of NLP tasks then mapped the solution space, identifying the best solutions under different scales in model capacities and forget set sizes and quantified the gains of the new approaches.


Poster
#613
Benchmarking and Building Long-Context Retrieval Models with LoCo and M2-BERT

Jon Saad-Falcon · Daniel Y Fu · Simran Arora · Neel Guha · Christopher Re

Retrieval pipelines are an integral component of many machine learning systems. However, they perform poorly in domains where documents are long (e.g., 10K tokens or more) and where identifying the relevant document requires synthesizing information across the entire text. Developing long-context retrieval encoders suitable for these domains raises three challenges: (1) how to evaluate long-context retrieval performance, (2) how to pretrain a base language model to represent both short contexts (corresponding to queries) and long contexts (corresponding to documents), and (3) how to finetune this model for retrieval under the batch size limitations imposed by GPU memory constraints. To address these challenges, we first introduce LoCoV1, a 12 task benchmark constructed to measure long-context retrieval where chunking is not possible or not effective. We next present the M2-BERT retrieval encoder, an 80M parameter state-space encoder model built from the Monarch Mixer architecture, capable of scaling to documents up to 32K tokens long. We describe a pretraining data mixture which allows this encoder to process both short and long context sequences, and a finetuning approach that adapts this base model to retrieval with only single-sample batches. Finally, we validate the M2-BERT retrieval encoder on LoCoV1, finding that it outperforms competitive Transformer-based models by at least 22.2 points, despite containing 90× fewer parameters.


Poster
#614
Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models

Bilgehan Sel · Ahmad Al-Tawaha · Vanshaj Khattar · Ruoxi Jia · Ming Jin

Current literature, aiming to surpass the "Chain-of-Thought" approach, often resorts to external modi operandi involving halting, modifying, and then resuming the generation process to boost Large Language Models' (LLMs) reasoning capacities. Due to their myopic perspective, they escalate the number of query requests, leading to increased costs, memory, and computational overheads. Addressing this, we propose the Algorithm of Thoughts---a novel strategy that propels LLMs through algorithmic reasoning pathways. By employing algorithmic examples fully in-context, this overarching view of the whole process exploits the innate recurrence dynamics of LLMs, expanding their idea exploration with merely one or a few queries. Our technique outperforms earlier single-query methods and even more recent multi-query strategies that employ an extensive tree search algorithms while using significantly fewer tokens. Intriguingly, our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself, hinting at LLM's inherent ability to weave its intuition into optimized searches. We probe into the underpinnings of our method's efficacy and its nuances in application. The code and related content can be found in: https://algorithm-of-thoughts.github.io


Poster
#615
MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities

Weihao Yu · Zhengyuan Yang · Linjie Li · Jianfeng Wang · Kevin Lin · Zicheng Liu · Xinchao Wang · Lijuan Wang

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models.


Poster
#616
Exact Conversion of In-Context Learning to Model Weights in Linearized-Attention Transformers

Brian Chen · Tianyang Hu · Hui Jin · Hwee Lee · Kenji Kawaguchi

In-Context Learning (ICL) has been a powerful emergent property of large language models that has attracted increasing attention in recent years. In contrast to regular gradient-based learning, ICL is highly interpretable and does not require parameter updates. In this paper, we show that, for linearized transformer networks, ICL can be made explicit and permanent through the inclusion of bias terms. We mathematically demonstrate the equivalence between a model with ICL demonstration prompts and the same model with the additional bias terms. Our algorithm (ICLCA) allows for exact conversion in an inexpensive manner. Existing methods are not exact and require expensive parameter updates. We demonstrate the efficacy of our approach through experiments that show the exact incorporation of ICL tokens into a linear transformer. We further suggest how our method can be adapted to achieve cheap approximate conversion of ICL tokens, even in regular transformer networks that are not linearized. Our experiments on GPT-2 show that, even though the conversion is only approximate, the model still gains valuable context from the included bias terms.


Poster
#617
Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents

Zhihan Liu · Hao Hu · Shenao Zhang · Hongyi Guo · Shuqi Ke · Boyi Liu · Zhaoran Wang

Large language models (LLMs) demonstrate impressive reasoning abilities, but translating reasoning into actions in the real world remains challenging. In particular, it is unclear how to complete a given task provably within a minimum number of interactions with the external environment, e.g., through an internal mechanism of reasoning. To this end, we propose the first framework with provable regret guarantees to orchestrate reasoning and acting, which we call *reason for future, act for now* (**RAFA**). Specifically, we design a prompt template for reasoning that learns from the memory buffer and plans a future trajectory over a long horizon (*reason for future*). At each step, the LLM agent takes the initial action of the planned trajectory (*act for now*), stores the collected feedback in the memory buffer, and reinvokes the reasoning routine to replan the future trajectory from the new state. The key idea is to cast reasoning in LLMs as learning and planning in Bayesian adaptive Markov decision processes (MDPs). Correspondingly, we prompt LLMs with the memory buffer to estimate the unknown environment (learning) and generate an optimal trajectory for multiple future steps that maximize a value function (planning). The learning and planning subroutines are performed in an in-context manner to emulate the actor-critic update for MDPs. Our theoretical analysis establishes a $\sqrt{T}$ regret, while our experimental validation demonstrates superior empirical performance.


Poster
#700
Repoformer: Selective Retrieval for Repository-Level Code Completion

Di Wu · Wasi Ahmad · Dejiao Zhang · Murali Krishna Ramanathan · Xiaofei Ma

Recent advances in retrieval-augmented generation (RAG) have initiated a new era in repository-level code completion. However, the invariable use of retrieval in existing methods exposes issues in both efficiency and robustness, with a large proportion of the retrieved contexts proving unhelpful or harmful to code language models (code LMs). In this paper, we propose a selective RAG framework to avoid retrieval when unnecessary. To power this framework, we design a self-supervised learning approach to enable a code LM to accurately self-evaluate whether retrieval can improve its output quality and robustly leverage the potentially noisy retrieved contexts. Using this LM as both the selective RAG policy and the generation model, our framework achieves state-of-the-art repository-level code completion performance on diverse benchmarks including RepoEval, CrossCodeEval, and CrossCodeLongEval, a new long-form code completion benchmark. Meanwhile, our analyses show that selectively retrieving brings as much as 70% inference speedup in the online serving setting without harming the performance. We further demonstrate that our framework is able to accommodate different generation models, retrievers, and programming languages. These advancements position our framework as an important step towards more accurate and efficient repository-level code completion.


Poster
#701
Rethinking Optimization and Architecture for Tiny Language Models

Yehui Tang · Kai Han · Fangcheng Liu · Yunsheng Ni · Yuchuan Tian · Zheyuan Bai · Yi-Qi Hu · Sichao Liu · Shang-Ling Jui · Yunhe Wang

The power of large language models (LLMs) has been demonstrated through numerous data and computing resources. However, the application of language models on mobile devices is facing huge challenge on the computation and memory costs, that is, tiny language models with high performance are urgently required. Limited by the highly complex training process, there are many details for optimizing language models that are seldom studied carefully. In this study, based on a tiny language model with 1B parameters, we carefully design a series of empirical study to analyze the effect of each component. Three perspectives are mainly discussed, i.e., neural architecture, parameter initialization, and optimization strategy. Several design formulas are empirically proved especially effective for tiny language models, including tokenizer compression, architecture tweaking, parameter inheritance and multiple-round training. Then we train PanGu-$\pi$-1B Pro and PanGu-$\pi$-1.5B Pro on 1.6T multilingual corpora, following the established formulas. Experimental results demonstrate the improved optimization and architecture yield a notable average improvement of 8.87 on benchmark evaluation sets for PanGu-$\pi$-1B Pro. Besides, PanGu-$\pi$-1.5B Pro surpasses a range of SOTA models with larger model sizes, validating its superior performance. The code will be released soon. The code is available at https://github.com/YuchuanTian/RethinkTinyLM.


