Poster
Poster Session 3
Hall C 4-9
BLO-SAM: Bi-level Optimization Based Finetuning of the Segment Anything Model for Overfitting-Preventing Semantic Segmentation
Li Zhang · Youwei Liang · Ruiyi Zhang · Amirhosein Javadi · Pengtao Xie
The Segment Anything Model (SAM), a foundation model pretrained on millions of images and segmentation masks, has significantly advanced semantic segmentation, a fundamental task in computer vision. Despite its strengths, SAM encounters two major challenges. Firstly, it struggles with segmenting specific objects autonomously, as it relies on users to manually input prompts like points or bounding boxes to identify targeted objects. Secondly, SAM faces challenges in excelling at specific downstream tasks, like medical imaging, due to a disparity between the distribution of its pretraining data, which predominantly consists of general-domain images, and the data used in downstream tasks. Current solutions to these problems, which involve finetuning SAM, often lead to overfitting, a notable issue in scenarios with very limited data, like in medical imaging. To overcome these limitations, we introduce BLO-SAM, which finetunes SAM based on bi-level optimization (BLO). Our approach allows for automatic image segmentation without the need for manual prompts, by optimizing a learnable prompt embedding. Furthermore, it significantly reduces the risk of overfitting by training the model's weight parameters and the prompt embedding on two separate subsets of the training dataset, each at a different level of optimization. We apply BLO-SAM to diverse semantic segmentation tasks in general and medical domains. The results demonstrate BLO-SAM's superior performance over various state-of-the-art image semantic segmentation methods. The code of BLO-SAM is available at https://github.com/importZL/BLO-SAM.
Exploiting Code Symmetries for Learning Program Semantics
Kexin Pei · Weichen Li · Qirui Jin · Shuyang Liu · Scott Geng · Lorenzo Cavallaro · Junfeng Yang · Suman Jana
This paper tackles the challenge of teaching code semantics to Large Language Models (LLMs) for program analysis by incorporating code symmetries into the model architecture. We introduce a group-theoretic framework that defines code symmetries as semantics-preserving transformations, where forming a code symmetry group enables precise and efficient reasoning of code semantics. Our solution, SymC, develops a novel variant of self-attention that is provably equivariant to code symmetries from the permutation group defined over the program dependence graph. SymC obtains superior performance on five program analysis tasks, outperforming state-of-the-art code models, including GPT-4, without any pre-training. Our results suggest that code LLMs that encode the code structural prior via the code symmetry group generalize better and faster.
Be Your Own Neighborhood: Detecting Adversarial Examples by the Neighborhood Relations Built on Self-Supervised Learning
Zhiyuan He · Yijun Yang · Pin-Yu Chen · Qiang Xu · Tsung-Yi Ho
Deep Neural Networks (DNNs) are vulnerable to Adversarial Examples (AEs), hindering their use in safety-critical systems. In this paper, we present BEYOND, an innovative AE detection framework designed for reliable predictions. BEYOND identifies AEs by distinguishing the AE’s abnormal relation with its augmented versions, i.e. neighbors, from two prospects: representation similarity and label consistency. An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the label for its highly informative representation capacity compared to supervised learning models. We found clean samples maintain a high degree of representation similarity and label consistency relative to their neighbors, in contrast to AEs which exhibit significant discrepancies. We explain this observation and show that leveraging this discrepancy BEYOND can accurately detect AEs. Additionally, we develop a rigorous justification for the effectiveness of BEYOND. Furthermore, as a plug-and-play model, BEYOND can easily cooperate with the Adversarial Trained Classifier (ATC), achieving state-of-the-art (SOTA) robustness accuracy. Experimental results show that BEYOND outperforms baselines by a large margin, especially under adaptive attacks. Empowered by the robust relationship built on SSL, we found that BEYOND outperforms baselines in terms of both detection ability and speed. Project page: https://huggingface.co/spaces/allenhzy/Be-Your-Own-Neighborhood.
Ensemble of deep neural networks has achieved great success in hedging against single-model failure under distribution shift. However, existing techniques suffer from producing redundant models, limiting predictive diversity and yielding compromised generalization performance. Existing ensemble pruning methods can only guarantee predictive diversity for in-distribution data, which may not transfer well to out-of-distribution (OoD) data. To address this gap, we propose a principled optimization framework for ensemble pruning under distribution shifts. Since the annotations of test data are not available, we explore relationships between prediction distributions of the models, encapsulated in a topology graph. By incorporating this topology into a combinatorial optimization framework, complementary models with high predictive diversity are selected with theoretical guarantees. Our approach is model-agnostic and can be applied on top of a broad spectrum of off-the-shelf ensembling methods for improved generalization performance. Experiments on common benchmarks demonstrate the superiority of our approach in both multi- and single-source OoD generalization. The source codes are publicly available at: https://github.com/joffery/TEP.
An Unsupervised Approach for Periodic Source Detection in Time Series
Berken Utku Demirel · Christian Holz
Detection of periodic patterns of interest within noisy time series data plays a critical role in various tasks, spanning from health monitoring to behavior analysis. Existing learning techniques often rely on labels or clean versions of signals for detecting the periodicity, and those employing self-supervised methods are required to apply proper augmentations, which is already challenging for time series and can result in collapse—all representations collapse to a single point due to strong augmentation. In this work, we propose a novel method to detect the periodicity in time series without the need for any labels or requiring tailored positive or negative data generation mechanisms. We mitigate the collapse issue by ensuring the learned representations retain information from the original samples without imposing any variance constraints on the batch. Our experiments in three time-series tasks against state-of-the-art learning methods show that the proposed approach consistently outperforms prior works, achieving performance improvements of more than 45--50%, showing its effectiveness.
Beyond Individual Input for Deep Anomaly Detection on Tabular Data
Hugo Thimonier · Fabrice Popineau · Arpad Rimmel · Bich-Liên DOAN
Anomaly detection is vital in many domains, such as finance, healthcare, and cybersecurity. In this paper, we propose a novel deep anomaly detection method for tabular data that leverages Non-Parametric Transformers (NPTs), a model initially proposed for supervised tasks, to capture both feature-feature and sample-sample dependencies. In a reconstruction-based framework, we train an NPT to reconstruct masked features of normal samples. In a non-parametric fashion, we leverage the whole training set during inference and use the model's ability to reconstruct the masked features to generate an anomaly score. To the best of our knowledge, this is the first work to successfully combine feature-feature and sample-sample dependencies for anomaly detection on tabular datasets. Through extensive experiments on 31 benchmark tabular datasets, we demonstrate that our method achieves state-of-the-art performance, outperforming existing methods by 2.4% and 1.2% in terms of F1-score and AUROC, respectively. Our ablation study further proves that modeling both types of dependencies is crucial for anomaly detection on tabular data.
Exploring the Low-Pass Filtering Behavior in Image Super-Resolution
Haoyu Deng · Zijing Xu · Yule Duan · Xiao Wu · Wen-Jie Shu · Liang-Jian Deng
Deep neural networks for image super-resolution (ISR) have shown significant advantages over traditional approaches like the interpolation. However, they are often criticized as 'black boxes' compared to traditional approaches with solid mathematical foundations. In this paper, we attempt to interpret the behavior of deep neural networks in ISR using theories from the field of signal processing. First, we report an intriguing phenomenon, referred to as `the sinc phenomenon.' It occurs when an impulse input is fed to a neural network. Then, building on this observation, we propose a method named Hybrid Response Analysis (HyRA) to analyze the behavior of neural networks in ISR tasks. Specifically, HyRA decomposes a neural network into a parallel connection of a linear system and a non-linear system and demonstrates that the linear system functions as a low-pass filter while the non-linear system injects high-frequency information. Finally, to quantify the injected high-frequency information, we introduce a metric for image-to-image tasks called Frequency Spectrum Distribution Similarity (FSDS). FSDS reflects the distribution similarity of different frequency components and can capture nuances that traditional metrics may overlook. Code, videos and raw experimental results for this paper can be found in: https://github.com/RisingEntropy/LPFInISR.
Achieving Lossless Gradient Sparsification via Mapping to Alternative Space in Federated Learning
Do-Yeon Kim · Dong-Jun Han · Jun Seo · Jaekyun Moon
Handling the substantial communication burden in federated learning (FL) still remains a significant challenge. Although recent studies have attempted to compress the local gradients to address this issue, they typically perform compression only within the original parameter space, which may potentially limit the fundamental compression rate of the gradient. In this paper, instead of restricting our scope to a fixed traditional space, we consider an alternative space that provides an improved compressibility of the gradient. To this end, we utilize the structures of input activation and output gradient in designing our mapping function to a new space, which enables lossless gradient sparsification, i.e., mapping the gradient to our new space induces a greater number of near-zero elements without any loss of information. In light of this attribute, employing sparsification-based compressors in our new space allows for more aggressive compression with minimal information loss than the baselines. More surprisingly, our model even reaches higher accuracies than the full gradient uploading strategy in some cases, an extra benefit for utilizing the new space. We also theoretically confirm that our approach does not alter the existing, best known convergence rate of FL thanks to the orthogonal transformation properties of our mapping.
Asymptotics of feature learning in two-layer networks after one gradient-step
Hugo Cui · Luca Pesce · Yatin Dandi · FLORENT KRZAKALA · Yue Lu · Lenka Zdeborova · Bruno Loureiro
In this manuscript, we investigate the problem of how two-layer neural networks learn features from data, and improve over the kernel regime, after being trained with a single gradient descent step. Leveraging the insight from (Ba et al., 2022), we model the trained network by a spiked Random Features (sRF) model. Further building on recent progress on Gaussian universality (Dandi et al., 2023), we provide an exact asymptotic description of the generalization error of the sRF in the high-dimensional limit where the number of samples, the width, and the input dimension grow at a proportional rate. The resulting characterization for sRFs also captures closely the learning curves of the original network model. This enables us to understand how adapting to the data is crucial for the network to efficiently learn non-linear functions in the direction of the gradient - where at initialization it can only express linear functions in this regime.
No Free Prune: Information-Theoretic Barriers to Pruning at Initialization
Tanishq Kumar · Kevin Luo · Mark Sellke
The existence of “lottery tickets” (Frankle & Carbin, 2018) at or near initialization raises the tantalizing question of whether large models are necessary in deep learning, or whether sparse networks can be quickly identified and trained without ever training the dense models that contain them. However, efforts to find these sparse subnetworks without training the dense model (“pruning at initialization”) have been broadly unsuccessful (Frankle et al., 2020b). We put forward a theoretical explanation for this, based on the model’s effective parameter count, $p_\text{eff}$, given by the sum of the number of non-zero weights in the final network and the mutual information between the sparsity mask and the data. We show the Law of Robustness of (Bubeck & Sellke, 2023) extends to sparse networks with the usual parameter count replaced by $p_\text{eff}$, meaning a sparse neural network which robustly interpolates noisy data requires a heavily data-dependent mask. We posit that pruning during and after training outputs masks with higher mutual information than those produced by pruning at initialization. Thus two networks may have the same sparsities, but differ in effective parameter count based on how they were trained. This suggests that pruning near initialization may be infeasible and explains why lottery tickets exist, but cannot be found fast (i.e. without training the full network). Experiments on neural networks confirm that information gained during training may indeed affect model capacity.
Towards Theoretical Understandings of Self-Consuming Generative Models
Shi Fu · Sen Zhang · Yingjie Wang · Xinmei Tian · Dacheng Tao
This paper tackles the emerging challenge of training generative models within a self-consuming loop, wherein successive generations of models are recursively trained on mixtures of real and synthetic data from previous generations. We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models, including parametric and non-parametric models. Specifically, we derive bounds on the total variation (TV) distance between the synthetic data distributions produced by future models and the original real data distribution under various mixed training scenarios for diffusion models with a one-hidden-layer neural network score function. Our analysis demonstrates that this distance can be effectively controlled under the condition that mixed training dataset sizes or proportions of real data are large enough. Interestingly, we further unveil a phase transition induced by expanding synthetic data amounts, proving theoretically that while the TV distance exhibits an initial ascent, it declines beyond a threshold point. Finally, we present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
MagicPose: Realistic Human Poses and Facial Expressions Retargeting with Identity-aware Diffusion
Di Chang · Yichun Shi · Quankai Gao · Hongyi Xu · Jessica Fu · Guoxian Song · Qing Yan · Yizhe Zhu · Xiao Yang · Mohammad Soleymani
In this work, we propose MagicPose, a diffusion-based model for 2D human pose and facial expression retargeting. Specifically, given a reference image, we aim to generate a person's new images by controlling the poses and facial expressions while keeping the identity unchanged. To this end, we propose a two-stage training strategy to disentangle human motions and appearance (e.g., facial expressions, skin tone, and dressing), consisting of (1) the pre-training of an appearance-control block and (2) learning appearance-disentangled pose control. Our novel design enables robust appearance control over generated human images, including body, facial attributes, and even background. By leveraging the prior knowledge of image diffusion models, MagicPose generalizes well to unseen human identities and complex poses without the need for additional fine-tuning. Moreover, the proposed model is easy to use and can be considered as a plug-in module/extension to Stable Diffusion. The project website is here. The code is available here.
The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks: Breaking the Curse of Information and Leap Exponents
Yatin Dandi · Emanuele Troiani · Luca Arnaboldi · Luca Pesce · Lenka Zdeborova · FLORENT KRZAKALA
We investigate the training dynamics of two-layer neural networks when learning multi-index target functions. We focus on multi-pass gradient descent (GD) that reuses the batches multiple times and show that it significantly changes the conclusion about which functions are learnable compared to single-pass gradient descent. In particular, multi-pass GD with finite stepsize is found to overcome the limitations of gradient flow and single-pass GD given by the information exponent (Ben Arous et al., 2021) and leap exponent (Abbe et al., 2023) of the target function. We show that upon re-using batches, the network achieves in just two time steps an overlap with the target subspace even for functions not satisfying the staircase property (Abbe et al., 2021). We characterize the (broad) class of functions efficiently learned in finite time. The proof of our results is based on the analysis of the Dynamical Mean-Field Theory (DMFT). We further provide a closed-form description of the dynamical process of the low-dimensional projections of the weights, and numerical experiments illustrating the theory.
Catapults in SGD: spikes in the training loss and their impact on generalization through feature learning
Libin Zhu · Chaoyue Liu · Adityanarayanan Radhakrishnan · Misha Belkin
In this paper, we first present an explanation regarding the common occurrence of spikes in the training loss when neural networks are trained with stochastic gradient descent (SGD). We provide evidence that the spikes in the training loss of SGD are "catapults", an optimization phenomenon originally observed in GD with large learning rates in Lewkowycz et al. (2020). We empirically show that these catapults occur in a low-dimensional subspace spanned by the top eigenvectors of the tangent kernel, for both GD and SGD. Second, we posit an explanation for how catapults lead to better generalization by demonstrating that catapults increase feature learning by increasing alignment with the Average Gradient Outer Product (AGOP) of the true predictor. Furthermore, we demonstrate that a smaller batch size in SGD induces a larger number of catapults, thereby improving AGOP alignment and test performance.
How Spurious Features are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari · Marco Mondelli
Deep learning models are known to overfit and memorize spurious features in the training dataset. While numerous empirical studies have aimed at understanding this phenomenon, a rigorous theoretical framework to quantify it is still missing. In this paper, we consider spurious features that are uncorrelated with the learning task, and we provide a precise characterization of how they are memorized via two separate terms: (i) the stability of the model with respect to individual training samples, and (ii) the feature alignment between the spurious pattern and the full sample. While the first term is well established in learning theory and it is connected to the generalization error in classical work, the second one is, to the best of our knowledge, novel. Our key technical result gives a precise characterization of the feature alignment for the two prototypical settings of random features (RF) and neural tangent kernel (NTK) regression. We prove that the memorization of spurious features weakens as the generalization capability increases and, through the analysis of the feature alignment, we unveil the role of the model and of its activation function. Numerical experiments show the predictive power of our theory on standard datasets (MNIST, CIFAR-10).
The Illusion of State in State-Space Models
William Merrill · Jackson Petty · Ashish Sabharwal
State-space models (SSMs) have emerged as a potential alternative architecture for building large language models (LLMs) compared to the previously ubiquitous transformer architecture. One theoretical weakness of transformers is that they cannot express certain kinds of sequential computation and state tracking (Merrill & Sabharwal, 2023), which SSMs are explicitly designed to address via their close architectural similarity to recurrent neural networks (RNNs). *But do SSMs truly have an advantage (over transformers) in expressive power for state tracking?* Surprisingly, the answer is no. Our analysis reveals that the expressive power of SSMs is limited very similarly to transformers: SSMs cannot express computation outside the complexity class $\mathsf{TC}^0$. In particular, this means they cannot solve simple state-tracking problems like permutation composition. It follows that SSMs are provably unable to accurately track chess moves with certain notation, evaluate code, or track entities in a long narrative. To supplement our formal analysis, we report experiments showing that Mamba-style SSMs indeed struggle with state tracking. Thus, despite its recurrent formulation, the "state'' in an SSM is an illusion: SSMs have similar expressiveness limitations to non-recurrent models like transformers, which may fundamentally limit their ability to solve real-world state-tracking problems.
Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics
Manuel Brenner · Florian Hess · Georgia Koppe · Daniel Durstewitz
Many, if not most, systems of interest in science are naturally described as nonlinear dynamical systems. Empirically, we commonly access these systems through time series measurements. Often such time series may consist of discrete random variables rather than continuous measurements, or may be composed of measurements from multiple data modalities observed simultaneously. For instance, in neuroscience we may have behavioral labels in addition to spike counts and continuous physiological recordings. While by now there is a burgeoning literature on deep learning for dynamical systems reconstruction (DSR), multimodal data integration has hardly been considered in this context. Here we provide such an efficient and flexible algorithmic framework that rests on a multimodal variational autoencoder for generating a sparse teacher signal that guides training of a reconstruction model, exploiting recent advances in DSR training techniques. It enables to combine various sources of information for optimal reconstruction, even allows for reconstruction from symbolic data (class labels) alone, and connects different types of observations within a common latent dynamics space. In contrast to previous multimodal data integration techniques for scientific applications, our framework is fully generative, producing, after training, trajectories with the same geometrical and temporal structure as those of the ground truth system.
Neural Jump-Diffusion Temporal Point Processes
Shuai Zhang · Chuan Zhou · Yang Liu · PENG ZHANG · Xixun Lin · Zhiming Ma
We present a novel perspective on temporal point processes (TPPs) by reformulating their intensity processes as solutions to stochastic differential equations (SDEs). In particular, we first prove the equivalent SDE formulations of several classical TPPs, including Poisson processes, Hawkes processes, and self-correcting processes. Based on these proofs, we introduce a unified TPP framework called Neural Jump-Diffusion Temporal Point Process (NJDTPP), whose intensity process is governed by a neural jump-diffusion SDE (NJDSDE) where the drift, diffusion, and jump coefficient functions are parameterized by neural networks. Compared to previous works, NJDTPP exhibits model flexibility in capturing intensity dynamics without relying on any specific functional form, and provides theoretical guarantees regarding the existence and uniqueness of the solution to the proposed NJDSDE. Experiments on both synthetic and real-world datasets demonstrate that NJDTPP is capable of capturing the dynamics of intensity processes in different scenarios and significantly outperforms the state-of-the-art TPP models in prediction tasks.
Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling
Ivan Marisca · Cesare Alippi · Filippo Maria Bianchi
Given a set of synchronous time series, each associated with a sensor-point in space and characterized by inter-series relationships, the problem of spatiotemporal forecasting consists of predicting future observations for each point. Spatiotemporal graph neural networks achieve striking results by representing the relationships across time series as a graph. Nonetheless, most existing methods rely on the often unrealistic assumption that inputs are always available and fail to capture hidden spatiotemporal dynamics when part of the data is missing. In this work, we tackle this problem through hierarchical spatiotemporal downsampling. The input time series are progressively coarsened over time and space, obtaining a pool of representations that capture heterogeneous temporal and spatial dynamics. Conditioned on observations and missing data patterns, such representations are combined by an interpretable attention mechanism to generate the forecasts. Our approach outperforms state-of-the-art methods on synthetic and real-world benchmarks under different missing data distributions, particularly in the presence of contiguous blocks of missing values.
Amortized Equation Discovery in Hybrid Dynamical Systems
Yongtuo Liu · Sara Magliacane · Miltiadis (Miltos) Kofinas · Efstratios Gavves
Hybrid dynamical systems are prevalent in science and engineering to express complex systems with continuous and discrete states. To learn laws of systems, all previous methods for equation discovery in hybrid systems follow a two-stage paradigm, i.e. they first group time series into small cluster fragments and then discover equations in each fragment separately through methods in non-hybrid systems. Although effective, performance is then limited because these methods ignore the commonalities in the shared dynamics of fragments that are driven by the same equations. Besides, the two-stage paradigm breaks the interdependence between categorizing and representing dynamics that jointly form hybrid systems. In this paper, we reformulate the problem and propose an end-to-end learning framework, i.e. Amortized Equation Discovery (AMORE), to jointly categorize modes and discover equations characterizing motion dynamics of each mode by all segments of the mode. Experiments on four hybrid and six non-hybrid systems demonstrate the superior performance of our method against previous methods on equation discovery, segmentation, and forecasting.
Scale-Free Image Keypoints Using Differentiable Persistent Homology
Giovanni Barbarani · Francesco Vaccarino · Gabriele Trivigno · Marco Guerra · Gabriele Berton · Carlo Masone
In computer vision, keypoint detection is a fundamental task, with applications spanning from robotics to image retrieval; however, existing learning-based methods suffer from scale dependency, and lack flexibility. This paper introduces a novel approach that leverages Morse theory and persistent homology, powerful tools rooted in algebraic topology. We propose a novel loss function based on the recent introduction of a notion of subgradient in persistent homology, paving the way towards topological learning. Our detector, MorseDet, is the first topology-based learning model for feature detection, which achieves competitive performance in keypoint repeatability and introduces a principled and theoretically robust approach to the problem.
Gradient-based Visual Explanation for Transformer-based CLIP
Chenyang ZHAO · Kun Wang · Xingyu Zeng · Rui Zhao · Antoni Chan
Significant progress has been achieved on the improvement and downstream usages of the Contrastive Language-Image Pre-training (CLIP) vision-language model, while less attention is paid to the interpretation of CLIP. We propose a Gradient-based visual Explanation method for CLIP (Grad-ECLIP), which interprets the matching result of CLIP for specific input image-text pair. By decomposing the architecture of the encoder and discovering the relationship between the matching similarity and intermediate spatial features, Grad-ECLIP produces effective heat maps that show the influence of image regions or words on the CLIP results. Different from the previous Transformer interpretation methods that focus on the utilization of self-attention maps, which are typically extremely sparse in CLIP, we produce high-quality visual explanations by applying channel and spatial weights on token features. Qualitative and quantitative evaluations verify the superiority of Grad-ECLIP compared with the state-of-the-art methods. A series of analysis are conducted based on our visual explanation results, from which we explore the working mechanism of image-text matching, and the strengths and limitations in attribution identification of CLIP. Codes are available here: https://github.com/Cyang-Zhao/Grad-Eclip.
EvTexture: Event-driven Texture Enhancement for Video Super-Resolution
Dachun Kai · Jiayao Lu · Yueyi Zhang · Xiaoyan Sun
Event-based vision has drawn increasing attention due to its unique characteristics, such as high temporal resolution and high dynamic range. It has been used in video super-resolution (VSR) recently to enhance the flow estimation and temporal alignment. Rather than for motion learning, we propose in this paper the first VSR method that utilizes event signals for texture enhancement. Our method, called EvTexture, leverages high-frequency details of events to better recover texture regions in VSR. In our EvTexture, a new texture enhancement branch is presented. We further introduce an iterative texture enhancement module to progressively explore the high-temporal-resolution event information for texture restoration. This allows for gradual refinement of texture regions across multiple iterations, leading to more accurate and rich high-resolution details. Experimental results show that our EvTexture achieves state-of-the-art performance on four datasets. For the Vid4 dataset with rich textures, our method can get up to 4.67dB gain compared with recent event-based methods. Code: https://github.com/DachunKai/EvTexture.
DeCoOp: Robust Prompt Tuning with Out-of-Distribution Detection
Zhi Zhou · Ming Yang · Jiang-Xin Shi · Lan-Zhe Guo · Yu-Feng Li
Vision-language models (VLMs), such as CLIP, have demonstrated impressive zero-shot capabilities for various downstream tasks. Their performance can be further enhanced through few-shot prompt tuning methods. However, current studies evaluate the performance of learned prompts separately on base and new classes. This evaluation lacks practicality for real-world applications since downstream tasks cannot determine whether the data belongs to base or new classes in advance. In this paper, we explore a problem setting called Open-world Prompt Tuning (OPT), which involves tuning prompts on base classes and evaluating on a combination of base and new classes. By introducing Decomposed Prompt Tuning framework (DePT), we theoretically demonstrate that OPT can be solved by incorporating out-of-distribution detection into prompt tuning, thereby enhancing the base-to-new discriminability. Based on DePT, we present a novel prompt tuning approach, namely, Decomposed Context Optimization (DeCoOp), which introduces new-class detectors and sub-classifiers to further enhance the base-class and new-class discriminability. Experimental results on 11 benchmark datasets validate the effectiveness of DePT and demonstrate that DeCoOp outperforms current state-of-the-art methods, providing a significant 2% average accuracy improvement.
Beyond Sole Strength: Customized Ensembles for Generalized Vision-Language Models
Zhihe Lu · Jiawang Bai · Xin Li · Zeyu Xiao · Xinchao Wang
Fine-tuning pre-trained vision-language models (VLMs), e.g., CLIP, for the open-world generalization has gained increasing popularity due to its practical value. However, performance advancements are limited when relying solely on intricate algorithmic designs for a single model, even one exhibiting strong performance, e.g., CLIP-ViT-B/16. This paper, for the first time, explores the collaborative potential of leveraging much weaker VLMs to enhance the generalization of a robust single model. The affirmative findings motivate us to address the generalization problem from a novel perspective, i.e., ensemble of pre-trained VLMs. We introduce three customized ensemble strategies, each tailored to one specific scenario. Firstly, we introduce the zero-shot ensemble, automatically adjusting the logits of different models based on their confidence when only pre-trained VLMs are available. Furthermore, for scenarios with extra few-shot samples, we propose the training-free and tuning ensemble, offering flexibility based on the availability of computing resources. The code is available at https://github.com/zhiheLu/Ensemble_VLM.git.
Towards Unified Multi-granularity Text Detection with Interactive Attention
Xingyu Wan · Chengquan Zhang · Pengyuan Lyu · Sen Fan · Zihan Ni · Kun Yao · Errui Ding · Jingdong Wang
Existing OCR engines or document image analysis systems typically rely on training separate models for text detection in varying scenarios and granularities, leading to significant computational complexity and resource demands. In this paper, we introduce "Detect Any Text" (DAT), an advanced paradigm that seamlessly unifies scene text detection, layout analysis, and document page detection into a cohesive, end-to-end model. This design enables DAT to efficiently manage text instances at different granularities, including word, line, paragraph and page. A pivotal innovation in DAT is the across-granularity interactive attention module, which significantly enhances the representation learning of text instances at varying granularities by correlating structural information across different text queries. As a result, it enables the model to achieve mutually beneficial detection performances across multiple text granularities. Additionally, a prompt-based segmentation module refines detection outcomes for texts of arbitrary curvature and complex layouts, thereby improving DAT's accuracy and expanding its real-world applicability. Experimental results demonstrate that DAT achieves state-of-the-art performances across a variety of text-related benchmarks, including multi-oriented/arbitrarily-shaped scene text detection, document layout analysis and page detection tasks.
PointMC: Multi-instance Point Cloud Registration based on Maximal Cliques
Yue Wu · Xidao hu · Yongzhe Yuan · Xiaolong Fan · Maoguo Gong · Hao Li · Mingyang Zhang · Qiguang Miao · Wenping Ma
Multi-instance point cloud registration is the problem of estimating multiple rigid transformations between two point clouds. Existing solutions rely on global spatial consistency of ambiguity and the time-consuming clustering of highdimensional correspondence features, making it difficult to handle registration scenarios where multiple instances overlap. To address these problems, we propose a maximal clique based multiinstance point cloud registration framework called PointMC. The key idea is to search for maximal cliques on the correspondence compatibility graph to estimate multiple transformations, and cluster these transformations into clusters corresponding to different instances to efficiently and accurately estimate all poses. PointMC leverages a correspondence embedding module that relies on local spatial consistency to effectively eliminate outliers, and the extracted discriminative features empower the network to circumvent missed pose detection in scenarios involving multiple overlapping instances. We conduct comprehensive experiments on both synthetic and real-world datasets, and the results show that the proposed PointMC yields remarkable performance improvements.
Drug Discovery with Dynamic Goal-aware Fragments
Seul Lee · Seanie Lee · Kenji Kawaguchi · Sung Ju Hwang
Fragment-based drug discovery is an effective strategy for discovering drug candidates in the vast chemical space, and has been widely employed in molecular generative models. However, many existing fragment extraction methods in such models do not take the target chemical properties into account or rely on heuristic rules. Additionally, the existing fragment-based generative models cannot update the fragment vocabulary with goal-aware fragments newly discovered during the generation. To this end, we propose a molecular generative framework for drug discovery, named Goal-aware fragment Extraction, Assembly, and Modification (GEAM). GEAM consists of three modules, each responsible for goal-aware fragment extraction, fragment assembly, and fragment modification. The fragment extraction module identifies important fragments contributing to the desired target properties with the information bottleneck principle, thereby constructing an effective goal-aware fragment vocabulary. Moreover, GEAM can explore beyond the initial vocabulary with the fragment modification module, and the exploration is further enhanced through the dynamic goal-aware vocabulary update. We experimentally demonstrate that GEAM effectively discovers drug candidates through the generative cycle of the three modules in various drug discovery tasks. Our code is available at https://github.com/SeulLee05/GEAM.
Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design
Andrew Campbell · Jason Yim · Regina Barzilay · Tom Rainforth · Tommi Jaakkola
Combining discrete and continuous data is an important capability for generative models. We present Discrete Flow Models (DFMs), a new flow-based model of discrete data that provides the missing link in enabling flow-based generative models to be applied to multimodal continuous and discrete data problems. Our key insight is that the discrete equivalent of continuous space flow matching can be realized using Continuous Time Markov Chains. DFMs benefit from a simple derivation that includes discrete diffusion models as a specific instance while allowing improved performance over existing diffusion-based approaches. We utilize our DFMs method to build a multimodal flow-based modeling framework. We apply this capability to the task of protein co-design, wherein we learn a model for jointly generating protein structure and sequence. Our approach achieves state-of-the-art co-design performance while allowing the same multimodal model to be used for flexible generation of the sequence or structure.
Faster Sampling via Stochastic Gradient Proximal Sampler
Xunpeng Huang · Difan Zou · Hanze Dong · Yian Ma · Tong Zhang
Stochastic gradients have been widely integrated into Langevin-based methods to improve their scalability and efficiency in solving large-scale sampling problems. However, the proximal sampler, which exhibits much faster convergence than Langevin-based algorithms in the deterministic setting (Lee et al., 2021), has yet to be explored in its stochastic variants. In this paper, we study the Stochastic Proximal Samplers (SPS) for sampling from non-log-concave distributions. We first establish a general framework for implementing stochastic proximal samplers and establish the convergence theory accordingly. We show that the convergence to the target distribution can be guaranteed as long as the second moment of the algorithm trajectory is bounded and restricted Gaussian oracles can be well approximated. We then provide two implementable variants based on Stochastic gradient Langevin dynamics (SGLD) and Metropolis-adjusted Langevin algorithm (MALA), giving rise to SPS-SGLD and SPS-MALA. We further show that SPS-SGLD and SPS-MALA can achieve $\epsilon$-sampling error in total variation (TV) distance within $\tilde{\mathcal{O}}(d\epsilon^{-2})$ and $\tilde{\mathcal{O}}(d^{1/2}\epsilon^{-2})$ gradient complexities, which outperform the best-known result by at least an $\tilde{\mathcal{O}}(d^{1/3})$ factor. This enhancement in performance is corroborated by our empirical studies on synthetic data with various dimensions, demonstrating the efficiency of our proposed algorithm.
A New Branch-and-Bound Pruning Framework for $\ell_0$-Regularized Problems
Guyard Theo · Cédric Herzet · Clément Elvira · Ayse-Nur Arslan
We consider the resolution of learning problems involving $\ell_0$-regularization via Branch-and- Bound (BnB) algorithms. These methods explore regions of the feasible space of the problem and check whether they do not contain solutions through “pruning tests”. In standard implementations, evaluating a pruning test requires to solve a convex optimization problem, which may result in computational bottlenecks. In this paper, we present an alternative to implement pruning tests for some generic family of $\ell_0$-regularized problems. Our proposed procedure allows the simultaneous assessment of several regions and can be embedded in standard BnB implementations with a negligible computational overhead. We show through numerical simulations that our pruning strategy can improve the solving time of BnB procedures by several orders of magnitude for typical problems encountered in machine-learning applications.
High-Probability Bound for Non-Smooth Non-Convex Stochastic Optimization with Heavy Tails
Langqi Liu · Yibo Wang · Lijun Zhang
Recently, Cutkosky et al. introduce the online-to-non-convex framework, which utilizes online learning methods to solve non-smooth non-convex optimization problems, and achieves an $\mathcal{O}(\epsilon^{-3}\delta^{-1})$ gradient complexity for finding $(\delta,\epsilon)$-stationary points. However, their results rely on the bounded variance assumption of stochastic gradients and only hold in expectation. To address these limitations, we investigate the case that stochastic gradients obey heavy-tailed distributions with finite $\mathfrak{p}$-th moments for some $\mathfrak{p}\in(1,2]$, and propose a novel algorithm which is able to identify a $(\delta,\epsilon)$-stationary point with high probability, after consuming $\tilde{\mathcal{O}}(\epsilon^{-\frac{2\mathfrak{p}-1}{\mathfrak{p}-1}}\delta^{-1})$ stochastic gradients. The key idea is first incorporating the gradient clipping technique into the online-to-non-convex framework to produce a sequence of points, the averaged gradient norms of which is no greater than $\epsilon$. Then, we propose a validation method to select one $(\delta,\epsilon)$-stationary point among the candidates. When gradient distributions have bounded variance, i.e., $\mathfrak{p}=2$, our result turns into $\tilde{\mathcal{O}}(\epsilon^{-3}\delta^{-1})$, which improves the existing $\tilde{\mathcal{O}}(\epsilon^{-4}\delta^{-1})$ high-probability bound. When the objective is smooth, our algorithm can also find an $\epsilon$-stationary point with $\tilde{\mathcal{O}}(\epsilon^{-\frac{3\mathfrak{p}-2}{\mathfrak{p}-1}})$ gradient queries.
Riemannian coordinate descent algorithms on matrix manifolds
Andi Han · Pratik Kumar Jawanpuria · Bamdev Mishra
Many machine learning applications are naturally formulated as optimization problems on Riemannian manifolds. The main idea behind Riemannian optimization is to maintain the feasibility of the variables while moving along a descent direction on the manifold. This results in updating all the variables at every iteration. In this work, we provide a general framework for developing computationally efficient coordinate descent (CD) algorithms on matrix manifolds that allows updating only a few variables at every iteration while adhering to the manifold constraint. In particular, we propose CD algorithms for various manifolds such as Stiefel, Grassmann, (generalized) hyperbolic, symplectic, and symmetric positive (semi)definite. While the cost per iteration of the proposed CD algorithms is low, we further develop a more efficient variant via a first-order approximation of the objective function. We analyze their convergence and complexity, and empirically illustrate their efficacy in several applications.
Supervised Matrix Factorization: Local Landscape Analysis and Applications
Joowon Lee · Hanbaek Lyu · Weixin Yao
Supervised matrix factorization (SMF) is a classical machine learning method that seeks low-dimensional feature extraction and classification tasks at the same time. Training an SMF model involves solving a non-convex and factor-wise constrained optimization problem with at least three blocks of parameters. Due to the high non-convexity and constraints, theoretical understanding of the optimization landscape of SMF has been limited. In this paper, we provide an extensive local landscape analysis for SMF and derive several theoretical and practical applications. Analyzing diagonal blocks of the Hessian naturally leads to a block coordinate descent (BCD) algorithm with adaptive step sizes. We provide global convergence and iteration complexity guarantees for this algorithm. Full Hessian analysis gives minimum $L_{2}$-regularization to guarantee local strong convexity and robustness of parameters. We establish a local estimation guarantee under a statistical SMF model. We also propose a novel GPU-friendly neural implementation of the BCD algorithm and validate our theoretical findings through numerical experiments. Our work contributes to a deeper understanding of SMF optimization, offering insights into the optimization landscape and providing practical solutions to enhance its performance.
