Skip to yearly menu bar Skip to main content


Poster

Large Scale Dataset Distillation with Domain Shift

Noel Loo · Alaa Maalouf · Ramin Hasani · Mathias Lechner · Alexander Amini · Daniela Rus

Hall C 4-9 #2515
[ ] [ Paper PDF ]
Wed 24 Jul 4:30 a.m. PDT — 6 a.m. PDT

Abstract:

Dataset Distillation seeks to summarize a large dataset by generating a reduced set of synthetic samples. While there has been much success at distilling small datasets such as CIFAR-10 on smaller neural architectures, Dataset Distillation methods fail to scale to larger high-resolution datasets and architectures. In this work, we introduce Dataset Distillation with Domain Shift (D3S), a scalable distillation algorithm, made by reframing the dataset distillation problem as a domain shift one. In doing so, we derive a universal bound on the distillation loss, and provide a method for efficiently approximately optimizing it. We achieve state-of-the-art results on Tiny-ImageNet, ImageNet-1k, and ImageNet-21K over a variety of recently proposed baselines, including high cross-architecture generalization. Additionally, our ablation studies provide lessons on the importance of validation-time hyperparameters on distillation performance, motivating the need for standardization.

Chat is not available.