Spotlight Poster
#702
Self-Alignment of Large Language Models via Monopolylogue-based Social Scene Simulation

Xianghe Pang · shuo tang · Rui Ye · Yuxin Xiong · Bolun Zhang · Yanfeng Wang · Siheng Chen

Aligning large language models (LLMs) with human values is imperative to mitigate potential adverse effects resulting from their misuse. Drawing from the sociological insight that acknowledging all parties' concerns is a key factor in shaping human values, this paper proposes a novel direction to align LLMs by themselves: social scene simulation. To achieve this, we present MATRIX, a novel social scene simulator that emulates realistic scenes around a user's input query, enabling the LLM to take social consequences into account before responding. MATRIX serves as a virtual rehearsal space, akin to a Monopolylogue, where the LLM performs diverse roles related to the query and practice by itself. To inject this alignment, we fine-tune the LLM with MATRIX-simulated data, ensuring adherence to human values without compromising inference speed. We theoretically show that the LLM with MATRIX outperforms existing methods under mild assumptions. Finally, extensive experiments validate that our method outperforms over 10 baselines across 4 benchmarks. As evidenced by 875 user ratings, our tuned 13B-size LLM exceeds GPT-4 in aligning with human values. See our project page at https://shuotang123.github.io/MATRIX.


Spotlight Poster
#703
TravelPlanner: A Benchmark for Real-World Planning with Language Agents

Jian Xie · Kai Zhang · Jiangjie Chen · Tinghui Zhu · Renze Lou · Yuandong Tian · Yanghua Xiao · Yu Su

Planning has been part of the core pursuit for artificial intelligence since its conception, but earlier AI agents mostly focused on constrained settings because many of the cognitive substrates necessary for human-level planning have been lacking. Recently, language agents powered by large language models (LLMs) have shown interesting capabilities such as tool use and reasoning. Are these language agents capable of planning in more complex settings that are out of the reach of prior AI agents? To advance this investigation, we propose TravelPlanner, a new planning benchmark that focuses on travel planning, a common real-world planning scenario. It provides a rich sandbox environment, various tools for accessing nearly four million data records, and 1,225 meticulously curated planning intents and reference plans. Comprehensive evaluations show that the current language agents are not yet capable of handling such complex planning tasks—even GPT-4 only achieves a success rate of 0.6%. Language agents struggle to stay on task, use the right tools to collect information, or keep track of multiple constraints. However, we note that the mere possibility for language agents to tackle such a complex problem is in itself non-trivial progress. TravelPlanner provides a challenging yet meaningful testbed for future language agents.


Poster
#704
ExCP: Extreme LLM Checkpoint Compression via Weight-Momentum Joint Shrinking

Wenshuo Li · Xinghao Chen · Han Shu · Yehui Tang · Yunhe Wang

Large language models (LLM) have recently attracted significant attention in the field of artificial intelligence. However, the training process of these models poses significant challenges in terms of computational and storage capacities, thus compressing checkpoints has become an urgent problem. In this paper, we propose a novel Extreme Checkpoint Compression (ExCP) framework, which significantly reduces the required storage of training checkpoints while achieving nearly lossless performance. We first calculate the residuals of adjacent checkpoints to obtain the essential but sparse information for higher compression ratio. To further excavate the redundancy parameters in checkpoints, we then propose a weight-momentum joint shrinking method to utilize another important information during the model optimization, i.e., momentum. In particular, we exploit the information of both model and optimizer to discard as many parameters as possible while preserving critical information to ensure optimal performance. Furthermore, we utilize non-uniform quantization to further compress the storage of checkpoints. We extensively evaluate our proposed ExCP framework on several models ranging from 410M to 7B parameters and demonstrate significant storage reduction while maintaining strong performance. For instance, we achieve approximately $70\times$ compression for the Pythia-410M model, with the final performance being as accurate as the original model on various downstream tasks. Codes will be available at https://github.com/Gaffey/ExCP.


Poster
#705
Characterizing Large Language Model Geometry Helps Solve Toxicity Detection and Generation

Randall Balestriero · Romain Cosentino · Sarath Shekkizhar

Large Language Models (LLMs) drive current AI breakthroughs despite very little being known about their internal representations. In this work, we propose to shed the light on LLMs inner mechanisms through the lens of geometry. In particular, we develop in closed form $(i)$ the intrinsic dimension in which the Multi-Head Attention embeddings are constrained to exist and $(ii)$ the partition and per-region affine mappings of the feedforward (MLP) network of LLMs' layers. Our theoretical findings further enable the design of novel principled solutions applicable to state-of-the-art LLMs. First, we show that, through our geometric understanding, we can bypass LLMs' RLHF protection by controlling the embedding's intrinsic dimension through informed prompt manipulation. Second, we derive interpretable geometrical features that can be extracted from any (pre-trained) LLM, providing a rich abstract representation of their inputs. We observe that these features are sufficient to help solve toxicity detection, and even allow the identification of various types of toxicity. Our results demonstrate how, even in large-scale regimes, exact theoretical results can answer practical questions in LLMs. Code: https://github.com/RandallBalestriero/SplineLLM


Poster
#706
Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch

Le Yu · Bowen Yu · Haiyang Yu · Fei Huang · Yongbin Li

In this paper, we unveil that Language Models (LMs) can acquire new capabilities by assimilating parameters from homologous models without retraining or GPUs. We first introduce DARE to set most delta parameters (i.e., the disparity between fine-tuned and pre-trained parameters) to zeros without affecting the abilities of Supervised Fine-Tuning (SFT) LMs, which randomly **D**rops delta parameters with a ratio $p$ **A**nd **RE**scales the remaining ones by $1 / (1 - p)$ to approximate the original embeddings. Then, we use DARE as a versatile plug-in to sparsify delta parameters of multiple SFT homologous models for mitigating parameter interference and merge them into a single model by parameter fusing. We experiment with encoder- and decoder-based LMs, showing that: (1) SFT delta parameter value ranges are typically small (within 0.002) with extreme redundancy, and DARE can effortlessly eliminate 90% or even 99% of them; (2) DARE can merge multiple task-specific LMs into one LM with diverse capabilities. Notably, this phenomenon is more pronounced in large-scale LMs, where the merged LM reveals the potential to surpass the performance of any source LM, providing a new discovery. We also utilize DARE to create a merged LM that ranks first among models with 7 billion parameters on the Open LLM Leaderboard.


Poster
#707
MAGDi: Structured Distillation of Multi-Agent Interaction Graphs Improves Reasoning in Smaller Language Models

Justin Chih-Yao Chen · Swarnadeep Saha · Elias Stengel-Eskin · Mohit Bansal

Multi-agent interactions between Large Language Model (LLM) agents have shown major improvements on diverse reasoning tasks. However, these involve long generations from multiple models across several rounds, making them expensive. Moreover, these multi-agent approaches fail to provide a final, single model for efficient inference. To address this, we introduce MAGDi, a new method for structured distillation of the reasoning interactions between multiple LLMs into smaller LMs. MAGDi teaches smaller models by representing multi-agent interactions as graphs, augmenting a base student model with a graph encoder, and distilling knowledge using three objective functions: next-token prediction, a contrastive loss between correct and incorrect reasoning, and a graph-based objective to model the interaction structure. Experiments on seven widely used commonsense and math reasoning benchmarks show that MAGDi improves the reasoning capabilities of smaller models, outperforming several methods that distill from a single teacher and multiple teachers. Moreover, MAGDi also demonstrates an order of magnitude higher efficiency over its teachers. We conduct extensive analyses to show that MAGDi (1) enhances the generalizability to out-of-domain tasks, (2) scales positively with the size and strength of the base student model, and (3) obtains larger improvements (via our multi-teacher training) when applying self-consistency – an inference technique that relies on model diversity.


Poster
#708
Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning

Sungwon Han · Jinsung Yoon · Sercan Arik · Tomas Pfister

Large Language Models (LLMs), with their remarkable ability to tackle challenging and unseen reasoning problems, hold immense potential for tabular learning, that is vital for many real-world applications. In this paper, we propose a novel in-context learning framework, FeatLLM, which employs LLMs as feature engineers to produce an input data set that is optimally suited for tabular predictions. The generated features are used to infer class likelihood with a simple downstream machine learning model, such as linear regression and yields high performance few-shot learning. The proposed FeatLLM framework only uses this simple predictive model with the discovered features at inference time. Compared to existing LLM-based approaches, FeatLLM eliminates the need to send queries to the LLM for each sample at inference time. Moreover, it merely requires API-level access to LLMs, and overcomes prompt size limitations. As demonstrated across numerous tabular datasets from a wide range of domains, FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.