Symmetric Matrix Completion with ReLU Sampling
Huikang Liu · Peng Wang · Longxiu Huang · Qing Qu · Laura Balzano
We study the problem of symmetric positive semi-definite low-rank matrix completion (MC) with deterministic entry-dependent sampling. In particular, we consider rectified linear unit (ReLU) sampling, where only positive entries are observed, as well as a generalization to threshold-based sampling. We first empirically demonstrate that the landscape of this MC problem is not globally benign: Gradient descent (GD) with random initialization will generally converge to stationary points that are not globally optimal. Nevertheless, we prove that when the matrix factor with a small rank satisfies mild assumptions, the nonconvex objective function is geodesically strongly convex on the quotient manifold in a neighborhood of a planted low-rank matrix. Moreover, we show that our assumptions are satisfied by a matrix factor with i.i.d. Gaussian entries. Finally, we develop a tailor-designed initialization for GD to solve our studied formulation, which empirically always achieves convergence to the global minima. We also conduct extensive experiments and compare MC methods, investigating convergence and completion performance with respect to initialization, noise level, dimension, and rank.
Exponential Spectral Pursuit: An Effective Initialization Method for Sparse Phase Retrieval
Mengchu Xu · Zhang Yuxuan · Jian Wang
Sparse phase retrieval aims to reconstruct an $n$-dimensional $k$-sparse signal from its phaseless measurements. For most of the existing reconstruction algorithms, their sampling complexity is known to be dominated by the initialization stage. In this paper, in order to improve the sampling complexity for initialization, we propose a novel method termed exponential spectral pursuit (ESP). Theoretically, our method offers a tighter bound of sampling complexity compared to the state-of-the-art ones, such as the truncated power method. Moreover, it empirically outperforms the existing initialization methods for sparse phase retrieval.
Spectral Preconditioning for Gradient Methods on Graded Non-convex Functions
Nikita Doikov · Sebastian Stich · Martin Jaggi
The performance of optimization methods is often tied to the spectrum of the objective Hessian. Yet, conventional assumptions, such as smoothness, do often not enable us to make finely-grained convergence statements—particularly not for non-convex problems. Striving for a more intricate characterization of complexity, we introduce a unique concept termed graded non-convexity. This allows to partition the class of non-convex problems into a nested chain of subclasses. Interestingly, many traditional non-convex objectives, including partially convex problems, matrix factorizations, and neural networks, fall within these subclasses. As a second contribution, we propose gradient methods with spectral preconditioning, which employ inexact top eigenvectors of the Hessian to address the ill-conditioning of the problem, contingent on the grade. Our analysis reveals that these new methods provide provably superior convergence rates compared to basic gradient descent on applicable problem classes, particularly when large gaps exist between the top eigenvalues of the Hessian. Our theory is validated by numerical experiments executed on multiple practical machine learning problems.
MADA: Meta-Adaptive Optimizers Through Hyper-Gradient Descent
Kaan Ozkara · Can Karakus · Parameswaran Raman · Mingyi Hong · Shoham Sabach · Branislav Kveton · Volkan Cevher
Following the introduction of Adam, several novel adaptive optimizers for deep learning have been proposed. These optimizers typically excel in some tasks but may not outperform Adam uniformly across all tasks. In this work, we introduce Meta-Adaptive Optimizers (MADA), a unified optimizer framework that can generalize several known optimizers and dynamically learn the most suitable one during training. The key idea in MADA is to parameterize the space of optimizers and dynamically search through it using hyper-gradient descent during training. We empirically compare MADA to other popular optimizers on vision and language tasks, and find that MADA consistently outperforms Adam and other popular optimizers, and is robust against sub-optimally tuned hyper-parameters. MADA achieves a greater validation performance improvement over Adam compared to other popular optimizers during GPT-2 training and fine-tuning. We also propose AVGrad, a modification of AMSGrad that replaces the maximum operator with averaging, which is more suitable for hyper-gradient optimization. Finally, we provide a convergence analysis to show that parameterized interpolations of optimizers can improve their error bounds (up to constants), hinting at an advantage for meta-optimizers.
MALIBO: Meta-learning for Likelihood-free Bayesian Optimization
Jiarong Pan · Stefan Falkner · Felix Berkenkamp · Joaquin Vanschoren
Bayesian optimization (BO) is a popular method to optimize costly black-box functions, and meta-learning has emerged as a way to leverage knowledge from related tasks to optimize new tasks faster. However, existing meta-learning methods for BO rely on surrogate models that are not scalable or are sensitive to varying input scales and noise types across tasks. Moreover, they often overlook the uncertainty associated with task similarity, leading to unreliable task adaptation when a new task differs significantly or has not been sufficiently explored yet. We propose a novel meta-learning BO approach that bypasses the surrogate model and directly learns the utility of queries across tasks. It explicitly models task uncertainty and includes an auxiliary model to enable robust adaptation to new tasks. Extensive experiments show that our method achieves strong performance and outperforms multiple meta-learning BO methods across various benchmarks.
Interaction-based Retrieval-augmented Diffusion Models for Protein-specific 3D Molecule Generation
Zhilin Huang · Ling Yang · Xiangxin Zhou · Chujun Qin · Yijie Yu · Xiawu Zheng · Zikun Zhou · Wentao Zhang · Yu Wang · Wenming Yang
Generating ligand molecules that bind to specific protein targets via generative models holds substantial promise for advancing structure-based drug design. Existing methods generate molecules from scratch without reference or template ligands, which poses challenges in model optimization and may yield suboptimal outcomes. To address this problem, we propose an innovative interaction-based retrieval-augmented diffusion model named IRDiff to facilitate target-aware molecule generation. IRDiff leverages a curated set of ligand references, i.e., those with desired properties such as high binding affinity, to steer the diffusion model towards synthesizing ligands that satisfy design criteria. Specifically, we utilize a protein-molecule interaction network (PMINet), which is pretrained with binding affinity signals to: (i) retrieve target-aware ligand molecules with high binding affinity to serve as references, and (ii) incorporate essential protein-ligand binding structures for steering molecular diffusion generation with two effective augmentation mechanisms, i.e., retrieval augmentation and self augmentation. Empirical studies on CrossDocked2020 dataset show IRDiff can generate molecules with more realistic 3D structures and achieve state-of-the-art binding affinities towards the protein targets, while maintaining proper molecular properties. The codes and models are available at https://github.com/YangLing0818/IRDiff
PDHG-Unrolled Learning-to-Optimize Method for Large-Scale Linear Programming
Bingheng Li · Linxin Yang · Yupeng Chen · Senmiao Wang · Haitao Mao · Qian Chen · Yao Ma · Akang Wang · Tian Ding · Jiliang Tang · Ruoyu Sun
Solving large-scale linear programming (LP) problems is an important task in various areas such as communication networks, power systems, finance and logistics. Recently, two distinct approaches have emerged to expedite LP solving: (i) First-order methods (FOMs); (ii) Learning to optimize (L2O). In this work, we propose an FOM-unrolled neural network (NN) called PDHG-Net, and propose a two-stage L2O method to solve large-scale LP problems. The new architecture PDHG-Net is designed by unrolling the recently emerged PDHG method into a neural network, combined with channel-expansion techniques borrowed from graph neural networks. We prove that the proposed PDHG-Net can recover PDHG algorithm, thus can approximate optimal solutions of LP instances with a polynomial number of neurons. We propose a two-stage inference approach: first use PDHG-Net to generate an approximate solution, and then apply PDHG algorithm to further improve the solution. Experiments show that our approach can significantly accelerate LP solving, achieving up to a 3$\times$ speedup compared to FOMs for large-scale LP problems.
Consistent Submodular Maximization
PAUL DUETTING · Federico Fusco · Silvio Lattanzi · Ashkan Norouzi-Fard · Morteza Zadimoghaddam
Maximizing monotone submodular functions under cardinality constraints is a classic optimization task with several applications in data mining and machine learning. In this paper, we study this problem in a dynamic environment with consistency constraints: elements arrive in a streaming fashion, and the goal is maintaining a constant approximation to the optimal solution while having a stable solution (i.e., the number of changes between two consecutive solutions is bounded). In this setting, we provide algorithms with different trade-offs between consistency and approximation quality. We also complement our theoretical results with an experimental analysis showing the effectiveness of our algorithms in real-world instances.
LPGD: A General Framework for Backpropagation through Embedded Optimization Layers
Anselm Paulus · Georg Martius · Vit Musil
Embedding parameterized optimization problems as layers into machine learning architectures serves as a powerful inductive bias. Training such architectures with stochastic gradient descent requires care, as degenerate derivatives of the embedded optimization problem often render the gradients uninformative. We propose Lagrangian Proximal Gradient Descent (LPGD), a flexible framework for training architectures with embedded optimization layers that seamlessly integrates into automatic differentiation libraries. LPGD efficiently computes meaningful replacements of the degenerate optimization layer derivatives by re-running the forward solver oracle on a perturbed input. LPGD captures various previously proposed methods as special cases, while fostering deep links to traditional optimization methods. We theoretically analyze our method and demonstrate on historical and synthetic data that LPGD converges faster than gradient descent even in a differentiable setup.
Differentiable Mapper for Topological Optimization of Data Representation
Ziyad Oulhaj · Mathieu Carrière · Bertrand Michel
Unsupervised data representation and visualization using tools from topology is an active and growing field of Topological Data Analysis (TDA) and data science. Its most prominent line of work is based on the so-called Mapper graph, which is a combinatorial graph whose topological structures (connected components, branches, loops) are in correspondence with those of the data itself. While highly generic and applicable, its use has been hampered so far by the manual tuning of its many parameters—among these, a crucial one is the so-called filter: it is a continuous function whose variations on the data set are the main ingredient for both building the Mapper representation and assessing the presence and sizes of its topological structures. However, while a few parameter tuning methods have already been investigated for the other Mapper parameters (i.e., resolution, gain, clustering), there is currently no method for tuning the filter itself. In this work, we build on a recently proposed optimization framework incorporating topology to provide the first filter optimization scheme for Mapper graphs. In order to achieve this, we propose a relaxed and more general version of the Mapper graph, whose convergence properties are investigated. Finally, we demonstrate the usefulness of our approach by optimizing Mapper graph representations on several datasets, and showcasing the superiority of the optimized representation over arbitrary ones.
Learning Associative Memories with Gradient Descent
Vivien Cabannnes · Berfin Simsek · Alberto Bietti
This work focuses on the training dynamics of one associative memory module storing outer products of token embeddings. We reduce this problem to the study of a system of particles, which interact according to properties of the data distribution and correlations between embeddings. Through theory and experiments, we provide several insights. In overparameterized regimes, we obtain logarithmic growth of the ``classification margins.'' Yet, we show that imbalance in token frequencies and memory interferences due to correlated embeddings lead to oscillatory transitory regimes. The oscillations are more pronounced with large step sizes, which can create benign loss spikes, although these learning rates speed up the dynamics and accelerate the asymptotic convergence. We also find that underparameterized regimes lead to suboptimal memorization schemes. Finally, we assess the validity of our findings on small Transformer models.
Differentiable Model Scaling using Differentiable Topk
Kai Liu · Ruohui Wang · Jianfei Gao · Kai Chen
Over the past few years, as large language models have ushered in an era of intelligence emergence, there has been an intensified focus on scaling networks. Although Neural Architecture Search (NAS) methods have been proposed to automate this process, they suffer from low search efficiency. This study introduces Differentiable Model Scaling (DMS), increasing the efficiency for searching optimal width and depth in networks. DMS can model both width and depth in a direct and fully differentiable way, making it easy to optimize. We have evaluated our DMS across diverse tasks, ranging from vision tasks to NLP tasks and various network architectures, including CNNs and Transformers. Results consistently indicate that our DMS can find improved structures and outperforms state-of-the-art NAS methods. Specifically, for image classification on ImageNet, our DMS improves the top-1 accuracy of EfficientNet-B0 and Deit-Tiny by 1.4% and 0.6%, respectively, and outperforms the state-of-the-art zero-shot NAS method, ZiCo, by 1.3% while requiring only 0.4 GPU days for searching. For object detection on COCO, DMS improves the mAP of Yolo-v8-n by 2.0%. For language modeling, our pruned Llama-7B outperforms the prior method with lower perplexity and higher zero-shot classification accuracy. Our code is available at https://github.com/LKJacky/Differentiable-Model-Scaling.
Neural Radiance Fields (NeRFs) have emerged as powerful tools for capturing detailed 3D scenes through continuous volumetric representations. Recent NeRFs utilize feature grids to improve rendering quality and speed; however, these representations introduce significant storage overhead. This paper presents a novel method for efficiently compressing a grid-based NeRF model, addressing the storage overhead concern. Our approach is based on the non-linear transform coding paradigm, employing neural compression for compressing the model's feature grids. Due to the lack of training data involving many i.i.d scenes, we design an encoder-free, end-to-end optimized approach for individual scenes, using lightweight decoders. To leverage the spatial inhomogeneity of the latent feature grids, we introduce an importance-weighted rate-distortion objective and a sparse entropy model employing a masking mechanism. Our experimental results validate that our proposed method surpasses existing works in terms of grid-based NeRF compression efficacy and reconstruction quality.
One Meta-tuned Transformer is What You Need for Few-shot Learning
Xu Yang · Huaxiu Yao · Ying WEI
Pre-trained vision transformers have revolutionized few-shot image classification, and it has been recently demonstrated that the previous common practice of meta-learning in synergy with these pre-trained transformers still holds significance. In this work, we design a new framework centered exclusively on self-attention, called MetaFormer, which extends the vision transformers beyond patch token interactions to encompass relationships between samples and tasks simultaneously for further advancing their downstream task performance. Leveraging the intrinsical property of ViTs in handling local patch relationships, we propose Masked Sample Attention (MSA) to efficiently embed the sample relationships into the network, where an adaptive mask is attached for enhancing task-specific feature consistency and providing flexibility in switching between few-shot learning setups. To encapsulate task relationships while filtering out background noise, Patch-grained Task Attention (PTA) is designed to maintain a dynamic knowledge pool consolidating diverse patterns from historical tasks. MetaFormer demonstrates coherence and compatibility with off-the-shelf pre-trained vision transformers and shows significant improvements in both inductive and transductive few-shot learning scenarios, outperforming state-of-the-art methods by up to 8.77% and 6.25% on 12 in-domain and 10 cross-domain datasets, respectively.
Equivariant Diffusion for Crystal Structure Prediction
Peijia Lin · Pin Chen · Rui Jiao · Qing Mo · Jianhuan Cen · Wenbing Huang · Yang Liu · Dan Huang · Yutong Lu
In addressing the challenge of Crystal Structure Prediction (CSP), symmetry-aware deep learning models, particularly diffusion models, have been extensively studied, which treat CSP as a conditional generation task. However, ensuring permutation, rotation, and periodic translation equivariance during diffusion process remains incompletely addressed. In this work, we propose EquiCSP, a novel equivariant diffusion-based generative model. We not only address the overlooked issue of lattice permutation equivariance in existing models, but also develop a unique noising algorithm that rigorously maintains periodic translation equivariance throughout both training and inference processes. Our experiments indicate that EquiCSP significantly surpasses existing models in terms of generating accurate structures and demonstrates faster convergence during the training process.
FAFE: Immune Complex Modeling with Geodesic Distance Loss on Noisy Group Frames
Ruidong Wu · Ruihan Guo · Rui Wang · Shitong Luo · Xu Yue · Jiahan Li · Jianzhu Ma · qiang liu · Yunan Luo · Jian Peng
Despite the striking success of general protein folding models such as AlphaFold2 (AF2), the accurate computational modeling of antibody-antigen complexes remains a challenging task. In this paper, we first analyze AF2's primary loss function, known as the Frame Aligned Point Error (FAPE), and raise a previously overlooked issue that FAPE tends to face gradient vanishing problem on high-rotational-error targets. To address this fundamental limitation, we propose a novel geodesic loss called Frame Aligned Frame Error (FAFE, denoted as F2E to distinguish from FAPE), which enables the model to better optimize both the rotational and translational errors between two frames. We then prove that F2E can be reformulated as a group-aware geodesic loss, which translates the optimization of the residue-to-residue error to optimizing group-to-group geodesic frame distance. By fine-tuning AF2 with our proposed new loss function, we attain a correct rate of 52.3% (DockQ > 0.23) on an evaluation set and 43.8% correct rate on a subset with low homology, with improvement over AF2 by 182% and 100% respectively.
Antibody Design Using a Score-based Diffusion Model Guided by Evolutionary, Physical and Geometric Constraints
Tian Zhu · Milong Ren · Haicang Zhang
Antibodies are central proteins in adaptive immune responses, responsible for protecting against viruses and other pathogens. Rational antibody design has proven effective in the diagnosis and treatment of various diseases like cancers and virus infections. While recent diffusion-based generative models show promise in designing antigen-specific antibodies, the primary challenge lies in the scarcity of labeled antibody-antigen complex data and binding affinity data. We present AbX, a new score-based diffusion generative model guided by evolutionary, physical, and geometric constraints for antibody design. These constraints serve to narrow the search space and provide priors for plausible antibody sequences and structures. Specifically, we leverage a pre-trained protein language model as priors for evolutionary plausible antibodies and introduce additional training objectives for geometric and physical constraints like van der Waals forces. Furthermore, as far as we know, AbX is the first score-based diffusion model with continuous timesteps for antibody design, jointly modeling the discrete sequence space and the $\mathrm{SE}(3)$ structure space. Evaluated on two independent testing sets, we show that AbX outperforms other published methods, achieving higher accuracy in sequence and structure generation and enhanced antibody-antigen binding affinity. Ablation studies highlight the clear contributions of the introduced constraints to antibody design.
CLIPZyme: Reaction-Conditioned Virtual Screening of Enzymes
Peter Mikhael · Itamar Chinn · Regina Barzilay
Computational screening of naturally occurring proteins has the potential to identify efficient catalysts among the hundreds of millions of sequences that remain uncharacterized. Current experimental methods remain time, cost and labor intensive, limiting the number of enzymes they can reasonably screen. In this work, we propose a computational framework for in-silico enzyme screening. Through a contrastive objective, we train CLIPZyme to encode and align representations of enzyme structures and reaction pairs. With no standard computational baseline, we compare CLIPZyme to existing EC (enzyme commission) predictors applied to virtual enzyme screening and show improved performance in scenarios where limited information on the reaction is available (BEDROC$_{85}$ of 44.69%). Additionally, we evaluate combining EC predictors with CLIPZyme and show its generalization capacity on both unseen reactions and protein clusters.
Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations
Jiaqi Zhai · Yunxing Liao · Xing Liu · Yueming Wang · Rui Li · Xuan Cao · Yazhi Gao · Zhaojie Gong · Fangda Gu · Michael He · Yinghai Lu · Yu Shi
Large-scale recommendation systems are characterized by their reliance on high cardinality, heterogeneous features and the need to handle tens of billions of user actions on a daily basis. Despite being trained on huge volume of data with thousands of features, most Deep Learning Recommendation Models (DLRMs) in industry fail to scale with compute. Inspired by success achieved by Transformers in language and vision domains, we revisit fundamental design choices in recommendation systems. We reformulate recommendation problems as sequential transduction tasks within a generative modeling framework (``Generative Recommenders''), and propose a new architecture, HSTU, designed for high cardinality, non-stationary streaming recommendation data. HSTU outperforms baselines over synthetic and public datasets by up to 65.8% in NDCG, and is 5.3x to 15.2x faster than FlashAttention2-based Transformers on 8192 length sequences. HSTU-based Generative Recommenders, with 1.5 trillion parameters, improve metrics in online A/B tests by 12.4% and have been deployed on multiple surfaces of a large internet platform with billions of users. More importantly, the model quality of Generative Recommenders empirically scales as a power-law of training compute across three orders of magnitude, up to GPT-3/LLaMa-2 scale, which reduces carbon footprint needed for future model developments, and further paves the way for the first foundation models in recommendations.
SuDA: Support-based Domain Adaptation for Sim2Real Hinge Joint Tracking with Flexible Sensors
Fang Jiawei · Haishan Song · Chengxu Zuo · xiaoxia gao · Xiaowei Chen · Guo Shihui · Yipeng Qin
Flexible sensors hold promise for human motion capture (MoCap), offering advantages such as wearability, privacy preservation, and minimal constraints on natural movement. However, existing flexible sensor-based MoCap methods rely on deep learning and necessitate large and diverse labeled datasets for training. These data typically need to be collected in MoCap studios with specialized equipment and substantial manual labor, making them difficult and expensive to obtain at scale. Thanks to the high-linearity of flexible sensors, we address this challenge by proposing a novel Sim2Real solution for hinge joint tracking based on domain adaptation, eliminating the need for labeled data yet achieving comparable accuracy to supervised learning. Our solution relies on a novel Support-based Domain Adaptation method, namely SuDA, which aligns the supports of the predictive functions rather than the instance-dependent distributions between the source and target domains. Extensive experimental results demonstrate the effectiveness of our method and its superiority overstate-of-the-art distribution-based domain adaptation methods in our task.
Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks
Dongyoung Lim · Sotirios Sabanis
We present a new class of Langevin-based algorithms, which overcomes many of the known shortcomings of popular adaptive optimizers that are currently used for the fine tuning of deep learning models. Its underpinning theory relies on recent advances of Euler-Krylov polygonal approximations for stochastic differential equations (SDEs) with monotone coefficients. As a result, it inherits the stability properties of tamed algorithms, while it addresses other known issues, e.g. vanishing gradients in deep learning. In particular, we provide a nonasymptotic analysis and full theoretical guarantees for the convergence properties of an algorithm of this novel class, which we named TH$\varepsilon$O POULA (or, simply, TheoPouLa). Finally, several experiments are presented with different types of deep learning models, which show the superior performance of TheoPouLa over many popular adaptive optimization algorithms.
Promoting External and Internal Equities Under Ex-Ante/Ex-Post Metrics in Online Resource Allocation
Karthik Abinav Sankararaman · Aravind Srinivasan · Pan Xu
This paper proposes two different models for equitable resource allocation in online settings. The first one is called *external* equity promotion, where sequentially arriving agents are heterogeneous in their external attributes, namely how many resources they demand, which are drawn from a probability distribution (accessible to the algorithm). The focus is then to devise an allocation policy such that every requester can get a fair share of resources *proportional to their demands*, regardless of their arrival time. The second is called *internal* equity promotion, where arriving requesters can be treated homogeneously in external attributes (demands) but are heterogeneous in internal traits such as demographics. In particular, each requester can be identified as belonging to one or several groups, and an allocation of resources is regarded as equitable when every group of requesters can receive a fair share of resources proportional to the percentage of that group in the whole population. For both models above, we consider as the benchmark a clairvoyant optimal solution that has the privilege to access all random demand realizations in advance. We consider two equity metrics, namely *ex-post* and *ex-ante*, and discuss the challenges under the two metrics in detail. Specifically, we present two linear program (LP)-based policies for external equity promotion under ex-ante with independent demands, each achieving an *optimal* CR of $1/2$ with respect to the benchmark LP. For internal equity promotion, we present optimal policies under both ex-ante and ex-post metrics.
Offline optimization aims to maximize a black-box objective function with a static dataset and has wide applications. In addition to the objective function being black-box and expensive to evaluate, numerous complex real-world problems entail optimizing multiple conflicting objectives, i.e., multi-objective optimization (MOO). Nevertheless, offline MOO has not progressed as much as offline single-objective optimization (SOO), mainly due to the lack of benchmarks like Design-Bench for SOO. To bridge this gap, we propose a first benchmark for offline MOO, covering a range of problems from synthetic to real-world tasks. This benchmark provides tasks, datasets, and open-source examples, which can serve as a foundation for method comparisons and advancements in offline MOO. Furthermore, we analyze how the current related methods can be adapted to offline MOO from four fundamental perspectives, including data, model architecture, learning algorithm, and search algorithm. Empirical results show improvements over the best value of the training set, demonstrating the effectiveness of offline MOO methods. As no particular method stands out significantly, there is still an open challenge in further enhancing the effectiveness of offline MOO. We finally discuss future challenges for offline MOO, with the hope of shedding some light on this emerging field. Our code is available at https://github.com/lamda-bbo/offline-moo.
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark
Yihua Zhang · Pingzhi Li · Junyuan Hong · Jiaxiang Li · Yimeng Zhang · Wenqing Zheng · Pin-Yu Chen · Jason Lee · Wotao Yin · Mingyi Hong · Zhangyang “Atlas” Wang · Sijia Liu · Tianlong Chen
In the evolving landscape of natural language processing (NLP), fine-tuning pre-trained Large Language Models (LLMs) with first-order (FO) optimizers like SGD and Adam has become standard. Yet, as LLMs grow in size, the substantial memory overhead from back-propagation (BP) for FO gradient computation presents a significant challenge. Addressing this issue is crucial, especially for applications like on-device training where memory efficiency is paramount. This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during LLM fine-tuning, building on the initial concept introduced by (Malladi et al., 2023). Unlike traditional ZO-SGD methods, ou让work expands the exploration to a wider array of ZO optimization techniques, through a comprehensive, first-of-its-kind benchmarking study across five LLM families, three task complexities, and five fine-tuning schemes. Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance. We further introduce novel enhancements to ZO optimization, including block-wise descent, hybrid training, and gradient sparsity. Our study offers a promising direction for achieving further memory-efficient LLM fine-tuning. Codes to reproduce all our experiments will be made public.
Variance-reduced Zeroth-Order Methods for Fine-Tuning Language Models
Tanmay Gautam · Youngsuk Park · Hao Zhou · Parameswaran Raman · Wooseok Ha
Fine-tuning language models (LMs) has demonstrated success in a wide array of downstream tasks. However, as LMs are scaled up, the memory requirements for backpropagation become prohibitively high. Zeroth-order (ZO) optimization methods can leverage memory-efficient forward passes to estimate gradients. More recently, MeZO, an adaptation of ZO-SGD, has been shown to consistently outperform zero-shot and in-context learning when combined with suitable task prompts. In this work, we couple ZO methods with variance reduction techniques to enhance stability and convergence for inference-based LM fine-tuning. We introduce Memory-Efficient Zeroth-Order Stochastic Variance-Reduced Gradient (MeZO-SVRG) and demonstrate its efficacy across multiple LM fine-tuning tasks, eliminating the reliance on task-specific prompts. Evaluated across a range of both masked and autoregressive LMs on benchmark GLUE tasks, MeZO-SVRG outperforms MeZO with up to 20% increase in test accuracies in both full- and partial-parameter fine-tuning settings. MeZO-SVRG benefits from reduced computation time as it often surpasses MeZO's peak test accuracy with a $2\times$ reduction in GPU-hours. MeZO-SVRG significantly reduces the required memory footprint compared to first-order SGD, i.e. by $2\times$ for autoregressive models. Our experiments highlight that MeZO-SVRG's memory savings progressively improve compared to SGD with larger batch sizes.
Bayesian Optimization of Function Networks with Partial Evaluations
Poompol Buathong · Jiayue Wan · Raul Astudillo · Samuel Daulton · Maximilian Balandat · Peter Frazier
Bayesian optimization is a powerful framework for optimizing functions that are expensive or time-consuming to evaluate. Recent work has considered Bayesian optimization of function networks (BOFN), where the objective function is given by a network of functions, each taking as input the output of previous nodes in the network as well as additional parameters. Leveraging this network structure has been shown to yield significant performance improvements. Existing BOFN algorithms for general-purpose networks evaluate the full network at each iteration. However, many real-world applications allow for evaluating nodes individually. To exploit this, we propose a novel knowledge gradient acquisition function that chooses which node and corresponding inputs to evaluate in a cost-aware manner, thereby reducing query costs by evaluating only on a part of the network at each step. We provide an efficient approach to optimizing our acquisition function and show that it outperforms existing BOFN methods and other benchmarks across several synthetic and real-world problems. Our acquisition function is the first to enable cost-aware optimization of a broad class of function networks.
Dynamic Byzantine-Robust Learning: Adapting to Switching Byzantine Workers
Ron Dorfman · Naseem Yehya · Kfir Levy
Byzantine-robust learning has emerged as a prominent fault-tolerant distributed machine learning framework. However, most techniques focus on the *static* setting, wherein the identity of Byzantine workers remains unchanged throughout the learning process. This assumption fails to capture real-world *dynamic* Byzantine behaviors, which may include intermittent malfunctions or targeted, time-limited attacks. Addressing this limitation, we propose DynaBRO -- a new method capable of withstanding any sub-linear number of identity changes across rounds. Specifically, when the number of such changes is $\mathcal{O}(\sqrt{T})$ (where $T$ is the total number of training rounds), DynaBRO nearly matches the state-of-the-art asymptotic convergence rate of the static setting. Our method utilizes a multi-level Monte Carlo (MLMC) gradient estimation technique applied at the server to robustly aggregated worker updates. By additionally leveraging an adaptive learning rate, we circumvent the need for prior knowledge of the fraction of Byzantine workers.
Accelerating Federated Learning with Quick Distributed Mean Estimation
Ran Ben Basat · Shay Vargaftik · Amit Portnoy · Gil Einziger · Yaniv Ben Itzhak · Michael Mitzenmacher
Distributed Mean Estimation (DME), in which $n$ clients communicate vectors to a parameter server that estimates their average, is a fundamental building block in communication-efficient federated learning. In this paper, we improve on previous DME techniques that achieve the optimal $O(1/n)$ Normalized Mean Squared Error (NMSE) guarantee by asymptotically improving the complexity for either encoding or decoding (or both). To achieve this, we formalize the problem in a novel way that allows us to use off-the-shelf mathematical solvers to design the quantization. Using various datasets and training tasks, we demonstrate how QUIC-FL achieves state of the art accuracy with faster encoding and decoding times compared to other DME methods.
FADAS: Towards Federated Adaptive Asynchronous Optimization
Yujia Wang · Shiqiang Wang · Songtao Lu · Jinghui Chen
Federated learning (FL) has emerged as a widely adopted training paradigm for privacy-preserving machine learning. While the SGD-based FL algorithms have demonstrated considerable success in the past, there is a growing trend towards adopting adaptive federated optimization methods, particularly for the training of large-scale models. However, the conventional synchronous aggregation design poses a significant challenge to the practical deployment of those adaptive federated optimization methods, particularly in the presence of straggler clients. To fill this research gap, this paper introduces federated adaptive asynchronous optimization, named FADAS, a novel method that incorporates asynchronous updates into adaptive federated optimization with provable guarantees. To further enhance the efficiency and resilience of our proposed method in scenarios with significant asynchronous delays, we also extend FADAS with a delay-adaptive learning adjustment strategy. We rigorously establish the convergence rate of the proposed algorithms and empirical results demonstrate the superior performance of FADAS over other asynchronous FL baselines.
Integrated Hardware Architecture and Device Placement Search
Irene Wang · Jakub Tarnawski · Amar Phanishayee · Divya Mahajan
Distributed execution of deep learning training involves a dynamic interplay between hardware accelerator architecture and device placement strategy. This is the first work to explore the co-optimization of determining the optimal architecture and device placement strategy through novel algorithms, improving the balance of computational resources, memory usage, and data distribution. Our architecture search leverages tensor and vector units, determining their quantity and dimensionality, and on-chip and off-chip memory configurations. It also determines the microbatch size and decides whether to recompute or stash activations, balancing the memory footprint of training and storage size. For each explored architecture configuration, we use an Integer Linear Program (ILP) to find the optimal schedule for executing operators on the accelerator. The ILP results then integrate with a dynamic programming solution to identify the most effective device placement strategy, combining data, pipeline, and tensor model parallelism across multiple accelerators. Our approach achieves higher throughput on large language models compared to the state-of-the-art TPUv4 and the Spotlight accelerator search framework. The entire source code of PHAZE is available at https://github.com/msr-fiddle/phaze.
Recurrent Early Exits for Federated Learning with Heterogeneous Clients
Royson Lee · Javier Fernandez-Marques · Xu Hu · Da Li · Stefanos Laskaridis · Łukasz Dudziak · Timothy Hospedales · Ferenc Huszár · Nicholas Lane
Federated learning (FL) has enabled distributed learning of a model across multiple clients in a privacy-preserving manner. One of the main challenges of FL is to accommodate clients with varying hardware capacities; clients have differing compute and memory requirements. To tackle this challenge, recent state-of-the-art approaches leverage the use of early exits. Nonetheless, these approaches fall short of mitigating the challenges of joint learning multiple exit classifiers, often relying on hand-picked heuristic solutions for knowledge distillation among classifiers and/or utilizing additional layers for weaker classifiers. In this work, instead of utilizing multiple classifiers, we propose a recurrent early exit approach named ReeFL that fuses features from different sub-models into a single shared classifier. Specifically, we use a transformer-based early-exit module shared among sub-models to i) better exploit multi-layer feature representations for task-specific prediction and ii) modulate the feature representation of the backbone model for subsequent predictions. We additionally present a per-client self-distillation approach where the best sub-model is automatically selected as the teacher of the other sub-models at each client. Our experiments on standard image and speech classification benchmarks across various emerging federated fine-tuning baselines demonstrate ReeFL effectiveness over previous works.
Quantum Theory and Application of Contextual Optimal Transport
Nicola Mariella · Albert Akhriev · Francesco Tacchino · Christa Zoufal · Juan Gonzalez-Espitia · Benedek Harsanyi · Eugene Koskin · Ivano Tavernelli · Stefan Woerner · Marianna Rapsomaniki · Sergiy Zhuk · Jannis Born
Optimal Transport (OT) has fueled machine learning (ML) across many domains. When paired data measurements $(\boldsymbol{\mu}, \boldsymbol{\nu})$ are coupled to covariates, a challenging conditional distribution learning setting arises. Existing approaches for learning a *global* transport map parameterized through a potentially unseen context utilize Neural OT and largely rely on Brenier's theorem. Here, we propose a first-of-its-kind quantum computing formulation for amortized optimization of contextualized transportation plans. We exploit a direct link between doubly stochastic matrices and unitary operators thus unravelling a natural connection between OT and quantum computation. We verify our method (QontOT) on synthetic and real data by predicting variations in cell type distributions conditioned on drug dosage. Importantly we conduct a 24-qubit hardware experiment on a task challenging for classical computers and report a performance that cannot be matched with our classical neural OT approach. In sum, this is a first step toward learning to predict contextualized transportation plans through quantum computing.
ACE: Off-Policy Actor-Critic with Causality-Aware Entropy Regularization
Tianying Ji · Yongyuan Liang · Yan Zeng · Yu Luo · Guowei Xu · Jiawei Guo · Ruijie Zheng · Furong Huang · Fuchun Sun · Huazhe Xu
The varying significance of distinct primitive behaviors during the policy learning process has been overlooked by prior model-free RL algorithms. Leveraging this insight, we explore the causal relationship between different action dimensions and rewards to evaluate the significance of various primitive behaviors during training. We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration. Furthermore, to prevent excessive focus on specific primitive behaviors, we analyze the gradient dormancy phenomenon and introduce a dormancy-guided reset mechanism to further enhance the efficacy of our method. Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks spanning 7 domains compared to model-free RL baselines, which underscores the effectiveness, versatility, and efficient sample efficiency of our approach. Benchmark results and videos are available at https://ace-rl.github.io/.
ReLU to the Rescue: Improve Your On-Policy Actor-Critic with Positive Advantages
Andrew Jesson · Christopher Lu · Gunshi Gupta · Nicolas Beltran-Velez · Angelos Filos · Jakob Foerster · Yarin Gal
This paper proposes a step toward approximate Bayesian inference in on-policy actor-critic deep reinforcement learning. It is implemented through three changes to the Asynchronous Advantage Actor-Critic (A3C) algorithm: (1) applying a ReLU function to advantage estimates, (2) spectral normalization of actor-critic weights, and (3) incorporating dropout as a Bayesian approximation. We prove under standard assumptions that restricting policy updates to positive advantages optimizes for value by maximizing a lower bound on the value function plus an additive term. We show that the additive term is bounded proportional to the Lipschitz constant of the value function, which offers theoretical grounding for spectral normalization of critic weights. Finally, our application of dropout corresponds to approximate Bayesian inference over both the actor and critic parameters, which enables adaptive state-aware exploration around the modes of the actor via Thompson sampling. We demonstrate significant improvements for median and interquartile mean metrics over A3C, PPO, SAC, and TD3 on the MuJoCo continuous control benchmark and improvement over PPO in the challenging ProcGen generalization benchmark.
