Skip to yearly menu bar Skip to main content


Oral

Oral 4C Safety and Control

Hall A2
Wed 24 Jul 7:30 a.m. PDT — 8:30 a.m. PDT
Abstract:
Chat is not available.

Wed 24 July 7:30 - 7:45 PDT

Best Paper
Stealing part of a production language model

Nicholas Carlini · Daniel Paleka · Krishnamurthy Dvijotham · Thomas Steinke · Jonathan Hayase · A. Feder Cooper · Katherine Lee · Matthew Jagielski · Milad Nasr · Arthur Conmy · Eric Wallace · David Rolnick · Florian Tramer

We introduce the first model-stealing attack that extracts precise, nontrivial information from black-box production language models like OpenAI's ChatGPT or Google's PaLM-2. Specifically, our attack recovers the embedding projection layer (up to symmetries) of a transformer model, given typical API access. For under $20 USD, our attack extracts the entire projection matrix of OpenAI's Ada and Babbage language models. We thereby confirm, for the first time, that these black-box models have a hidden dimension of 1024 and 2048, respectively. We also recover the exact hidden dimension size of the GPT-3.5-turbo model, and estimate it would cost under \\$2,000 in queries to recover the entire projection matrix. We conclude with potential defenses and mitigations, and discuss the implications of possible future work that could extend our attack.

Wed 24 July 7:45 - 8:00 PDT

Trained Random Forests Completely Reveal your Dataset

Julien Ferry · Ricardo Fukasawa · Timothée Pascal · Thibaut Vidal

We introduce an optimization-based reconstruction attack capable of completely or near-completely reconstructing a dataset utilized for training a random forest. Notably, our approach relies solely on information readily available in commonly used libraries such as scikit-learn. To achieve this, we formulate the reconstruction problem as a combinatorial problem under a maximum likelihood objective. We demonstrate that this problem is NP-hard, though solvable at scale using constraint programming - an approach rooted in constraint propagation and solution-domain reduction. Through an extensive computational investigation, we demonstrate that random forests trained without bootstrap aggregation but with feature randomization are susceptible to a complete reconstruction. This holds true even with a small number of trees. Even with bootstrap aggregation, the majority of the data can also be reconstructed. These findings underscore a critical vulnerability inherent in widely adopted ensemble methods, warranting attention and mitigation. Although the potential for such reconstruction attacks has been discussed in privacy research, our study provides clear empirical evidence of their practicability.

Wed 24 July 8:00 - 8:15 PDT

AI Control: Improving Safety Despite Intentional Subversion

Ryan Greenblatt · Buck Shlegeris · Kshitij Sachan · Fabien Roger

As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. To do so, safety measures either aim at making LLMs try to avoid harmful outcomes or aim at preventing LLMs from causing harmful outcomes, even if they try to cause them. In this paper, we focus on this second layer of defense. We develop and evaluate pipelines of safety techniques (protocols) that try to ensure safety despite intentional subversion - an approach we call AI control. We investigate a setting in which we want to solve a sequence of programming problems without ever submitting subtly wrong code, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate a range of protocols and red-team them by exploring strategies that the untrusted model could use to subvert them. We find that using the trusted model to edit untrusted-model code or using the untrusted model as a monitor substantially improves on simple baselines.

Wed 24 July 8:15 - 8:30 PDT

Low-Cost High-Power Membership Inference Attacks

Sajjad Zarifzadeh · Philippe Liu · Reza Shokri

Membership inference attacks aim to detect if a particular data point was used in training a model. We design a novel statistical test to perform robust membership inference attacks (RMIA) with low computational overhead. We achieve this by a fine-grained modeling of the null hypothesis in our likelihood ratio tests, and effectively leveraging both reference models and reference population data samples. RMIA has superior test power compared with prior methods, throughout the TPR-FPR curve (even at extremely low FPR, as low as 0). Under computational constraints, where only a limited number of pre-trained reference models (as few as 1) are available, and also when we vary other elements of the attack (e.g., data distribution), our method performs exceptionally well, unlike prior attacks that approach random guessing. RMIA lays the groundwork for practical yet accurate data privacy risk assessment in machine learning.