Poster
#709
Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression

Junyuan Hong · Jinhao Duan · Chenhui Zhang · Zhangheng Li · Chulin Xie · Kelsey Lieberman · James Diffenderfer · Brian Bartoldson · Ajay Jaiswal · Kaidi Xu · Bhavya Kailkhura · Dan Hendrycks · Dawn Song · Zhangyang “Atlas” Wang · Bo Li

Compressing high-capability Large Language Models (LLMs) has emerged as a favored strategy for resource-efficient inferences. While state-of-the-art (SoTA) compression methods boast impressive advancements in preserving benign task performance, the potential risks of compression in terms of safety and trustworthiness have been largely neglected. This study conducts the first, thorough evaluation of three (3) leading LLMs using five (5) SoTA compression techniques across eight (8) trustworthiness dimensions. Our experiments highlight the intricate interplay between compression and trustworthiness, revealing some interesting patterns. We find that quantization is currently a more effective approach than pruning in achieving efficiency and trustworthiness simultaneously. For instance, a 4-bit quantized model retains the trustworthiness of its original counterpart, but model pruning significantly degrades trustworthiness, even at 50% sparsity. Moreover, employing quantization within a moderate bit range could unexpectedly improve certain trustworthiness dimensions such as ethics and fairness. Conversely, extreme quantization to very low bit levels (3 bits) tends to reduce trustworthiness significantly. This increased risk cannot be uncovered by looking at benign performance alone, in turn, mandating comprehensive trustworthiness evaluation in practice. These findings culminate in practical recommendations for simultaneously achieving high utility, efficiency, and trustworthiness in LLMs. Code and models are available at https://decoding-comp-trust.github.io.


Poster
#710
In-context Vectors: Making In Context Learning More Effective and Controllable Through Latent Space Steering

Sheng Liu · Haotian Ye · Lei Xing · James Zou

Large language models (LLMs) demonstrate emergent in-context learning capabilities, where they adapt to new tasks based on example demonstrations. However, in-context learning has seen limited effectiveness in many settings, is difficult to quantitatively control and takes up context window space. To overcome these limitations, we propose an alternative approach that recasts in-context learning as in-context vectors (ICV). Using ICV has two steps. We first use a forward pass on demonstration examples to create the in-context vector from the latent embedding of the LLM. This vector captures essential information about the intended task. On a new query, instead of adding demonstrations to the prompt, we shift the latent states of the LLM using the ICV. The ICV approach has several benefits: 1) it enables the LLM to more effectively follow the demonstration examples; 2) it's easy to control by adjusting the magnitude of the ICV; 3) it reduces the length of the prompt by removing the in-context demonstrations; 4) ICV is computationally much more efficient than fine-tuning. We demonstrate that ICV achieves better performance compared to standard in-context learning and fine-tuning on diverse tasks including safety, style transfer, role-playing and formatting. Moreover, we show that we can flexibly teach LLM to simultaneously follow different types of instructions by simple vector arithmetics on the corresponding ICVs.


Poster
#711
AST-T5: Structure-Aware Pretraining for Code Generation and Understanding

Linyuan Gong · Mostafa Elhoushi · Alvin Cheung

Large language models (LLMs) have made significant advancements in code-related tasks, yet many LLMs treat code as simple sequences, neglecting its structured nature. We introduce AST-T5, a novel pretraining paradigm that leverages the Abstract Syntax Tree (AST) for enhanced code generation, transpilation, and understanding. Using dynamic programming, our AST-Aware Segmentation retains code structure, while our AST-Aware Span Corruption objective equips the model to reconstruct various code structures. Unlike other models, AST-T5 avoids complex program analyses or architectural changes, so it integrates seamlessly with any encoder-decoder Transformer. Evaluations show that AST-T5 consistently outperforms similar-sized LMs across various code-related tasks including HumanEval and MBPP. Structure-awareness makes AST-T5 particularly powerful in code-to-code tasks, surpassing CodeT5 by 2 points in exact match score for the Bugs2Fix task and by 3 points in exact match score for Java-C# Transpilation in CodeXGLUE. Our code and model are publicly available at https://github.com/gonglinyuan/ast_t5.


Poster
#712
SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models

Xiaoxuan Wang · ziniu hu · Pan Lu · Yanqiao Zhu · Jieyu Zhang · Satyen Subramaniam · Arjun Loomba · Shichang Zhang · Yizhou Sun · Wei Wang

Most existing Large Language Model (LLM) benchmarks on scientific problem reasoning focus on problems grounded in high-school subjects and are confined to elementary algebraic operations. To systematically examine the reasoning capabilities required for solving complex scientific problems, we introduce an expansive benchmark suite SciBench for LLMs. SciBench contains a carefully curated dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains. Based on the dataset, we conduct an in-depth benchmarking study of representative open-source and proprietary LLMs with various prompting strategies. The results reveal that current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%. Furthermore, through a detailed user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms the others and some strategies that demonstrate improvements in certain problem-solving skills could result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.


Poster
#713
Few-Shot Character Understanding in Movies as an Assessment to Meta-Learning of Theory-of-Mind

Mo Yu · Qiujing Wang · Shunchi Zhang · Yisi Sang · Kangsheng Pu · Zekai Wei · Han Wang · Liyan Xu · Jing Li · Yue Yu · Jie Zhou

When reading a story, humans can quickly understand new fictional characters with a few observations, mainly by drawing analogies to fictional and real people they already know. This reflects the few-shot and meta-learning essence of humans' inference of characters' mental states, *i.e.*, theory-of-mind (ToM), which is largely ignored in existing research. We fill this gap with a novel NLP dataset in a realistic narrative understanding scenario, ToM-in-AMC. Our dataset consists of $\sim$1,000 parsed movie scripts, each corresponding to a few-shot character understanding task that requires models to mimic humans' ability of fast digesting characters with a few starting scenes in a new movie. We further propose a novel ToM prompting approach designed to explicitly assess the influence of multiple ToM dimensions. It surpasses existing baseline models, underscoring the significance of modeling multiple ToM dimensions for our task. Our extensive human study verifies that humans are capable of solving our problem by inferring characters' mental states based on their previously seen movies. In comparison, all the AI systems lag $>20\%$ behind humans, highlighting a notable limitation in existing approaches' ToM capabilities. Code and data are available at https://github.com/ShunchiZhang/ToM-in-AMC


Poster
#714
Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback

songyang gao · Qiming Ge · Wei Shen · Shihan Dou · Junjie Ye · Xiao Wang · Rui Zheng · Yicheng Zou · Zhi Chen · Hang Yan · Qi Zhang · Dahua Lin

The success of AI assistants based on Language Models (LLMs) hinges on Reinforcement Learning from Human Feedback (RLHF) to comprehend and align with user intentions. However, traditional alignment algorithms, such as PPO, are hampered by complex annotation and training requirements. This reliance limits the applicability of RLHF and hinders the development of professional assistants tailored to diverse human preferences. In this work, we introduce Linear Alignment, a novel algorithm that aligns language models with human preferences in one single inference step, eliminating the reliance on data annotation and model training. Linear alignment incorporates a new parameterization for policy optimization under divergence constraints, which enables the extraction of optimal policy in a closed-form manner and facilitates the direct estimation of the aligned response. Extensive experiments on both general and personalized preference datasets demonstrate that linear alignment significantly enhances the performance and efficiency of LLM alignment across diverse scenarios.


Poster
#715
CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay

Natasha Butt · Blazej Manczak · Auke Wiggers · Corrado Rainone · David Zhang · Michaël Defferrard · Taco Cohen

Large language models are increasingly solving tasks that are commonly believed to require human-level reasoning ability. However, these models still perform very poorly on benchmarks of general intelligence such as the Abstraction and Reasoning Corpus (ARC). In this paper, we approach the ARC as a programming-by-examples problem, and introduce a novel and scalable method for language model self-improvement called Code Iteration (CodeIt). Our method iterates between 1) program sampling and hindsight relabeling, and 2) learning from prioritized experience replay. By relabeling the goal of an episode (i.e., the program output given input) to the output actually produced by the sampled program, our method effectively deals with the extreme sparsity of rewards in program synthesis. Applying CodeIt to the ARC dataset, we demonstrate that prioritized hindsight replay, along with pre-training and data-augmentation, leads to successful inter-task generalization. CodeIt is the first neuro-symbolic approach that scales to the full ARC evaluation dataset. Our method solves 15% of ARC evaluation tasks, achieving state-of-the-art performance and outperforming existing neural and symbolic baselines. Our code is available at https://github.com/Qualcomm-AI-research/codeit.