Risk Aware Benchmarking of Large Language Models
Apoorva Nitsure · Youssef Mroueh · Mattia Rigotti · Kristjan Greenewald · Brian Belgodere · Mikhail Yurochkin · Jiri Navratil · Igor Melnyk · Jarret Ross
We propose a distributional framework for benchmarking socio-technical risks of foundation models with quantified statistical significance. Our approach hinges on a new statistical relative testing based on first and second order stochastic dominance of real random variables. We show that the second order statistics in this test are linked to mean-risk models commonly used in econometrics and mathematical finance to balance risk and utility when choosing between alternatives. Using this framework, we formally develop a risk-aware approach for foundation model selection given guardrails quantified by specified metrics. Inspired by portfolio optimization and selection theory in mathematical finance, we define a metrics portfolio for each model as a means to aggregate a collection of metrics, and perform model selection based on the stochastic dominance of these portfolios. The statistical significance of our tests is backed theoretically by an asymptotic analysis via central limit theorems instantiated in practice via a bootstrap variance estimate. We use our framework to compare various large language models regarding risks related to drifting from instructions and outputting toxic content.
Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts
Onur Celik · Aleksandar Taranovic · Gerhard Neumann
Reinforcement learning (RL) is a powerful approach for acquiring a good-performing policy. However, learning diverse skills is challenging in RL due to the commonly used Gaussian policy parameterization. We propose Diverse Skill Learning (Di-SkilL), an RL method for learning diverse skills using Mixture of Experts, where each expert formalizes a skill as a contextual motion primitive. Di-SkilL optimizes each expert and its associate context distribution to a maximum entropy objective that incentivizes learning diverse skills in similar contexts. The per-expert context distribution enables automatic curricula learning, allowing each expert to focus on its best-performing sub-region of the context space. To overcome hard discontinuities and multi-modalities without any prior knowledge of the environment's unknown context probability space, we leverage energy-based models to represent the per-expert context distributions and demonstrate how we can efficiently train them using the standard policy gradient objective. We show on challenging robot simulation tasks that Di-SkilL can learn diverse and performant skills.
Rich-Observation Reinforcement Learning with Continuous Latent Dynamics
Yuda Song · Lili Wu · Dylan Foster · Akshay Krishnamurthy
Sample-efficiency and reliability remain major bottlenecks toward wide adoption of reinforcement learning algorithms in continuous settings with high-dimensional perceptual inputs. Toward addressing these challenges, we introduce a new theoretical framework, RichCLD (“Rich-Observation RL with Continuous Latent Dynamics”), in which the agent performs control based on high-dimensional observations, but the environment is governed by low-dimensional latent states and Lipschitz continuous dynamics. Our main contribution is a new algorithm for this setting that is provably statistically and computationally efficient. The core of our algorithm is a new representation learning objective; we show that prior representation learning schemes tailored to discrete dynamics do not naturally extend to the continuous setting. Our new objective is amenable to practical implementation, and empirically, we find that it compares favorably to prior schemes in a standard evaluation protocol. We further provide several insights into the statistical complexity of the RichCLD framework, in particular proving that certain notions of Lipschitzness that admit sample-efficient learning in the absence of rich observations are insufficient in the rich-observation setting.
Learning Causal Dynamics Models in Object-Oriented Environments
Zhongwei Yu · Jingqing Ruan · Dengpeng Xing
Causal dynamics models (CDMs) have demonstrated significant potential in addressing various challenges in reinforcement learning. To learn CDMs, recent studies have performed causal discovery to capture the causal dependencies among environmental variables. However, the learning of CDMs is still confined to small-scale environments due to computational complexity and sample efficiency constraints. This paper aims to extend CDMs to large-scale object-oriented environments, which consist of a multitude of objects classified into different categories. We introduce the Object-Oriented CDM (OOCDM) that shares causalities and parameters among objects belonging to the same class. Furthermore, we propose a learning method for OOCDM that enables it to adapt to a varying number of objects. Experiments on large-scale tasks indicate that OOCDM outperforms existing CDMs in terms of causal discovery, prediction accuracy, generalization, and computational efficiency.
Just Cluster It: An Approach for Exploration in High-Dimensions using Clustering and Pre-Trained Representations
Stefan Sylvius Wagner Martinez · Stefan Harmeling
In this paper we adopt a representation-centric perspective on exploration in reinforcement learning, viewing exploration fundamentally as a density estimation problem. We investigate the effectiveness of clustering representations for exploration in 3-D environments, based on the observation that the importance of pixel changes between transitions is less pronounced in 3-D environments compared to 2-D environments, where pixel changes between transitions are typically distinct and significant. We propose a method that performs episodic and global clustering on random representations and on pre-trained DINO representations to count states, i.e, estimate pseudo-counts. Surprisingly, even random features can be clustered effectively to count states in 3-D environments, however when these become visually more complex, pre-trained DINO representations are more effective thanks to the pre-trained inductive biases in the representations. Overall, this presents a pathway for integrating pre-trained biases into exploration. We evaluate our approach on the VizDoom and Habitat environments, demonstrating that our method surpasses other well-known exploration methods in these settings.
Bridging Environments and Language with Rendering Functions and Vision-Language Models
Théo Cachet · Christopher Dance · Olivier Sigaud
Vision-language models (VLMs) have tremendous potential for grounding language, and thus enabling language-conditioned agents (LCAs) to perform diverse tasks specified with text. This has motivated the study of LCAs based on reinforcement learning (RL) with rewards given by rendering images of an environment and evaluating those images with VLMs. If single-task RL is employed, such approaches are limited by the cost and time required to train a policy for each new task. Multi-task RL (MTRL) is a natural alternative, but requires a carefully designed corpus of training tasks and does not always generalize reliably to new tasks. Therefore, this paper introduces a novel decomposition of the problem of building an LCA: first find an environment configuration that has a high VLM score for text describing a task; then use a (pretrained) goal-conditioned policy to reach that configuration. We also explore several enhancements to the speed and quality of VLM-based LCAs, notably, the use of distilled models, and the evaluation of configurations from multiple viewpoints to resolve the ambiguities inherent in a single 2D view. We demonstrate our approach on the Humanoid environment, showing that it results in LCAs that outperform MTRL baselines in zero-shot generalization, without requiring any textual task descriptions or other forms of environment-specific annotation during training.
SiT: Symmetry-invariant Transformers for Generalisation in Reinforcement Learning
Matthias Weissenbacher · Rishabh Agarwal · Yoshinobu Kawahara
An open challenge in reinforcement learning (RL) is the effective deployment of a trained policy to new or slightly different situations as well as semantically-similar environments. We introduce Symmetry-Invariant Transformer (SiT), a scalable vision transformer (ViT) that leverages both local and global data patterns in a self-supervised manner to improve generalisation. Central to our approach is Graph Symmetric Attention, which refines the traditional self-attention mechanism to preserve graph symmetries, resulting in invariant and equivariant latent representations. We showcase SiT's superior generalization over ViTs on MiniGrid and Procgen RL benchmarks, and its sample efficiency on Atari 100k and CIFAR10.
Investigating Pre-Training Objectives for Generalization in Vision-Based Reinforcement Learning
Donghu Kim · Hojoon Lee · Kyungmin Lee · Dongyoon Hwang · Jaegul Choo
Recently, various pre-training methods have been introduced in vision-based Reinforcement Learning (RL). However, their generalization ability remains unclear due to evaluations being limited to in-distribution environments and non-unified experimental setups. To address this, we introduce the Atari Pre-training Benchmark (Atari-PB), which pre-trains a ResNet-50 model on 10 million transitions from 50 Atari games and evaluates it across diverse environment distributions. Our experiments show that pre-training objectives focused on learning task-agnostic features (e.g., identifying objects and understanding temporal dynamics) enhance generalization across different environments. In contrast, objectives focused on learning task-specific knowledge (e.g., identifying agents and fitting reward functions) improve performance in environments similar to the pre-training dataset but not in varied ones. We publicize our codes, datasets, and model checkpoints at https://github.com/dojeon-ai/Atari-PB.
Trust the Model Where It Trusts Itself - Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption
Bernd Frauenknecht · Artur Eisele · Devdutt Subhasish · Friedrich Solowjow · Sebastian Trimpe
Dyna-style model-based reinforcement learning (MBRL) combines model-free agents with predictive transition models through model-based rollouts. This combination raises a critical question: “When to trust your model?”; i.e., which rollout length results in the model providing useful data? Janner et al. (2019) address this question by gradually increasing rollout lengths throughout the training. While theoretically tempting, uniform model accuracy is a fallacy that collapses at the latest when extrapolating. Instead, we propose asking the question “Where to trust your model?”. Using inherent model uncertainty to consider local accuracy, we obtain the Model-Based Actor-Critic with Uncertainty-Aware Rollout Adaption (MACURA) algorithm. We propose an easy-to-tune rollout mechanism and demonstrate substantial improvements in data efficiency and performance compared to state-of-the-art deep MBRL methods on the MuJoCo benchmark.
Breadth-First Exploration on Adaptive Grid for Reinforcement Learning
Youngsik Yoon · Gangbok Lee · Sungsoo Ahn · Jungseul Ok
Graph-based planners have gained significant attention for goal-conditioned reinforcement learning (RL), where they construct a graph consisting of confident transitions between subgoals as edges and run shortest path algorithms to exploit the confident edges. Meanwhile, identifying and avoiding unattainable transitions are also crucial yet overlooked by the previous graph-based planners, leading to wasting an excessive number of attempts at unattainable subgoals. To address this oversight, we propose a graph construction method that efficiently manages all the achieved and unattained subgoals on a grid graph adaptively discretizing the goal space. This enables a breadth-first exploration strategy, grounded in the local adaptive grid refinement, that prioritizes broad probing of subgoals on a coarse grid over meticulous one on a dense grid. We conducted a theoretical analysis and demonstrated the effectiveness of our approach through empirical evidence, showing that only BEAG succeeds in complex environments under the proposed fixed-goal setting.
Enhancing Value Function Estimation through First-Order State-Action Dynamics in Offline Reinforcement Learning
Yun-Hsuan Lien · Ping-Chun Hsieh · Tzu-Mao Li · Yu-Shuen Wang
In offline reinforcement learning (RL), updating the value function with the discrete-time Bellman Equation often encounters challenges due to the limited scope of available data. This limitation stems from the Bellman Equation, which cannot accurately predict the value of unvisited states. To address this issue, we have introduced an innovative solution that bridges the continuous- and discrete-time RL methods, capitalizing on their advantages. Our method uses a discrete-time RL algorithm to derive the value function from a dataset while ensuring that the function's first derivative aligns with the local characteristics of states and actions, as defined by the Hamilton-Jacobi-Bellman equation in continuous RL. We provide practical algorithms for both deterministic policy gradient methods and stochastic policy gradient methods. Experiments on the D4RL dataset show that incorporating the first-order information significantly improves policy performance for offline RL problems.
Combining Experimental and Historical Data for Policy Evaluation
Ting Li · Chengchun Shi · Qianglin Wen · Yang Sui · Yongli Qin · Chunbo Lai · Hongtu Zhu
This paper studies policy evaluation with multiple data sources, especially in scenarios that involve one experimental dataset with two arms, complemented by a historical dataset generated under a single control arm. We propose novel data integration methods that linearly integrate base policy value estimators constructed based on the experimental and historical data, with weights optimized to minimize the mean square error (MSE) of the resulting combined estimator. We further apply the pessimistic principle to obtain more robust estimators, and extend these developments to sequential decision making. Theoretically, we establish non-asymptotic error bounds for the MSEs of our proposed estimators, and derive their oracle, efficiency and robustness properties across a broad spectrum of reward shift scenarios. Numerical experiments and real-data-based analyses from a ridesharing company demonstrate the superior performance of the proposed estimators.
In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought
sili huang · Jifeng Hu · Hechang Chen · Lichao Sun · Bo Yang
In-context learning is a promising approach for offline reinforcement learning (RL) to handle online tasks, which can be achieved by providing task prompts. Recent works demonstrated that in-context RL could emerge with self-improvement in a trial-and-error manner when treating RL tasks as an across-episodic sequential prediction problem. Despite the self-improvement not requiring gradient updates, current works still suffer from high computational costs when the across-episodic sequence increases with task horizons. To this end, we propose an In-context Decision Transformer (IDT) to achieve self-improvement in a high-level trial-and-error manner. Specifically, IDT is inspired by the efficient hierarchical structure of human decision-making and thus reconstructs the sequence to consist of high-level decisions instead of low-level actions that interact with environments. As one high-level decision can guide multi-step low-level actions, IDT naturally avoids excessively long sequences and solves online tasks more efficiently. Experimental results show that IDT achieves state-of-the-art in long-horizon tasks over current in-context RL methods. In particular, the online evaluation time of our IDT is 36$\times$ times faster than baselines in the D4RL benchmark and 27$\times$ times faster in the Grid World benchmark.
Target Networks and Over-parameterization Stabilize Off-policy Bootstrapping with Function Approximation
Fengdi Che · Chenjun Xiao · Jincheng Mei · Bo Dai · Ramki Gummadi · Oscar Ramirez · Christopher Harris · Rupam Mahmood · Dale Schuurmans
We prove that the combination of a target network and over-parameterized linear function approximation establishes a weaker convergence condition for bootstrapped value estimation in certain cases, even with off-policy data. Our condition is naturally satisfied for expected updates over the entire state-action space or learning with a batch of complete trajectories from episodic Markov decision processes. Notably, using only a target network or an over-parameterized model does not provide such a convergence guarantee. Additionally, we extend our results to learning with truncated trajectories, showing that convergence is achievable for all tasks with minor modifications, akin to value truncation for the final states in trajectories. Our primary result focuses on temporal difference estimation for prediction, providing high-probability value estimation error bounds and empirical analysis on Baird's counterexample and a Four-room task. Furthermore, we explore the control setting, demonstrating that similar convergence conditions apply to Q-learning.
Information-Directed Pessimism for Offline Reinforcement Learning
Alec Koppel · Sujay Bhatt · Jiacheng Guo · Joe Eappen · Mengdi Wang · Sumitra Ganesh
Policy optimization from batch data, i.e., offline reinforcement learning (RL) is important when collecting data from a current policy is not possible. This setting incurs distribution mismatch between batch training data and trajectories from the current policy. Pessimistic offsets estimate mismatch using concentration bounds, which possess strong theoretical guarantees and simplicity of implementation. Mismatch may be conservative in sparse data regions and less so otherwise, which can result in under-performing their no-penalty variants in practice. We derive a new pessimistic penalty as the distance between the data and the true distribution using an evaluable one-sample test known as Stein Discrepancy that requires minimal smoothness conditions, and noticeably, allows a mixture family representation of distribution over next states. This entity forms a quantifier of information in offline data, which justifies calling this approach information-directed pessimism (IDP) for offline RL. We further establish that this new penalty based on discrete Stein discrepancy yields practical gains in performance while generalizing the regret of prior art to multimodal distributions.
PlanDQ: Hierarchical Plan Orchestration via D-Conductor and Q-Performer
Chang Chen · Junyeob Baek · Fei Deng · Kenji Kawaguchi · Caglar Gulcehre · Sungjin Ahn
Despite the recent advancements in offline RL, no unified algorithm could achieve superior performance across a broad range of tasks. Offline value function learning, in particular, struggles with sparse-reward, long-horizon tasks due to the difficulty of solving credit assignment and extrapolation errors that accumulates as the horizon of the task grows. On the other hand, models that can perform well in long-horizon tasks are designed specifically for goal-conditioned tasks, which commonly perform worse than value function learning methods on short-horizon, dense-reward scenarios. To bridge this gap, we propose a hierarchical planner designed for offline RL called PlanDQ. PlanDQ incorporates a diffusion-based planner at the high level, named D-Conductor, which guides the low-level policy through sub-goals. At the low level, we used a Q-learning based approach called the Q-Performer to accomplish these sub-goals. Our experimental results suggest that PlanDQ can achieve superior or competitive performance on D4RL continuous control benchmark tasks as well as AntMaze, Kitchen, and Calvin as long-horizon tasks.
RVI-SAC: Average Reward Off-Policy Deep Reinforcement Learning
Yukinari Hisaki · Isao Ono
In this paper, we propose an off-policy deep reinforcement learning (DRL) method utilizing the average reward criterion. While most existing DRL methods employ the discounted reward criterion, this can potentially lead to a discrepancy between the training objective and performance metrics in continuing tasks, making the average reward criterion a recommended alternative. We introduce RVI-SAC, an extension of the state-of-the-art off-policy DRL method, Soft Actor-Critic (SAC), to the average reward criterion. Our proposal consists of (1) Critic updates based on RVI Q-learning, (2) Actor updates introduced by the average reward soft policy improvement theorem, and (3) automatic adjustment of Reset Cost enabling the average reward reinforcement learning to be applied to tasks with termination. We apply our method to the Gymnasium's Mujoco tasks, a subset of locomotion tasks, and demonstrate that RVI-SAC shows competitive performance compared to existing methods.
Pausing Policy Learning in Non-stationary Reinforcement Learning
Hyunin Lee · Ming Jin · Javad Lavaei · Somayeh Sojoudi
Real-time inference is a challenge of real-world reinforcement learning due to temporal differences in time-varying environments: the system collects data from the past, updates the decision model in the present, and deploys it in the future. We tackle a common belief that continually updating the decision is optimal to minimize the temporal gap. We propose forecasting an online reinforcement learning framework and show that strategically pausing decision updates yields better overall performance by effectively managing aleatoric uncertainty. Theoretically, we compute an optimal ratio between policy update and hold duration, and show that a non-zero policy hold duration provides a sharper upper bound on the dynamic regret. Our experimental evaluations on three different environments also reveal that a non-zero policy hold duration yields higher rewards compared to continuous decision updates.
Feasible Reachable Policy Iteration
Shentao Qin · Yujie Yang · Yao Mu · Jie Li · Wenjun Zou · Jingliang Duan · Shengbo Li
The goal-reaching tasks with safety constraints are common control problems in real world, such as intelligent driving and robot manipulation. The difficulty of this kind of problem comes from the exploration termination caused by safety constraints and the sparse rewards caused by goals. The existing safe RL avoids unsafe exploration by restricting the search space to a feasible region, the essence of which is the pruning of the search space. However, there are still many ineffective explorations in the feasible region because of the ignorance of the goals. Our approach considers both safety and goals; the policy space pruning is achieved by a function called feasible reachable function, which describes whether there is a policy to make the agent safely reach the goals in the finite time domain. This function naturally satisfies the self-consistent condition and the risky Bellman equation, which can be solved by the fixed point iteration method. On this basis, we propose feasible reachable policy iteration (FRPI), which is divided into three steps: policy evaluation, region expansion, and policy improvement. In the region expansion step, by using the information of agent to reach the goals, the convergence of the feasible region is accelerated, and simultaneously a smaller feasible reachable region is identified. The experimental results verify the effectiveness of the proposed FR function in both improving the convergence speed of better or comparable performance without sacrificing safety and identifying a smaller policy space with higher sample efficiency.
Distributional Bellman Operators over Mean Embeddings
Li Kevin Wenliang · Gregoire Deletang · Matthew Aitchison · Marcus Hutter · Anian Ruoss · Arthur Gretton · Mark Rowland
We propose a novel algorithmic framework for distributional reinforcement learning, based on learning finite-dimensional mean embeddings of return distributions. The framework reveals a wide variety of new algorithms for dynamic programming and temporal-difference algorithms that rely on the sketch Bellman operator, which updates mean embeddings with simple linear-algebraic computations. We provide asymptotic convergence theory, and examine the empirical performance of the algorithms on a suite of tabular tasks. Further, we show that this approach can be straightforwardly combined with deep reinforcement learning.
Position: Automatic Environment Shaping is the Next Frontier in RL
Younghyo Park · Gabriel Margolis · Pulkit Agrawal
Many roboticists dream of presenting a robot with a task in the evening and returning the next morning to find the robot capable of solving the task. What is preventing us from achieving this? Sim-to-real reinforcement learning (RL) has achieved impressive performance on challenging robotics tasks, but requires substantial human effort to set up the task in a way that is amenable to RL. It's our position that algorithmic improvements in policy optimization and other ideas should be guided towards resolving the primary bottleneck of shaping the training environment, i.e., designing observations, actions, rewards and simulation dynamics. Most practitioners don't tune the RL algorithm, but other environment parameters to obtain a desirable controller. We posit that scaling RL to diverse robotic tasks will only be achieved if the community focuses on automating environment shaping procedures.
OMPO: A Unified Framework for RL under Policy and Dynamics Shifts
Yu Luo · Tianying Ji · Fuchun Sun · Jianwei Zhang · Huazhe Xu · Xianyuan Zhan
Training reinforcement learning policies using environment interaction data collected from varying policies or dynamics presents a fundamental challenge. Existing works often overlook the distribution discrepancies induced by policy or dynamics shifts, or rely on specialized algorithms with task priors, thus often resulting in suboptimal policy performances and high learning variances. In this paper, we identify a unified strategy for online RL policy learning under diverse settings of policy and dynamics shifts: transition occupancy matching. In light of this, we introduce a surrogate policy learning objective by considering the transition occupancy discrepancies and then cast it into a tractable min-max optimization problem through dual reformulation. Our method, dubbed Occupancy-Matching Policy Optimization (OMPO), features a specialized actor-critic structure equipped with a distribution discriminator and a small-size local buffer. We conduct extensive experiments based on the OpenAI Gym, Meta-World, and Panda Robots environments, encompassing policy shifts under stationary and non-stationary dynamics, as well as domain adaption. The results demonstrate that OMPO outperforms the specialized baselines from different categories in all settings. We also find that OMPO exhibits particularly strong performance when combined with domain randomization, highlighting its potential in RL-based robotics applications.
OLLIE: Imitation Learning from Offline Pretraining to Online Finetuning
Sheng Yue · Xingyuan Hua · Ju Ren · Sen Lin · Junshan Zhang · Yaoxue Zhang
In this paper, we study offline-to-online Imitation Learning (IL) that pretrains an imitation policy from static demonstration data, followed by fast finetuning with minimal environmental interaction. We find the naive combination of existing offline IL and online IL methods tends to behave poorly in this context, because the initial discriminator (often used in online IL) operates randomly and discordantly against the policy initialization, leading to misguided policy optimization and unlearning of pretraining knowledge. To overcome this challenge, we propose a principled offline-to-online IL method, named OLLIE, that simultaneously learns a near-expert policy initialization along with an aligned discriminator initialization, which can be seamlessly integrated into online IL, achieving smooth and fast finetuning. Empirically, OLLIE consistently and significantly outperforms the baseline methods in 20 challenging tasks, from continuous control to vision-based domains, in terms of performance, demonstration efficiency, and convergence speed. This work may serve as a foundation for further exploration of pretraining and finetuning in the context of IL.
HarmonyDream: Task Harmonization Inside World Models
Haoyu Ma · Jialong Wu · Ningya Feng · Chenjun Xiao · Dong Li · Jianye Hao · Jianmin Wang · Mingsheng Long
Model-based reinforcement learning (MBRL) holds the promise of sample-efficient learning by utilizing a world model, which models how the environment works and typically encompasses components for two tasks: observation modeling and reward modeling. In this paper, through a dedicated empirical investigation, we gain a deeper understanding of the role each task plays in world models and uncover the overlooked potential of sample-efficient MBRL by mitigating the domination of either observation or reward modeling. Our key insight is that while prevalent approaches of explicit MBRL attempt to restore abundant details of the environment via observation models, it is difficult due to the environment's complexity and limited model capacity. On the other hand, reward models, while dominating implicit MBRL and adept at learning compact task-centric dynamics, are inadequate for sample-efficient learning without richer learning signals. Motivated by these insights and discoveries, we propose a simple yet effective approach, HarmonyDream, which automatically adjusts loss coefficients to maintain task harmonization, i.e. a dynamic equilibrium between the two tasks in world model learning. Our experiments show that the base MBRL method equipped with HarmonyDream gains 10%-69% absolute performance boosts on visual robotic tasks and sets a new state-of-the-art result on the Atari 100K benchmark. Code is available at https://github.com/thuml/HarmonyDream.
Limited Preference Aided Imitation Learning from Imperfect Demonstrations
Xingchen Cao · Fan-Ming Luo · Junyin Ye · Tian Xu · Zhilong Zhang · Yang Yu
Imitation learning mimics high-quality policies from expert data for sequential decision-making tasks. However, its efficacy is hindered in scenarios where optimal demonstrations are unavailable, and only imperfect demonstrations are present. To address this issue, introducing additional limited human preferences is a suitable approach as it can be obtained in a human-friendly manner, offering a promising way to learn the policy that exceeds the performance of imperfect demonstrations. In this paper, we propose a novel imitation learning (IL) algorithm, Preference Aided Imitation Learning from imperfect demonstrations (PAIL). Specifically, PAIL learns a preference reward by querying experts for limited preferences from imperfect demonstrations. This serves two purposes during training: 1) Reweighting imperfect demonstrations with the preference reward for higher quality. 2) Selecting explored trajectories with high cumulative preference rewards to augment imperfect demonstrations. The dataset with continuously improving quality empowers the performance of PAIL to transcend the initial demonstrations. Comprehensive empirical results across a synthetic task and two locomotion benchmarks show that PAIL surpasses baselines by 73.2% and breaks through the performance bottleneck of imperfect demonstrations.
HGAP: Boosting Permutation Invariant and Permutation Equivariant in Multi-Agent Reinforcement Learning via Graph Attention Network
Bor Jiun Lin · Chun-Yi Lee
Graph representation has gained widespread application across various machine learning domains, attributed to its ability to discern correlations among input nodes. In the realm of Multi- agent Reinforcement Learning (MARL), agents are tasked with observing other entities within their environment to determine their behavior. Conventional MARL methodologies often suffer from training difficulties if Permutation Invariant (PI) and Permutation Equivariant (PE) properties are not considered during training. The adoption of graph representation offers a solution to these challenges by conceptualizing observed entities as a graph. In this context, we introduce the Hyper Graphical Attention Policy (HGAP) Network, which employs a graph attention mechanism to fulfill the PI and PE properties, while also understanding inter-entity interactions for decision-making. HGAP is assessed across various MARL benchmarks to confirm its effectiveness and efficiency. In addition, a series of ablation studies are provided to demonstrate its adaptability, transferability, and the capability to alleviate the complexities introduced by the POMDP constraint.
Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning
Yizhe Huang · Anji Liu · Fanqi Kong · Yaodong Yang · Song-Chun Zhu · Xue Feng
Despite the recent successes of multi-agent reinforcement learning (MARL) algorithms, efficiently adapting to co-players in mixed-motive environments remains a significant challenge. One feasible approach is to hierarchically model co-players' behavior based on inferring their characteristics. However, these methods often encounter difficulties in efficient reasoning and utilization of inferred information. To address these issues, we propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm that enables few-shot adaptation to unseen policies in mixed-motive environments. HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies, and a planning module that employs Monte Carlo Tree Search (MCTS) to identify the best response. Our approach improves efficiency by updating beliefs about others' goals both across and within episodes and by using information from the opponent modeling module to guide planning. Experimental results demonstrate that in mixed-motive environments, HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios. Furthermore, the emergence of social intelligence during our experiments underscores the potential of our approach in complex multi-agent environments.
Near-Optimal Reinforcement Learning with Self-Play under Adaptivity Constraints
Dan Qiao · Yu-Xiang Wang
We study the problem of multi-agent reinforcement learning (MARL) with adaptivity constraints --- a new problem motivated by real-world applications where deployments of new policies are costly and the number of policy updates must be minimized. For two-player zero-sum Markov Games, we design a (policy) elimination based algorithm that achieves a regret of $\widetilde{O}(\sqrt{H^3 S^2 ABK})$, while the batch complexity is only $O(H+\log\log K)$. In the above, $S$ denotes the number of states, $A,B$ are the number of actions for the two players respectively, $H$ is the horizon and $K$ is the number of episodes. Furthermore, we prove a batch complexity lower bound $\Omega(\frac{H}{\log_{A}K}+\log\log K)$ for all algorithms with $\widetilde{O}(\sqrt{K})$ regret bound, which matches our upper bound up to logarithmic factors. As a byproduct, our techniques naturally extend to learning bandit games and reward-free MARL within near optimal batch complexity. To the best of our knowledge, these are the first line of results towards understanding MARL with low adaptivity.
Sample-Efficient Multiagent Reinforcement Learning with Reset Replay
Yaodong Yang · Guangyong Chen · Jianye Hao · Pheng Ann Heng
The popularity of multiagent reinforcement learning (MARL) is growing rapidly with the demand for real-world tasks that require swarm intelligence. However, a noticeable drawback of MARL is its low sample efficiency, which leads to a huge amount of interactions with the environment. Surprisingly, few MARL works focus on this practical problem especially in the parallel environment setting, which greatly hampers the application of MARL into the real world. In response to this gap, in this paper, we propose Multiagent Reinforcement Learning with Reset Replay (MARR) to greatly improve the sample efficiency of MARL by enabling MARL training at a high replay ratio in the parallel environment setting for the first time. To achieve this, first, a reset strategy is introduced for maintaining the network plasticity to ensure that MARL continually learns with a high replay ratio. Second, MARR incorporates a data augmentation technique to boost the sample efficiency further. Extensive experiments in SMAC and MPE show that MARR significantly improves the performance of various MARL approaches with much fewer environment interactions.
SpikeLM: Towards General Spike-Driven Language Modeling via Elastic Bi-Spiking Mechanisms
Xingrun Xing · Zheng Zhang · Ziyi Ni · Shitao Xiao · Yiming Ju · Siqi Fan · Yequan Wang · Jiajun Zhang · Guoqi Li
Towards energy-efficient artificial intelligence similar to the human brain, the bio-inspired spiking neural networks (SNNs) have advantages of biological plausibility, event-driven sparsity, and binary activation. Recently, large-scale language models exhibit promising generalization capability, making it a valuable issue to explore more general spike-driven models. However, the binary spikes in existing SNNs fail to encode adequate semantic information, placing technological challenges for generalization. This work proposes the first fully spiking mechanism for general language tasks, including both discriminative and generative ones. Different from previous spikes with 0,1 levels, we propose a more general spike formulation with bi-directional, elastic amplitude, and elastic frequency encoding, while still maintaining the addition nature of SNNs. In a single time step, the spike is enhanced by direction and amplitude information; in spike frequency, a strategy to control spike firing rate is well designed. We plug this elastic bi-spiking mechanism in language modeling, named SpikeLM. It is the first time to handle general language tasks with fully spike-driven models, which achieve much higher accuracy than previously possible. SpikeLM also greatly bridges the performance gap between SNNs and ANNs in language modeling. Our code is available at https://github.com/Xingrun-Xing/SpikeLM.
Truly No-Regret Learning in Constrained MDPs
Adrian Müller · Pragnya Alatur · Volkan Cevher · Giorgia Ramponi · Niao He
Constrained Markov decision processes (CMDPs) are a common way to model safety constraints in reinforcement learning. State-of-the-art methods for efficiently solving CMDPs are based on primal-dual algorithms. For these algorithms, all currently known regret bounds allow for error cancellations --- one can compensate for a constraint violation in one round with a strict constraint satisfaction in another. This makes the online learning process unsafe since it only guarantees safety for the final (mixture) policy but not during learning. As Efroni et al. (2020) pointed out, it is an open question whether primal-dual algorithms can provably achieve sublinear regret if we do not allow error cancellations. In this paper, we give the first affirmative answer. We first generalize a result on last-iterate convergence of regularized primal-dual schemes to CMDPs with multiple constraints. Building upon this insight, we propose a model-based primal-dual algorithm to learn in an unknown CMDP. We prove that our algorithm achieves sublinear regret without error cancellations.
Position: Benchmarking is Limited in Reinforcement Learning Research
Scott Jordan · Adam White · Bruno da Silva · Martha White · Philip Thomas
Novel reinforcement learning algorithms, or improvements on existing ones, are commonly justified by evaluating their performance on benchmark environments and are compared to an ever-changing set of standard algorithms. However, despite numerous calls for improvements, experimental practices continue to produce misleading or unsupported claims. One reason for the ongoing substandard practices is that conducting rigorous benchmarking experiments requires substantial computational time. This work investigates the sources of increased computation costs in rigorous experiment designs. We show that conducting rigorous performance benchmarks will likely have computational costs that are often prohibitive. As a result, we argue for using an additional experimentation paradigm to overcome the limitations of benchmarking.
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
Louis Sharrock · Jack Simons · Song Liu · Mark Beaumont
We introduce Sequential Neural Posterior Score Estimation (SNPSE), a score-based method for Bayesian inference in simulator-based models. Our method, inspired by the remarkable success of score-based methods in generative modelling, leverages conditional score-based diffusion models to generate samples from the posterior distribution of interest. The model is trained using an objective function which directly estimates the score of the posterior. We embed the model into a sequential training procedure, which guides simulations using the current approximation of the posterior at the observation of interest, thereby reducing the simulation cost. We also introduce several alternative sequential approaches, and discuss their relative merits. We then validate our method, as well as its amortised, non-sequential, variant on several numerical examples, demonstrating comparable or superior performance to existing state-of-the-art methods such as Sequential Neural Posterior Estimation (SNPE).
Learning to Scale Logits for Temperature-Conditional GFlowNets
Minsu Kim · Joohwan Ko · Taeyoung Yun · Dinghuai Zhang · Ling Pan · Woo Chang Kim · Jinkyoo Park · Emmanuel Bengio · Yoshua Bengio
GFlowNets are probabilistic models that sequentially generate compositional structures through a stochastic policy. Among GFlowNets, temperature-conditional GFlowNets can introduce temperature-based controllability for exploration and exploitation. We propose Logit-scaling GFlowNets (Logit-GFN), a novel architectural design that greatly accelerates the training of temperature-conditional GFlowNets. It is based on the idea that previously proposed approaches introduced numerical challenges in the deep network training, since different temperatures may give rise to very different gradient profiles as well as magnitudes of the policy's logits. We find that the challenge is greatly reduced if a learned function of the temperature is used to scale the policy's logits directly. Also, using Logit-GFN, GFlowNets can be improved by having better generalization capabilities in offline learning and mode discovery capabilities in online learning, which is empirically verified in various biological and chemical tasks. Our code is available at https://github.com/dbsxodud-11/logit-gfn
Density Ratio Estimation with Doubly Strong Robustness
Ryosuke Nagumo · Hironori Fujisawa
We develop two density ratio estimation (DRE) methods with robustness to outliers. These are based on the divergence with a weight function to weaken the adverse effects of outliers. One is based on the Unnormalized Kullback-Leibler divergence, called Weighted DRE, and its optimization is a convex problem. The other is based on the γ-divergence, called γ-DRE, which improves a normalizing term problem of Weighted DRE. Its optimization is a DC (Difference of Convex functions) problem and needs more computation than a convex problem. These methods have doubly strong robustness, which means robustness to the heavy contamination of both the reference and target distributions. Numerical experiments show that our proposals are more robust than the previous methods.
Robust Inverse Graphics via Probabilistic Inference
Tuan Anh Le · Pavel Sountsov · Matthew Hoffman · Ben Lee · Brian Patton · Rif Saurous
How do we infer a 3D scene from a single image in the presence of corruptions like rain, snow or fog? Straightforward domain randomization relies on knowing the family of corruptions ahead of time. Here, we propose a Bayesian approach---dubbed robust inverse graphics (RIG)---that relies on a strong scene prior and an uninformative uniform corruption prior, making it applicable to a wide range of corruptions. Given a single image, RIG performs posterior inference jointly over the scene and the corruption. We demonstrate this idea by training a neural radiance field (NeRF) scene prior and using a secondary NeRF to represent the corruptions over which we place an uninformative prior. RIG, trained only on clean data, outperforms depth estimators and alternative NeRF approaches that perform point estimation instead of full inference. The results hold for a number of scene prior architectures based on normalizing flows and diffusion models. For the latter, we develop reconstruction-guidance with auxiliary latents (ReGAL)---a diffusion conditioning algorithm that is applicable in the presence of auxiliary latent variables such as the corruption. RIG demonstrates how scene priors can be used beyond generation tasks.
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
JIAN XU · Delu Zeng · John Paisley
Deep Gaussian processes (DGPs) provide a robust paradigm in Bayesian deep learning. In DGPs, a set of sparse integration locations called inducing points are selected to approximate the posterior distribution of the model. This is done to reduce computational complexity and improve model efficiency. However, inferring the posterior distribution of inducing points is not straightforward. Traditional variational inference techniques methods to approximate the posterior often leads to significant bias. To address this issue, we propose an alternative named Denoising Diffusion Variational Inference (DDVI) that utilizes a denoising diffusion stochastic differential equation (SDE) for generating posterior samples of inducing variables. We refer to the score matching method in the denoising diffusion model to approximate challenging score functions using a neural network. Furthermore, by combining classical mathematical theory of SDE with the minimization of KL divergence between the approximate and true processes, we propose a novel explicit variational lower bound for the marginal likelihood function of DGP. Through extensive experiments on various datasets and comparisons with baseline methods, we empirically demonstrate the effectiveness of the DDVI method in posterior inference of inducing points for DGP models.