Poster
#716
Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment

Rui Yang · Xiaoman Pan · Feng Luo · Shuang Qiu · Han Zhong · Dong Yu · Jianshu Chen

We consider the problem of multi-objective alignment of foundation models with human preferences, which is a critical step towards helpful and harmless AI systems. However, it is generally costly and unstable to fine-tune large foundation models using reinforcement learning (RL), and the multi-dimensionality, heterogeneity, and conflicting nature of human preferences further complicate the alignment process. In this paper, we introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context and applies supervised fine-tuning for alignment. The salient features of RiC are simplicity and adaptivity, as it only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time. Inspired by the analytical solution of an abstracted convex optimization problem, our dynamic inference-time adjustment method approaches the Pareto-optimal solution for multiple objectives. Empirical evidence demonstrates the efficacy of our method in aligning both Large Language Models (LLMs) and diffusion models to accommodate diverse rewards with only around 10% GPU hours compared with multi-objective RL baseline.


Poster
#717
CogBench: a large language model walks into a psychology lab

Julian Coda-Forno · Marcel Binz · Jane Wang · Eric Schulz

Large language models (LLMs) have significantly advanced the field of artificial intelligence. Yet, evaluating them comprehensively remains challenging. We argue that this is partly due to the predominant focus on performance metrics in most benchmarks. This paper introduces CogBench, a benchmark that includes ten behavioral metrics derived from seven cognitive psychology experiments. This novel approach offers a toolkit for phenotyping LLMs’ behavior. We apply CogBench to 40 LLMs, yielding a rich and diverse dataset. We analyze this data using statistical multilevel modeling techniques, accounting for the nested dependencies among fine-tuned versions of specific LLMs. Our study highlights the crucial role of model size and reinforcement learning from human feedback (RLHF) in improving performance and aligning with human behavior. Interestingly, we find that open-source models are less risk-prone than proprietary models and that fine-tuning on code does not necessarily enhance LLMs' behavior. Finally, we explore the effects of prompt-engineering techniques. We discover that chain-of-thought prompting improves probabilistic reasoning, while take-a-step-back prompting fosters model-based behaviors.


Poster
#800
Soft Prompt Recovers Compressed LLMs, Transferably

Zhaozhuo Xu · Zirui Liu · Beidi Chen · Shaochen (Henry) Zhong · Yuxin Tang · Jue Wang · Kaixiong Zhou · Xia Hu · Anshumali Shrivastava

Model compression is one of the most popular approaches to improve the accessibility of Large Language Models (LLMs) by reducing their memory footprint. However, the gaining of such efficiency benefits often simultaneously demands extensive engineering efforts and intricate designs to mitigate the performance decline. In this work, we leverage *(Soft) Prompt Tuning* in its most vanilla form and discover such conventionally learned soft prompts can recover the performance of compressed LLMs. More surprisingly, we observe such recovery effect to be transferable among different tasks and models (albeit natural tokenizer and dimensionality limitations), resulting in further overhead reduction and yet, subverting the common belief that learned soft prompts are task-specific. Our work is fully orthogonal and compatible with model compression frameworks such as pruning and quantization, where we enable up to $8\times$ compressed LLM (with a joint 4-bit quantization and 50% weight pruning compression) to match its uncompressed counterparts on popular benchmarks. We note that we are the first to reveal vanilla Parameter-Efficient Fine-Tuning (PEFT) techniques have the potential to be utilized under a compression recovery context, opening a new line of opportunities for model accessibility advancement while freeing our fellow researchers from the previously present engineering burdens and constraints. The code is available at https://github.com/zirui-ray-liu/compress-then-prompt.


Poster
#801
MEMORYLLM: Towards Self-Updatable Large Language Models

Yu Wang · Yifan Gao · Xiusi Chen · Haoming Jiang · Shiyang Li · Jingfeng Yang · Qingyu Yin · Zheng Li · Xian Li · Bing Yin · Jingbo Shang · Julian McAuley

Existing Large Language Models (LLMs) usually remain static after deployment, which might make it hard to inject new knowledge into the model. We aim to build models containing a considerable portion of self-updatable parameters, enabling the model to integrate new knowledge effectively and efficiently. To this end, we introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool within the latent space of the transformer. MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier. Our evaluations demonstrate the ability of MEMORYLLM to effectively incorporate new knowledge, as evidenced by its performance on model editing benchmarks. Meanwhile, the model exhibits long-term information retention capacity, which is validated through our custom-designed evaluations and long-context benchmarks. MEMORYLLM also shows operational integrity without any sign of performance degradation even after nearly a million memory updates. Our code and model are open-sourced at https://github.com/wangyu-ustc/MemoryLLM.


Poster
#802
Guiding LLMs The Right Way: Fast, Non-Invasive Constrained Generation

Luca Beurer-Kellner · Marc Fischer · Martin Vechev

To ensure that text generated by large language models (LLMs) is in an expected format, constrained decoding methods propose to enforce strict formal language constraints during generation. However, as we show in this work, not only do such methods often incur performance overhead during generation, but many of them also significantly impair task accuracy, if they do not correctly align the underlying LLM sub-word vocabularies with external constraints. To address this, we present a novel decoding algorithm, DOMINO, that can enforce constraints in a fully subword-aligned fashion, while leveraging pre-computation and speculative decoding to achieve virtually no overhead and in some cases even almost 2$\times$ speedup over unconstrained decoding -- thereby outperforming existing approaches by a wide margin. We release DOMINO as open source at https://github.com/eth-sri/domino.


Poster
#803
GPT-4V(ision) is a Generalist Web Agent, if Grounded

Boyuan Zheng · Boyu Gou · Jihyung Kil · Huan Sun · Yu Su

The recent development on large multimodal models (LMMs), especially GPT-4V(ision) and Gemini, has been quickly expanding the capability boundaries of multimodal models beyond traditional tasks like image captioning and visual question answering. In this work, we explore the potential of LMMs like GPT-4V as a generalist web agent that can follow natural language instructions to complete tasks on any given website. We propose SEEACT, a generalist web agent that harnesses the power of LMMs for integrated visual understanding and acting on the web. We evaluate on the recent MIND2WEB benchmark. In addition to standard offline evaluation on cached websites, we enable a new online evaluation setting by developing a tool that allows running web agents on live websites. We show that GPT-4V presents a great potential for web agents---it can successfully complete 51.1% of the tasks on live websites if we manually ground its textual plans into actions on the websites. This substantially outperforms text-only LLMs like GPT-4 or smaller models (FLAN-T5 and BLIP-2) specifically fine-tuned for web agents. However, grounding still remains a major challenge. Existing LMM grounding strategies like set-of-mark prompting turns out to be not effective for web agents, and the best grounding strategy we develop in this paper leverages both the HTML structure and visuals. Yet, there is still a substantial gap with oracle grounding, leaving ample room for further improvement. All code, data, and evaluation tools are available at https://github.com/OSU-NLP-Group/SeeAct.


Poster
#804
Larimar: Large Language Models with Episodic Memory Control

Payel Das · Subhajit Chaudhury · Elliot Nelson · Igor Melnyk · Sarath Swaminathan · Sophie Dai · Aurelie Lozano · Georgios Kollias · Vijil Chenthamarakshan · Jiri Navratil · Soham Dan · Pin-Yu Chen

Efficient and accurate updating of knowledge stored in Large Language Models (LLMs) is one of the most pressing research challenges today. This paper presents Larimar - a novel, brain-inspired architecture for enhancing LLMs with a distributed episodic memory. Larimar's memory allows for dynamic, one-shot updates of knowledge without the need for computationally expensive re-training or fine-tuning. Experimental results on multiple fact editing benchmarks demonstrate that Larimar attains accuracy comparable to most competitive baselines, even in the challenging sequential editing setup, but also excels in speed---yielding speed-ups of 8-10x depending on the base LLM ---as well as flexibility due to the proposed architecture being simple, LLM-agnostic, and hence general. We further provide mechanisms for selective fact forgetting, information leakage prevention, and input context length generalization with Larimar and show their effectiveness. Our code is available at https://github.com/IBM/larimar.


Poster
#805
Language Models with Conformal Factuality Guarantees

Christopher Mohri · Tatsunori Hashimoto

Guaranteeing the correctness and factuality of language model (LM) outputs is a major open problem. In this work, we propose conformal factuality, a framework that can ensure high probability correctness guarantees for LMs by connecting language modeling and conformal prediction. Our insight is that the correctness of an LM output is equivalent to an uncertainty quantification problem, where the uncertainty sets are defined as the entailment set of an LM's output. Using this connection, we show that conformal prediction in language models corresponds to a back-off algorithm that provides high probability correctness guarantees by progressively making LM outputs less specific (and expanding the associated uncertainty sets). This approach applies to any black-box LM and requires very few human-annotated samples. Evaluations of our approach on closed book QA (FActScore, NaturalQuestions) and reasoning tasks (MATH) show that our approach can provide 80-90% correctness guarantees while retaining the majority of the LM's original output.


Poster
#806
On Prompt-Driven Safeguarding for Large Language Models

Chujie Zheng · Fan Yin · Hao Zhou · Fandong Meng · Jie Zhou · Kai-Wei Chang · Minlie Huang · Nanyun Peng

Prepending model inputs with safety prompts is a common practice for safeguarding large language models (LLMs) against queries with harmful intents. However, the underlying working mechanisms of safety prompts have not been unraveled yet, restricting the possibility of automatically optimizing them to improve LLM safety. In this work, we investigate how LLMs' behavior (i.e., complying with or refusing user queries) is affected by safety prompts from the perspective of model representation. We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction, in which models become more prone to refusing to provide assistance, even when the queries are harmless. On the other hand, LLMs are naturally capable of distinguishing harmful and harmless queries without safety prompts. Inspired by these findings, we propose a method for safety prompt optimization, namely DRO (Directed Representation Optimization). Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries' representations along or opposite the refusal direction, depending on their harmfulness. Experiments with eight LLMs on out-of-domain and jailbreak benchmarks demonstrate that DRO remarkably improves the safeguarding performance of human-crafted safety prompts, without compromising the models' general performance.


Poster
#807
PICLe: Eliciting Diverse Behaviors from Large Language Models with Persona In-Context Learning

Hyeong Kyu Choi · Sharon Li

Large Language Models (LLMs) are trained on massive text corpora, which are encoded with diverse personality traits. This triggers an interesting goal of eliciting a desired personality trait from the LLM, and probing its behavioral preferences. Accordingly, we formalize the persona elicitation task, aiming to customize LLM behaviors to align with a target persona. We present Persona In-Context Learning (PICLe), a novel persona elicitation framework grounded in Bayesian inference. At the core, PICLe introduces a new ICL example selection criterion based on likelihood ratio, which is designed to optimally guide the model in eliciting a specific target persona. We demonstrate the effectiveness of PICLe through extensive comparisons against baseline methods across three contemporary LLMs. Code is available at https://github.com/deeplearning-wisc/picle.


Poster
#808
FrameQuant: Flexible Low-Bit Quantization for Transformers

Harshavardhan Adepu · Zhanpeng Zeng · Li Zhang · Vikas Singh

Transformers are the backbone of powerful foundation models for many Vision and Natural Language Processing tasks. But their compute and memory/storage footprint is large, and so, serving such models is expensive often requiring high-end hardware. To mitigate this difficulty, Post-Training Quantization seeks to modify a pre-trained model and quantize it to eight bits or lower, significantly boosting compute/memory/latency efficiency. Such models have been successfully quantized to four bits with some performance loss. In this work, we outline a simple scheme to quantize Transformer-based models to just two bits (plus some overhead) with only a small drop in accuracy. Key to our formulation is a concept borrowed from Harmonic analysis called Fusion Frames. Our main finding is that the quantization must take place not in the original weight space, but instead in the Fusion Frame representations. If quantization is interpreted as the addition of noise, our casting of the problem allows invoking an extensive body of known consistent recovery and noise robustness guarantees. Further, if desired, de-noising filters are known in closed form. We show empirically, via a variety of experiments, that (almost) two-bit quantization for Transformer models promises sizable efficiency gains. The code is available at https://github.com/vsingh-group/FrameQuant


Poster
#809
ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections

Massimo Bini · Karsten Roth · Zeynep Akata · Anna Khoreva

Parameter-efficient finetuning (PEFT) has become ubiquitous to adapt foundation models to downstream task requirements while retaining their generalization ability. However, the amount of additionally introduced parameters and compute for successful adaptation and hyperparameter searches can explode quickly, especially when deployed at scale to serve numerous individual requests. To ensure effective, parameter-efficient, and hyperparameter-robust adaptation, we propose the *ETHER* transformation family, which performs Efficient fineTuning via HypErplane Reflections. By design, *ETHER* transformations require *a minimal number of parameters*, are *less likely to deteriorate model performance*, and exhibit *robustness to hyperparameter and learning rate choices*. In particular, we introduce *ETHER* and its relaxation *ETHER+*, which match or outperform existing PEFT methods with significantly fewer parameters ($\sim$$10$-$100$ times lower than LoRA or OFT) across multiple image synthesis and natural language tasks without *exhaustive hyperparameter tuning*. Finally, we investigate the recent emphasis on Hyperspherical Energy retention for adaptation and raise questions on its practical utility. The code is available at https://github.com/mwbini/ether.


Poster
#810
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras

Tzu-Yuan Lin · Minghan Zhu · Maani Ghaffari

This paper proposes an equivariant neural network that takes data in any finite-dimensional semi-simple Lie algebra as input. The corresponding group acts on the Lie algebra as adjoint operations, making our proposed network adjoint-equivariant. Our framework generalizes the Vector Neurons, a simple $\mathrm{SO}(3)$-equivariant network, from 3-D Euclidean space to Lie algebra spaces, building upon the invariance property of the Killing form. Furthermore, we propose novel Lie bracket layers and geometric channel mixing layers that extend the modeling capacity. Experiments are conducted for the $\mathfrak{so}(3)$, $\mathfrak{sl}(3)$, and $\mathfrak{sp}(4)$ Lie algebras on various tasks, including fitting equivariant and invariant functions, learning system dynamics, point cloud registration, and homography-based shape classification. Our proposed equivariant network shows wide applicability and competitive performance in various domains.


Poster
#811
SCoRe: Submodular Combinatorial Representation Learning

Anay Majee · Suraj Kothawade · Krishnateja Killamsetty · Rishabh Iyer

In this paper we introduce the SCoRe (Submodular Combinatorial Representation Learning) framework, a novel approach in representation learning that addresses inter-class bias and intra-class variance. SCoRe provides a new combinatorial viewpoint to representation learning, by introducing a family of loss functions based on set-based submodular information measures. We develop two novel combinatorial formulations for loss functions, using the Total Information and Total Correlation, that naturally minimize intra-class variance and inter-class bias. Several commonly used metric/contrastive learning loss functions like supervised contrastive loss, orthogonal projection loss, and N-pairs loss, are all instances of SCoRe, thereby underlining the versatility and applicability of SCoRe in a broad spectrum of learning scenarios. Novel objectives in SCoRe naturally model class-imbalance with up to 7.6% improvement in classification on CIFAR-10-LT, CIFAR-100-LT, MedMNIST, 2.1% on ImageNet-LT, and 19.4% in object detection on IDD and LVIS (v1.0), demonstrating its effectiveness over existing approaches.