Partially Stochastic Infinitely Deep Bayesian Neural Networks
Sergio Calvo Ordoñez · Matthieu Meunier · Francesco Piatti · Yuantao Shi
In this paper, we present Partially Stochastic Infinitely Deep Bayesian Neural Networks, a novel family of architectures that integrates partial stochasticity into the framework of infinitely deep neural networks. Our new class of architectures is designed to improve the computational efficiency of existing architectures at training and inference time. To do this, we leverage the advantages of partial stochasticity in the infinite-depth limit which include the benefits of full stochasticity e.g. robustness, uncertainty quantification, and memory efficiency, whilst improving their limitations around computational complexity. We present a variety of architectural configurations, offering flexibility in network design including different methods for weight partition. We also provide mathematical guarantees on the expressivity of our models by establishing that our network family qualifies as Universal Conditional Distribution Approximators. Lastly, empirical evaluations across multiple tasks show that our proposed architectures achieve better downstream task performance and uncertainty quantification than their counterparts while being significantly more efficient. The code can be found at https://github.com/Sergio20f/partstochinf_deep
Listening to the noise: Blind Denoising with Gibbs Diffusion
David Heurtel-Depeiges · Charles Margossian · Ruben Ohana · Bruno Régaldo-Saint Blancard
In recent years, denoising problems have become intertwined with the development of deep generative models. In particular, diffusion models are trained like denoisers, and the distribution they model coincide with denoising priors in the Bayesian picture. However, denoising through diffusion-based posterior sampling requires the noise level and covariance to be known, preventing blind denoising. We overcome this limitation by introducing Gibbs Diffusion (GDiff), a general methodology addressing posterior sampling of both the signal and the noise parameters. Assuming arbitrary parametric Gaussian noise, we develop a Gibbs algorithm that alternates sampling steps from a conditional diffusion model trained to map the signal prior to the class of noise distributions, and a Monte Carlo sampler to infer the noise parameters. Our theoretical analysis highlights potential pitfalls, guides diagnostic usage, and quantifies errors in the Gibbs stationary distribution caused by the diffusion model. We showcase our method for 1) blind denoising of natural images involving colored noises with unknown amplitude and exponent, and 2) a cosmology problem, namely the analysis of cosmic microwave background data, where Bayesian inference of "noise" parameters means constraining models of the evolution of the Universe.
Simultaneous identification of models and parameters of scientific simulators
Cornelius Schröder · Jakob Macke
Many scientific models are composed of multiple discrete components, and scientists often make heuristic decisions about which components to include. Bayesian inference provides a mathematical framework for systematically selecting model components, but defining prior distributions over model components and developing associated inference schemes has been challenging. We approach this problem in a simulation-based inference framework: We define model priors over candidate components and, from model simulations, train neural networks to infer joint probability distributions over both model components and associated parameters. Our method, simulation-based model inference (SBMI), represents distributions over model components as a conditional mixture of multivariate binary distributions in the Grassmann formalism. SBMI can be applied to any compositional stochastic simulator without requiring likelihood evaluations. We evaluate SBMI on a simple time series model and on two scientific models from neuroscience, and show that it can discover multiple data-consistent model configurations, and that it reveals non-identifiable model components and parameters. SBMI provides a powerful tool for data-driven scientific inquiry which will allow scientists to identify essential model components and make uncertainty-informed modelling decisions.
Challenges and Considerations in the Evaluation of Bayesian Causal Discovery
Amir Mohammad Karimi Mamaghan · Panagiotis Tigas · Karl Johansson · Yarin Gal · Yashas Annadani · Stefan Bauer
Representing uncertainty in causal discovery is a crucial component for experimental design, and more broadly, for safe and reliable causal decision making. Bayesian Causal Discovery (BCD) offers a principled approach to encapsulating this uncertainty. Unlike non-Bayesian causal discovery, which relies on a single estimated causal graph and model parameters for assessment, evaluating BCD presents challenges due to the nature of its inferred quantity – the posterior distribution. As a result, the research community has proposed various metrics to assess the quality of the approximate posterior. However, there is, to date, no consensus on the most suitable metric(s) for evaluation. In this work, we reexamine this question by dissecting various metrics and understanding their limitations. Through extensive empirical evaluation, we find that many existing metrics fail to exhibit a strong correlation with the quality of approximation to the true posterior, especially in scenarios with low sample sizes where BCD is most desirable. We highlight the suitability (or lack thereof) of these metrics under two distinct factors: the identifiability of the underlying causal model and the quantity of available data. Both factors affect the entropy of the true posterior, indicating that the current metrics are less fitting in settings of higher entropy. Our findings underline the importance of a more nuanced evaluation of new methods by taking into account the nature of the true posterior, as well as guide and motivate the development of new evaluation procedures for this challenge.
Stable Differentiable Causal Discovery
Achille Nazaret · Justin Hong · Elham Azizi · David Blei
Inferring causal relationships as directed acyclic graphs (DAGs) is an important but challenging problem. Differentiable Causal Discovery (DCD) is a promising approach to this problem, framing the search as a continuous optimization. But existing DCD methods are numerically unstable, with poor performance beyond tens of variables. In this paper, we propose Stable Differentiable Causal Discovery (SDCD), a new method that improves previous DCD methods in two ways: (1) It employs an alternative constraint for acyclicity; this constraint is more stable, both theoretically and empirically, and fast to compute. (2) It uses a training procedure tailored for sparse causal graphs, which are common in real-world scenarios. We first derive SDCD and prove its stability and correctness. We then evaluate it with both observational and interventional data and in both small-scale and large-scale settings. We find that SDCD outperforms existing methods in convergence speed and accuracy, and can scale to thousands of variables.
Stochastic Quantum Sampling for Non-Logconcave Distributions and Estimating Partition Functions
Guneykan Ozgul · Xiantao Li · Mehrdad Mahdavi · Chunhao Wang
We present quantum algorithms for sampling from possibly non-logconcave probability distributions expressed as $\pi(x) \propto \exp(-\beta f(x))$ as well as quantum algorithms for estimating the partition function for such distributions. We also incorporate a stochastic gradient oracle that implements the quantum walk operators inexactly by only using mini-batch gradients when $f$ can be written as a finite sum. One challenge of quantizing the resulting Markov chains is that they do not satisfy the detailed balance condition in general. Consequently, the mixing time of the algorithm cannot be expressed in terms of the spectral gap of the transition density matrix, making the quantum algorithms nontrivial to analyze. We overcame these challenges by first building a reference reversible Markov chain that converges to the target distribution, then controlling the discrepancy between our algorithm's output and the target distribution by using the reference Markov chain as a bridge to establish the total complexity. Our quantum algorithms exhibit polynomial speedups in terms of dimension or precision dependencies when compared to best-known classical algorithms under similar assumptions.
Parallel Affine Transformation Tuning of Markov Chain Monte Carlo
Philip Schär · Michael Habeck · Daniel Rudolf
The performance of Markov chain Monte Carlo samplers strongly depends on the properties of the target distribution such as its covariance structure, the location of its probability mass and its tail behavior. We explore the use of bijective affine transformations of the sample space to improve the properties of the target distribution and thereby the performance of samplers running in the transformed space. In particular, we propose a flexible and user-friendly scheme for adaptively learning the affine transformation during sampling. Moreover, the combination of our scheme with Gibbsian polar slice sampling is shown to produce samples of high quality at comparatively low computational cost in several settings based on real-world data.
Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic
Nicolas Alder · Ralf Herbrich
The widespread use of artificial intelligence requires finding energy-efficient paradigms for the field. We propose to reduce the energy consumption of Gaussian process regression using low-precision floating-point representations. We explore how low-precision representations impact the results of Gaussian process regression and how data set properties, implementation approach, model performance, and energy consumption interact. Our findings show that a well-conditioned kernel matrix allows reducing the energy consumption by up to 89.01% for 98.08% of arithmetic operations with little to no impact on model performance. Our findings are relevant whenever one needs to invert a symmetric full-rank matrix.
Amortized Variational Deep Kernel Learning
Alan Matias · César Lincoln Mattos · Joao Paulo Gomes · Diego Mesquita
Deep kernel learning (DKL) marries the uncertainty quantification of Gaussian processes (GPs) and the representational power of deep neural networks. However, training DKL is challenging and often leads to overfitting. Most notably, DKL often learns “non-local” kernels — incurring spurious correlations. To remedy this issue, we propose using amortized inducing points and a parameter-sharing scheme, which ties together the amortization and DKL networks. This design imposes an explicit dependency between the ELBO’s model fit and capacity terms. In turn, this prevents the former from dominating the optimization procedure and incurring the aforementioned spurious correlations. Extensive experiments show that our resulting method, amortized varitional DKL (AVDKL), i) consistently outperforms DKL and standard GPs for tabular data; ii) achieves significantly higher accuracy than DKL in node classification tasks; and iii) leads to substantially better accuracy and negative log-likelihood than DKL on CIFAR100.
Robust and Conjugate Gaussian Process Regression
Matias Altamirano · Francois-Xavier Briol · Jeremias Knoblauch
To enable closed form conditioning, a common assumption in Gaussian process (GP) regression is independent and identically distributed Gaussian observation noise. This strong and simplistic assumption is often violated in practice, which leads to unreliable inferences and uncertainty quantification. Unfortunately, existing methods for robustifying GPs break closed-form conditioning, which makes them less attractive to practitioners and significantly more computationally expensive. In this paper, we demonstrate how to perform provably robust and conjugate Gaussian process (RCGP) regression at virtually no additional cost using generalised Bayesian inference. RCGP is particularly versatile as it enables exact conjugate closed form updates in all settings where standard GPs admit them. To demonstrate its strong empirical performance, we deploy RCGP for problems ranging from Bayesian optimisation to sparse variational Gaussian processes.
Preventing Model Collapse in Gaussian Process Latent Variable Models
Ying Li · Zhidi Lin · Feng Yin · Michael Minyi Zhang
Gaussian process latent variable models (GPLVMs) are a versatile family of unsupervised learning models commonly used for dimensionality reduction. However, common challenges in modeling data with GPLVMs include inadequate kernel flexibility and improper selection of the projection noise, leading to a type of model collapse characterized by vague latent representations that do not reflect the underlying data structure. This paper addresses these issues by, first, theoretically examining the impact of projection variance on model collapse through the lens of a linear GPLVM. Second, we tackle model collapse due to inadequate kernel flexibility by integrating the spectral mixture (SM) kernel and a differentiable random Fourier feature (RFF) kernel approximation, which ensures computational scalability and efficiency through off-the-shelf automatic differentiation tools for learning the kernel hyperparameters, projection variance, and latent representations within the variational inference framework. The proposed GPLVM, named advisedRFLVM, is evaluated across diverse datasets and consistently outperforms various salient competing models, including state-of-the-art variational autoencoders (VAEs) and other GPLVM variants, in terms of informative latent representations and missing data imputation.
Physics and Lie symmetry informed Gaussian processes
David Dalton · Dirk Husmeier · Hao Gao
Physics-informed machine learning (PIML) has established itself as a new scientific paradigm which enables the seamless integration of observational data with partial differential equation (PDE) based physics models. A powerful tool for the analysis, reduction and solution of PDEs is the Lie symmetry method. Nevertheless, only recently has the integration of such symmetries into PIML frameworks begun to be explored. The present work adds to this growing literature by introducing an approach for incorporating a Lie symmetry into a physics-informed Gaussian process (GP) model. The symmetry is introduced as a constraint on the GP; either in a soft manner via virtual observations of an induced PDE called the invariant surface condition, or explicitly through the design of the kernel. Experimental results demonstrate that the use of symmetry constraints improves the performance of the GP for both forward and inverse problems, and that our approach offers competitive performance with neural networks in the low-data environment.
Latent Optimal Paths by Gumbel Propagation for Variational Bayesian Dynamic Programming
Xinlei Niu · Christian Walder · Jing Zhang · Charles Martin
We propose the stochastic optimal path which solves the classical optimal path problem by a probability-softening solution. This unified approach transforms a wide range of DP problems into directed acyclic graphs in which all paths follow a Gibbs distribution. We show the equivalence of the Gibbs distribution to a message-passing algorithm by the properties of the Gumbel distribution and give all the ingredients required for variational Bayesian inference of a latent path, namely Bayesian dynamic programming (BDP). We demonstrate the usage of BDP in the latent space of variational autoencoders (VAEs) and propose the BDP-VAE which captures structured sparse optimal paths as latent variables. This enables end-to-end training for generative tasks in which models rely on unobserved structural information. At last, we validate the behavior of our approach and showcase its applicability in two real-world applications: text-to-speech and singing voice synthesis. Our implementation code is available at https://github.com/XinleiNIU/LatentOptimalPathsBayesianDP.
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing · Xiaogang Jia · Johannes Esslinger · Francisco Vargas · Gerhard Neumann
Monte Carlo methods, Variational Inference, and their combinations play a pivotal role in sampling from intractable probability distributions. However, current studies lack a unified evaluation framework, relying on disparate performance measures and limited method comparisons across diverse tasks, complicating the assessment of progress and hindering the decision-making of practitioners. In response to these challenges, our work introduces a benchmark that evaluates sampling methods using a standardized task suite and a broad range of performance criteria. Moreover, we study existing metrics for quantifying mode collapse and introduce novel metrics for this purpose. Our findings provide insights into strengths and weaknesses of existing sampling methods, serving as a valuable reference for future developments.
Bayesian Program Learning by Decompiling Amortized Knowledge
Alessandro Palmarini · Christopher Lucas · Siddharth N
DreamCoder is an inductive program synthesis system that, whilst solving problems, learns to simplify search in an iterative wake-sleep procedure. The cost of search is amortized by training a neural search policy, reducing search breadth and effectively "compiling" useful information to compose program solutions across tasks. Additionally, a library of program components is learnt to compress and express discovered solutions in fewer components, reducing search depth. We present a novel approach for library learning that directly leverages the neural search policy, effectively "decompiling" its amortized knowledge to extract relevant program components. This provides stronger amortized inference: the amortized knowledge learnt to reduce search breadth is now also used to reduce search depth. We integrate our approach with DreamCoder and demonstrate faster domain proficiency with improved generalization on a range of domains, particularly when fewer example solutions are available.
Multi-View Stochastic Block Models
Vincent Cohen-Addad · Tommaso d'Orsi · Silvio Lattanzi · Rajai Nasser
Graph clustering is a central topic in unsupervised learning with a multitude of practical applications. In recent years, multi-view graph clustering has gained a lot of attention for its applicability to real-world instances where one often has access to multiple data sources. In this paper we formalize a new family of models, called multi-view stochastic block models that capture this setting. For this model, we first study efficient algorithms that naively work on the union of multiple graphs. Then, we introduce a new efficient algorithm that provably outperforms previous approaches by analyzing the structure of each graph separately. Finally, we complement our results with an information-theoretic lower bound studying the limits of what can be done in this model.
A Bias-Variance-Covariance Decomposition of Kernel Scores for Generative Models
Sebastian Gregor Gruber · Florian Buettner
Generative models, like large language models, are becoming increasingly relevant in our daily lives, yet a theoretical framework to assess their generalization behavior and uncertainty does not exist. Particularly, the problem of uncertainty estimation is commonly solved in an ad-hoc and task-dependent manner. For example, natural language approaches cannot be transferred to image generation. In this paper, we introduce the first bias-variance-covariance decomposition for kernel scores. This decomposition represents a theoretical framework from which we derive a kernel-based variance and entropy for uncertainty estimation. We propose unbiased and consistent estimators for each quantity which only require generated samples but not the underlying model itself. Based on the wide applicability of kernels, we demonstrate our framework via generalization and uncertainty experiments for image, audio, and language generation. Specifically, kernel entropy for uncertainty estimation is more predictive of performance on CoQA and TriviaQA question answering datasets than existing baselines and can also be applied to closed-source models.
Deep Demonstration Tracing: Learning Generalizable Imitator Policy for Runtime Imitation from a Single Demonstration
Xiong-Hui Chen · Junyin Ye · Hang Zhao · Yi-Chen Li · Xu-Hui Liu · Haoran Shi · Yu-Yan Xu · Zhihao Ye · Si-Hang Yang · Yang Yu · Anqi Huang · Kai Xu · Zongzhang Zhang
One-shot imitation learning (OSIL) is to learn an imitator agent that can execute multiple tasks with only a single demonstration. In real-world scenario, the environment is dynamic, e.g., unexpected changes can occur after demonstration. Thus, achieving generalization of the imitator agent is crucial as agents would inevitably face situations unseen in the provided demonstrations. While traditional OSIL methods excel in relatively stationary settings, their adaptability to such unforeseen changes, which asking for a higher level of generalization ability for the imitator agents, is limited and rarely discussed. In this work, we present a new algorithm called Deep Demonstration Tracing (DDT). In DDT, we propose a demonstration transformer architecture to encourage agents to adaptively trace suitable states in demonstrations. Besides, it integrates OSIL into a meta-reinforcement-learning training paradigm, providing regularization for policies in unexpected situations. We evaluate DDT on a new navigation task suite and robotics tasks, demonstrating its superior performance over existing OSIL methods across all evaluated tasks in dynamic environments with unforeseen changes. The project page is in https://osil-ddt.github.io.
Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples
Dake Bu · Wei Huang · Taiji Suzuki · Ji Cheng · Qingfu Zhang · Zhiqiang Xu · Hau-San Wong
Neural Network-based active learning (NAL) is a cost-effective data selection technique that utilizes neural networks to select and train on a small subset of samples. While existing work successfully develops various effective or theory-justified NAL algorithms, the understanding of the two commonly used query criteria of NAL: uncertainty-based and diversity-based, remains in its infancy. In this work, we try to move one step forward by offering a unified explanation for the success of both query criteria-based NAL from a feature learning view. Specifically, we consider a feature-noise data model comprising easy-to-learn or hard-to-learn features disrupted by noise, and conduct analysis over 2-layer NN-based NALs in the pool-based scenario. We provably show that both uncertainty-based and diversity-based NAL are inherently amenable to one and the same principle, i.e., striving to prioritize samples that contain yet-to-be-learned features. We further prove that this shared principle is the key to their success-achieve small test error within a small labeled set. Contrastingly, the strategy-free passive learning exhibits a large test error due to the inadequate learning of yet-to-be-learned features, necessitating resort to a significantly larger label complexity for a sufficient test error reduction. Experimental results validate our findings.
Towards Understanding Inductive Bias in Transformers: A View From Infinity
Itay Lavie · Guy Gur-Ari · Zohar Ringel
We study inductive bias in Transformers in the infinitely over-parameterized Gaussian process limit and argue transformers tend to be biased towards more permutation symmetric functions in sequence space. We show that the representation theory of the symmetric group can be used to give quantitative analytical predictions when the dataset is symmetric to permutations between tokens. We present a simplified transformer block and solve the model at the limit, including accurate predictions for the learning curves and network outputs. We show that in common setups, one can derive tight bounds in the form of a scaling law for the learnability as a function of the context length. Finally, we argue WikiText dataset, does indeed possess a degree of permutation symmetry.
Differentially Private Domain Adaptation with Theoretical Guarantees
Raef Bassily · Corinna Cortes · Anqi Mao · Mehryar Mohri
In many applications, the labeled data at the learner's disposal is subject to privacy constraints and is relatively limited. To derive a more accurate predictor for the target domain, it is often beneficial to leverage publicly available labeled data from an alternative domain, somewhat close to the target domain. This is the modern problem of supervised domain adaptation from a public source to a private target domain. We present two $(\epsilon, \delta)$-differentially private adaptation algorithms for supervised adaptation, for which we make use of a general optimization problem, recently shown to benefit from favorable theoretical learning guarantees. Our first algorithm is designed for regression with linear predictors and shown to solve a convex optimization problem. Our second algorithm is a more general solution for loss functions that may be non-convex but Lipschitz and smooth. While our main objective is a theoretical analysis, we also report the results of several experiments. We first show that the non-private versions of our algorithms match state-of-the-art performance in supervised adaptation and that for larger values of the target sample size or $\epsilon$, the performance of our private algorithms remains close to that of their non-private counterparts.
Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms
Ming Yang · Xiyuan Wei · Tianbao Yang · Yiming Ying
Many machine learning tasks can be formulated as a stochastic compositional optimization (SCO) problem such as reinforcement learning, AUC maximization and meta-learning, where the objective function involves a nested composition associated with an expectation. Although many studies have been devoted to studying the convergence behavior of SCO algorithms, there is little work on understanding their generalization, that is, how these learning algorithms built from training data would behave on future test examples. In this paper, we provide the stability and generalization analysis of stochastic compositional gradient descent algorithms in the framework of statistical learning theory. Firstly, we introduce a stability concept called compositional uniform stability and establish its quantitative relation with generalization for SCO problems. Then, we establish the compositional uniform stability results for two notable stochastic compositional gradient descent algorithms, namely SCGD and SCSC. Finally, we derive dimension-independent excess risk bounds for SCGD and SCSC by balancing stability results and optimization errors. To the best of our knowledge, these are the first-ever known results on stability and generalization analysis of stochastic compositional gradient descent algorithms.
In this work, we consider the notion of "criterion collapse," in which optimization of one metric implies optimality in another, with a particular focus on conditions for collapse into error probability minimizers under a wide variety of learning criteria, ranging from DRO and OCE risks (CVaR, tilted ERM) to non-monotonic criteria underlying recent ascent-descent algorithms explored in the literature (Flooding, SoftAD). We show how collapse in the context of losses with a Bernoulli distribution goes far beyond existing results for CVaR and DRO, then expand our scope to include surrogate losses, showing conditions where monotonic criteria such as tilted ERM cannot avoid collapse, whereas non-monotonic alternatives can.
The implicit bias of gradient-based training algorithms has been considered mostly beneficial as it leads to trained networks that often generalize well. However, Frei et al. (2023) show that such implicit bias can harm adversarial robustness. Specifically, they show that if the data consists of clusters with small inter-cluster correlation, a shallow (two-layer) ReLU network trained by gradient flow generalizes well, but it is not robust to adversarial attacks of small radius. Moreover, this phenomenon occurs despite the existence of a much more robust classifier that can be explicitly constructed from a shallow network. In this paper, we extend recent analyses of neuron alignment to show that a shallow network with a polynomial ReLU activation (pReLU) trained by gradient flow not only generalizes well but is also robust to adversarial attacks. Our results highlight the importance of the interplay between data structure and architecture design in the implicit bias and robustness of trained networks.
A Fine-grained Analysis of Fitted Q-evaluation: Beyond Parametric Models
Jiayi Wang · Zhengling Qi · Raymond K. W. Wong
In this paper, we delve into the statistical analysis of the fitted Q-evaluation (FQE) method, which focuses on estimating the value of a target policy using offline data generated by some behavior policy. We provide a comprehensive theoretical understanding of FQE estimators under both parametric and non-parametric models on the Q-function. Specifically, we address three key questions related to FQE that remain largely unexplored in the current literature: (1) Is the optimal convergence rate for estimating the policy value regarding the sample size $n$ ($n^{−1/2}$) achievable for FQE under a nonparametric model with a fixed horizon ($T$ )? (2) How does the error bound depend on the horizon T ? (3) What is the role of the probability ratio function in improving the convergence of FQE estimators? Specifically, we show that under the completeness assumption of Q-functions, which is mild in the non-parametric setting, the estimation errors for policy value using both parametric and non-parametric FQE estimators can achieve an optimal rate in terms of n. The corresponding error bounds in terms of both $n$ and $T$ are also established. With an additional realizability assumption on ratio functions, the rate of estimation errors can be improved from $T^{ 1.5}/\sqrt{n}$ to $T /\sqrt{n}$, which matches the sharpest known bound in the current literature under the tabular setting.
Tilting the Odds at the Lottery: the Interplay of Overparameterisation and Curricula in Neural Networks
Stefano Mannelli · Yaraslau Ivashynka · Andrew Saxe · Luca Saglietti
A wide range of empirical and theoretical works have shown that overparameterisation can amplify the performance of neural networks. According to the lottery ticket hypothesis, overparameterised networks have an increased chance of containing a sub-network that is well-initialised to solve the task at hand. A more parsimonious approach, inspired by animal learning, consists in guiding the learner towards solving the task by curating the order of the examples, ie. providing a curriculum. However, this learning strategy seems to be hardly beneficial in deep learning applications. In this work, we propose a theoretical analysis that connects curriculum learning and overparameterisation. In particular, we investigate their interplay in the online learning setting for a 2-layer network in the XOR-like Gaussian Mixture problem. Our results show that a high degree of overparameterisation---while simplifying the problem---can limit the benefit from curricula, providing a theoretical account of the ineffectiveness of curricula in deep learning.
Optimal Coresets for Low-Dimensional Geometric Median
Peyman Afshani · Chris Schwiegelshohn
We investigate coresets for approximating the cost with respect to median queries. In this problem, we are given a set of points $P\subset \mathbb{R}^d$ and median queries are $\sum_{p\in P} ||p-c||$ for any point $c\in \mathbb{R}^d$. Our goal is to compute a small weighted summary $S\subset P$ such that the cost of any median query is approximated within a multiplicative $(1\pm\varepsilon)$ factor. We provide matching upper and lower bounds on the number of points contained in $S$ of the order $\tilde{\Theta}\left(\varepsilon^{-d/(d+1)}\right)$.
Non-Vacuous Generalization Bounds for Large Language Models
Sanae Lotfi · Marc Finzi · Yilun Kuang · Tim G. J. Rudner · Micah Goldblum · Andrew Wilson
Modern language models can contain billions of parameters, raising the question of whether they can generalize beyond the training data or simply parrot their training corpora. We provide the first non-vacuous generalization bounds for pretrained large language models (LLMs), indicating that language models are capable of discovering regularities that generalize to unseen data. In particular, we derive a compression bound that is valid for the unbounded log-likelihood loss using prediction smoothing, and we extend the bound to handle subsampling, making bound computation 900 times faster on massive datasets. To achieve the extreme level of compression required for non-vacuous bounds, we devise SubLoRA, a simple low-dimensional nonlinear parameterization that leads to non-vacuous generalization bounds for very large models with up to 849 million parameters. Finally, we use our bounds to understand LLM generalization and find that larger models have better generalization bounds and are more compressible than smaller models.
The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective
Chi-Heng Lin · Chiraag Kaushik · Eva Dyer · Vidya Muthukumar
Data augmentation (DA) is a powerful workhorse for bolstering performance in modern machine learning. Specific augmentations like translations and scaling in computer vision are traditionally believed to improve generalization by generating new (artificial) data from the same distribution. However, this traditional viewpoint does not explain the success of prevalent augmentations in modern machine learning (e.g. randomized masking, cutout, mixup), that greatly alter the training data distribution. In this work, we develop a new theoretical framework to characterize the impact of a general class of DA on underparameterized and overparameterized linear model generalization. Our framework reveals that DA induces implicit spectral regularization through a combination of two distinct effects: a) manipulating the relative proportion of eigenvalues of the data covariance matrix in a training-data-dependent manner, and b) uniformly boosting the entire spectrum of the data covariance matrix through ridge regression. These effects, when applied to popular augmentations, give rise to a wide variety of phenomena, including discrepancies in generalization between overparameterized and underparameterized regimes and differences between regression and classification tasks. Our framework highlights the nuanced and sometimes surprising impacts of DA on generalization, and serves as a testbed for novel augmentation design.
Prediction Accuracy of Learning in Games : Follow-the-Regularized-Leader meets Heisenberg
Yi Feng · Georgios Piliouras · Xiao Wang
We investigate the accuracy of prediction in deterministic learning dynamics of zero-sum games with random initializations, specifically focusing on observer uncertainty and its relationship to the evolution of covariances. Zero-sum games are a prominent field of interest in machine learning due to their various applications. Concurrently, the accuracy of prediction in dynamical systems from mechanics has long been a classic subject of investigation since the discovery of the Heisenberg Uncertainty Principle. This principle employs covariance and standard deviation of particle states to measure prediction accuracy. In this study, we bring these two approaches together to analyze the Follow-the-Regularized-Leader (FTRL) algorithm in two-player zero-sum games. We provide growth rates of covariance information for continuous-time FTRL, as well as its two canonical discretization methods (Euler and Symplectic). A Heisenberg-type inequality is established for FTRL. Our analysis and experiments also show that employing Symplectic discretization enhances the accuracy of prediction in learning dynamics.
High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization
Yihang Chen · Fanghui Liu · Taiji Suzuki · Volkan Cevher
This paper studies kernel ridge regression in high dimensions under covariate shifts and analyzes the role of importance re-weighting. We first derive the asymptotic expansion of high dimensional kernels under covariate shifts. By a bias-variance decomposition, we theoretically demonstrate that the re-weighting strategy allows for decreasing the variance. For bias, we analyze the regularization of the arbitrary or well-chosen scale, showing that the bias can behave very differently under different regularization scales. In our analysis, the bias and variance can be characterized by the spectral decay of a data-dependent regularized kernel: the original kernel matrix associated with an additional re-weighting matrix, and thus the re-weighting strategy can be regarded as a data-dependent regularization for better understanding. Besides, our analysis provides asymptotic expansion of kernel functions/vectors under covariate shift, which has its own interest.
EDISON: Enhanced Dictionary-Induced Tensorized Incomplete Multi-View Clustering with Gaussian Error Rank Minimization
Zhibin Gu · Zhendong Li · Songhe Feng
This paper presents an efficient and scalable incomplete multi-view clustering method, referred to as Enhanced Dictionary-Induced tenSorized incomplete multi-view clustering with Gaussian errOr raNk minimization (EDISON). Specifically, EDISON employs an enhanced dictionary representation strategy as the foundation for inferring missing data and constructing anchor graphs, ensuring robustness to less-than-ideal data and maintaining high computational efficiency. Additionally, we introduce Gaussian error rank as a concise approximation of the true tensor rank, facilitating a comprehensive exploration of the diverse information encapsulated by various singular values in tensor data. Additionally, we integrate a hyper-anchor graph Laplacian manifold regularization into the tensor representation, allowing for the simultaneous utilization of inter-view high-order correlations and intra-view local correlations. Extensive experiments demonstrate the superiority of the EDISON model in both effectiveness and efficiency compared to SOTA methods.
Regression Learning with Limited Observations of Multivariate Outcomes and Features
Yifan Sun · Grace Yi
Multivariate linear regression models are broadly used to facilitate relationships between outcomes and features. However, their effectiveness is compromised by the presence of missing observations, a ubiquitous challenge in real-world applications. Considering a scenario where learners access only limited components for both outcomes and features, we develop efficient algorithms tailored for the least squares ($L_2$) and least absolute ($L_1$) loss functions, each coupled with a ridge-like and Lasso-type penalty, respectively. Moreover, we establish rigorous error bounds for all proposed algorithms. Notably, our $L_2$ loss function algorithms are probably approximately correct (PAC), distinguishing them from their $L_1$ counterparts. Extensive numerical experiments show that our approach outperforms methods that apply existing algorithms for univariate outcome individually to each coordinate of multivariate outcomes in a naive manner. Further, utilizing the $L_1$ loss function or introducing a Lasso-type penalty can enhance predictions in the presence of outliers or high dimensional features. This research contributes valuable insights into addressing the challenges posed by incomplete data.
Decoupling Learning and Decision-Making: Breaking the $\mathcal{O}(\sqrt{T})$ Barrier in Online Resource Allocation with First-Order Methods
Wenzhi Gao · Chunlin Sun · Chenyu Xue · Yinyu Ye
Online linear programming plays an important role in both revenue management and resource allocation, and recent research has focused on developing efficient first-order online learning algorithms. Despite the empirical success of first-order methods, they typically achieve regret no better than $\mathcal{O}(\sqrt{T})$, which is suboptimal compared to the $\mathcal{O}(\log T)$ result guaranteed by the state-of-the-art linear programming (LP)-based online algorithms. This paper establishes several important facts about online linear programming, which unveils the challenge for first-order online algorithms to achieve beyond $\mathcal{O}(\sqrt{T})$ regret. To address this challenge, we introduce a new algorithmic framework which decouples learning from decision-making. For the first time, we show that first-order methods can achieve regret $\mathcal{O}(T^{1/3})$ with this new framework.
Borda Regret Minimization for Generalized Linear Dueling Bandits
Yue Wu · Tao Jin · Qiwei Di · Hao Lou · Farzad Farnoud · Quanquan Gu
Dueling bandits are widely used to model preferential feedback prevalent in many applications such as recommendation systems and ranking. In this paper, we study the Borda regret minimization problem for dueling bandits, which aims to identify the item with the highest Borda score while minimizing the cumulative regret. We propose a rich class of generalized linear dueling bandit models, which cover many existing models. We first prove a regret lower bound of order $\Omega(d^{2/3} T^{2/3})$ for the Borda regret minimization problem, where $d$ is the dimension of contextual vectors and $T$ is the time horizon. To attain this lower bound, we propose an explore-then-commit type algorithm for the stochastic setting, which has a nearly matching regret upper bound $\tilde{O}(d^{2/3} T^{2/3})$. We also propose an EXP3-type algorithm for the adversarial linear setting, where the underlying model parameter can change in each round. Our algorithm achieves an $\tilde{O}(d^{2/3} T^{2/3})$ regret, which is also optimal. Empirical evaluations on both synthetic data and a simulated real-world environment are conducted to corroborate our theoretical analysis.
Online Learning in CMDPs: Handling Stochastic and Adversarial Constraints
Francesco Emanuele Stradi · Jacopo Germano · Gianmarco Genalti · Matteo Castiglioni · Alberto Marchesi · Nicola Gatti
We study online learning in episodic constrained Markov decision processes (CMDPs), where the learner aims at collecting as much reward as possible over the episodes, while satisfying some long-term constraints during the learning process. Rewards and constraints can be selected either stochastically or adversarially, and the transition function is not known to the learner. While online learning in classical (unconstrained) MDPs has received considerable attention over the last years, the setting of CMDPs is still largely unexplored. This is surprising, since in real-world applications, such as, e.g., autonomous driving, automated bidding, and recommender systems, there are usually additional constraints and specifications that an agent has to obey during the learning process. In this paper, we provide the first best-of-both-worlds algorithm for CMDPs with long-term constraints, in the flavor of Balseiro et al. (2023). Our algorithm is capable of handling settings in which rewards and constraints are selected either stochastically or adversarially, without requiring any knowledge of the underling process. Moreover, our algorithm matches state-of-the-art regret and constraint violation bounds for settings in which constraints are selected stochastically, while it is the first to provide guarantees in the case in which they are chosen adversarially.
Testing the Feasibility of Linear Programs with Bandit Feedback
Aditya Gangrade · Aditya Gopalan · Venkatesh Saligrama · Clay Scott
While the recent literature has seen a surge in the study of constrained bandit problems, all existing methods for these begin by assuming the feasibility of the underlying problem. We initiate the study of testing such feasibility assumptions, and in particular address the problem in the linear bandit setting, thus characterising the costs of feasibility testing for an unknown linear program using bandit feedback. Concretely, we test if $\exists x: Ax \ge 0$ for an unknown $A \in \mathbb{R}^{m \times d}$, by playing a sequence of actions $x_t\in \mathbb{R}^d$, and observing $Ax_t + \mathrm{noise}$ in response. By identifying the hypothesis as determining the sign of the value of a minimax game, we construct a novel test based on low-regret algorithms and a nonasymptotic law of iterated logarithms. We prove that this test is reliable, and adapts to the `signal level,' $\Gamma,$ of any instance, with mean sample costs scaling as $\widetilde{O}(d^2/\Gamma^2)$. We complement this by a minimax lower bound of $\Omega(d/\Gamma^2)$ for sample costs of reliable tests, dominating prior asymptotic lower bounds by capturing the dependence on $d$, and thus elucidating a basic insight missing in the extant literature on such problems.
Exploration by Optimization with Hybrid Regularizers: Logarithmic Regret with Adversarial Robustness in Partial Monitoring
Taira Tsuchiya · Shinji Ito · Junya Honda
Partial monitoring is a generic framework of online decision-making problems with limited feedback. To make decisions from such limited feedback, it is necessary to find an appropriate distribution for exploration. Recently, a powerful approach for this purpose, exploration by optimization (ExO), was proposed, which achieves optimal bounds in adversarial environments with follow-the-regularized-leader for a wide range of online decision-making problems. However, a naive application of ExO in stochastic environments significantly degrades regret bounds. To resolve this issue in locally observable games, we first establish a new framework and analysis for ExO with a hybrid regularizer. This development allows us to significantly improve existing regret bounds of best-of-both-worlds (BOBW) algorithms, which achieves nearly optimal bounds both in stochastic and adversarial environments. In particular, we derive a stochastic regret bound of $O(\sum_{a \neq a^*} k^2 m^2 \log T / \Delta_a)$, where $k$, $m$, and $T$ are the numbers of actions, observations and rounds, $a^*$ is an optimal action, and $\Delta_a$ is the suboptimality gap for action $a$. This bound is roughly $\Theta(k^2 \log T)$ times smaller than existing BOBW bounds. In addition, for globally observable games, we provide a new BOBW algorithm with the first $O(\log T)$ stochastic bound.
Asymptotically Optimal and Computationally Efficient Average Treatment Effect Estimation in A/B testing
VIKAS DEEP · Achal Bassamboo · Sandeep Juneja
Motivated by practical applications in clinical trials and online platforms, we study A/B testing with the aim of estimating a confidence interval (CI) for the average treatment effect (ATE) using the minimum expected sample size. This CI should have a width at most $\epsilon$ while ensuring that the probability of the CI not containing the true ATE is at most $\delta$. To answer this, we first establish a lower bound on the expected sample size needed for any adaptive policy which constructs a CI of ATE with desired properties. Specifically, we prove that the lower bound is based on the solution to a max-min non-convex optimization problem for small $\delta$. Tailoring the ``plug-in'' approach for the ATE problem, we construct an adaptive policy that is asymptotically optimal, i.e., matches the lower bound on the expected sample size for small $\delta$. Interestingly, we find that, for small $\epsilon$ and $\delta$, the asymptotically optimal fraction of treatment assignment for A and B is proportional to the standard deviation of the outcome distributions of treatments A and B, respectively. However, as the proposed approach can be computationally intensive, we propose an alternative adaptive policy. This new policy, informed by insights from our lower bound analysis, is computationally efficient while remaining asymptotically optimal for small values of $\epsilon$ and $\delta$. Numerical comparisons demonstrate that both policies perform similarly across practical values of $\epsilon$ and $\delta$, offering efficient solutions for A/B testing.
Finite-Time Convergence and Sample Complexity of Actor-Critic Multi-Objective Reinforcement Learning
Tianchen Zhou · Hairi · Haibo Yang · Jia (Kevin) Liu · Tian Tong · Fan Yang · Michinari Momma · Yan Gao
Reinforcement learning with multiple, potentially conflicting objectives is pervasive in real-world applications, while this problem remains theoretically under-explored. This paper tackles the multi-objective reinforcement learning (MORL) problem and introduces an innovative actor-critic algorithm named MOAC which finds a policy by iteratively making trade-offs among conflicting reward signals. Notably, we provide the first analysis of finite-time Pareto-stationary convergence and corresponding sample complexity in both discounted and average reward settings. Our approach has two salient features: (a) MOAC mitigates the cumulative estimation bias resulting from finding an optimal common gradient descent direction out of stochastic samples. This enables provable convergence rate and sample complexity guarantees independent of the number of objectives; (b) With proper momentum coefficient, MOAC initializes the weights of individual policy gradients using samples from the environment, instead of manual initialization. This enhances the practicality and robustness of our algorithm. Finally, experiments conducted on a real-world dataset validate the effectiveness of our proposed method.
Hierarchical Integral Probability Metrics: A distance on random probability measures with low sample complexity
Marta Catalano · Hugo Lavenant
Random probabilities are a key component to many nonparametric methods in Statistics and Machine Learning. To quantify comparisons between different laws of random probabilities several works are starting to use the elegant Wasserstein over Wasserstein distance. In this paper we prove that the infinite dimensionality of the space of probabilities drastically deteriorates its sample complexity, which is slower than any polynomial rate in the sample size. We propose a new distance that preserves many desirable properties of the former while achieving a parametric rate of convergence. In particular, our distance 1) metrizes weak convergence; 2) can be estimated numerically through samples with low complexity; 3) can be bounded analytically from above and below. The main ingredient are integral probability metrics, which lead to the name hierarchical IPM.
Zhang et al. (ICML 2021, PLMR 139, pp. 12447–12457) introduced probabilistic generating circuits (PGCs) as a probabilistic model to unify probabilistic circuits (PCs) and determinantal point processes (DPPs). At a first glance, PGCs store a distribution in a very different way, they compute the probability generating polynomial instead of the probability mass function and it seems that this is the main reason why PGCs are more powerful than PCs or DPPs. However, PGCs also allow for negative weights, whereas classical PCs assume that all weights are nonnegative. One main insight of this work is that the negative weights are the cause for the power of PGCs and not the different representation. PGCs are PCs in disguise: we show how to transform any PGC on binary variables into a PC with negative weights with only polynomial blowup. PGCs were defined by Zhang et al. only for binary random variables. As our second main result, we show that there is a good reason for this: we prove that PGCs for categorical variables with larger image size do not support tractable marginalization unless NP=P. On the other hand, we show that we can model categorical variables with larger image size as PC with negative weights computing set-multilinear polynomials. These allow for tractable marginalization. In this sense, PCs with negative weights strictly subsume PGCs.
Enhancing Sufficient Dimension Reduction via Hellinger Correlation
Seungbeom Hong · Ilmun Kim · Jun Song
In this work, we develop a new theory and method for sufficient dimension reduction (SDR) in single-index models, where SDR is a sub-field of supervised dimension reduction based on conditional independence. Our work is primarily motivated by the recent introduction of the Hellinger correlation as a dependency measure. Utilizing this measure, we have developed a method capable of effectively detecting the dimension reduction subspace, complete with theoretical justification. Through extensive numerical experiments, we demonstrate that our proposed method significantly enhances and outperforms existing SDR methods. This improvement is largely attributed to our proposed method's deeper understanding of data dependencies and the refinement of existing SDR techniques.
From Classification Accuracy to Proper Scoring Rules: Elicitability of Probabilistic Top List Predictions
Johannes Resin
In the face of uncertainty, the need for probabilistic assessments has long been recognized in the literature on forecasting. In classification, however, comparative evaluation of classifiers often focuses on predictions specifying a single class through the use of simple accuracy measures, which disregard any probabilistic uncertainty quantification. I propose probabilistic top lists as a novel type of prediction in classification, which bridges the gap between single-class predictions and predictive distributions. The probabilistic top list functional is elicitable through the use of strictly consistent evaluation metrics. The proposed evaluation metrics are based on symmetric proper scoring rules and admit comparison of various types of predictions ranging from single-class point predictions to fully specified predictive distributions. The Brier score yields a metric that is particularly well suited for this kind of comparison.
Fast Algorithms for Hypergraph PageRank with Applications to Semi-Supervised Learning
Konstantinos Ameranis · Adela DePavia · Lorenzo Orecchia · Erasmo Tani
A fundamental approach to semi-supervised learning is to leverage the structure of the sample space to diffuse label information from annotated examples to unlabeled points. Traditional methods model the input data points as a graph and rely on fast algorithms for solving Laplacian systems of equations, such as those defining PageRank. However, previous work has demonstrated that graph-based models fail to capture higher-order relations, such as group membership, which are better modeled by hypergraphs. Unfortunately, the scalable application of hypergraph models has been hampered by the non-linearity of the hypergraph Laplacian. In this paper, we present highly scalable algorithms for hypergraph primitives, such as hypergraph PageRank vectors and hypergraph Laplacian systems, over general families of hypergraphs. In addition to giving strong theoretical guarantees, we empirically showcase the speed of our algorithms on benchmark instances of semi-supervised learning on categorical data. We exploit their generality to improve semi-supervised manifold clustering via hypergraph models. By providing significant speed-ups on fundamental hypergraph tasks, our algorithms enable the deployment of hypergraph models on a massive scale.
Learning Solution-Aware Transformers for Efficiently Solving Quadratic Assignment Problem
Zhentao Tan · Yadong Mu
Recently various optimization problems, such as Mixed Integer Linear Programming Problems (MILPs), have undergone comprehensive investigation, leveraging the capabilities of machine learning. This work focuses on learning-based solutions for efficiently solving the Quadratic Assignment Problem (QAPs), which stands as a formidable challenge in combinatorial optimization. While many instances of simpler problems admit fully polynomial-time approximate solution (FPTAS), QAP is shown to be strongly NPhard. Even finding a FPTAS for QAP is difficult, in the sense that the existence of a FPTAS implies P = NP. Current research on QAPs suffer from limited scale and computational inefficiency. To attack the aforementioned issues, we here propose the first solution of its kind for QAP in the learn-to-improve category. This work encodes facility and location nodes separately, instead of forming computationally intensive association graphs prevalent in current approaches. This design choice enables scalability to larger problem sizes. Furthermore, a Solution AWare Transformer (SAWT) architecture integrates the incumbent solution matrix with the attention score to effectively capture higher-order information of the QAPs. Our model’s effectiveness is validated through extensive experiments on self-generated QAP instances of varying sizes and the QAPLIB benchmark.
Handling Heterogeneous Curvatures in Bandit LQR Control
Yu-Hu Yan · Jing Wang · Peng Zhao
We investigate online Linear Quadratic Regulator (LQR) with bandit feedback and semi-adversarial disturbances. Previous works assume costs with homogeneous curvatures (i.e., with a uniform strong convexity lower bound), which can be hard to satisfy in many real scenarios and prohibits adapting to true curvatures for better performance. In this paper, we initiate the study of bandit LQR control with heterogeneous cost curvatures, aiming to strengthen the algorithm's adaptivity. To achieve this, we reduce the problem to bandit convex optimization with memory via a ``with-history'' reduction to avoid hard-to-control truncation errors. Then we provide a novel analysis for an important stability term that appeared in both regret and memory, using Newton decrement developed in interior-point methods. The analysis enables us to guarantee memory-related terms introduced in the reduction and also provide a simplified analysis for handling heterogeneous curvatures in bandit convex optimization. Finally, we achieve interpolated guarantees that can not only recover existing bounds for convex and quadratic costs but also attain new implications for cases of corrupted and decaying quadraticity.
Random Exploration in Bayesian Optimization: Order-Optimal Regret and Computational Efficiency
Sudeep Salgia · Sattar Vakili · Qing Zhao
We consider Bayesian optimization using Gaussian Process models, also referred to as kernel-based bandit optimization. We study the methodology of exploring the domain using random samples drawn from a distribution. We show that this random exploration approach achieves the optimal error rates. Our analysis is based on novel concentration bounds in an infinite dimensional Hilbert space established in this work, which may be of independent interest. We further develop an algorithm based on random exploration with domain shrinking and establish its order-optimal regret guarantees under both noise-free and noisy settings. In the noise-free setting, our analysis closes the existing gap in regret performance under a mild assumption on the underlying function and thereby partially resolves a COLT open problem. The proposed algorithm also enjoys a computational advantage over prevailing methods due to the random exploration that obviates the expensive optimization of a non-convex acquisition function for choosing the query points at each iteration.
ContPhy: Continuum Physical Concept Learning and Reasoning from Videos
Zhicheng Zheng · Xin Yan · Zhenfang Chen · Jingzhou Wang · Qin Zhi Eddie Lim · Josh Tenenbaum · Chuang Gan
We introduce the Continuum Physical Dataset (ContPhy), a novel benchmark for assessing machine physical commonsense. ContPhy complements existing physical reasoning benchmarks by encompassing the inference of diverse physical properties, such as mass and density, across various scenarios and predicting corresponding dynamics. We evaluated a range of AI models and found that they still struggle to achieve satisfactory performance on ContPhy, which shows that current AI models still lack physical commonsense for the continuum, especially soft-bodies, and illustrates the value of the proposed dataset. We also introduce an oracle model (ContPRO) that marries the particle-based physical dynamic models with the recent large language models, which enjoy the advantages of both models, precise dynamic predictions, and interpretable reasoning. ContPhy aims to spur progress in perception and reasoning within diverse physical settings, narrowing the divide between human and machine intelligence in understanding the physical world.
Eluder-based Regret for Stochastic Contextual MDPs
Orin Levy · Asaf Cassel · Alon Cohen · Yishay Mansour
We present the E-UC$^3$RL algorithm for regret minimization in Stochastic Contextual Markov Decision Processes (CMDPs). The algorithm operates under the minimal assumptions of realizable function class and access to *offline* least squares and log loss regression oracles. Our algorithm is efficient (assuming efficient offline regression oracles) and enjoys a regret guarantee of $ \widetilde{O}(H^3 \sqrt{T |S| |A|d_{\mathrm{E}}(\mathcal{P}) \log (|\mathcal{F}| |\mathcal{P}|/ \delta) )}) $ , with $T$ being the number of episodes, $S$ the state space, $A$ the action space, $H$ the horizon, $\mathcal{P}$ and $\mathcal{F}$ are finite function classes used to approximate the context-dependent dynamics and rewards, respectively, and $d_{\mathrm{E}}(\mathcal{P})$ is the Eluder dimension of $\mathcal{P}$ w.r.t the Hellinger distance. To the best of our knowledge, our algorithm is the first efficient and rate-optimal regret minimization algorithm for CMDPs that operates under the general offline function approximation setting. In addition, we extend the Eluder dimension to general bounded metrics which may be of independent interest.
No-Regret Reinforcement Learning in Smooth MDPs
Davide Maran · Alberto Maria Metelli · Matteo Papini · Marcello Restelli
Obtaining no-regret guarantees for reinforcement learning (RL) in the case of problems with continuous state and/or action spaces is still one of the major open challenges in the field. Recently, a variety of solutions have been proposed, but besides very specific settings, the general problem remains unsolved. In this paper, we introduce a novel structural assumption on the Markov decision processes (MDPs), namely $\nu-$smoothness, that generalizes most of the settings proposed so far (e.g., linear MDPs and Lipschitz MDPs). To face this challenging scenario, we propose two algorithms for regret minimization in $\nu-$smooth MDPs. Both algorithms build upon the idea of constructing an MDP representation through an orthogonal feature map based on Legendre polynomials. The first algorithm, Legendre-Eleanor, archives the no-regret property under weaker assumptions but is computationally inefficient, whereas the second one, Legendre-LSVI, runs in polynomial time, although for a smaller class of problems. After analyzing their regret properties, we compare our results with state-of-the-art ones from RL theory, showing that our algorithms achieve the best guarantees.
Efficient Black-box Adversarial Attacks via Bayesian Optimization Guided by a Function Prior
Shuyu Cheng · Yibo Miao · Yinpeng Dong · Xiao Yang · Xiao-Shan Gao · Jun Zhu
This paper studies the challenging black-box adversarial attack that aims to generate adversarial examples against a black-box model by only using output feedback of the model to input queries. Some previous methods improve the query efficiency by incorporating the gradient of a surrogate white-box model into query-based attacks due to the adversarial transferability. However, the localized gradient is not informative enough, making these methods still query-intensive. In this paper, we propose a Prior-guided Bayesian Optimization (P-BO) algorithm that leverages the surrogate model as a global function prior in black-box adversarial attacks. As the surrogate model contains rich prior information of the black-box one, P-BO models the attack objective with a Gaussian process whose mean function is initialized as the surrogate model's loss. Our theoretical analysis on the regret bound indicates that the performance of P-BO may be affected by a bad prior. Therefore, we further propose an adaptive integration strategy to automatically adjust a coefficient on the function prior by minimizing the regret bound. Extensive experiments on image classifiers and large vision-language models demonstrate the superiority of the proposed algorithm in reducing queries and improving attack success rates compared with the state-of-the-art black-box attacks. Code is available at https://github.com/yibo-miao/PBO-Attack.
Near-Optimal Regret in Linear MDPs with Aggregate Bandit Feedback
Asaf Cassel · Haipeng Luo · Aviv Rosenberg · Dmitry Sotnikov
In many real-world applications, it is hard to provide a reward signal in each step of a Reinforcement Learning (RL) process and more natural to give feedback when an episode ends. To this end, we study the recently proposed model of RL with Aggregate Bandit Feedback (RL-ABF), where the agent only observes the sum of rewards at the end of an episode instead of each reward individually. Prior work studied RL-ABF only in tabular settings, where the number of states is assumed to be small. In this paper, we extend ABF to linear function approximation and develop two efficient algorithms with near-optimal regret guarantees: a value-based optimistic algorithm built on a new randomization technique with a Q-functions ensemble, and a policy optimization algorithm that uses a novel hedging scheme over the ensemble.
More Benefits of Being Distributional: Second-Order Bounds for Reinforcement Learning
Kaiwen Wang · Owen Oertell · Alekh Agarwal · Nathan Kallus · Wen Sun
In this paper, we prove that Distributional Reinforcement Learning (DistRL), which learns the return distribution, can obtain second-order bounds in both online and offline RL in general settings with function approximation. Second-order bounds are instance-dependent bounds that scale with the variance of return, which we prove are tighter than the previously known small-loss bounds of distributional RL. To the best of our knowledge, our results are the first second-order bounds for low-rank MDPs and for offline RL. When specializing to contextual bandits (one-step RL problem), we show that a distributional learning based optimism algorithm achieves a second-order worst-case regret bound, and a second-order gap dependent bound, simultaneously. We also empirically demonstrate the benefit of DistRL in contextual bandits on real-world datasets. We highlight that our analysis with DistRL is relatively simple, follows the general framework of optimism in the face of uncertainty and does not require weighted regression. Our results suggest that DistRL is a promising framework for obtaining second-order bounds in general RL settings, thus further reinforcing the benefits of DistRL.
Don’t Label Twice: Quantity Beats Quality when Comparing Binary Classifiers on a Budget
Florian Dorner · Moritz Hardt
We study how to best spend a budget of noisy labels to compare the accuracy of two binary classifiers. It’s common practice to collect and aggregate multiple noisy labels for a given data point into a less noisy label via a majority vote. We prove a theorem that runs counter to conventional wisdom. If the goal is to identify the better of two classifiers, we show it’s best to spend the budget on collecting a single label for more samples. Our result follows from a non-trivial application of Cramér’s theorem, a staple in the theory of large deviations. We discuss the implications of our work for the design of machine learning benchmarks, where they overturn some time-honored recommendations. In addition, our results provide sample size bounds superior to what follows from Hoeffding’s bound.
Uncertainty Estimation by Density Aware Evidential Deep Learning
Taeseong Yoon · Heeyoung Kim
Evidential deep learning (EDL) has shown remarkable success in uncertainty estimation. However, there is still room for improvement, particularly in out-of-distribution (OOD) detection and classification tasks. The limited OOD detection performance of EDL arises from its inability to reflect the distance between the testing example and training data when quantifying uncertainty, while its limited classification performance stems from its parameterization of the concentration parameters. To address these limitations, we propose a novel method called Density Aware Evidential Deep Learning (DAEDL). DAEDL integrates the feature space density of the testing example with the output of EDL during the prediction stage, while using a novel parameterization that resolves the issues in the conventional parameterization. We prove that DAEDL enjoys a number of favorable theoretical properties. DAEDL demonstrates state-of-the-art performance across diverse downstream tasks related to uncertainty estimation and classification.
Local Causal Structure Learning in the Presence of Latent Variables
Feng Xie · Zheng Li · Peng Wu · Yan Zeng · Chunchen LIU · zhi geng
Discovering causal relationships from observational data, particularly in the presence of latent variables, poses a challenging problem. While current local structure learning methods have proven effective and efficient when the focus lies solely on the local relationships of a target variable, they operate under the assumption of causal sufficiency. This assumption implies that all the common causes of the measured variables are observed, leaving no room for latent variables. Such a premise can be easily violated in various real-world applications, resulting in inaccurate structures that may adversely impact downstream tasks. In light of this, our paper delves into the primary investigation of locally identifying potential parents and children of a target from observational data that may include latent variables. Specifically, we harness the causal information from m-separation and V-structures to derive theoretical consistency results, effectively bridging the gap between global and local structure learning. Together with the newly developed stop rules, we present a principled method for determining whether a variable is a direct cause or effect of a target. Further, we theoretically demonstrate the correctness of our approach under the standard causal Markov and faithfulness conditions, with infinite samples. Experimental results on both synthetic and real-world data validate the effectiveness and efficiency of our approach.
From Geometry to Causality- Ricci Curvature and the Reliability of Causal Inference on Networks
Amirhossein Farzam · Allen Tannenbaum · Guillermo Sapiro
Causal inference on networks faces challenges posed in part by violations of standard identification assumptions due to dependencies between treatment units. Although graph geometry fundamentally influences such dependencies, the potential of geometric tools for causal inference on networked treatment units is yet to be unlocked. Moreover, despite significant progress utilizing graph neural networks (GNNs) for causal inference on networks, methods for evaluating their achievable reliability without ground truth are lacking. In this work we establish for the first time a theoretical link between network geometry, the graph Ricci curvature in particular, and causal inference, formalizing the intrinsic challenges that negative curvature poses to estimating causal parameters. The Ricci curvature can then be used to assess the reliability of causal estimates in structured data, as we empirically demonstrate. Informed by this finding, we propose a method using the geometric Ricci flow to reduce causal effect estimation error in networked data, showcasing how this newfound connection between graph geometry and causal inference could improve GNN-based causal inference. Bridging graph geometry and causal inference, this paper opens the door to geometric techniques for improving causal estimation on networks.
Learning to Infer Generative Template Programs for Visual Concepts
R. Kenny Jones · Siddhartha Chaudhuri · Daniel Ritchie
People grasp flexible visual concepts from a few examples. We explore a neurosymbolic system that learns how to infer programs that capture visual concepts in a domain-general fashion. We introduce Template Programs: programmatic expressions from a domain-specific language that specify structural and parametric patterns common to an input concept. Our framework supports multiple concept-related tasks, including few-shot generation and co-segmentation through parsing. We develop a learning paradigm that allows us to train networks that infer Template Programs directly from visual datasets that contain concept groupings. We run experiments across multiple visual domains: 2D layouts, Omniglot characters, and 3D shapes. We find that our method outperforms task-specific alternatives, and performs competitively against domain-specific approaches for the limited domains where they exist.
Multimodal Prototyping for cancer survival prediction
Andrew Song · Richard Chen · Guillaume Jaume · Anurag Vaidya · Alexander Baras · Faisal Mahmood
Multimodal survival methods combining gigapixel histology whole-slide images (WSIs) and transcriptomic profiles are particularly promising for patient prognostication and stratification. Current approaches involve tokenizing the WSIs into smaller patches ($>10^4$ patches) and transcriptomics into gene groups, which are then integrated using a Transformer for predicting outcomes. However, this process generates many tokens, which leads to high memory requirements for computing attention and complicates post-hoc interpretability analyses. Instead, we hypothesize that we can: (1) effectively summarize the morphological content of a WSI by condensing its constituting tokens using morphological prototypes, achieving more than $300\times$ compression; and (2) accurately characterize cellular functions by encoding the transcriptomic profile with biological pathway prototypes, all in an unsupervised fashion. The resulting multimodal tokens are then processed by a fusion network, either with a Transformer or an optimal transport cross-alignment, which now operates with a small and fixed number of tokens without approximations. Extensive evaluation on six cancer types shows that our framework outperforms state-of-the-art methods with much less computation while unlocking new interpretability analyses. The code is available at https://github.com/mahmoodlab/MMP.
Reservoir Computing for Short High-Dimensional Time Series: an Application to SARS-CoV-2 Hospitalization Forecast
Thomas Ferté · Dutartre Dan · Boris Hejblum · Romain Griffier · Vianney Jouhet · Rodolphe Thiébaut · Pierrick Legrand · Xavier Hinaut
In this work, we aimed at forecasting the number of SARS-CoV-2 hospitalized patients at 14 days to help anticipate the bed requirements of a large scale hospital using public data and electronic health records data. Previous attempts led to mitigated performance in this high-dimension setting; we introduce a novel approach to time series forecasting by providing an alternative to conventional methods to deal with high number of potential features of interest (409 predictors). We integrate Reservoir Computing (RC) with feature selection using a genetic algorithm (GA) to gather optimal non-linear combinations of inputs to improve prediction in sample-efficient context. We illustrate that the RC-GA combination exhibits excellent performance in forecasting SARS-CoV-2 hospitalizations. This approach outperformed the use of RC alone and other conventional methods: LSTM, Transformers, Elastic-Net, XGBoost. Notably, this work marks the pioneering use of RC (along with GA) in the realm of short and high-dimensional time series, positioning it as a competitive and innovative approach in comparison to standard methods.
Zero-Shot ECG Classification with Multimodal Learning and Test-time Clinical Knowledge Enhancement
che liu · Zhongwei Wan · Cheng Ouyang · Anand Shah · Wenjia Bai · Rossella Arcucci
Electrocardiograms (ECGs) are non-invasive diagnostic tools crucial for detecting cardiac arrhythmic diseases in clinical practice. While ECG Self-supervised Learning (eSSL) methods show promise in representation learning from unannotated ECG data, they often overlook the clinical knowledge that can be found in reports. This oversight and the requirement for annotated samples for downstream tasks limit eSSL's versatility. In this work, we address these issues with the Multimodal ECG Representation Learning (MERL) framework. Through multimodal learning on ECG records and associated reports, MERL is capable of performing zero-shot ECG classification with text prompts, eliminating the need for training data in downstream tasks. At test time, we propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach, which uses Large Language Models (LLMs) to exploit external expert-verified clinical knowledge databases, generating more descriptive prompts and reducing hallucinations in LLM-generated content to boost zero-shot classification. Based on MERL, we perform the first benchmark across six public ECG datasets, showing the superior performance of MERL compared against eSSL methods. Notably, MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods with 10% annotated training data, averaged across all six datasets.
Multi-Agent Reinforcement Learning Meets Leaf Sequencing in Radiotherapy
Riqiang Gao · Florin-Cristian Ghesu · Simon Arberet · Shahab Basiri · Esa Kuusela · Martin Kraus · Dorin Comaniciu · Ali Kamen
In contemporary radiotherapy planning (RTP), a key module leaf sequencing is predominantly addressed by optimization-based approaches. In this paper, we propose a novel deep reinforcement learning (DRL) model termed as Reinforced Leaf Sequencer (RLS) in a multi-agent framework for leaf sequencing. The RLS model offers improvements to time-consuming iterative optimization steps via large-scale training and can control movement patterns through the design of reward mechanisms. We have conducted experiments on four datasets with four metrics and compared our model with a leading optimization sequencer. Our findings reveal that the proposed RLS model can achieve reduced fluence reconstruction errors, and potential faster convergence when integrated in an optimization planner. Additionally, RLS has shown promising results in a full artificial intelligence RTP pipeline. We hope this pioneer multi-agent RL leaf sequencer can foster future research on machine learning for RTP.
Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations
Ze Cheng · Zhongkai Hao · Wang Xiaoqiang · Jianing Huang · Youjia Wu · Xudan Liu · Yiru Zhao · LIU SONGMING · Hang Su
For partial differential equations on domains of arbitrary shapes, existing works of neural operators attempt to learn a mapping from geometries to solutions. It often requires a large dataset of geometry-solution pairs in order to obtain a sufficiently accurate neural operator. However, for many industrial applications, e.g., engineering design optimization, it can be prohibitive to satisfy the requirement since even a single simulation may take hours or days of computation. To address this issue, we propose reference neural operators (RNO), a novel way of implementing neural operators, i.e., to learn the smooth dependence of solutions on geometric deformations. Specifically, given a reference solution, RNO can predict solutions corresponding to arbitrary deformations of the referred geometry. This approach turns out to be much more data efficient. Through extensive experiments, we show that RNO can learn the dependence across various types and different numbers of geometry objects with relatively small datasets. RNO outperforms baseline models in accuracy by a large lead and achieves up to 80% error reduction.
Towards General Neural Surrogate Solvers with Specialized Neural Accelerators
Chenkai Mao · Robert Lupoiu · Tianxiang Dai · Mingkun Chen · Jonathan Fan
Surrogate neural network-based partial differential equation (PDE) solvers have the potential to solve PDEs in an accelerated manner, but they are largely limited to systems featuring fixed domain sizes, geometric layouts, and boundary conditions. We propose Specialized Neural Accelerator-Powered Domain Decomposition Methods (SNAP-DDM), a DDM-based approach to PDE solving in which subdomain problems containing arbitrary boundary conditions and geometric parameters are accurately solved using an ensemble of specialized neural operators. We tailor SNAP-DDM to 2D electromagnetics and fluidic flow problems and show how innovations in network architecture and loss function engineering can produce specialized surrogate subdomain solvers with near unity accuracy. We utilize these solvers with standard DDM algorithms to accurately solve freeform electromagnetics and fluids problems featuring a wide range of domain sizes.
A Neural-Preconditioned Poisson Solver for Mixed Dirichlet and Neumann Boundary Conditions
Kai Weixian Lan · Elias Gueidon · Ayano Kaneda · Julian Panetta · Joseph Teran
We introduce a neural-preconditioned iterative solver for Poisson equations with mixed boundary conditions. Typical Poisson discretizations yield large, ill-conditioned linear systems. Iterative solvers can be effective for these problems, but only when equipped with powerful preconditioners. Unfortunately, effective preconditioners like multigrid require costly setup phases that must be re-executed every time domain shapes or boundary conditions change, forming a severe bottleneck for problems with evolving boundaries. In contrast, we present a neural preconditioner trained to efficiently approximate the inverse of the discrete Laplacian in the presence of such changes. Our approach generalizes to domain shapes, boundary conditions, and grid sizes outside the training set. The key to our preconditioner's success is a novel, lightweight neural network architecture featuring spatially varying convolution kernels and supporting fast inference. We demonstrate that our solver outperforms state-of-the-art methods like algebraic multigrid as well as recently proposed neural preconditioners on challenging test cases arising from incompressible fluid simulations.
Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation
Sergei Shumilin · Alexander Ryabov · Nikolay Yavich · Evgeny Burnaev · Vladimir Vanovskiy
Due to the high computational load of modern numerical simulation, there is a demand for approaches that would reduce the size of discrete problems while keeping the accuracy reasonable. In this work, we present an original algorithm to coarsen an unstructured grid based on the concepts of differentiable physics. We achieve this by employing $k$-means clustering, autodifferentiation and stochastic minimization algorithms. We demonstrate performance of the designed algorithm on two PDEs: a linear parabolic equation which governs slightly compressible fluid flow in porous media and the wave equation. Our results show that in the considered scenarios, we reduced the number of grid points up to 10 times while preserving the modeled variable dynamics in the points of interest. The proposed approach can be applied to the simulation of an arbitrary system described by evolutionary partial differential equations.
TENG: Time-Evolving Natural Gradient for Solving PDEs With Deep Neural Nets Toward Machine Precision
Zhuo Chen · Jacob McCarran · Esteban Vizcaino · Marin Soljačić · Di Luo
Partial differential equations (PDEs) are instrumental for modeling dynamical systems in science and engineering. The advent of neural networks has initiated a significant shift in tackling these complexities though challenges in accuracy persist, especially for initial value problems. In this paper, we introduce the Time-Evolving Natural Gradient (TENG), generalizing time-dependent variational principles and optimization-based time integration, leveraging natural gradient optimization to obtain high accuracy in neural-network-based PDE solutions. Our comprehensive development includes algorithms like TENG-Euler and its high-order variants, such as TENG-Heun, tailored for enhanced precision and efficiency. TENG's effectiveness is further validated through its performance, surpassing current leading methods and achieving machine precision in step-by-step optimizations across a spectrum of PDEs, including the heat equation, Allen-Cahn equation, and Burgers' equation.
Dynamic Facility Location in High Dimensional Euclidean Spaces
Sayan Bhattacharya · Gramoz Goranci · Shaofeng Jiang · Yi Qian · Yubo Zhang
We study the facility location problem in the dynamic setting, where the goal is to efficiently process an intermixed sequence of point insertions and deletions while maintaining a high quality and stable solution. Although the problem has been studied in the context of general metrics and low-dimensional spaces, much remains unknown concerning dynamic facility location in high dimensional spaces. In this work, we present the first fully dynamic algorithm for facility location in high-dimensional spaces $\mathbb{R}^{d}$. For any $c \geq 1$, our algorithm achieves $O(c)$-approximation, supports point updates in $\tilde{O}(\mathrm{poly}(d)n^{1/c + o(1)})$ amortized time and incurs $O(1)$ amortized recourse. More generally, our result shows that despite the linear-time lower bound on the update time for general metrics, it is possible to achieve sub-linear update times for metric spaces that admit dynamic nearest neighbour oracles. Experiments on real datasets confirm that our algorithm achieves high-quality solutions with low running time, and incurs minimal recourse.
Stochastic Interpolants with Data-Dependent Couplings
Michael Albergo · Mark Goldstein · Nicholas Boffi · Rajesh Ranganath · Eric Vanden-Eijnden
Generative models inspired by dynamical transport of measure -- such as flows and diffusions -- construct a continuous-time map between two probability densities. Conventionally, one of these is the target density, only accessible through samples, while the other is taken as a simple base density that is data-agnostic. In this work, using the framework of stochastic interpolants, we formalize how to couple the base and the target densities, whereby samples from the base are computed conditionally given samples from the target in a way that is different from (but does not preclude) incorporating information about class labels or continuous embeddings. This enables us to construct dynamical transport maps that serve as conditional generative models. We show that these transport maps can be learned by solving a simple square loss regression problem analogous to the standard independent setting. We demonstrate the usefulness of constructing dependent couplings in practice through experiments in super-resolution and in-painting. The code is available at https://github.com/interpolants/couplings.
Transport of Algebraic Structure to Latent Embeddings
Samuel Pfrommer · Brendon G. Anderson · Somayeh Sojoudi
Machine learning often aims to produce latent embeddings of inputs which lie in a larger, abstract mathematical space. For example, in the field of 3D modeling, subsets of Euclidean space can be embedded as vectors using implicit neural representations. Such subsets also have a natural algebraic structure including operations (e.g., union) and corresponding laws (e.g., associativity). How can we learn to "union" two sets using only their latent embeddings while respecting associativity? We propose a general procedure for parameterizing latent space operations that are provably consistent with the laws on the input space. This is achieved by learning a bijection from the latent space to a carefully designed mirrored algebra which is constructed on Euclidean space in accordance with desired laws. We evaluate these structural transport nets for a range of mirrored algebras against baselines that operate directly on the latent space. Our experiments provide strong evidence that respecting the underlying algebraic structure of the input space is key for learning accurate and self-consistent operations.
Generalization in Kernel Regression Under Realistic Assumptions
Daniel Barzilai · Ohad Shamir
It is by now well-established that modern over-parameterized models seem to elude the bias-variance tradeoff and generalize well despite overfitting noise. Many recent works attempt to analyze this phenomenon in the relatively tractable setting of kernel regression. However, as we argue in detail, most past works on this topic either make unrealistic assumptions, or focus on a narrow problem setup. This work aims to provide a unified theory to upper bound the excess risk of kernel regression for nearly all common and realistic settings. When applied to common kernels, our results imply benign overfitting in high input dimensions, nearly tempered overfitting in fixed dimensions, and explicit convergence rates for regularized regression. As a by-product, we obtain time-dependent bounds for neural networks trained in the kernel regime. Our results rely on new relative perturbation bounds for the eigenvalues of kernel matrices, which may be of independent interest. These reveal a self-regularization phenomenon, whereby a heavy tail in the eigendecomposition of the kernel implicitly leads to good generalization.
Boosting Offline Optimizers with Surrogate Sensitivity
Cuong Dao · Phi Le Nguyen · Thao Nguyen Truong · Nghia Hoang
Offline optimization is an important task in numerous material engineering domains where online experimentation to collect data is too expensive and needs to be replaced by an in silico maximization of a surrogate of the black-box function. Although such a surrogate can be learned from offline data, its prediction might not be reliable outside the offline data regime, which happens when the surrogate has narrow prediction margin and is (therefore) sensitive to small perturbations of its parameterization. This raises the following questions: (1) how to regulate the sensitivity of a surrogate model; and (2) whether conditioning an offline optimizer with such less sensitive surrogate will lead to better optimization performance. To address these questions, we develop an optimizable sensitivity measurement for the surrogate model, which then inspires a sensitivity-informed regularizer that is applicable to a wide range of offline optimizers. This development is both orthogonal and synergistic to prior research on offline optimization, which is demonstrated in our extensive experiment benchmark.
tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models (LLMs)
Junhua Zeng · Chao Li · Zhun Sun · Qibin Zhao · Guoxu Zhou
Tensor networks are efficient for extremely high-dimensional representation, but their model selection, known as tensor network structure search (TN-SS), is a challenging problem. Although several works have targeted TN-SS, most existing algorithms are manually crafted heuristics with poor performance, suffering from the curse of dimensionality and local convergence. In this work, we jump out of the box, studying how to harness large language models (LLMs) to automatically discover new TN-SS algorithms, replacing the involvement of human experts. By observing how human experts innovate in research, we model their common workflow and propose an automatic algorithm discovery framework called tnGPS. The proposed framework is an elaborate prompting pipeline that instruct LLMs to generate new TN-SS algorithms through iterative refinement and enhancement. The experimental results demonstrate that the algorithms discovered by tnGPS exhibit superior performance in benchmarks compared to the current state-of-the-art methods. Our code is available at https://github.com/ChaoLiAtRIKEN/tngps.