Poster
#812
Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Antoine Dedieu · Wolfgang Lehrach · Guangyao Zhou · Dileep George · Miguel Lazaro-Gredilla

Despite their stellar performance on a wide range of tasks, including in-context tasks only revealed during inference, vanilla transformers and variants trained for next-token predictions (a) do not learn an explicit world model of their environment which can be flexibly queried and (b) cannot be used for planning or navigation. In this paper, we consider partially observed environments (POEs), where an agent receives perceptually aliased observations as it navigates, which makes path planning hard. We introduce a transformer with (multiple) discrete bottleneck(s), TDB, whose latent codes learn a compressed representation of the history of observations and actions. After training a TDB to predict the future observation(s) given the history, we extract interpretable cognitive maps of the environment from its active bottleneck(s) indices. These maps are then paired with an external solver to solve (constrained) path planning problems. First, we show that a TDB trained on POEs (a) retains the near-perfect predictive performance of a vanilla transformer or an LSTM while (b) solving shortest path problems exponentially faster. Second, a TDB extracts interpretable representations from text datasets, while reaching higher in-context accuracy than vanilla sequence models. Finally, in new POEs, a TDB (a) reaches near-perfect in-context accuracy, (b) learns accurate in-context cognitive maps (c) solves in-context path planning problems.


Poster
#813
Bottleneck-Minimal Indexing for Generative Document Retrieval

Xin Du · Lixin Xiu · Kumiko Tanaka-Ishii

We apply an information-theoretic perspective to reconsider generative document retrieval (GDR), in which a document $x \in \mathcal{X}$ is indexed by $t \in \mathcal{T}$, and a neural autoregressive model is trained to map queries $\mathcal{Q}$ to $\mathcal{T}$. GDR can be considered to involve information transmission from documents $\mathcal{X}$ to queries $\mathcal{Q}$, with the requirement to transmit more bits via the indexes $\mathcal{T}$. By applying Shannon's rate-distortion theory, the optimality of indexing can be analyzed in terms of the mutual information, and the design of the indexes $\mathcal{T}$ can then be regarded as a *bottleneck* in GDR. After reformulating GDR from this perspective, we empirically quantify the bottleneck underlying GDR. Finally, using the NQ320K and MARCO datasets, we evaluate our proposed bottleneck-minimal indexing method in comparison with various previous indexing methods, and we show that it outperforms those methods.


Poster
#814
Causal Representation Learning Made Identifiable by Grouping of Observational Variables

Hiroshi Morioka · Aapo Hyvarinen

A topic of great current interest is Causal Representation Learning (CRL), whose goal is to learn a causal model for hidden features in a data-driven manner. Unfortunately, CRL is severely ill-posed since it is a combination of the two notoriously ill-posed problems of representation learning and causal discovery. Yet, finding practical identifiability conditions that guarantee a unique solution is crucial for its practical applicability. Most approaches so far have been based on assumptions on the latent causal mechanisms, such as temporal causality, or existence of supervision or interventions; these can be too restrictive in actual applications. Here, we show identifiability based on novel, weak constraints, which requires no temporal structure, intervention, nor weak supervision. The approach is based on assuming the observational mixing exhibits a suitable grouping of the observational variables. We also propose a novel self-supervised estimation framework consistent with the model, prove its statistical consistency, and experimentally show its superior CRL performances compared to the state-of-the-art baselines. We further demonstrate its robustness against latent confounders and causal cycles.


Poster
#815
Graph Geometry-Preserving Autoencoders

Jungbin Lim · Jihwan Kim · Yonghyeon Lee · Cheongjae Jang · Frank Chongwoo Park

When using an autoencoder to learn the low-dimensional manifold of high-dimensional data, it is crucial to find the latent representations that preserve the geometry of the data manifold. However, most existing studies assume a Euclidean nature for the high-dimensional data space, which is arbitrary and often does not precisely reflect the underlying semantic or domain-specific attributes of the data. In this paper, we propose a novel autoencoder regularization framework based on the premise that the geometry of the data manifold can often be better captured with a well-designed similarity graph associated with data points. Given such a graph, we utilize a Riemannian geometric distortion measure as a regularizer to preserve the geometry derived from the graph Laplacian and make it suitable for larger-scale autoencoder training. Through extensive experiments, we show that our method outperforms existing state-of-the-art geometry-preserving and graph-based autoencoders with respect to learning accurate latent structures that preserve the graph geometry, and is particularly effective in learning dynamics in the latent space. Code is available at https://github.com/JungbinLim/GGAE-public.


Poster
#816
Harmony in Diversity: Merging Neural Networks with Canonical Correlation Analysis

Stefan Horoi · Albert Manuel Orozco Camacho · Eugene Belilovsky · Guy Wolf

Combining the predictions of multiple trained models through ensembling is generally a good way to improve accuracy by leveraging the different learned features of the models, however it comes with high computational and storage costs. Model fusion, the act of merging multiple models into one by combining their parameters reduces these costs but doesn't work as well in practice. Indeed, neural network loss landscapes are high-dimensional and non-convex and the minima found through learning are typically separated by high loss barriers. Numerous recent works have been focused on finding permutations matching one network features to the features of a second one, lowering the loss barrier on the linear path between them in parameter space. However, permutations are restrictive since they assume a one-to-one mapping between the different models' neurons exists. We propose a new model merging algorithm, CCA Merge, which is based on Canonical Correlation Analysis and aims to maximize the correlations between linear combinations of the model features. We show that our alignment method leads to better performances than past methods when averaging models trained on the same, or differing data splits. We also extend this analysis into the harder setting where more than 2 models are merged, and we find that CCA Merge works significantly better than past methods. Our code is publicly available at https://github.com/shoroi/align-n-merge


Poster
#817
Balanced Data, Imbalanced Spectra: Unveiling Class Disparities with Spectral Imbalance

Chiraag Kaushik · Ran Liu · Chi-Heng Lin · Amrit Khera · Matthew Jin · Wenrui Ma · Vidya Muthukumar · Eva Dyer

Classification models are expected to perform equally well for different classes, yet in practice, there are often large gaps in their performance. This issue of class bias is widely studied in cases of datasets with sample imbalance, but is relatively overlooked in balanced datasets. In this work, we introduce the concept of spectral imbalance in features as a potential source for class disparities and study the connections between spectral imbalance and class bias in both theory and practice. To build the connection between spectral imbalance and class gap, we develop a theoretical framework for studying class disparities and derive exact expressions for the per-class error in a high-dimensional mixture model setting. We then study this phenomenon in 11 different state-of-the-art pre-trained encoders, and show how our proposed framework can be used to compare the quality of encoders, as well as evaluate and combine data augmentation strategies to mitigate the issue. Our work sheds light on the class-dependent effects of learning, and provides new insights into how state-of-the-art pre-trained features may have unknown biases that can be diagnosed through their spectra.


Poster
#900
State-Free Inference of State-Space Models: The *Transfer Function* Approach

Rom N. Parnichkun · Stefano Massaroli · Alessandro Moro · Jimmy Smith · Ramin Hasani · Mathias Lechner · Qi An · Christopher Re · Hajime Asama · Stefano Ermon · Taiji Suzuki · Michael Poli · Atsushi Yamashita

We approach designing a state-space model for deep learning applications through its dual representation, the transfer function, and uncover a highly efficient sequence parallel inference algorithm that is state-free: unlike other proposed algorithms, state-free inference does not incur any significant memory or computational cost with an increase in state size. We achieve this using properties of the proposed frequency domain transfer function parametrization, which enables direct computation of its corresponding convolutional kernel's spectrum via a single Fast Fourier Transform. Our experimental results across multiple sequence lengths and state sizes illustrates, on average, a 35% training speed improvement over S4 layers -- parametrized in time-domain -- on the Long Range Arena benchmark, while delivering state-of-the-art downstream performances over other attention-free approaches. Moreover, we report improved perplexity in language modeling over a long convolutional Hyena baseline, by simply introducing our transfer function parametrization. Our code is available at https://github.com/ruke1ire/RTF.


Spotlight Poster
#901
Defining Neural Network Architecture through Polytope Structures of Datasets

Sangmin Lee · Abbas Mammadov · Jong Chul YE

Current theoretical and empirical research in neural networks suggests that complex datasets require large network architectures for thorough classification, yet the precise nature of this relationship remains unclear. This paper tackles this issue by defining upper and lower bounds for neural network widths, which are informed by the polytope structure of the dataset in question. We also delve into the application of these principles to simplicial complexes and specific manifold shapes, explaining how the requirement for network width varies in accordance with the geometric complexity of the dataset. Moreover, we develop an algorithm to investigate a converse situation where the polytope structure of a dataset can be inferred from its corresponding trained neural networks. Through our algorithm, it is established that popular datasets such as MNIST, Fashion-MNIST, and CIFAR10 can be efficiently encapsulated using no more than two polytopes with a small number of faces.