OAK: Enriching Document Representations using Auxiliary Knowledge for Extreme Classification
Shikhar Mohan · Deepak Saini · Anshul Mittal · Sayak Ray Chowdhury · Bhawna Paliwal · Jian Jiao · Manish Gupta · Manik Varma
The objective in eXtreme Classification (XC) is to find relevant labels for a document from an exceptionally large label space. Most XC application scenarios have rich auxiliary data associated with the input documents, e.g., frequently clicked webpages for search queries in sponsored search. Unfortunately, most of the existing XC methods do not use any auxiliary data. In this paper, we propose a novel framework, Online Auxiliary Knowledge (OAK), which harnesses auxiliary information linked to the document to improve XC accuracy. OAK stores information learnt from the auxiliary data in a knowledge bank and during a forward pass, retrieves relevant auxiliary knowledge embeddings for a given document. An enriched embedding is obtained by fusing these auxiliary knowledge embeddings with the document's embedding, thereby enabling much more precise candidate label selection and final classification. OAK training involves three stages. (1) Training a linker module to link documents to relevant auxiliary data points. (2) Learning an embedding for documents enriched using linked auxiliary information. (3) Using the enriched document embeddings to learn the final classifiers. OAK outperforms current state-of-the-art XC methods by up to $\sim 5 \%$ on academic datasets, and by $\sim 3 \%$ on an auxiliary data-augmented variant of LF-ORCAS-800K dataset in Precision@1. OAK also demonstrates statistically significant improvements in sponsored search metrics when deployed on a large scale search engine.
Online Isolation Forest
Filippo Leveni · Guilherme Weigert Cassales · Bernhard Pfahringer · Albert Bifet · Giacomo Boracchi
The anomaly detection literature is abundant with offline methods, which require repeated access to data in memory, and impose impractical assumptions when applied to a streaming context. Existing online anomaly detection methods also generally fail to address these constraints, resorting to periodic retraining to adapt to the online context. We propose Online-iForest, a novel method explicitly designed for streaming conditions that seamlessly tracks the data generating process as it evolves over time. Experimental validation on real-world datasets demonstrated that Online-iForest is on par with online alternatives and closely rivals state-of-the-art offline anomaly detection techniques that undergo periodic retraining. Notably, Online-iForest consistently outperforms all competitors in terms of efficiency, making it a promising solution in applications where fast identification of anomalies is of primary importance such as cybersecurity, fraud and fault detection.
Biharmonic Distance of Graphs and its Higher-Order Variants: Theoretical Properties with Applications to Centrality and Clustering
Mitchell Black · Lucy Lin · Weng-Keen Wong · Amir Nayyeri
Effective resistance is a distance between vertices of a graph that is both theoretically interesting and useful in applications. We study a variant of effective resistance called the biharmonic distance. While the effective resistance measures how well-connected two vertices are, we prove several theoretical results supporting the idea that the biharmonic distance measures how important an edge is to the global topology of the graph. Our theoretical results connect the biharmonic distance to well-known measures of connectivity of a graph like its total resistance and sparsity. Based on these results, we introduce two clustering algorithms using the biharmonic distance. Finally, we introduce a further generalization of the biharmonic distance that we call the $k$-harmonic distance. We empirically study the utility of biharmonic and $k$-harmonic distance for edge centrality and graph clustering.
Inferring the Long-Term Causal Effects of Long-Term Treatments from Short-Term Experiments
Allen Tran · Aurelien Bibaut · Nathan Kallus
We study inference on the long-term causal effect of a continual exposure to a novel intervention, which we term a long-term treatment, based on an experiment involving only short-term observations. Key examples include the long-term health effects of regularly-taken medicine or of environmental hazards and the long-term effects on users of changes to an online platform. This stands in contrast to short-term treatments or "shocks," whose long-term effect can reasonably be mediated by short-term observations, enabling the use of surrogate methods. Long-term treatments by definition have direct effects on long-term outcomes via continual exposure, so surrogacy conditions cannot reasonably hold. We connect the problem with offline reinforcement learning, leveraging doubly-robust estimators to estimate long-term causal effects for long-term treatments and construct confidence intervals.
Accelerating Legacy Numerical Solvers by Non-intrusive Gradient-based Meta-solving
Sohei Arisaka · Qianxiao Li
Scientific computing is an essential tool for scientific discovery and engineering design, and its computational cost is always a main concern in practice. To accelerate scientific computing, it is a promising approach to use machine learning (especially meta-learning) techniques for selecting hyperparameters of traditional numerical methods. There have been numerous proposals to this direction, but many of them require automatic-differentiable numerical methods. However, in reality, many practical applications still depend on well-established but non-automatic-differentiable legacy codes, which prevents practitioners from applying the state-of-the-art research to their own problems. To resolve this problem, we propose a non-intrusive methodology with a novel gradient estimation technique to combine machine learning and legacy numerical codes without any modification. We theoretically and numerically show the advantage of the proposed method over other baselines and present applications of accelerating established non-automatic-differentiable numerical solvers implemented in PETSc, a widely used open-source numerical software library.
A Generative Approach for Treatment Effect Estimation under Collider Bias: From an Out-of-Distribution Perspective
Baohong Li · Haoxuan Li · Anpeng Wu · Minqin Zhu · shiyuan Peng · Qingyu Cao · Kun Kuang
Resulting from non-random sample selection caused by both the treatment and outcome, collider bias poses a unique challenge to treatment effect estimation using observational data whose distribution differs from that of the target population. In this paper, we rethink collider bias from an out-of-distribution (OOD) perspective, considering that the entire data space of the target population consists of two different environments: The observational data selected from the target population belongs to a seen environment labeled with $S=1$ and the missing unselected data belongs to another unseen environment labeled with $S=0$. Based on this OOD formulation, we utilize small-scale representative data from the entire data space with no environmental labels and propose a novel method, i.e., Coupled Counterfactual Generative Adversarial Model (C$^2$GAM), to simultaneously generate the missing $S=0$ samples in observational data and the missing $S$ labels in the small-scale representative data. With the help of C$^2$GAM, collider bias can be addressed by combining the generated $S=0$ samples and the observational data to estimate treatment effects. Extensive experiments on synthetic and real-world data demonstrate that plugging C$^2$GAM into existing treatment effect estimators achieves significant performance improvements.
Modular Learning of Deep Causal Generative Models for High-dimensional Causal Inference
Md Musfiqur Rahman · Murat Kocaoglu
Sound and complete algorithms have been proposed to compute identifiable causal queries using the causal structure and data. However, most of these algorithms assume accurate estimation of the data distribution, which is impractical for high-dimensional variables such as images. On the other hand, modern deep generative architectures can be trained to sample from high-dimensional distributions. However, training these networks are typically very costly. Thus, it is desirable to leverage pre-trained models to answer causal queries using such high-dimensional data. To address this, we propose modular training of deep causal generative models that not only makes learning more efficient, but also allows us to utilize large, pre-trained conditional generative models. To the best of our knowledge, our algorithm, Modular-DCM is the first algorithm that, given the causal structure, uses adversarial training to learn the network weights, and can make use of pre-trained models to provably sample from any identifiable causal query in the presence of latent confounders. With extensive experiments on the Colored-MNIST dataset, we demonstrate that our algorithm outperforms the baselines. We also show our algorithm's convergence on the COVIDx dataset and its utility with a causal invariant prediction problem on CelebA-HQ.
Conditional Common Entropy for Instrumental Variable Testing and Partial Identification
Ziwei Jiang · Murat Kocaoglu
Instrumental variables (IVs) are widely used for estimating causal effects. There are two main challenges when using instrumental variables. First of all, using IV without additional assumptions such as linearity, the causal effect may still not be identifiable. Second, when selecting an IV, the validity of the selected IV is typically not testable since the causal graph is not identifiable from observational data. In this paper, we propose a method for bounding the causal effect with instrumental variables under weak confounding. In addition, we present a novel criterion to falsify the IV with side information about the confounder. We demonstrate the utility of the proposed method with simulated and real-world datasets.
Causal Discovery with Fewer Conditional Independence Tests
Kirankumar Shiragur · Jiaqi Zhang · Caroline Uhler
Many questions in science center around the fundamental problem of understanding causal relationships. However, most constraint-based causal discovery algorithms, including the well-celebrated PC algorithm, often incur an exponential number of conditional independence (CI) tests, posing limitations in various applications. Addressing this, our work focuses on characterizing what can be learned about the underlying causal graph with a reduced number of CI tests. We show that it is possible to a learn a coarser representation of the hidden causal graph with a polynomial number of tests. This coarser representation, named Causal Consistent Partition Graph (CCPG), comprises of a partition of the vertices and a directed graph defined over its components. CCPG satisfies consistency of orientations and additional constraints which favor finer partitions. Furthermore, it reduces to the underlying causal graph when the causal graph is identifiable. As a consequence, our results offer the first efficient algorithm for recovering the true causal graph with a polynomial number of tests, in special cases where the causal graph is fully identifiable through observational data and potentially additional interventions.
Hybrid$^2$ Neural ODE Causal Modeling and an Application to Glycemic Response
Junyi Zou · Matthew Levine · Dessi Zaharieva · Ramesh Johari · Emily Fox
Hybrid models composing mechanistic ODE-based dynamics with flexible and expressive neural network components have grown rapidly in popularity, especially in scientific domains where such ODE-based modeling offers important interpretability and validated causal grounding (e.g., for counterfactual reasoning). The incorporation of mechanistic models also provides inductive bias in standard blackbox modeling approaches, critical when learning from small datasets or partially observed, complex systems. Unfortunately, as the hybrid models become more flexible, the causal grounding provided by the mechanistic model can quickly be lost. We address this problem by leveraging another common source of domain knowledge: ranking of treatment effects for a set of interventions, even if the precise treatment effect is unknown. We encode this information in a causal loss that we combine with the standard predictive loss to arrive at a hybrid loss that biases our learning towards causally valid hybrid models. We demonstrate our ability to achieve a win-win, state-of-the-art predictive performance and causal validity, in the challenging task of modeling glucose dynamics post-exercise in individuals with type 1 diabetes.
Longitudinal Targeted Minimum Loss-based Estimation with Temporal-Difference Heterogeneous Transformer
Toru Shirakawa · Yi Li · Yulun Wu · Sky Qiu · Yuxuan Li · Mingduo Zhao · Hiroyasu Iso · Mark van der Laan
We propose Deep Longitudinal Targeted Minimum Loss-based Estimation (Deep LTMLE), a novel approach to estimate the counterfactual mean of outcome under dynamic treatment policies in longitudinal problem settings. Our approach utilizes a transformer architecture with heterogeneous type embedding trained using temporal-difference learning. After obtaining an initial estimate using the transformer, following the targeted minimum loss-based likelihood estimation (TMLE) framework, we statistically corrected for the bias commonly associated with machine learning algorithms. Furthermore, our method also facilitates statistical inference by enabling the provision of 95% confidence intervals grounded in asymptotic statistical theory. Simulation results demonstrate our method's superior performance over existing approaches, particularly in complex, long time-horizon scenarios. It remains effective in small-sample, short-duration contexts, matching the performance of asymptotically efficient estimators. To demonstrate our method in practice, we applied our method to estimate counterfactual mean outcomes for standard versus intensive blood pressure management strategies in a real-world cardiovascular epidemiology cohort study.
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras · Peng Wang · Laura Balzano · Qing Qu
While overparameterization in machine learning models offers great benefits in terms of optimization and generalization, it also leads to increased computational requirements as model sizes grow. In this work, we show that by leveraging the inherent low-dimensional structures of data and compressible dynamics within the model parameters, we can reap the benefits of overparameterization without the computational burdens. In practice, we demonstrate the effectiveness of this approach for deep low-rank matrix completion as well as fine-tuning language models. Our approach is grounded in theoretical findings for deep overparameterized low-rank matrix recovery, where we show that the learning dynamics of each weight matrix are confined to an invariant low-dimensional subspace. Consequently, we can construct and train compact, highly compressed factorizations possessing the same benefits as their overparameterized counterparts. In the context of deep matrix completion, our technique substantially improves training efficiency while retaining the advantages of overparameterization. For language model fine-tuning, we propose a method called "Deep LoRA", which improves the existing low-rank adaptation (LoRA) technique, leading to reduced overfitting and a simplified hyperparameter setup, while maintaining comparable efficiency. We validate the effectiveness of Deep LoRA on natural language tasks, particularly when fine-tuning with limited data.
Exploring Training on Heterogeneous Data with Mixture of Low-rank Adapters
Yuhang Zhou · Zhao Zihua · Siyuan Du · Haolin li · Jiangchao Yao · Ya Zhang · Yanfeng Wang
Training a unified model to take multiple targets into account is a trend towards artificial general intelligence. However, how to efficiently mitigate the training conflicts among heterogeneous data collected from different domains or tasks remains under-explored. In this study, we explore to leverage Mixture of Low-rank Adapters (MoLA) to mitigate conflicts in heterogeneous data training, which requires to jointly train the multiple low-rank adapters and their shared backbone. Specifically, we introduce two variants of MoLA, namely, MoLA-Grad and MoLA-Router, to respectively handle the target-aware and target-agnostic scenarios during inference. The former uses task identifiers to assign personalized low-rank adapters to each task, disentangling task-specific knowledge towards their adapters, thereby mitigating heterogeneity conflicts. The latter uses a novel Task-wise Decorrelation (TwD) loss to intervene the router to learn oriented weight combinations of adapters to homogeneous tasks, achieving similar effects. We conduct comprehensive experiments to verify the superiority of MoLA over previous state-of-the-art methods and present in-depth analysis on its working mechanism. Source code is available at: https://github.com/MediaBrain-SJTU/MoLA
RoboMP$^2$: A Robotic Multimodal Perception-Planning Framework with Multimodal Large Language Models
Qi Lv · Hao Li · Xiang Deng · Rui Shao · Michael Wang · Liqiang Nie
Multimodal Large Language Models (MLLMs) have shown impressive reasoning abilities and general intelligence in various domains. It inspires researchers to train end-to-end MLLMs or utilize large models to generate policies with human-selected prompts for embodied agents. However, these methods exhibit limited generalization capabilities on unseen tasks or scenarios, and overlook the multimodal environment information which is critical for robots to make decisions. In this paper, we introduce a novel **Robo**tic **M**ultimodal **P**erception-**P**lanning (**RoboMP$^2$**) framework for robotic manipulation which consists of a Goal-Conditioned Multimodal Preceptor (GCMP) and a Retrieval-Augmented Multimodal Planner (RAMP). Specially, GCMP captures environment states by employing a tailored MLLMs for embodied agents with the abilities of semantic reasoning and localization. RAMP utilizes coarse-to-fine retrieval method to find the $k$ most-relevant policies as in-context demonstrations to enhance the planner. Extensive experiments demonstrate the superiority of RoboMP$^2$ on both VIMA benchmark and real-world tasks, with around 10% improvement over the baselines.
SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation
Junjie Zhang · Chenjia Bai · Haoran He · Zhigang Wang · Bin Zhao · Xiu Li · Xuelong Li
Acquiring a multi-task imitation policy in 3D manipulation poses challenges in terms of scene understanding and action prediction. Current methods employ both 3D representation and multi-view 2D representation to predict the poses of the robot’s end-effector. However, they still require a considerable amount of high-quality robot trajectories, and suffer from limited generalization in unseen tasks and inefficient execution in long-horizon reasoning. In this paper, we propose SAM-E, a novel architecture for robot manipulation by leveraging a vision-foundation model for generalizable scene understanding and sequence imitation for long-term action reasoning. Specifically, we adopt Segment Anything (SAM) pre-trained on a huge number of images and promptable masks as the foundation model for extracting task-relevant features, and employ parameter-efficient fine-tuning on robot data for a better understanding of embodied scenarios. To address long-horizon reasoning, we develop a novel multi-channel heatmap that enables the prediction of the action sequence in a single pass, notably enhancing execution efficiency. Experimental results from various instruction-following tasks demonstrate that SAM-E achieves superior performance with higher execution efficiency compared to the baselines, and also significantly improves generalization in few-shot adaptation to new tasks.
MS-TIP: Imputation Aware Pedestrian Trajectory Prediction
Pranav Singh Chib · Achintya Nath · Paritosh Kabra · Ishu Gupta · Pravendra Singh
Pedestrian trajectory prediction aims to predict future trajectories based on observed trajectories. Current state-of-the-art methods often assume that the observed sequences of agents are complete, which is a strong assumption that overlooks inherent uncertainties. Understanding pedestrian behavior when dealing with missing values in the observed sequence is crucial for enhancing the performance of predictive models. In this work, we propose the MultiScale hypergraph for Trajectory Imputation and Prediction (MS-TIP), a novel approach that simultaneously addresses the imputation of missing observations and the prediction of future trajectories. Specifically, we leverage transformers with diagonal masked self-attention to impute incomplete observations. Further, our approach promotes complex interaction modeling through multi-scale hypergraphs, optimizing our trajectory prediction module to capture different types of interactions. With the inclusion of scenic attention, we learn contextual scene information, instead of sole reliance on coordinates. Additionally, our approach utilizes an intermediate control point and refinement module to infer future trajectories accurately. Extensive experiments validate the efficacy of MS-TIP in precisely predicting pedestrian future trajectories. Code is publicly available at https://github.com/Pranav-chib/MS-TIP.
Log Neural Controlled Differential Equations: The Lie Brackets Make A Difference
Benjamin Walker · Andrew McLeod · Tiexin QIN · Yichuan Cheng · Haoliang Li · Terry Lyons
The vector field of a controlled differential equation (CDE) describes the relationship between a *control* path and the evolution of a *solution* path. Neural CDEs (NCDEs) treat time series data as observations from a control path, parameterise a CDE's vector field using a neural network, and use the solution path as a continuously evolving hidden state. As their formulation makes them robust to irregular sampling rates, NCDEs are a powerful approach for modelling real-world data. Building on neural rough differential equations (NRDEs), we introduce Log-NCDEs, a novel, effective, and efficient method for training NCDEs. The core component of Log-NCDEs is the Log-ODE method, a tool from the study of rough paths for approximating a CDE's solution. Log-NCDEs are shown to outperform NCDEs, NRDEs, the linear recurrent unit, S5, and MAMBA on a range of multivariate time series datasets with up to $50{,}000$ observations.
Probabilistic Time Series Modeling with Decomposable Denoising Diffusion Model
Tijin Yan · Hengheng Gong · Yongping He · Yufeng Zhan · Yuanqing Xia
Probabilistic time series modeling based on generative models has attracted lots of attention because of its wide applications and excellent performance. However, existing state-of-the-art models, based on stochastic differential equation, not only struggle to determine the drift and diffusion coefficients during the design process but also have slow generation speed. To tackle this challenge, we firstly propose decomposable denoising diffusion model ($\text{D}^3\text{M}$) and prove it is a general framework unifying denoising diffusion models and continuous flow models. Based on the new framework, we propose some simple but efficient probability paths with high generation speed. Furthermore, we design a module that combines a special state space model with linear gated attention modules for sequence modeling. It preserves inductive bias and simultaneously models both local and global dependencies. Experimental results on 8 real-world datasets show that $\text{D}^3\text{M}$ reduces RMSE and CRPS by up to 4.6% and 4.3% compared with state-of-the-arts on imputation tasks, and achieves comparable results with state-of-the-arts on forecasting tasks with only 10 steps.
TSLANet: Rethinking Transformers for Time Series Representation Learning
Emadeldeen Eldele · Mohamed Ragab · Zhenghua Chen · Min Wu · Xiaoli Li
Time series data, characterized by its intrinsic long and short-range dependencies, poses a unique challenge across analytical applications. While Transformer-based models excel at capturing long-range dependencies, they face limitations in noise sensitivity, computational efficiency, and overfitting with smaller datasets. In response, we introduce a novel Time Series Lightweight Adaptive Network (TSLANet), as a universal convolutional model for diverse time series tasks. Specifically, we propose an Adaptive Spectral Block, harnessing Fourier analysis to enhance feature representation and to capture both long-term and short-term interactions while mitigating noise via adaptive thresholding. Additionally, we introduce an Interactive Convolution Block and leverage self-supervised learning to refine the capacity of TSLANet for decoding complex temporal patterns and improve its robustness on different datasets. Our comprehensive experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection, showcasing its resilience and adaptability across a spectrum of noise levels and data sizes. The code is available at https://github.com/emadeldeen24/TSLANet.
Realistic Unsupervised CLIP Fine-tuning with Universal Entropy Optimization
Jian Liang · Sheng · Zhengbo Wang · Ran He · Tieniu Tan
The emergence of vision-language models, such as CLIP, has spurred a significant research effort towards their application for downstream supervised learning tasks. Although some previous studies have explored the unsupervised fine-tuning of CLIP, they often rely on prior knowledge in the form of class names associated with ground truth labels. This paper explores a realistic unsupervised fine-tuning scenario, considering the presence of out-of-distribution samples from unknown classes within the unlabeled data. In particular, we focus on simultaneously enhancing out-of-distribution detection and the recognition of instances associated with known classes. To tackle this problem, we present a simple, efficient, and effective approach called Universal Entropy Optimization (UEO). UEO leverages sample-level confidence to approximately minimize the conditional entropy of confident instances and maximize the marginal entropy of less confident instances. Apart from optimizing the textual prompt, UEO incorporates optimization of channel-wise affine transformations within the visual branch of CLIP. Extensive experiments across 15 domains and 4 different types of prior knowledge validate the effectiveness of UEO compared to baseline methods. The code is at https://github.com/tim-learn/UEO.
Efficient Online Set-valued Classification with Bandit Feedback
Zhou Wang · Xingye Qiao
Conformal prediction is a distribution-free method that wraps a given machine learning model and returns a set of plausible labels that contain the true label with a prescribed coverage rate. In practice, the empirical coverage achieved highly relies on fully observed label information from data both in the training phase for model fitting and the calibration phase for quantile estimation. This dependency poses a challenge in the context of online learning with bandit feedback, where a learner only has access to the correctness of actions (i.e., pulled an arm) but not the full information of the true label. In particular, when the pulled arm is incorrect, the learner only knows that the pulled one is not the true class label, but does not know which label is true. Additionally, bandit feedback further results in a smaller labeled dataset for calibration, limited to instances with correct actions, thereby affecting the accuracy of quantile estimation. To address these limitations, we propose Bandit Class-specific Conformal Prediction (BCCP), offering coverage guarantees on a class-specific granularity. Using an unbiased estimation of an estimand involving the true label, BCCP trains the model and makes set-valued inferences through stochastic gradient descent. Our approach overcomes the challenges of sparsely labeled data in each iteration and generalizes the reliability and applicability of conformal prediction to online decision-making environments.
Quality-Weighted Vendi Scores And Their Application To Diverse Experimental Design
Quan Nguyen · Adji Bousso Dieng
Experimental design techniques such as active search and Bayesian optimization are widely used in the natural sciences for data collection and discovery. However, existing techniques tend to favor exploitation over exploration of the search space, which causes them to get stuck in local optima. This collapse problem prevents experimental design algorithms from yielding diverse high-quality data. In this paper, we extend the Vendi scores—a family of interpretable similarity-based diversity metrics—to account for quality. We then leverage these quality-weighted Vendi scores to tackle experimental design problems across various applications, including drug discovery, materials discovery, and reinforcement learning. We found that quality-weighted Vendi scores allow us to construct policies for experimental design that flexibly balance quality and diversity, and ultimately assemble rich and diverse sets of high-performing data points. Our algorithms led to a 70%–170% increase in the number of effective discoveries compared to baselines.
In this paper, we investigate a Multi-Armed Bandit (MAB) setting where an arm exits the game if the algorithm continuously neglects it. This setup is motivated by real-world scenarios, such as online advertising and crowdsourcing, where arms only gain benefits after being pulled by the algorithm. We identify the intrinsic hardness of this problem and limitations in existing approaches. We propose FC-SE algorithm with expected regret upper bounds as our solution to this problem. As an extension, we even allow new arms to enter after the game starts and design FC-Entry algorithm with performance guarantees for this setup. Finally, we conduct experiments to validate our theoretical results.
A General Online Algorithm for Optimizing Complex Performance Metrics
Wojciech Kotlowski · Marek Wydmuch · Erik Schultheis · Rohit Babbar · Krzysztof Dembczynski
We consider sequential maximization of performance metrics that are general functions of a confusion matrix of a classifier (such as precision, F-measure, or G-mean). Such metrics are, in general, non-decomposable over individual instances, making their optimization very challenging. While they have been extensively studied under different frameworks in the batch setting, their analysis in the online learning regime is very limited, with only a few distinguished exceptions. In this paper, we introduce and analyze a general online algorithm that can be used in a straightforward way with a variety of complex performance metrics in binary, multi-class, and multi-label classification problems. The algorithm's update and prediction rules are appealingly simple and computationally efficient without the need to store any past data. We show the algorithm attains $\mathcal{O}(\frac{\ln n}{n})$ regret for concave and smooth metrics and verify the efficiency of the proposed algorithm in empirical studies.
Reducing sequential change detection to sequential estimation
Shubhanshu Shekhar · Aaditya Ramdas
We consider the problem of sequential change detection under minimal assumptions on the distribution generating the stream of observations. Formally, our goal is to design a scheme for detecting any changes in a parameter or functional $\theta$ of the data stream distribution that has small detection delay, but guarantees control on the frequency of false alarms in the absence of changes. We describe a simple reduction from sequential change detection to sequential estimation using confidence sequences (CSs): begin a new level-$(1-\alpha)$ CS at each time step, and proclaim a change as soon as the intersection of all active CSs becomes empty. We prove that the average run length of our scheme is at least $1/\alpha$, resulting in a change detection scheme with minimal structural assumptions (thus allowing for possibly dependent observations, and nonparametric distribution classes), but strong guarantees. We also describe an interesting parallel with Lorden's reduction from change detection to sequential testing and connections to the recent ''e-detector'' framework.
Network Tight Community Detection
Jiayi Deng · Xiaodong Yang · Jun Yu · Jun Liu · Zhaiming Shen · Danyang Huang · Huimin Cheng
Conventional community detection methods often categorize all nodes into clusters. However, the presumed community structure of interest may only be valid for a subset of nodes (named as `tight nodes'), while the rest of the network may consist of noninformative ``scattered nodes''. For example, a protein-protein network often contains proteins that do not belong to specific biological functional modules but are involved in more general processes, or act as bridges between different functional modules. Forcing each of these proteins into a single cluster introduces unwanted biases and obscures the underlying biological implication. To address this issue, we propose a tight community detection (TCD) method to identify tight communities excluding scattered nodes. The algorithm enjoys a strong theoretical guarantee of tight node identification accuracy and is scalable for large networks. The superiority of the proposed method is demonstrated by various synthetic and real experiments.
Learning Universal Predictors
Jordi Grau-Moya · Tim Genewein · Marcus Hutter · Laurent Orseau · Gregoire Deletang · Elliot Catt · Anian Ruoss · Li Kevin Wenliang · Christopher Mattern · Matthew Aitchison · Joel Veness
Meta-learning has emerged as a powerful approach to train neural networks to learn new tasks quickly from limited data by pre-training them on a broad set of tasks. But, what are the limits of meta-learning? In this work, we explore the potential of amortizing the most powerful universal predictor, namely Solomonoff Induction (SI), into neural networks via leveraging (memory-based) meta-learning to its limits. We use Universal Turing Machines (UTMs) to generate training data used to expose networks to a broad range of patterns. We provide theoretical analysis of the UTM data generation processes and meta-training protocols. We conduct comprehensive experiments with neural architectures (e.g. LSTMs, Transformers) and algorithmic data generators of varying complexity and universality. Our results suggest that UTM data is a valuable resource for meta-learning, and that it can be used to train neural networks capable of learning universal prediction strategies.
StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization
Songhua Liu · Xin Jin · Xingyi Yang · Jingwen Ye · Xinchao Wang
Single domain generalization (single DG) aims at learning a robust model generalizable to unseen domains from only one training domain, making it a highly ambitious and challenging task. State-of-the-art approaches have mostly relied on data augmentations, such as adversarial perturbation and style enhancement, to synthesize new data and thus increase robustness. Nevertheless, they have largely overlooked the underlying coherence between the augmented domains, which in turn leads to inferior results in real-world scenarios. In this paper, we propose a simple yet effective scheme, termed as StyDeSty, to explicitly account for the alignment of the source and pseudo domains in the process of data augmentation, enabling them to interact with each other in a self-consistent manner and further giving rise to a latent domain with strong generalization power. The heart of StyDeSty lies in the interaction between a stylization module for generating novel stylized samples using the source domain, and a destylization module for transferring stylized and source samples to a latent domain to learn content-invariant features. The stylization and destylization modules work adversarially and reinforce each other. During inference, the destylization module transforms the input sample with an arbitrary style shift to the latent domain, in which the downstream tasks are carried out. Specifically, the location of the destylization layer within the backbone network is determined by a dedicated neural architecture search (NAS) strategy. We evaluate StyDeSty on multiple benchmarks and demonstrate that it yields encouraging results, outperforming the state of the art by up to 13.44% on classification accuracy. Codes are available https://github.com/Huage001/StyDeSty.
Adaptive Group Personalization for Federated Mutual Transfer Learning
Haoqing Xu · Dian Shen · Meng Wang · Beilun Wang
Mutual transfer learning aims to improve prediction with knowledge from related domains. Recently, federated learning is applied in this field to address the communication and privacy concerns. However, previous clustered federated learning (CFL) solutions lack theoretical guarantee of learnability recovery and require time-consuming hyper-parameter tuning, while centralized mutual transfer learning methods lack adaptability to concept drifts. In this paper, we propose the Adaptive Group Personalization method (AdaGrP) to overcome these challenges. We adaptively decide the recovery threshold with a nonparametric method, adaptive threshold correction, for tuning-free solution with relaxed condition. Theoretical results guarantee the perfect learnability recovery with the corrected threshold. Empirical results show AdaGrP achieves 16.9% average improvement in learnability structure recovery compared with state-of-the-art CFL baselines.
Neuro-symbolic learning (NSL) models complex symbolic rule patterns into latent variable distributions by neural networks, which reduces rule search space and generates unseen rules to improve downstream task performance. Centralized NSL learning involves directly acquiring data from downstream tasks, which is not feasible for federated learning (FL). To address this limitation, we shift the focus from such a one-to-one interactive neuro-symbolic paradigm to one-to-many Federated Neuro-Symbolic Learning framework (FedNSL) with latent variables as the FL communication medium. Built on the basis of our novel reformulation of the NSL theory, FedNSL is capable of identifying and addressing rule distribution heterogeneity through a simple and effective Kullback-Leibler (KL) divergence constraint on rule distribution applicable under the FL setting. It further theoretically adjusts variational expectation maximization (V-EM) to reduce the rule search space across domains. This is the first incorporation of distribution-coupled bilevel optimization into FL. Extensive experiments based on both synthetic and real-world data demonstrate significant advantages of FedNSL compared to five state-of-the-art methods. It outperforms the best baseline by 17% and 29% in terms of unbalanced average training accuracy and unseen average testing accuracy, respectively.
Federated Continual Learning via Prompt-based Dual Knowledge Transfer
Hongming Piao · Yichen WU · Dapeng Wu · Ying WEI
In Federated Continual Learning (FCL), the challenge lies in effectively facilitating knowledge transfer and enhancing the performance across various tasks on different clients. Current FCL methods predominantly focus on avoiding interference between tasks, thereby overlooking the potential for positive knowledge transfer across tasks learned by different clients at separate time intervals. To address this issue, we introduce a Prompt-based knowledge transfer FCL algorithm, called Powder, designed to effectively foster the transfer of knowledge encapsulated in prompts between various sequentially learned tasks and clients. Furthermore, we have devised a unique approach for prompt generation and aggregation, intending to alleviate privacy protection concerns and communication overhead, while still promoting knowledge transfer. Comprehensive experimental results demonstrate the superiority of our method in terms of reduction in communication costs, and enhancement of knowledge transfer. Code is available at https://github.com/piaohongming/Powder.
Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts
Shengzhuang Chen · Jihoon Tack · Yunqiao Yang · Yee-Whye Teh · Jonathan Richard Schwarz · Ying WEI
Recent successes suggest that parameter-efficient fine-tuning of foundation models is becoming the state-of-the-art method for transfer learning in vision, gradually replacing the rich literature of alternatives such as meta-learning. In trying to harness the best of both worlds, meta-tuning introduces a subsequent optimization stage of foundation models but has so far only shown limited success and crucially tends to underperform on out-of-distribution (OOD) tasks. In this paper, we introduce Sparse MetA-Tuning (SMAT), a method inspired by sparse mixture-of-experts approaches and trained to isolate subsets of pre-trained parameters automatically for meta-tuning on each task. SMAT successfully overcomes OOD sensitivity and delivers on the promise of enhancing the transfer abilities of vision foundation models beyond parameter-efficient finetuning. We establish new state-of-the-art results on a challenging combination of Meta-Dataset augmented with additional OOD tasks in both zero-shot and gradient-based adaptation settings. In addition, we provide a thorough analysis of the superiority of learned over hand-designed sparsity patterns for sparse expert methods and the pivotal importance of the sparsity level in balancing between in-distribution and out-of-distribution generalization. Our code and models are publicly available.
Tabular Insights, Visual Impacts: Transferring Expertise from Tables to Images
Jun-Peng Jiang · Han-Jia Ye · Leye Wang · Yang Yang · Yuan Jiang · De-Chuan Zhan
Transferring knowledge across diverse data modalities is receiving increasing attention in machine learning. This paper tackles the task of leveraging expert-derived, yet expensive, tabular data to enhance image-based predictions when tabular data is unavailable during inference. The primary challenges stem from the inherent complexity of accurately mapping diverse tabular data to visual contexts, coupled with the necessity to devise distinct strategies for numerical and categorical tabular attributes. We propose CHannel tAbulaR alignment with optiMal tranSport (Charms), which establishes an alignment between image channels and tabular attributes, enabling selective knowledge transfer that is pertinent to visual features. Specifically, Charms measures similarity distributions across modalities to effectively differentiate and transfer relevant tabular features, with a focus on morphological characteristics, enhancing the capabilities of visual classifiers. By maximizing the mutual information between image channels and tabular features, knowledge from both numerical and categorical tabular attributes are extracted. Experimental results demonstrate that Charms not only enhances the performance of image classifiers but also improves their interpretability by effectively utilizing tabular knowledge.
Position: Measure Dataset Diversity, Don't Just Claim It
Dora Zhao · Jerone Andrews · Orestis Papakyriakopoulos · Alice Xiang
Machine learning (ML) datasets, often perceived as neutral, inherently encapsulate abstract and disputed social constructs. Dataset curators frequently employ value-laden terms such as diversity, bias, and quality to characterize datasets. Despite their prevalence, these terms lack clear definitions and validation. Our research explores the implications of this issue by analyzing "diversity" across 135 image and text datasets. Drawing from social sciences, we apply principles from measurement theory to identify considerations and offer recommendations for conceptualizing, operationalizing, and evaluating diversity in datasets. Our findings have broader implications for ML research, advocating for a more nuanced and precise approach to handling value-laden properties in dataset construction.
Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes
Nabeel Seedat · Nicolas Huynh · Boris van Breugel · M van der Schaar
Machine Learning (ML) in low-data settings remains an underappreciated yet crucial problem. Hence, data augmentation methods to increase the sample size of datasets needed for ML are key to unlocking the transformative potential of ML in data-deprived regions and domains. Unfortunately, the limited training set constrains traditional tabular synthetic data generators in their ability to generate a large and diverse augmented dataset needed for ML tasks. To address this challenge, we introduce $\texttt{CLLM}$, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime. However, not all the data generated by LLMs will improve downstream utility, as for any generative model. Consequently, we introduce a principled curation mechanism, leveraging learning dynamics, coupled with confidence and uncertainty metrics, to obtain a high-quality dataset. Empirically, on multiple real-world datasets, we demonstrate the superior performance of $\texttt{CLLM}$ in the low-data regime compared to conventional generators. Additionally, we provide insights into the LLM generation and curation mechanism, shedding light on the features that enable them to output high-quality augmented datasets.
Algorithmic predictions are increasingly used to inform the allocations of goods and interventions in the public sphere. In these domains, predictions serve as a means to an end. They provide stakeholders with insights into likelihood of future events as a means to improve decision making quality, and enhance social welfare. However, if maximizing welfare is the ultimate goal, prediction is only a small piece of the puzzle. There are various other policy levers a social planner might pursue in order to improve bottom-line outcomes, such as expanding access to available goods, or increasing the effect sizes of interventions. Given this broad range of design decisions, a basic question to ask is: What is the relative value of prediction in algorithmic decision making? How do the improvements in welfare arising from better predictions compare to those of other policy levers? The goal of our work is to initiate the formal study of these questions. Our main results are theoretical in nature. We identify simple, sharp conditions determining the relative value of prediction vis-à-vis expanding access, within several statistical models that are popular amongst quantitative social scientists. Furthermore, we illustrate how these theoretical insights can guide the design of algorithmic decision making systems in practice.
Building Socially-Equitable Public Models
Yejia Liu · Jianyi Yang · Pengfei Li · Tongxin Li · Shaolei Ren
Public models offer predictions to a variety of downstream tasks and have played a crucial role in various AI applications, showcasing their proficiency in accurate predictions. However, the exclusive emphasis on prediction accuracy may not align with the diverse end objectives of downstream agents. Recognizing the public model's predictions as a service, we advocate for integrating the objectives of downstream agents into the optimization process. Concretely, to address performance disparities and foster fairness among heterogeneous agents in training, we propose a novel Equitable Objective. This objective, coupled with a policy gradient algorithm, is crafted to train the public model to produce a more equitable/uniform performance distribution across downstream agents, each with their unique concerns. Both theoretical analysis and empirical case studies have proven the effectiveness of our method in advancing performance equity across diverse downstream agents utilizing the public model for their decision-making. Codes and datasets are released at https://github.com/Ren-Research/Socially-Equitable-Public-Models.
What Would Gauss Say About Representations? Probing Pretrained Image Models using Synthetic Gaussian Benchmarks
Ching-Yun (Irene) Ko · Pin-Yu Chen · Payel Das · Jeet Mohapatra · Luca Daniel
Recent years have witnessed a paradigm shift in deep learning from task-centric model design to task-agnostic representation learning and task-specific fine-tuning. Pretrained model representations are commonly evaluated extensively across various real-world tasks and used as a foundation for different downstream tasks. This paper proposes a solution for assessing the quality of representations in a task-agnostic way. To circumvent the need for real-world data in evaluation, we explore the use of synthetic binary classification tasks with Gaussian mixtures to probe pretrained models and compare the robustness-accuracy performance on pretrained representations with an idealized reference. Our approach offers a holistic evaluation, revealing intrinsic model capabilities and reducing the dependency on real-life data for model evaluation. Evaluated with various pretrained image models, the experimental results confirm that our task-agnostic evaluation correlates with actual linear probing performance on downstream tasks and can also guide parameter choice in robust linear probing to achieve a better robustness-accuracy trade-off.
Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes
Yifan Chen · Mark Goldstein · Mengjian Hua · Michael Albergo · Nicholas Boffi · Eric Vanden-Eijnden
We propose a framework for probabilistic forecasting of dynamical systems based on generative modeling. Given observations of the system state over time, we formulate the forecasting problem as sampling from the conditional distribution of the future system state given its current state. To this end, we leverage the framework of stochastic interpolants, which facilitates the construction of a generative model between an arbitrary base distribution and the target. We design a fictitious, non-physical stochastic dynamics that takes as initial condition the current system state and produces as output a sample from the target conditional distribution in finite time and without bias. This process therefore maps a point mass centered at the current state onto a probabilistic ensemble of forecasts. We prove that the drift coefficient entering the stochastic differential equation (SDE) achieving this task is non-singular, and that it can be learned efficiently by square loss regression over the time-series data. We show that the drift and the diffusion coefficients of this SDE can be adjusted after training, and that a specific choice that minimizes the impact of the estimation error gives a Föllmer process. We highlight the utility of our approach on several complex, high-dimensional forecasting problems, including stochastically forced Navier-Stokes and video prediction on the KTH and CLEVRER datasets. The code is available at https://github.com/interpolants/forecasting.
Predictive Performance Comparison of Decision Policies Under Confounding
Luke Guerdan · Amanda Coston · Ken Holstein · Steven Wu
Predictive models are often introduced to decision-making tasks under the rationale that they improve performance over an existing decision-making policy. However, it is challenging to compare predictive performance against an existing decision-making policy that is generally under-specified and dependent on unobservable factors. These sources of uncertainty are often addressed in practice by making strong assumptions about the data-generating mechanism. In this work, we propose a method to compare the predictive performance of decision policies under a variety of modern identification approaches from the causal inference and off-policy evaluation literatures (e.g., instrumental variable, marginal sensitivity model, proximal variable). Key to our method is the insight that there are regions of uncertainty that we can safely ignore in the policy comparison. We develop a practical approach for finite-sample estimation of regret intervals under no assumptions on the parametric form of the status quo policy. We verify our framework theoretically and via synthetic data experiments. We conclude with a real-world application using our framework to support a pre-deployment evaluation of a proposed modification to a healthcare enrollment policy.
FairProof : Confidential and Certifiable Fairness for Neural Networks
Chhavi Yadav · Amrita Roy Chowdhury · Dan Boneh · Kamalika Chaudhuri
Machine learning models are increasingly used in societal applications, yet legal and privacy concerns demand that they very often be kept confidential. Consequently, there is a growing distrust about the fairness properties of these models in the minds of consumers, who are often at the receiving end of model predictions. To this end, we propose Fairproof -- a system that uses Zero-Knowledge Proofs (a cryptographic primitive) to publicly verify the fairness of a model, while maintaining confidentiality. We also propose a fairness certification algorithm for fully-connected neural networks which is befitting to ZKPs and is used in this system. We implement Fairproof in Gnark and demonstrate empirically that our system is practically feasible. Code is available at https://github.com/infinite-pursuits/FairProof.
Towards Global Optimality for Practical Average Reward Reinforcement Learning without Mixing Time Oracles
Bhrij Patel · Wesley A. Suttle · Alec Koppel · Vaneet Aggarwal · Brian Sadler · Dinesh Manocha · Amrit Singh Bedi
In the context of average-reward reinforcement learning, the requirement for oracle knowledge of the mixing time, a measure of the duration a Markov chain under a fixed policy needs to achieve its stationary distribution, poses a significant challenge for the global convergence of policy gradient methods. This requirement is particularly problematic due to the difficulty and expense of estimating mixing time in environments with large state spaces, leading to the necessity of impractically long trajectories for effective gradient estimation in practical applications. To address this limitation, we consider the Multi-level Actor-Critic (MAC) framework, which incorporates a Multi-level Monte-Carlo (MLMC) gradient estimator. With our approach, we effectively alleviate the dependency on mixing time knowledge, a first for average-reward MDPs global convergence. Furthermore, our approach exhibits the tightest available dependence of $\mathcal{O}(\sqrt{\tau_{mix}})$ known from prior work. With a 2D grid world goal-reaching navigation experiment, we demonstrate that MAC outperforms the existing state-of-the-art policy gradient-based method for average reward settings.
Purifying Quantization-conditioned Backdoors via Layer-wise Activation Correction with Distribution Approximation
Boheng Li · Yishuo Cai · Jisong Cai · Yiming Li · Han Qiu · Run Wang · Tianwei Zhang
Model quantization is a compression technique that converts a full-precision model to a more compact low-precision version for better storage. Despite the great success of quantization, recent studies revealed the feasibility of malicious exploiting model quantization via implanting quantization-conditioned backdoors (QCBs). These special backdoors remain dormant in full-precision models but are exposed upon quantization. Unfortunately, existing defenses have limited effects on mitigating QCBs. In this paper, we conduct an in-depth analysis of QCBs. We reveal an intriguing characteristic of QCBs, where activation of backdoor-related neurons on even benign samples enjoy a distribution drift after quantization, although this drift is more significant on poisoned samples. Motivated by this finding, we propose to purify the backdoor-exposed quantized model by aligning its layer-wise activation with its full-precision version. To further exploit the more pronounced activation drifts on poisoned samples, we design an additional module to layer-wisely approximate poisoned activation distribution based on batch normalization statistics of the full-precision model. Extensive experiments are conducted, verifying the effectiveness of our defense. Our code is publicly available.
Disparate Impact on Group Accuracy of Linearization for Private Inference
Saswat Das · Marco Romanelli · Ferdinando Fioretto
Ensuring privacy-preserving inference on cryptographically secure data is a well-known computational challenge. To alleviate the bottleneck of costly cryptographic computations in non-linear activations, recent methods have suggested linearizing a targeted portion of these activations in neural networks. This technique results in significantly reduced runtimes with often negligible impacts on accuracy. In this paper, we demonstrate that such computational benefits may lead to increased fairness costs. Specifically, we find that reducing the number of ReLU activations disproportionately decreases the accuracy for minority groups compared to majority groups. To explain these observations, we provide a mathematical interpretation under restricted assumptions about the nature of the decision boundary, while also showing the prevalence of this problem across widely used datasets and architectures. Finally, we show how a simple procedure altering the finetuning step for linearized models can serve as an effective mitigation strategy.
Balancing Similarity and Complementarity for Federated Learning
Kunda Yan · Sen Cui · Abudukelimu Wuerkaixi · Jingfeng ZHANG · Bo Han · Gang Niu · Masashi Sugiyama · Changshui Zhang
In mobile and IoT systems, Federated Learning (FL) is increasingly important for effectively using data while maintaining user privacy. One key challenge in FL is managing statistical heterogeneity, such as non-i.i.d. data, arising from numerous clients and diverse data sources. This requires strategic cooperation, often with clients having similar characteristics. However, we are interested in a fundamental question: does achieving optimal cooperation necessarily entail cooperating with the most similar clients? Typically, significant model performance improvements are often realized not by partnering with the most similar models, but through leveraging complementary data. Our theoretical and empirical analyses suggest that optimal cooperation is achieved by enhancing complementarity in feature distribution while restricting the disparity in the correlation between features and targets. Accordingly, we introduce a novel framework, FedSaC, which balances similarity and complementarity in FL cooperation. Our framework aims to approximate an optimal cooperation network for each client by optimizing a weighted sum of model similarity and feature complementarity. The strength of FedSaC lies in its adaptability to various levels of data heterogeneity and multimodal scenarios. Our comprehensive unimodal and multimodal experiments demonstrate that FedSaC markedly surpasses other state-of-the-art FL methods.
Differentially Private Decentralized Learning with Random Walks
Edwige Cyffers · Aurélien Bellet · Jalaj Upadhyay
The popularity of federated learning comes from the possibility of better scalability and the ability for participants to keep control of their data, improving data security and sovereignty. Unfortunately, sharing model updates also creates a new privacy attack surface. In this work, we characterize the privacy guarantees of decentralized learning with random walk algorithms, where a model is updated by traveling from one node to another along the edges of a communication graph. Using a recent variant of differential privacy tailored to the study of decentralized algorithms, namely Pairwise Network Differential Privacy, we derive closed-form expressions for the privacy loss between each pair of nodes where the impact of the communication topology is captured by graph theoretic quantities. Our results further reveal that random walk algorithms tends to yield better privacy guarantees than gossip algorithms for nodes close from each other. We supplement our theoretical results with empirical evaluation on synthetic and real-world graphs and datasets.
Private selection mechanisms (e.g., Report Noisy Max, Sparse Vector) are fundamental primitives of differentially private (DP) data analysis with wide applications to private query release, voting, and hyperparameter tuning. Recent work (Liu and Talwar, 2019; Papernot and Steinke, 2022) has made significant progress in both generalizing private selection mechanisms and tightening their privacy analysis using modern numerical privacy accounting tools, e.g., Rényi DP. But Rényi DP is known to be lossy when $(\epsilon,\delta)$-DP is ultimately needed, and there is a trend to close the gap by directly handling privacy profiles, i.e., $\delta$ as a function of $\epsilon$ or its equivalent dual form known as $f$-DPs. In this paper, we work out an easy-to-use recipe that bounds the privacy profiles of ReportNoisyMax and PrivateTuning using the privacy profiles of the base algorithms they corral. Numerically, our approach improves over the RDP-based accounting in all regimes of interest and leads to substantial benefits in end-to-end private learning experiments. Our analysis also suggests new distributions, e.g., binomial distribution for randomizing the number of rounds that leads to more substantial improvements in certain regimes.
Ditto: Quantization-aware Secure Inference of Transformers upon MPC
Haoqi Wu · Wenjing Fang · Yancheng Zheng · Junming Ma · Jin Tan · Lei Wang
Due to the rising privacy concerns on sensitive client data and trained models like Transformers, secure multi-party computation (MPC) techniques are employed to enable secure inference despite attendant overhead. Existing works attempt to reduce the overhead using more MPC-friendly non-linear function approximations. However, the integration of quantization widely used in plaintext inference into the MPC domain remains unclear. To bridge this gap, we propose the framework named Ditto to enable more efficient quantization-aware secure Transformer inference. Concretely, we first incorporate an MPC-friendly quantization into Transformer inference and employ a quantization-aware distillation procedure to maintain the model utility. Then, we propose novel MPC primitives to support the type conversions that are essential in quantization and implement the quantization-aware MPC execution of secure quantized inference. This approach significantly decreases both computation and communication overhead, leading to improvements in overall efficiency. We conduct extensive experiments on Bert and GPT2 models to evaluate the performance of Ditto. The results demonstrate that Ditto is about $3.14\sim 4.40\times$ faster than MPCFormer (ICLR 2023) and $1.44\sim 2.35\times$ faster than the state-of-the-art work PUMA with negligible utility degradation.
How to Make the Gradients Small Privately: Improved Rates for Differentially Private Non-Convex Optimization
Andrew Lowy · Jonathan Ullman · Stephen Wright
We provide a simple and flexible framework for designing differentially private algorithms to find approximate stationary points of non-convex loss functions. Our framework is based on using a private approximate risk minimizer to "warm start" another private algorithm for finding stationary points. We use this framework to obtain improved, and sometimes optimal, rates for several classes of non-convex loss functions. First, we obtain improved rates for finding stationary points of smooth non-convex empirical loss functions. Second, we specialize to quasar-convex functions, which generalize star-convex functions and arise in learning dynamical systems and training some neural nets. We achieve the optimal rate for this class. Third, we give an optimal algorithm for finding stationary points of functions satisfying the Kurdyka-Lojasiewicz (KL) condition. For example, over-parameterized neural networks often satisfy this condition. Fourth, we provide new state-of-the-art rates for stationary points of non-convex population loss functions. Fifth, we obtain improved rates for non-convex generalized linear models. A modification of our algorithm achieves nearly the same rates for second-order stationary points of functions with Lipschitz Hessian, improving over the previous state-of-the-art for each of the above problems.
Differentially Private Representation Learning via Image Captioning
Tom Sander · Yaodong Yu · Maziar Sanjabi · Alain Oliviero Durmus · Yi Ma · Kamalika Chaudhuri · Chuan Guo
Differentially private (DP) machine learning is considered the gold-standard solution for training a model from sensitive data while still preserving privacy. However, a major barrier to achieving this ideal is its sub-optimal privacy-accuracy trade-off, which is particularly visible in DP representation learning. Specifically, it has been shown that under modest privacy budgets, most models learn representations that are not significantly better than hand-crafted features. In this work, we show that effective DP representation learning can be done via image captioning and scaling up to internet-scale multimodal datasets. Through a series of engineering tricks, we successfully train a DP image captioner (DP-Cap) on a 233M subset of LAION-2B from scratch using a reasonable amount of computation, and obtaining unprecedented high-quality image features that can be used in a variety of downstream vision and vision-language tasks. For example, under a privacy budget of $\varepsilon=8$ for the LAION dataset, a linear classifier trained on top of learned DP-Cap features attains $65.8\%$ accuracy on ImageNet-1K, considerably improving the previous SOTA of $56.5\%$. Our work challenges the prevailing sentiment that high-utility DP representation learning cannot be achieved by training from scratch.
Differentially private exact recovery for stochastic block models
Dung Nguyen · Anil Vullikanti
Stochastic block models (SBMs) are a very commonly studied network model for community detection algorithms. In the standard form of an SBM, the $n$ vertices (or nodes) of a graph are generally divided into multiple pre-determined communities (or clusters). Connections between pairs of vertices are generated randomly and independently with pre-defined probabilities, which depend on the communities containing the two nodes. A fundamental problem in SBMs is the recovery of the community structure, and sharp information-theoretic bounds are known for recoverability for many versions of SBMs. Our focus here is the recoverability problem in SBMs when the network is private. Under the edge differential privacy model, we derive conditions for exact recoverability in three different versions of SBMs, namely Asymmetric SBM (when communities have non-uniform sizes), General Structure SBM (with outliers), and Censored SBM (with edge features). Our private algorithms have polynomial running time w.r.t. the input graph's size, and match the recovery thresholds of the non-private setting when $\epsilon\rightarrow\infty$. In contrast, the previous best results for recoverability in SBMs only hold for the symmetric case (equal size communities), and run in quasi-polynomial time, or in polynomial time with recovery thresholds being tight up to some constants from the non-private settings.
Auditing Private Prediction
Karan Chadha · Matthew Jagielski · Nicolas Papernot · Christopher A. Choquette Choo · Milad Nasr
Differential privacy (DP) offers a theoretical upper bound on the potential privacy leakage of an algorithm, while empirical auditing establishes a practical lower bound. Auditing techniques exist for DP training algorithms. However machine learning can also be made private at inference. We propose the first framework for auditing private prediction where we instantiate adversaries with varying poisoning and query capabilities. This enables us to study the privacy leakage of four private prediction algorithms: PATE (Papernot et al., 2016), CaPC (Choquette-Choo et al., 2020), PromptPATE (Duan et al., 2023), and Private-kNN (Zhu et al., 2020). To conduct our audit, we introduce novel techniques to empirically evaluate privacy leakage in terms of Renyi DP. Our experiments show that (i) the privacy analysis of private prediction can be improved, (ii) algorithms which are easier to poison lead to much higher privacy leakage, and (iii) the privacy leakage is significantly lower for adversaries without query control than those with full control.
Proactive DP: A Multiple Target Optimization Framework for DP-SGD
Marten van Dijk · Nhuong Nguyen · Toan N. Nguyen · Lam M. Nguyen · Phuong Ha Nguyen
We introduce a multiple target optimization framework for DP-SGD referred to as pro-active DP. In contrast to traditional DP accountants, which are used to track the expenditure of privacy budgets, the pro-active DP scheme allows one to *a-priori* select parameters of DP-SGD based on a fixed privacy budget (in terms of $\epsilon$ and $\delta$) in such a way to optimize the anticipated utility (test accuracy) the most. To achieve this objective, we first propose significant improvements to the moment account method, presenting a closed-form $(\epsilon,\delta)$-DP guarantee that connects all parameters in the DP-SGD setup. Generally, DP-SGD is $(\epsilon\leq 1/2,\delta=1/N)$-DP if $\sigma=\sqrt{2(\epsilon +\ln(1/\delta))/\epsilon}$ with $T$ at least $\approx 2k^2/\epsilon$ and $(2/e)^2k^2-1/2\geq \ln(N)$, where $T$ is the total number of rounds, and $K=kN$ is the total number of gradient computations where $k$ measures $K$ in number of epochs of size $N$ of the local data set. We prove that our expression is close to tight in that if $T$ is more than a constant factor $\approx 4$ smaller than the lower bound $\approx 2k^2/\epsilon$, then the $(\epsilon,\delta)$-DP guarantee is violated. Our enhanced DP theory allows us to create a utility graph and DP calculator. These tools link privacy and utility objectives and search for optimal experiment setups, efficiently taking into account both accuracy and privacy objectives, as well as implementation goals. We furnish a comprehensive implementation flow of our proactive DP, with rigorous experiments to showcase the proof-of-concept.
Position: AI/ML Influencers Have a Place in the Academic Process
Iain Xie Weissburg · Mehir Arora · Xinyi Wang · Liangming Pan · William Wang
As the number of accepted papers at AI and ML conferences reaches into the thousands, it has become unclear how researchers access and read research publications. In this paper, we investigate the role of social media influencers in enhancing the visibility of machine learning research, particularly the citation counts of papers they share. We have compiled a comprehensive dataset of over 8,000 papers, spanning tweets from December 2018 to October 2023, alongside controls precisely matched by 9 key covariates. Our statistical and causal inference analysis reveals a significant increase in citations for papers endorsed by these influencers, with median citation counts 2-3 times higher than those of the control group. Additionally, the study delves into the geographic, gender, and institutional diversity of highlighted authors. Given these findings, we advocate for a responsible approach to curation, encouraging influencers to uphold the journalistic standard that includes showcasing diverse research topics, authors, and institutions.
Beyond the Norms: Detecting Prediction Errors in Regression Models
Andres Altieri · Marco Romanelli · Georg Pichler · Florence Alberge · Pablo Piantanida
This paper tackles the challenge of detecting unreliable behavior in regression algorithms, which may arise from intrinsic variability (e.g., aleatoric uncertainty) or modeling errors (e.g., model uncertainty). First, we formally introduce the notion of unreliability in regression, i.e., when the output of the regressor exceeds a specified discrepancy (or error). Then, using powerful tools for probabilistic modeling, we estimate the discrepancy density, and we measure its statistical diversity using our proposed metric for statistical dissimilarity. In turn, this allows us to derive a data-driven score that expresses the uncertainty of the regression outcome. We show empirical improvements in error detection for multiple regression tasks, consistently outperforming popular baseline approaches, and contributing to the broader field of uncertainty quantification and safe machine learning systems.
GRATH: Gradual Self-Truthifying for Large Language Models
Weixin Chen · Dawn Song · Bo Li
Truthfulness is paramount for large language models (LLMs) as they are increasingly deployed in real-world applications. However, existing LLMs still struggle with generating truthful content, as evidenced by their modest performance on benchmarks like TruthfulQA. To address this issue, we propose GRAdual self-truTHifying (GRATH), a novel post-processing method to enhance truthfulness of LLMs. GRATH utilizes out-of-domain question prompts to generate pairwise truthfulness training data with each pair containing a question and its correct and incorrect answers, and then optimizes the model via direct preference optimization (DPO) to learn from the truthfulness difference between answer pairs. GRATH iteratively refines truthfulness data and updates the model, leading to a gradual improvement in model truthfulness in a self-supervised manner. Empirically, we evaluate GRATH using different 7B-LLMs and compare with LLMs with similar or even larger sizes on benchmark datasets. Our results show that GRATH effectively improves LLMs' truthfulness without compromising other core capabilities. Notably, GRATH achieves state-of-the-art performance on TruthfulQA, with MC1 accuracy of 54.71% and MC2 accuracy of 69.10%, which even surpass those on 70B-LLMs. The code is available at https://github.com/chenweixin107/GRATH.
Distributionally Robust Data Valuation
Xiaoqiang Lin · Xinyi Xu · Zhaoxuan Wu · See-Kiong Ng · Bryan Kian Hsiang Low
Data valuation quantifies the contribution of each data point to the performance of a machine learning model. Existing works typically define the value of data by its improvement of the validation performance of the trained model. However, this approach can be impractical to apply in collaborative machine learning and data marketplace since it is difficult for the parties/buyers to agree on a common validation dataset or determine the exact validation distribution a priori. To address this, we propose a distributionally robust data valuation approach to perform data valuation without known/fixed validation distributions. Our approach defines the value of data by its improvement of the distributionally robust generalization error (DRGE), thus providing a worst-case performance guarantee without a known/fixed validation distribution. However, since computing DRGE directly is infeasible, we propose using model deviation as a proxy for the marginal improvement of DRGE (for kernel regression and neural networks) to compute data values. Furthermore, we identify a notion of uniqueness where low uniqueness characterizes low-value data. We empirically demonstrate that our approach outperforms existing data valuation approaches in data selection and data removal tasks on real-world datasets (e.g., housing price prediction, diabetes hospitalization prediction).
Developing machine learning models that account for potential faults encountered in real-world environments presents a fundamental challenge for mission-critical applications. In this paper, we introduce a novel theoretical framework grounded in learning theory for dealing with faults. In particular, we propose a framework called fault-tolerant PAC learning, aimed at identifying the most fault-tolerant models from a given hypothesis class (such as neural networks). We show that if faults occur randomly, fault-tolerant learning is equivalent to regular PAC learning. However, for adversarial faults, we show that the sample complexity of fault-tolerant PAC learning can grow linearly w.r.t. the number of perturbing functions induced by the faults, even for a hypothesis class with VC-dimension 1. We then provide a matching upper bound by restricting the number of perturbing functions. Finally, we show that the linear dependency on the number of perturbing functions can be substantially improved for deletion faults in neural networks. Our work provides a powerful formal framework and avenues for a number of future investigations on the precise characterization of fault-tolerant learning.
Fair Off-Policy Learning from Observational Data
Dennis Frauen · Valentyn Melnychuk · Stefan Feuerriegel
Algorithmic decision-making in practice must be fair for legal, ethical, and societal reasons. To achieve this, prior research has contributed various approaches that ensure fairness in machine learning predictions, while comparatively little effort has focused on fairness in decision-making, specifically off-policy learning. In this paper, we propose a novel framework for fair off-policy learning: we learn decision rules from observational data under different notions of fairness, where we explicitly assume that observational data were collected under a different -- potentially discriminatory -- behavioral policy. Importantly, our framework applies to different fairness notions for off-policy learning, where fairness is formalized based on actions or policy values. As our main contribution, we propose a neural network-based framework to learn optimal policies under different fairness notions. We further provide theoretical guarantees in the form of generalization bounds for the finite-sample version of our framework. We demonstrate the effectiveness of our framework through extensive numerical experiments using both simulated and real-world data. Altogether, our work enables algorithmic decision-making in a wide array of practical applications where fairness must be ensured.
An Empirical Study Into What Matters for Calibrating Vision-Language Models
Weijie Tu · Weijian Deng · Dylan Campbell · Stephen Gould · Tom Gedeon
Vision-Language Models (VLMs) have emerged as the dominant approach for zero-shot recognition, adept at handling diverse scenarios and significant distribution changes. However, their deployment in risk-sensitive areas requires a deeper understanding of their uncertainty estimation capabilities, a relatively uncharted area. In this study, we explore the calibration properties of VLMs across different architectures, datasets, and training strategies. In particular, we analyze the uncertainty estimation performance of VLMs when calibrated in one domain, label set or hierarchy level, and tested in a different one. Our findings reveal that while VLMs are not inherently calibrated for uncertainty, temperature scaling significantly and consistently improves calibration, even across shifts in distribution and changes in label set. Moreover, VLMs can be calibrated with a very small set of examples. Through detailed experimentation, we highlight the potential applications and importance of our insights, aiming for more reliable and effective use of VLMs in critical, real-world scenarios.
Designing Decision Support Systems using Counterfactual Prediction Sets
Eleni Straitouri · Manuel Gomez-Rodriguez
Decision support systems for classification tasks are predominantly designed to predict the value of the ground truth labels. However, since their predictions are not perfect, these systems also need to make human experts understand when and how to use these predictions to update their own predictions. Unfortunately, this has been proven challenging. In this context, it has been recently argued that an alternative type of decision support systems may circumvent this challenge. Rather than providing a single label prediction, these systems provide a set of label prediction values constructed using a conformal predictor, namely a prediction set, and forcefully ask experts to predict a label value from the prediction set. However, the design and evaluation of these systems have so far relied on stylized expert models, questioning their promise. In this paper, we revisit the design of this type of systems from the perspective of online learning and develop a methodology that does not require, nor assumes, an expert model. Our methodology leverages the nested structure of the prediction sets provided by any conformal predictor and a natural counterfactual monotonicity assumption to achieve an exponential improvement in regret in comparison to vanilla bandit algorithms. We conduct a large-scale human subject study ($n = 2{,}751$) to compare our methodology to several competitive baselines. The results show that, for decision support systems based on prediction sets, limiting experts’ level of agency leads to greater performance than allowing experts to always exercise their own agency.
Diversified Batch Selection for Training Acceleration
Feng Hong · Yueming LYU · Jiangchao Yao · Ya Zhang · Ivor Tsang · Yanfeng Wang
The remarkable success of modern machine learning models on large datasets often demands extensive training time and resource consumption. To save cost, a prevalent research line, known as online batch selection, explores selecting informative subsets during the training process. Although recent efforts achieve advancements by measuring the impact of each sample on generalization, their reliance on additional reference models inherently limits their practical applications, when there are no such ideal models available. On the other hand, the vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner, which sacrifices the diversity and induces the redundancy. To tackle this dilemma, we propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples. Specifically, we define a novel selection objective that measures the group-wise orthogonalized representativeness to combat the redundancy issue of previous sample-wise criteria, and provide a principled selection-efficient realization. Extensive experiments across various tasks demonstrate the significant superiority of DivBS in the performance-speedup trade-off. The code is publicly available.
Counterfactuals, or modified inputs that lead to a different outcome, are an important tool for understanding the logic used by machine learning classifiers and how to change an undesirable classification. Even if a counterfactual changes a classifier's decision, however, it may not affect the true underlying class probabilities, i.e. the counterfactual may act like an adversarial attack and ``fool'' the classifier. We propose a new framework for creating modified inputs that change the true underlying probabilities in a beneficial way which we call Trustworthy Actionable Perturbations (TAP). This includes a novel verification procedure to ensure that TAP change the true class probabilities instead of acting adversarially. Our framework also includes new cost, reward, and goal definitions that are better suited to effectuating change in the real world. We present PAC-learnability results for our verification procedure and theoretically analyze our new method for measuring reward. We also develop a methodology for creating TAP and compare our results to those achieved by previous counterfactual methods.
Attribution-based Explanations that Provide Recourse Cannot be Robust
Hidde Fokkema · Rianne de Heide · Tim van Erven
Different users of machine learning methods require different explanations, depending on their goals. To make machine learning accountable to society, one important goal is to get actionable options for recourse, which allow an affected user to change the decision f(x) of a machine learning system by making limited changes to its input x. We formalize this by providing a general definition of recourse sensitivity, which needs to be instantiated with a utility function that describes which changes to the decisions are relevant to the user. This definition applies to local attribution methods, which attribute an importance weight to each input feature. It is often argued that such local attributions should be robust, in the sense that a small change in the input x that is being explained, should not cause a large change in the feature weights. However, we prove formally that it is in general impossible for any single attribution method to be both recourse sensitive and robust at the same time. It follows that there must always exist counterexamples to at least one of these properties. We provide such counterexamples for several popular attribution methods, including LIME, SHAP, Integrated Gradients and SmoothGrad. Our results also cover counterfactual explanations, which may be viewed as attributions that describe a perturbation of x. We further discuss possible ways to work around our impossibility result, for instance by allowing the output to consist of sets with multiple attributions, and we provide sufficient conditions for specific classes of continuous functions to be recourse sensitive. Finally, we strengthen our impossibility result for the restricted case where users are only able to change a single attribute of x, by providing an exact characterization of the functions f to which impossibility applies.
Patchscopes: A Unifying Framework for Inspecting Hidden Representations of Language Models
Asma Ghandeharioun · Avi Caciularu · Adam Pearce · Lucas Dixon · Mor Geva
Understanding the internal representations of large language models (LLMs) can help explain models' behavior and verify their alignment with human values. Given the capabilities of LLMs in generating human-understandable text, we propose leveraging the model itself to explain its internal representations in natural language. We introduce a framework called Patchscopes and show how it can be used to answer a wide range of questions about an LLM's computation. We show that many prior interpretability methods based on projecting representations into the vocabulary space and intervening on the LLM computation can be viewed as instances of this framework. Moreover, several of their shortcomings such as failure in inspecting early layers or lack of expressivity can be mitigated by Patchscopes. Beyond unifying prior inspection techniques, Patchscopes also opens up new possibilities such as using a more capable model to explain the representations of a smaller model, and multihop reasoning error correction.
Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models
Hengyi Wang · Shiwei Tan · Hao Wang
Vision transformers (ViTs) have emerged as a significant area of focus, particularly for their capacity to be jointly trained with large language models and to serve as robust vision foundation models. Yet, the development of trustworthy explanation methods for ViTs has lagged, particularly in the context of post-hoc interpretations of ViT predictions. Existing sub-image selection approaches, such as feature-attribution and conceptual models, fall short in this regard. This paper proposes five desiderata for explaining ViTs -- faithfulness, stability, sparsity, multi-level structure, and parsimony -- and demonstrates the inadequacy of current methods in meeting these criteria comprehensively. We introduce a variational Bayesian explanation framework, dubbed ProbAbilistic Concept Explainers (PACE), which models the distributions of patch embeddings to provide trustworthy post-hoc conceptual explanations. Our qualitative analysis reveals the distributions of patch-level concepts, elucidating the effectiveness of ViTs by modeling the joint distribution of patch embeddings and ViT's predictions. Moreover, these patch-level explanations bridge the gap between image-level and dataset-level explanations, thus completing the multi-level structure of PACE. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that PACE surpasses state-of-the-art methods in terms of the defined desiderata.
Total Variation Floodgate for Variable Importance Inference in Classification
Wenshuo Wang · Lucas Janson · Lihua Lei · Aaditya Ramdas
Inferring variable importance is the key goal of many scientific studies, where researchers seek to learn the effect of a feature $X$ on the outcome $Y$ in the presence of confounding variables $Z$. Focusing on classification problems, we define the expected total variation (ETV), which is an intuitive and deterministic measure of variable importance that does not rely on any model assumption. We then introduce algorithms for statistical inference on the ETV under design-based/model-X assumptions. We name our method Total Variation Floodgate in reference to its shared high-level structure with the Floodgate method of Zhang & Janson (2020). The algorithms we introduce can leverage any user-specified regression function and produce asymptotic lower confidence bounds for the ETV. We show the effectiveness of our algorithms with simulations and a case study in conjoint analysis on the US general election.
Understanding Inter-Concept Relationships in Concept-Based Models
Naveen Raman · Mateo Espinosa Zarlenga · Mateja Jamnik
Concept-based explainability methods provide insight into deep learning systems by constructing explanations using human-understandable concepts. While the literature on human reasoning demonstrates that we exploit relationships between concepts when solving tasks, it is unclear whether concept-based methods incorporate the rich structure of inter-concept relationships. We analyse the concept representations learnt by concept-based models to understand whether these models correctly capture inter-concept relationships. First, we empirically demonstrate that state-of-the-art concept-based models produce representations that lack stability and robustness, and such methods fail to capture inter-concept relationships. Then, we develop a novel algorithm which leverages inter-concept relationships to improve concept intervention accuracy, demonstrating how correctly capturing inter-concept relationships can improve downstream tasks.
Understanding Retrieval-Augmented Task Adaptation for Vision-Language Models
Yifei Ming · Sharon Li
Pre-trained contrastive vision-language models have demonstrated remarkable performance across a wide range of tasks. However, they often struggle on fine-trained datasets with categories not adequately represented during pre-training, which makes adaptation necessary. Recent works have shown promising results by utilizing samples from web-scale databases for retrieval-augmented adaptation, especially in low-data regimes. Despite the empirical success, understanding how retrieval impacts the adaptation of vision-language models remains an open research question. In this work, we adopt a reflective perspective by presenting a systematic study to understand the roles of key components in retrieval-augmented adaptation. We unveil new insights on uni-modal and cross-modal retrieval and highlight the critical role of logit ensemble for effective adaptation. We further present theoretical underpinnings that directly support our empirical observations.
Monitoring AI-Modified Content at Scale: A Case Study on the Impact of ChatGPT on AI Conference Peer Reviews
Weixin Liang · Zachary Izzo · Yaohui Zhang · Haley Lepp · Hancheng Cao · Xuandong Zhao · Lingjiao Chen · Haotian Ye · Sheng Liu · Zhi Huang · Daniel McFarland · James Zou
We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-written and AI-generated reference texts to accurately and efficiently examine real-world LLM-use at the corpus level. We apply this approach to a case study of scientific peer review in AI conferences that took place after the release of ChatGPT: ICLR 2024, NeurIPS 2023, CoRL 2023 and EMNLP 2023. Our results suggest that between 6.5% and 16.9% of text submitted as peer reviews to these conferences could have been substantially modified by LLMs, i.e. beyond spell-checking or minor writing updates. The circumstances in which generated text occurs offer insight into user behavior: the estimated fraction of LLM-generated text is higher in reviews which report lower confidence, were submitted close to the deadline, and from reviewers who are less likely to respond to author rebuttals. We also observe corpus-level trends in generated text which may be too subtle to detect at the individual level, and discuss the implications of such trends on peer review. We call for future interdisciplinary work to examine how LLM use is changing our information and knowledge practices.
Learning Decision Trees and Forests with Algorithmic Recourse
Kentaro Kanamori · Takuya Takagi · Ken Kobayashi · Yuichi Ike
This paper proposes a new algorithm for learning accurate tree-based models while ensuring the existence of recourse actions. Algorithmic Recourse (AR) aims to provide a recourse action for altering the undesired prediction result given by a model. Typical AR methods provide a reasonable action by solving an optimization task of minimizing the required effort among executable actions. In practice, however, such actions do not always exist for models optimized only for predictive performance. To alleviate this issue, we formulate the task of learning an accurate classification tree under the constraint of ensuring the existence of reasonable actions for as many instances as possible. Then, we propose an efficient top-down greedy algorithm by leveraging the adversarial training techniques. We also show that our proposed algorithm can be applied to the random forest, which is known as a popular framework for learning tree ensembles. Experimental results demonstrated that our method successfully provided reasonable actions to more instances than the baselines without significantly degrading accuracy and computational efficiency.