Poster
#902
When Representations Align: Universality in Representation Learning Dynamics

Loek van Rossem · Andrew Saxe

Deep neural networks come in many sizes and architectures. The choice of architecture, in conjunction with the dataset and learning algorithm, is commonly understood to affect the learned neural representations. Yet, recent results have shown that different architectures learn representations with striking qualitative similarities. Here we derive an effective theory of representation learning under the assumption that the encoding map from input to hidden representation and the decoding map from representation to output are arbitrary smooth functions. This theory schematizes representation learning dynamics in the regime of complex, large architectures, where hidden representations are not strongly constrained by the parametrization. We show through experiments that the effective theory describes aspects of representation learning dynamics across a range of deep networks with different activation functions and architectures, and exhibits phenomena similar to the “rich” and “lazy” regime. While many network behaviors depend quantitatively on architecture, our findings point to certain behaviors that are widely conserved once models are sufficiently flexible.


Poster
#903
Keep the Momentum: Conservation Laws beyond Euclidean Gradient Flows

Sibylle Marcotte · Rémi Gribonval · Gabriel Peyré

Conservation laws are well-established in the context of Euclidean gradient flow dynamics, notably for linear or ReLU neural network training. Yet, their existence and principles for non-Euclidean geometries and momentum-based dynamics remain largely unknown. In this paper, we characterize "all" conservation laws in this general setting. In stark contrast to the case of gradient flows, we prove that the conservation laws for momentum-based dynamics exhibit temporal dependence. Additionally, we often observe a "conservation loss" when transitioning from gradient flow to momentum dynamics. Specifically, for linear networks, our framework allows us to identify all momentum conservation laws, which are less numerous than in the gradient flow case except in sufficiently over-parameterized regimes. With ReLU networks, no conservation law remains. This phenomenon also manifests in non-Euclidean metrics, used e.g. for Nonnegative Matrix Factorization (NMF): all conservation laws can be determined in the gradient flow context, yet none persists in the momentum case.


Poster
#904
Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss

Yahong Yang · Juncai He

Constructing the architecture of a neural network is a challenging pursuit for the machine learning community, and the dilemma of whether to go deeper or wider remains a persistent question. This paper explores a comparison between deeper neural networks (DeNNs) with a flexible number of layers and wider neural networks (WeNNs) with limited hidden layers, focusing on their optimal generalization error in Sobolev losses. Analytical investigations reveal that the architecture of a neural network can be significantly influenced by various factors, including the number of sample points, parameters within the neural networks, and the regularity of the loss function. Specifically, a higher number of parameters tends to favor WeNNs, while an increased number of sample points and greater regularity in the loss function lean towards the adoption of DeNNs. We ultimately apply this theory to address partial differential equations using deep Ritz and physics-informed neural network (PINN) methods, guiding the design of neural networks.


Poster
#905
On the Weight Dynamics of Deep Normalized Networks

Christian H.X. Ali Mehmeti-Göpel · Michael Wand

Recent studies have shown that high disparities in effective learning rates (ELRs) across layers in deep neural networks can negatively affect trainability. We formalize how these disparities evolve over time by modeling weight dynamics (evolution of expected gradient and weight norms) of networks with normalization layers, predicting the evolution of layer-wise ELR ratios. We prove that when training with any constant learning rate, ELR ratios converge to 1, despite initial gradient explosion. We identify a "critical learning rate" beyond which ELR disparities widen, which only depends on current ELRs. To validate our findings, we devise a hyper-parameter-free warm-up method that successfully minimizes ELR spread quickly in theory and practice. Our experiments link ELR spread with trainability, a relationship that is most evident in very deep networks with significant gradient magnitude excursions.


Poster
#906
Sliding Down the Stairs: How Correlated Latent Variables Accelerate Learning with Neural Networks

Lorenzo Bardone · Sebastian Goldt

Neural networks extract features from data using stochastic gradient descent (SGD). In particular, higher-order input cumulants (HOCs) are crucial for their performance. However, extracting information from the $p$th cumulant of $d$-dimensional inputs is computationally hard: the number of samples required to recover a single direction from an order-$p$ tensor (tensor PCA) using SGD grows as $d^{p−1}$, which is prohibitive for high-dimensional inputs. This result raises the question of how neural networks extract relevant directions from the HOCs of their inputs efficiently. Here, we show that correlations between latent variables along the directions encoded in different input cumulants speed up learning from higher-order correlations. We show this effect analytically by deriving nearly sharp thresholds for the number of samples required by a single neuron to recover these directions using online SGD from a random start in high dimensions. Our analytical results are confirmed in simulations of two-layer neural networks and unveil a new mechanism for hierarchical learning in neural networks


Spotlight Poster
#907
How Uniform Random Weights Induce Non-uniform Bias: Typical Interpolating Neural Networks Generalize with Narrow Teachers

Gon Buzaglo · Itamar Harel · Mor Shpigel Nacson · Alon Brutzkus · Nati Srebro · Daniel Soudry

A main theoretical puzzle is why over-parameterized Neural Networks (NNs) generalize well when trained to zero loss (i.e., so they interpolate the data). Usually, the NN is trained with Stochastic Gradient Descent (SGD) or one of its variants. However, recent empirical work examined the generalization of a random NN that interpolates the data: the NN was sampled from a seemingly uniform prior over the parameters, conditioned on that the NN perfectly classifying the training set. Interestingly, such a NN sample typically generalized as well as SGD-trained NNs. We prove that such a random NN interpolator typically generalizes well if there exists an underlying narrow `teacher NN" that agrees with the labels. Specifically, we show that such aflat' prior over the NN parametrization induces a rich prior over the NN functions, due to the redundancy in the NN structure. In particular, this creates a bias towards simpler functions, which require less relevant parameters to represent --- enabling learning with a sample complexity approximately proportional to the complexity of the teacher (roughly, the number of non-redundant parameters), rather than the student's.


Poster
#908
EVEREST: Efficient Masked Video Autoencoder by Removing Redundant Spatiotemporal Tokens

Sunil Hwang · Jaehong Yoon · Youngwan Lee · Sung Ju Hwang

Masked Video Autoencoder (MVA) approaches have demonstrated their potential by significantly outperforming previous video representation learning methods. However, they waste an excessive amount of computations and memory in predicting uninformative tokens/frames due to random masking strategies. (e.g., over 16 nodes with 128 NVIDIA A100 GPUs). To resolve this issue, we exploit the unequal information density among the patches in videos and propose EVEREST, a surprisingly efficient MVA approach for video representation learning that finds tokens containing rich motion features and discards uninformative ones during both pre-training and fine-tuning. We further present an information-intensive frame selection strategy that allows the model to focus on informative and causal frames with minimal redundancy. Our method significantly reduces the computation and memory requirements of MVA, enabling the pre-training and fine-tuning on a single machine with 8 GPUs while achieving comparable performance to computation- and memory-heavy baselines on multiple benchmarks and the uncurated Ego4D dataset. We hope that our work contributes to reducing the barrier to further research on video understanding.


Poster
#909
MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions

Kai Zhang · Yi Luan · Hexiang Hu · Kenton Lee · Siyuan Qiao · Wenhu Chen · Yu Su · Ming-Wei Chang

Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent works leverage text instructions to allow users to more freely express their search intents. However, they primarily focus on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via foundation models. Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves results comparable with or better than prior best on eight benchmarks of various image retrieval tasks, while maintaining high parameter efficiency with a significantly smaller model size. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity of search intents supported by MagicLens. Code and models are publicly available at the https://open-vision-language.github.io/MagicLens/.


Poster
#910
Rethinking Adversarial Robustness in the Context of the Right to be Forgotten

Chenxu Zhao · Wei Qian · Yangyi Li · Aobo Chen · Mengdi Huai

The past few years have seen an intense research interest in the practical needs of the "right to be forgotten", which has motivated researchers to develop machine unlearning methods to unlearn a fraction of training data and its lineage. While existing machine unlearning methods prioritize the protection of individuals' private data, they overlook investigating the unlearned models' susceptibility to adversarial attacks and security breaches. In this work, we uncover a novel security vulnerability of machine unlearning based on the insight that adversarial vulnerabilities can be bolstered, especially for adversarially robust models. To exploit this observed vulnerability, we propose a novel attack called Adversarial Unlearning Attack (AdvUA), which aims to generate a small fraction of malicious unlearning requests during the unlearning process. AdvUA causes a significant reduction of adversarial robustness in the unlearned model compared to the original model, providing an entirely new capability for adversaries that is infeasible in conventional machine learning pipelines. Notably, we also show that AdvUA can effectively enhance model stealing attacks by extracting additional decision boundary information, further emphasizing the breadth and significance of our research. We also conduct both theoretical analysis and computational complexity of AdvUA. Extensive numerical studies are performed to demonstrate the effectiveness and efficiency of the proposed attack.


Poster
#911
VNN: Verification-Friendly Neural Networks with Hard Robustness Guarantees

Anahita Baninajjar · Ahmed Rezine · Amir Aminifar

Machine learning techniques often lack formal correctness guarantees, evidenced by the widespread adversarial examples that plague most deep-learning applications. This lack of formal guarantees resulted in several research efforts that aim at verifying Deep Neural Networks (DNNs), with a particular focus on safety-critical applications. However, formal verification techniques still face major scalability and precision challenges. The over-approximation introduced during the formal verification process to tackle the scalability challenge often results in inconclusive analysis. To address this challenge, we propose a novel framework to generate Verification-Friendly Neural Networks (VNNs). We present a post-training optimization framework to achieve a balance between preserving prediction performance and verification-friendliness. Our proposed framework results in VNNs that are comparable to the original DNNs in terms of prediction performance, while amenable to formal verification techniques. This essentially enables us to establish robustness for more VNNs than their DNN counterparts, in a time-efficient manner.


Poster
#912
Not Just Pretty Pictures: Toward Interventional Data Augmentation Using Text-to-Image Generators

Jianhao Yuan · Francesco Pinto · Adam Davies · Phil Torr

Neural image classifiers are known to undergo severe performance degradation when exposed to inputs that are sampled from environmental conditions that differ from their training data. Given the recent progress in Text-to-Image (T2I) generation, a natural question is how modern T2I generators can be used to simulate arbitrary interventions over such environmental factors in order to augment training data and improve the robustness of downstream classifiers. We experiment across a diverse collection of benchmarks in single domain generalization (SDG) and reducing reliance on spurious features (RRSF), ablating across key dimensions of T2I generation, including interventional prompting strategies, conditioning mechanisms, and post-hoc filtering, showing that modern T2I generators like Stable Diffusion can indeed be used to implement a powerful interventional data augmentation (IDA) mechanism, outperforming previously state-of-the-art data augmentation techniques regardless of how each dimension is configured.


Poster
#913
BECoTTA: Input-dependent Online Blending of Experts for Continual Test-time Adaptation

Daeun Lee · Jaehong Yoon · Sung Ju Hwang

Continual Test-Time Adaptation (CTTA) is designed to optimize the model during deployment under changing conditions. CTTA is an important problem as it enables models to remain effective and reliable in dynamic and evolving environments. However, tackling the CTTA problem is nontrivial. The model needs to be computationally and memory-efficient to rapidly update its parameters for ever-changing environments in real-time. Also, the model should generalize well to new unseen domains while maintaining its capability on previously encountered ones, as old domains can be revisited in future adaptation phases. To tackle these challenges, this paper proposes BECoTTA, a parameter/memory-efficient yet powerful framework for CTTA. We introduce Mixture-of-Domain Low-rank Experts (MoDE) that contains two core components: i) Domain-Adaptive Routing, which can aid in selectively capturing the domain-adaptive knowledge, and ii) Domain-Expert Synergy Loss to maximize the dependency between each domain and expert. We validate our proposed method over multiple CTTA benchmarks, getting 5.81% performance gain, while only requiring 0.001x trainable parameters. We also provide analyses of our BECoTTA, including expert assignment and target domain relation.


Poster
#914
Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers

Johann Schmidt · Sebastian Stober

Deep neural networks are applied in more and more areas of everyday life. However, they still lack essential abilities, such as robustly dealing with spatially transformed input signals. Approaches to mitigate this severe robustness issue are limited to two pathways: Either models are implicitly regularised by increased sample variability (data augmentation) or explicitly constrained by hard-coded inductive biases. The limiting factor of the former is the size of the data space, which renders sufficient sample coverage intractable. The latter is limited by the engineering effort required to develop such inductive biases for every possible scenario. Instead, we take inspiration from human behaviour, where percepts are modified by mental or physical actions during inference. We propose a novel technique to emulate such an inference process for neural nets. This is achieved by traversing a sparsified inverse transformation tree during inference using parallel energy-based evaluations. Our proposed inference algorithm, called Inverse Transformation Search (ITS), is model-agnostic and equips the model with zero-shot pseudo-invariance to spatially transformed inputs. We evaluated our method on several benchmark datasets, including a synthesised ImageNet test set. ITS outperforms the utilised baselines on all zero-shot test scenarios.


Poster
#915
The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks

Ziquan Liu · Yufei Cui · Yan Yan · Yi Xu · Xiangyang Ji · Xue Liu · Antoni Chan

In safety-critical applications such as medical imaging and autonomous driving, where decisions have profound implications for patient health and road safety, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks and reliable uncertainty quantification in decision-making. With extensive research focused on enhancing adversarial robustness through various forms of adversarial training (AT), a notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models. To address this gap, this study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks within the adversarial defense community. It is first unveiled that existing CP methods do not produce informative prediction sets under the commonly used $l_{\infty}$-norm bounded attack if the model is not adversarially trained, which underpins the importance of adversarial training for CP. Our paper next demonstrates that the prediction set size (PSS) of CP using adversarially trained models with AT variants is often worse than using standard AT, inspiring us to research into CP-efficient AT for improved PSS. We propose to optimize a Beta-weighting loss with an entropy minimization regularizer during AT to improve CP-efficiency, where the Beta-weighting loss is shown to be an upper bound of PSS at the population level by our theoretical analysis. Moreover, our empirical study on four image classification datasets across three popular AT baselines validates the effectiveness of the proposed Uncertainty-Reducing AT (AT-UR).


Poster
#916
Exploring Intrinsic Dimension for Vision-Language Model Pruning

Hanzhang Wang · Jiawen Zhang · Qingyuan Ma

The intrinsic dimension (ID) represents the minimum dimension needed to describe data on a lower-dimensional manifold within high-dimensional spaces. Network pruning aims to reduce the complexity of high-dimensional networks while minimizing performance trade-offs. This symmetry motivates the exploration of ID as a metric for effective pruning. For vision-language models, we investigate whether different modalities exist on separate manifolds, indicating varying complexity and prunability. We empirically study ID variations in large-scale vision-language pre-trained models and examine the contributions of different modalities to model prunability. We propose a layer importance metric based on ID, which can conveniently integrate with current metrics and enhance performance in vision-language model pruning. The experimental results show a high correlation between ID and modality prunability. Visual representations are more sensitive and crucial to model performance, while language representations are more robust and offer greater prunability. Our findings suggest an asymmetric pruning strategy for vision and language modalities, guided by the ID metric. The code is available at https://github.com/Nofear18/IDVLPruning


Poster
#917
xT: Nested Tokenization for Larger Context in Large Images

Ritwik Gupta · Shufan Li · Tyler Zhu · Jitendra Malik · Trevor Darrell · Karttikeya Mangalam

Modern computer vision pipelines handle large images in one of two sub-optimal ways: down-sampling or cropping. These two methods incur significant losses in the amount of information and context present in an image. There are many downstream applications in which global context matters as much as high frequency details, such as in real-world satellite imagery; in such cases researchers have to make the uncomfortable choice of which information to discard. We introduce xT, a simple framework for vision transformers which effectively aggregates global context with local details and can model large images end-to-end on contemporary GPUs. We select a set of benchmark datasets across classic vision tasks which accurately reflect a vision model's ability to understand truly large images and incorporate fine details over large scales and assess our method's improvement on them. xT is a streaming, two-stage architecture that adapts existing vision backbones and long sequence language models to effectively model large images without quadratic memory growth. We are able to increase accuracy by up to 8.6% on challenging classification tasks and F1 score by 11.6 on context-dependent segmentation on images as large as 29,000 x 29,000 pixels.