I introduce a novel associative memory model named Correlated Dense Associative Memory (CDAM), which integrates both auto- and hetero-association in a unified framework for continuous-valued memory patterns. Employing an arbitrary graph structure to semantically link memory patterns, CDAM is theoretically and numerically analysed, revealing four distinct dynamical modes: auto-association, narrow hetero-association, wide hetero-association, and neutral quiescence. Drawing inspiration from inhibitory modulation studies, I employ anti-Hebbian learning rules to control the range of hetero-association, extract multi-scale representations of community structures in graphs, and stabilise the recall of temporal sequences. Experimental demonstrations showcase CDAM's efficacy in handling real-world data, replicating a classical neuroscience experiment, performing image retrieval, and simulating arbitrary finite automata.
The Emergence of Reproducibility and Consistency in Diffusion Models
Huijie Zhang · Jinfan Zhou · Yifu Lu · Minzhe Guo · Peng Wang · Liyue Shen · Qing Qu
In this work, we investigate an intriguing and prevalent phenomenon of diffusion models which we term as "consistent model reproducibility'': given the same starting noise input and a deterministic sampler, different diffusion models often yield remarkably similar outputs. We confirm this phenomenon through comprehensive experiments, implying that different diffusion models consistently reach the same data distribution and score function regardless of diffusion model frameworks, model architectures, or training procedures. More strikingly, our further investigation implies that diffusion models are learning distinct distributions influenced by the training data size. This is evident in two distinct training regimes: (I) "memorization regime,'' where the diffusion model overfits to the training data distribution, and (ii) "generalization regime,'' where the model learns the underlying data distribution. Our study also finds that this valuable property generalizes to many variants of diffusion models, including those for conditional generation and solving inverse problems. Lastly, we discuss how our findings connect to existing research and highlight the practical implications of our discoveries.
Junk DNA Hypothesis: Pruning Small Pre-Trained Weights $\textit{Irreversibly}$ and $\textit{Monotonically}$ Impairs ``Difficult" Downstream Tasks in LLMs
Lu Yin · Ajay Jaiswal · Shiwei Liu · Souvik Kundu · Zhangyang “Atlas” Wang
We present Junk DNA Hypothesis by adopting a novel task-centric angle for the pre-trained weights of large language models (LLMs). It has been believed that weights in LLMs contain significant redundancy, leading to the conception that a considerable chunk of the parameters can be removed by pruning without compromising performance. Contrary to this belief, this paper presents a counter-argument: small-magnitude weights of pre-trained model weights encode vital knowledge essential for tackling difficult downstream tasks - manifested as the monotonic relationship between the performance drop of downstream tasks across the difficulty spectrum, as we prune more pre-trained weights by magnitude. Moreover, we reveal that these seemingly inconsequential weights can result in irreparable loss of knowledge and performance degradation in difficult tasks, even when downstream continual training is allowed. Interestingly, our evaluations show that the other popular compression, namely quantization fail to exhibit similar ``monotonic" effect and does not as convincingly disentangle this task-difficulty information. To study formally, we introduce several quantifiable metrics to gauge the downstream task difficulty: (a) within the same task category, and (b) across different task categories. Our extensive experiments substantiate the Junk DNA Hypothesis across a diverse range of model sizes, tasks, datasets, and even pruning methods. Codes are available at https://github.com/VITA-Group/JunkDNAHypothesis.git.
On-policy reinforcement learning methods, like Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO), often demand extensive data per update, leading to sample inefficiency. This paper introduces Reflective Policy Optimization (RPO), a novel on-policy extension that amalgamates past and future state-action information for policy optimization. This approach empowers the agent for introspection, allowing modifications to its actions within the current state. Theoretical analysis confirms that policy performance is monotonically improved and contracts the solution space, consequently expediting the convergence procedure. Empirical results demonstrate RPO's feasibility and efficacy in two reinforcement learning benchmarks, culminating in superior sample efficiency. The source code of this work is available at https://github.com/Edgargan/RPO.
Implicit Compressibility of Overparametrized Neural Networks Trained with Heavy-Tailed SGD
Yijun Wan · Melih Barsbey · Abdellatif Zaidi · Umut Simsekli
Neural network compression has been an increasingly important subject, not only due to its practical relevance, but also due to its theoretical implications, as there is an explicit connection between compressibility and generalization error. Recent studies have shown that the choice of the hyperparameters of stochastic gradient descent (SGD) can have an effect on the compressibility of the learned parameter vector. These results, however, rely on unverifiable assumptions and the resulting theory does not provide a practical guideline due to its implicitness. In this study, we propose a simple modification for SGD, such that the outputs of the algorithm will be provably compressible without making any nontrivial assumptions. We consider a one-hidden-layer neural network trained with SGD, and show that if we inject additive heavy-tailed noise to the iterates at each iteration, for any compression rate, there exists a level of overparametrization such that the output of the algorithm will be compressible with high probability. To achieve this result, we make two main technical contributions: (i) we prove a "propagation of chaos" result for a class of heavy-tailed stochastic differential equations, and (ii) we derive error estimates for their Euler discretization. Our experiments suggest that the proposed approach not only achieves increased compressibility with various models and datasets, but also leads to robust test performance under pruning, even in more realistic architectures that lie beyond our theoretical setting.
Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution
Aaron Lou · Chenlin Meng · Stefano Ermon
Despite their groundbreaking performance for many generative modeling tasks, diffusion models have fallen short on discrete data domains such as natural language. Crucially, standard diffusion models rely on the well-established theory of score matching, but efforts to generalize this to discrete structures have not yielded the same empirical gains. In this work, we bridge this gap by proposing score entropy, a novel loss that naturally extends score matching to discrete spaces, integrates seamlessly to build discrete diffusion models, and significantly boosts performance. Experimentally, we test our Score Entropy Discrete Diffusion models (SEDD) on standard language modeling tasks. For comparable model sizes, SEDD beats existing language diffusion paradigms (reducing perplexity by $25$-$75$%) and is competitive with autoregressive models, in particular outperforming GPT-2. Furthermore, compared to autoregressive mdoels, SEDD generates faithful text without requiring distribution annealing techniques like temperature scaling (around $6$-$8\times$ better generative perplexity than un-annealed GPT-2), can trade compute and quality (similar quality with $32\times$ fewer network evaluations), and enables controllable infilling (matching nucleus sampling quality while enabling other strategies besides left to right prompting).
Multi-Sender Persuasion: A Computational Perspective
Safwan Hossain · Tonghan Wang · Tao Lin · Yiling Chen · David Parkes · Haifeng Xu
We consider multiple senders with informational advantage signaling to convince a single self-interested actor to take certain actions. Generalizing the seminal Bayesian Persuasion framework, such settings are ubiquitous in computational economics, multi-agent learning, and machine learning with multiple objectives. The core solution concept here is the Nash equilibrium of senders' signaling policies. Theoretically, we prove that finding an equilibrium in general is PPAD-Hard; in fact, even computing a sender's best response is NP-Hard. Given these intrinsic difficulties, we turn to finding local Nash equilibria. We propose a novel differentiable neural network to approximate this game's non-linear and discontinuous utilities. Complementing this with the extra-gradient algorithm, we discover local equilibria that Pareto dominates full-revelation equilibria and those found by existing neural networks. Broadly, our theoretical and empirical contributions are of interest to a large class of economic problems.
DIDI: Diffusion-Guided Diversity for Offline Behavioral Generation
Jinxin Liu · Xinghong Guo · Zifeng Zhuang · Donglin Wang
In this paper, we propose a novel approach called DIffusion-guided DIversity (DIDI) for offline behavioral generation. The goal of DIDI is to learn a diverse set of skills from a mixture of label-free offline data. We achieve this by leveraging diffusion probabilistic models as priors to guide the learning process and regularize the policy. By optimizing a joint objective that incorporates diversity and diffusion-guided regularization, we encourage the emergence of diverse behaviors while maintaining the similarity to the offline data. Experimental results in four decision-making domains (Push, Kitchen, Humanoid, and D4RL tasks) show that DIDI is effective in discovering diverse and discriminative skills. We also introduce skill stitching and skill interpolation, which highlight the generalist nature of the learned skill space. Further, by incorporating an extrinsic reward function, DIDI enables reward-guided behavior generation, facilitating the learning of diverse and optimal behaviors from sub-optimal data.
Is Inverse Reinforcement Learning Harder than Standard Reinforcement Learning? A Theoretical Perspective
Lei Zhao · Mengdi Wang · Yu Bai
Inverse Reinforcement Learning (IRL)---the problem of learning reward functions from demonstrations of an expert policy---plays a critical role in developing intelligent systems. While widely used in applications, theoretical understandings of IRL present unique challenges and remain less developed compared with standard RL. For example, it remains open how to do IRL efficiently in standard offline settings with pre-collected data, where states are obtained from a behavior policy (which could be the expert policy itself), and actions are sampled from the expert policy. This paper provides the first line of results for efficient IRL in vanilla offline and online settings using polynomial samples and runtime. Our algorithms and analyses seamlessly adapt the pessimism principle commonly used in offline RL, and achieve IRL guarantees in stronger metrics than considered in existing work. We provide lower bounds showing that our sample complexities are nearly optimal. As an application, we also show that the learned rewards can transfer to another target MDP with suitable guarantees when the target MDP satisfies certain similarity assumptions with the original (source) MDP.
Detecting Any instruction-to-answer interaction relationship:Universal Instruction-to-Answer Navigator for Med-VQA
Zhongze Wu · Hongyan Xu · Yitian Long · Shan You · Xiu Su · Jun Long · Yueyi Luo · Chang Xu
Medical Visual Question Answering (Med-VQA) interprets complex medical imagery using user instructions for precise diagnostics, yet faces challenges due to diverse, inadequately annotated images. In this paper, we introduce the Universal Instruction-Vision Navigator (Uni-Med) framework for extracting instruction-to-answer relationships, facilitating the understanding of visual evidence behind responses. Specifically, we design the Instruct-to-Answer Clues Interpreter (IAI) to generate visual explanations based on the answers and mark the core part of instructions with "real intent" labels. The IAI-Med VQA dataset, produced using IAI, is now publicly available to advance Med-VQA research. Additionally, our Token-Level Cut-Mix module dynamically aligns visual explanations with image patches, ensuring answers are traceable and learnable. We also implement intention-guided attention to minimize non-core instruction interference, sharpening focus on 'real intent'. Extensive experiments on SLAKE datasets show Uni-Med’s superior accuracies (87.52% closed, 86.12% overall), outperforming MedVInT-PMC-VQA by 1.22% and 0.92%. Code and dataset are available at: https://github.com/zhongzee/Uni-Med-master.
A Nearly Optimal Single Loop Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
Xiaochuan Gong · Jie Hao · Mingrui Liu
This paper studies the problem of stochastic bilevel optimization where the upper-level function is nonconvex with potentially unbounded smoothness and the lower-level function is strongly convex. This problem is motivated by meta-learning applied to sequential data, such as text classification using recurrent neural networks, where the smoothness constant of the upper-level loss function scales linearly with the gradient norm and can be potentially unbounded. Existing algorithm crucially relies on the nested loop design, which requires significant tuning efforts and is not practical. In this paper, we address this issue by proposing a Single Loop bIlevel oPtimizer (SLIP). The proposed algorithm first updates the lower-level variable by a few steps of stochastic gradient descent, and then simultaneously updates the upper-level variable by normalized stochastic gradient descent with momentum and the lower-level variable by stochastic gradient descent. Under standard assumptions, we show that our algorithm finds an $\epsilon$-stationary point within $\widetilde{O}(1/\epsilon^4)$[Here $\widetilde{O}(\cdot)$ compresses logarithmic factors of $1/\epsilon$ and $1/\delta$, where $\delta\in(0,1)$ denotes the failure probability.] oracle calls of stochastic gradient or Hessian-vector product, both in expectation and with high probability. This complexity result is nearly optimal up to logarithmic factors without mean-square smoothness of the stochastic gradient oracle. Our proof relies on (i) a refined characterization and control of the lower-level variable and (ii) establishing a novel connection between bilevel optimization and stochastic optimization under distributional drift. Our experiments on various tasks show that our algorithm significantly outperforms strong baselines in bilevel optimization.
SqueezeLLM: Dense-and-Sparse Quantization
Sehoon Kim · Coleman Hooper · Amir Gholaminejad · Zhen Dong · Xiuyu Li · Sheng Shen · Michael Mahoney · EECS Kurt Keutzer
Generative Large Language Models (LLMs) have demonstrated remarkable results for a wide range of tasks. However, deploying these models for inference has been a significant challenge due to their unprecedented resource requirements. This has forced existing deployment frameworks to use multi-GPU inference pipelines, which are often complex and costly, or to use smaller and less performant models. In this work, we demonstrate that the main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, specifically for single batch inference. While quantization has emerged as a promising solution by representing weights with reduced precision, previous efforts have often resulted in notable performance degradation. To address this, we introduce SqueezeLLM, a post-training quantization framework that not only enables lossless compression to ultra-low precisions of up to 3-bit, but also achieves higher quantization performance under the same memory constraint. Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format. When applied to the LLaMA models, our 3-bit quantization significantly reduces the perplexity gap from the FP16 baseline by up to 2.1x as compared to the state-of-the-art methods with the same memory requirement. Furthermore, when deployed on an A6000 GPU, our quantized models achieve up to 2.3x speedup compared to the baseline. Our code is available at https://github.com/SqueezeAILab/SqueezeLLM.
Beyond Chinchilla-Optimal: Accounting for Inference in Language Model Scaling Laws
Nikhil Sardana · Jacob Portes · Alexandre (Sasha) Doubov · Jonathan Frankle
Large language model (LLM) scaling laws are empirical formulas that estimate changes in model quality as a result of increasing parameter count and training data. However, these formulas, including the popular Deepmind Chinchilla scaling laws, neglect to include the cost of inference. We modify the Chinchilla scaling laws to calculate the optimal LLM parameter count and pre-training data size to train and deploy a model of a given quality and inference demand. We conduct our analysis both in terms of a compute budget and real-world costs and find that LLM researchers expecting reasonably large inference demand ($\sim$1B requests) should train models smaller and longer than Chinchilla-optimal. Furthermore, we train 47 models of varying sizes and parameter counts to validate our formula and find that model quality continues to improve as we scale tokens per parameter to extreme ranges (up to 10,000). Finally, we ablate the procedure used to fit the Chinchilla scaling law coefficients and find that developing scaling laws only from data collected at typical token/parameter ratios overestimates the impact of additional tokens at these extreme ranges.
Position: Machine Learning-powered Assessments of the EU Digital Services Act Aid Quantify Policy Impacts on Online Harms
Eleonora Bonel · Luca Nannini · Davide Bassi · Michele Maggini
While machine learning shows promise in automated knowledge generation, current techniques such as large language models and micro-targeted influence operations can be exploited for harmful purposes like the proliferation of disinformation. The European Union's Digital Services Act (DSA) is an exemplary policy response addressing these harms generated by online platforms. In this regard, it necessitates a comprehensive evaluation of its impact on curbing the harmful downstream effects of these opaque practices. Despite their harmful applications, we argue that machine learning techniques offer immense, yet under-exploited, potential for unraveling the impacts of regulations like the DSA. Following an analysis that reveals possible limitations in the DSA's provisions, we call for resolute efforts to address methodological barriers around appropriate data access, isolating marginal regulatory effects, and facilitating generalization across different contexts. Given the identified advantages of data-driven approaches to regulatory delivery, we advocate for machine learning research to help quantify the policy impacts on online harms.
How Far Can Fairness Constraints Help Recover From Biased Data?
Mohit Sharma · Amit Jayant Deshpande
A general belief in fair classification is that fairness constraints incur a trade-off with accuracy, which biased data may worsen. Contrary to this belief, Blum & Stangl (2019) show that fair classification with equal opportunity constraints even on extremely biased data can recover optimally accurate and fair classifiers on the original data distribution. Their result is interesting because it demonstrates that fairness constraints can implicitly rectify data bias and simultaneously overcome a perceived fairness-accuracy trade-off. Their data bias model simulates under-representation and label bias in underprivileged population, and they show the above result on a stylized data distribution with i.i.d. label noise, under simple conditions on the data distribution and bias parameters. We propose a general approach to extend the result of Blum & Stangl (2019) to different fairness constraints, data bias models, data distributions, and hypothesis classes. We strengthen their result, and extend it to the case when their stylized distribution has labels with Massart noise instead of i.i.d. noise. We prove a similar recovery result for arbitrary data distributions using fair reject option classifiers. We further generalize it to arbitrary data distributions and arbitrary hypothesis classes, i.e., we prove that for any data distribution, if the optimally accurate classifier in a given hypothesis class is fair and robust, then it can be recovered through fair classification with equal opportunity constraints on the biased distribution whenever the bias parameters satisfy certain simple conditions. Finally, we show applications of our technique to time-varying data bias in classification and fair machine learning pipelines.
Individual Fairness in Graph Decomposition
Kamesh Munagala · Govind S. Sankar
In this paper, we consider classic randomized low diameter decomposition procedures for planar graphs that obtain connected clusters that are cohesive in that close by pairs of nodes are assigned to the same cluster with high probability. We consider the additional aspect of individual fairness -- pairs of nodes at comparable distances should be separated with comparable probability. We show that classic decomposition procedures do not satisfy this property. We present novel algorithms that achieve various trade-offs between this property and additional desiderata of connectivity of the clusters and optimality in number of clusters. We show that our individual fairness bounds may be difficult to improve by tying the improvement to resolving a major open question in metric embeddings. We finally show the efficacy of our algorithms on real planar networks modeling Congressional redistricting.
Faithfulness Measurable Masked Language Models
Andreas Madsen · Siva Reddy · Sarath Chandar
A common approach to explaining NLP models is to use importance measures that express which tokens are important for a prediction. Unfortunately, such explanations are often wrong despite being persuasive. Therefore, it is essential to measure their faithfulness. One such metric is if tokens are truly important, then masking them should result in worse model performance. However, token masking introduces out-of-distribution issues, and existing solutions that address this are computationally expensive and employ proxy models. Furthermore, other metrics are very limited in scope. This work proposes an inherently faithfulness measurable model that addresses these challenges. This is achieved using a novel fine-tuning method that incorporates masking, such that masking tokens become in-distribution by design. This differs from existing approaches, which are completely model-agnostic but are inapplicable in practice. We demonstrate the generality of our approach by applying it to 16 different datasets and validate it using statistical in-distribution tests. The faithfulness is then measured with 9 different importance measures. Because masking is in-distribution, importance measures that themselves use masking become consistently more faithful. Additionally, because the model makes faithfulness cheap to measure, we can optimize explanations towards maximal faithfulness; thus, our model becomes indirectly inherently explainable.
Explainable Artificial Intelligence (XAI) is a young but very promising field of research. Unfortunately, the progress in this field is currently slowed down by divergent and incompatible goals. We separate various threads tangled within the area of XAI into two complementary cultures of human/value-oriented explanations (BLUE XAI) and model/validation-oriented explanations (RED XAI). This position paper argues that the area of RED XAI is currently under-explored, i.e., more methods for explainability are desperately needed to question models (e.g., extract knowledge from well-performing models as well as spotting and fixing bugs in faulty models), and the area of RED XAI hides great opportunities and potential for important research necessary to ensure the safety of AI systems. We conclude this paper by presenting promising challenges in this area.
Rethinking Data Shapley for Data Selection Tasks: Misleads and Merits
Jiachen Wang · Tianji Yang · James Zou · Yongchan Kwon · Ruoxi Jia
Data Shapley provides a principled approach to data valuation and plays a crucial role in data-centric machine learning (ML) research. Data selection is considered a standard application of Data Shapley. However, its data selection performance has shown to be inconsistent across settings in the literature. This study aims to deepen our understanding of this phenomenon. We introduce a hypothesis testing framework and show that Data Shapley's performance can be no better than random selection without specific constraints on utility functions. We identify a class of utility functions, monotonically transformed modular functions, within which Data Shapley optimally selects data. Based on this insight, we propose a heuristic for predicting Data Shapley’s effectiveness in data selection tasks. Our experiments corroborate these findings, adding new insights into when Data Shapley may or may not succeed.
A General Framework for Sequential Decision-Making under Adaptivity Constraints
Nuoya Xiong · Zhaoran Wang · Zhuoran Yang
We take the first step in studying general sequential decision-making under two adaptivity constraints: rare policy switch and batch learning. First, we provide a general class called the Eluder Condition class, which includes a wide range of reinforcement learning classes. Then, for the rare policy switch constraint, we provide a generic algorithm to achieve a $\widetilde{\mathcal{O}}(\log K) $ switching cost with a $\widetilde{\mathcal{O}}(\sqrt{K})$ regret on the EC class. For the batch learning constraint, we provide an algorithm that provides a $\widetilde{\mathcal{O}}(\sqrt{K}+K/B)$ regret with the number of batches $B.$ This paper is the first work considering rare policy switch and batch learning under general function classes, which covers nearly all the models studied in the previous works such as tabular MDP (Bai et al. 2019, Zhang et al. 2020), linear MDP (Wang et al. 2021, Gao et al. 2021), low eluder dimension MDP (Kong et al., 2021; Velegkas et al., 2022), generalized linear function approximation (Qiao et al. 2023), and also some new classes such as the low $D_\Delta$-type Bellman eluder dimension problem, linear mixture MDP, kernelized nonlinear regulator and undercomplete partially observed Markov decision process (POMDP).
PANDA: Expanded Width-Aware Message Passing Beyond Rewiring
Jeongwhan Choi · Sumin Parksumin · Hyowon Wi · Sung-Bae Cho · Noseong Park
Recent research in the field of graph neural network (GNN) has identified a critical issue known as "over-squashing," resulting from the bottleneck phenomenon in graph structures, which impedes the propagation of long-range information. Prior works have proposed a variety of graph rewiring concepts that aim at optimizing the spatial or spectral properties of graphs to promote the signal propagation. However, such approaches inevitably deteriorate the original graph topology, which may lead to a distortion of information flow. To address this, we introduce an expanded width-aware (PANDA) message passing, a new message passing paradigm where nodes with high centrality, a potential source of over-squashing, are selectively expanded in width to encapsulate the growing influx of signals from distant nodes. Experimental results show that our method outperforms existing rewiring methods, suggesting that selectively expanding the hidden state of nodes can be a compelling alternative to graph rewiring for addressing the over-squashing.
Trainable Transformer in Transformer
Abhishek Panigrahi · Sadhika Malladi · Mengzhou Xia · Sanjeev Arora
Recent works attribute the capability of in-context learning (ICL) in large pre-trained language models to implicitly simulating and fine-tuning an internal model (e.g., linear or 2-layer MLP) during inference. However, such constructions require large memory overhead, which makes simulation of more sophisticated internal models intractable. In this work, we propose a new efficient construction, Transformer in Transformer (in short, TINT), that allows a transformer to simulate and fine-tune more complex models during inference (e.g., pre-trained language models). In particular, we introduce innovative approximation techniques that allow a TINT model with less than 2 billion parameters to simulate and fine-tune a 125 million parameter transformer model within a single forward pass. TINT accommodates many common transformer variants and its design ideas also improve the efficiency of past instantiations of simple models inside transformers. We conduct end-to-end experiments to validate the internal fine-tuning procedure of TINT on various language modeling and downstream tasks. For example, even with a limited one-step budget, we observe TINT for a OPT-125M model improves performance by 4 − 16% absolute on average compared to OPT-125M. These findings suggest that large pre-trained language models are capable of performing intricate subroutines. To facilitate further work, a modular and extensible codebase for TINT is included.
Improving Group Robustness on Spurious Correlation Requires Preciser Group Inference
Yujin Han · Difan Zou
Standard empirical risk minimization (ERM) models may prioritize learning spurious correlations between spurious features and true labels, leading to poor accuracy on groups where these correlations do not hold. Mitigating this issue often requires expensive spurious attribute (group) labels or relies on trained ERM models to infer group labels when group information is unavailable. However, the significant performance gap in worst-group accuracy between using pseudo group labels and using oracle group labels inspires us to consider further improving group robustness through preciser group inference. Therefore, we propose GIC, a novel method that accurately infers group labels, resulting in improved worst-group performance. GIC trains a spurious attribute classifier based on two key properties of spurious correlations: (1) high correlation between spurious attributes and true labels, and (2) variability in this correlation between datasets with different group distributions. Empirical studies on multiple datasets demonstrate the effectiveness of GIC in inferring group labels, and combining GIC with various downstream invariant learning methods improves worst-group accuracy, showcasing its powerful flexibility. Additionally, through analyzing the misclassifications in GIC, we identify an interesting phenomenon called semantic consistency, which may contribute to better decoupling the association between spurious attributes and labels, thereby mitigating spurious correlation. The code for GIC is available at https://github.com/yujinhanml/GIC9.
Switchable Decision: Dynamic Neural Generation Networks
Shujian Zhang · Korawat Tanwisuth · Chengyue Gong · Pengcheng He · Mingyuan Zhou
Auto-regressive generation models achieve competitive performance across many different NLP tasks such as summarization, question answering, and classifications. However, they are also known for being slow in inference, which makes them challenging to deploy in real-time applications. We propose a switchable decision to accelerate inference by dynamically assigning computation resources for each data instance. Automatically making decisions on where to skip and how to balance quality and computation cost with constrained optimization, our dynamic neural generation networks enforce the efficient inference path and determine the optimized trade-off. Experiments across question answering, summarization, and classification benchmarks show that our method benefits from less computation cost during inference while keeping the same accuracy. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
Collaborative Heterogeneous Causal Inference Beyond Meta-analysis
Tianyu Guo · Sai Praneeth Karimireddy · Michael Jordan
Collaboration between different data centers is often challenged by heterogeneity across sites. To account for the heterogeneity, the state-of-the-art method is to re-weight the covariate distributions in each site to match the distribution of the target population. Nevertheless, this method still relies on the concept of traditional meta-analysis after adjusting for the distribution shift. This work proposes a collaborative inverse propensity score weighting estimator for causal inference with heterogeneous data. Instead of adjusting the distribution shift separately, we use weighted propensity score models to collaboratively adjust for the distribution shift. Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases. By incorporating outcome regression models, we prove the asymptotic normality when the covariates have dimension $d<8$. Our methods preserve privacy at individual sites by implementing federated learning protocols.
Collage: Light-Weight Low-Precision Strategy for LLM Training
Tao Yu · Gaurav Gupta · KARTHICK GOPALSWAMY · Amith Mamidala · Hao Zhou · Jeffrey Huynh · Youngsuk Park · Ron Diamant · Anoop Deoras · Luke Huan
Large models training is plagued by the intense compute cost and limited hardware memory. A practical solution is low-precision representation but is troubled by loss in numerical accuracy and unstable training rendering the model less useful. We argue that low-precision floating points can perform well provided the error is properly compensated at the critical locations in the training process. We propose Collage which utilizes multi-component float representation in low-precision to accurately perform operations with numerical errors accounted. To understand the impact of imprecision to training, we propose a simple and novel metric which tracks the lost information during training as well as differentiates various precision strategies. Our method works with commonly used low-precision such as half-precision ($16$-bit floating points) and can be naturally extended to work with even lower precision such as $8$-bit. Experimental results show that pre-training using Collage removes the requirement of using $32$-bit floating-point copies of the model and attains similar/better training performance compared to $(16, 32)$-bit mixed-precision strategy, with up to $3.7\times$ speedup and $\sim 15\%$ to $23\%$ less memory usage in practice. The code is available at https://github.com/amazon-science/collage.
Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions
Harrie Oosterhuis · Lijun Lyu · Avishek Anand
Local feature selection in machine learning provides instance-specific explanations by focusing on the most relevant features for each prediction, enhancing the interpretability of complex models. However, such methods tend to produce misleading explanations by encoding additional information in their selections. In this work, we attribute the problem of misleading selections by formalizing the concepts of label and feature leakage. We rigorously derive the necessary and sufficient conditions under which we can guarantee no leakage, and show existing methods do not meet these conditions. Furthermore, we propose the first local feature selection method that is proven to have no leakage called SUWR. Our experimental results indicate that SUWR is less prone to overfitting and combines state-of-the-art predictive performance with high feature-selection sparsity. Our generic and easily extendable formal approach provides a strong theoretical basis for future work on interpretability with reliable explanations.
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner · Erik Hellsten · Luigi Nardi
High-dimensional optimization problems have long been considered the Achilles' heel of Bayesian optimization algorithms. Spurred by the curse of dimensionality, a large collection of algorithms aim to make BO more performant in this setting, commonly by imposing various simplifying assumptions on the objective, thereby decreasing its presumed complexity. In this paper, we identify the degeneracies that make vanilla BO poorly suited to high-dimensional tasks, and further show how existing algorithms address these degeneracies through the lens of model complexity. Motivated by the model complexity measure, we derive an enhancement to the prior assumptions that are typical of the vanilla BO algorithm, which reduces the complexity to manageable levels without imposing structural restrictions on the objective. Our modification - a simple scaling of the Gaussian process lengthscale prior in the dimensionality - reveals that standard BO works drastically better than previously thought in high dimensions. Our insights are supplemented by substantial out-performance of existing state-of-the-art on multiple commonly considered real-world high-dimensional tasks.
Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once
Zhangheng Li · Shiwei Liu · Tianlong Chen · Ajay Jaiswal · Zhenyu Zhang · Dilin Wang · Raghuraman Krishnamoorthi · Shiyu Chang · Zhangyang “Atlas” Wang
Sparse Neural Networks (SNNs) have received voluminous attention for mitigating the explosion in computational costs and memory footprints of modern deep neural networks. Despite their popularity, most state-of-the-art training approaches seek to find a single high-quality sparse subnetwork with a preset sparsity pattern and ratio, making them inadequate to satiate platform and resource variability. Recently proposed approaches attempt to jointly train multiple subnetworks (we term as ``sparse co-training") with a fixed sparsity pattern, to allow switching sparsity ratios subject to resource requirements. In this work, we take one more step forward and expand the scope of sparse co-training to cover diverse sparsity patterns and multiple sparsity ratios at once. We introduce Sparse Cocktail, the first sparse co-training framework that co-trains a suite of sparsity patterns simultaneously, loaded with multiple sparsity ratios which facilitate harmonious switch across various sparsity patterns and ratios at inference depending on the hardware availability. More specifically, Sparse Cocktail alternatively trains subnetworks generated from different sparsity patterns with a gradual increase in sparsity ratios across patterns and relies on an unified mask generation process and the Dense Pivot Co-training to ensure the subnetworks of different patterns orchestrate their shared parameters without canceling each other’s performance. Experiment results on image classification, object detection, and instance segmentation illustrate the favorable effectiveness and flexibility of Sparse Cocktail, pointing to a promising direction for sparse co-training. Codes will be released.
Momentor: Advancing Video Large Language Model with Fine-Grained Temporal Reasoning
Long Qian · Juncheng Li · Yu Wu · Yaobo Ye · Hao Fei · Tat-Seng Chua · Yueting Zhuang · Siliang Tang
Large Language Models (LLMs) demonstrate remarkable proficiency in comprehending and handling text-based tasks. Many efforts are being made to transfer these attributes to video modality, which are termed Video-LLMs. However, existing Video-LLMs can only capture the coarse-grained semantics and are unable to effectively handle tasks related to comprehension or localization of specific video segments. In light of these challenges, we propose Momentor, a Video-LLM capable of accomplishing fine-grained temporal understanding tasks. To support the training of Momentor, we design an automatic data generation engine to construct Moment-10M, a large-scale video instruction dataset with segment-level instruction data. We train Momentor on Moment-10M, enabling it to perform segment-level reasoning and localization. Zero-shot evaluations on several tasks demonstrate that Momentor excels in fine-grained temporally grounded comprehension and localization.
Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation
Mingyuan Zhou · Huangjie Zheng · Zhendong Wang · Mingzhang Yin · Hai Huang
We introduce Score identity Distillation (SiD), an innovative data-free method that distills the generative capabilities of pretrained diffusion models into a single-step generator. SiD not only facilitates an exponentially fast reduction in Fréchet inception distance (FID) during distillation but also approaches or even exceeds the FID performance of the original teacher diffusion models. By reformulating forward diffusion processes as semi-implicit distributions, we leverage three score-related identities to create an innovative loss mechanism. This mechanism achieves rapid FID reduction by training the generator using its own synthesized images, eliminating the need for real data or reverse-diffusion-based generation, all accomplished within significantly shortened generation time. Upon evaluation across four benchmark datasets, the SiD algorithm demonstrates high iteration efficiency during distillation and surpasses competing distillation approaches, whether they are one-step or few-step, data-free, or dependent on training data, in terms of generation quality. This achievement not only redefines the benchmarks for efficiency and effectiveness in diffusion distillation but also in the broader field of diffusion-based generation. The PyTorch implementation is available at https://github.com/mingyuanzhou/SiD.
Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning
Qiankun Zhang · Aocheng Shen · Boyu Zhang · Hanrui Jiang · Bingqian Du
For a specific online optimization problem, for example, online bipartite matching (OBM), research efforts could be made in two directions before it is finally closed, i.e., the optimal competitive online algorithm is found. One is to continuously design algorithms with better performance. To this end, reinforcement learning (RL) has demonstrated great success in literature. However, little is known on the other direction: whether RL helps explore how hard an online problem is. In this paper, we study a generalized model of OBM, named online matching with stochastic rewards (OMSR, FOCS 2012), for which the optimal competitive ratio is still unknown. We adopt an adversarial RL approach that trains two RL agents adversarially and iteratively: the algorithm agent learns for algorithms with larger competitive ratios, while the adversarial agent learns to produce a family of hard instances. Through such a framework, agents converge at the end with a robust algorithm, which empirically outperforms the state of the art (STOC 2020). Much more significantly, it allows to track how the hard instances are generated. We succeed in distilling two structural properties from the learned graph patterns, which remarkably reduce the action space, and further enable theoretical improvement on the best-known hardness result of OMSR, from $0.621$ (FOCS 2012) to $0.597$. To the best of our knowledge, this gives the first evidence that RL can help enhance the theoretical understanding of an online problem.
Auto-Encoding Morph-Tokens for Multimodal LLM
Kaihang Pan · Siliang Tang · Juncheng Li · Zhaoyu Fan · Wei Chow · Shuicheng YAN · Tat-Seng Chua · Yueting Zhuang · Hanwang Zhang
For multimodal LLMs, the synergy of visual comprehension (textual output) and generation (visual output) presents an ongoing challenge. This is due to a conflicting objective: for comprehension, an MLLM needs to abstract the visuals; for generation, it needs to preserve the visuals as much as possible. Thus, the objective is a dilemma for visual-tokens. To resolve the conflict, we propose encoding images into morph-tokens to serve a dual purpose: for comprehension, they act as visual prompts instructing MLLM to generate texts; for generation, they take on a different, non-conflicting role as complete visual-tokens for image reconstruction, where the missing visual cues are recovered by the MLLM. Extensive experiments show that morph-tokens can achieve a new SOTA for multimodal comprehension and generation simultaneously. Our project is available at https://github.com/DCDmllm/MorphTokens.
Mathematical Framework for Online Social Media Auditing
Wasim Huleihel · Yehonathan Refael
Social media platforms (SMPs) leverage algorithmic filtering (AF) as a means of selecting the content that constitutes a user's feed with the aim of maximizing their rewards. Selectively choosing the contents to be shown on the user's feed may yield a certain extent of influence, either minor or major, on the user's decision-making, compared to what it would have been under a natural/fair content selection. As we have witnessed over the past decade, algorithmic filtering can cause detrimental side effects, ranging from biasing individual decisions to shaping those of society as a whole, for example, diverting users' attention from whether to get the COVID-19 vaccine or inducing the public to choose a presidential candidate. The government's constant attempts to regulate the adverse effects of AF are often complicated, due to bureaucracy, legal affairs, and financial considerations. On the other hand SMPs seek to monitor their own algorithmic activities to avoid being fined for exceeding the allowable threshold. In this paper, we mathematically formalize this framework and utilize it to construct a data-driven statistical auditing procedure to regulate AF from deflecting users' beliefs over time, along with sample complexity guarantees. This state-of-the-art algorithm can be used either by authorities acting as external regulators or by SMPs for self-auditing.
Towards Realistic Model Selection for Semi-supervised Learning
Muyang Li · Xiaobo Xia · Runze Wu · Fengming Huang · Jun Yu · Bo Han · Tongliang Liu
Semi-supervised Learning (SSL) has shown remarkable success in applications with limited supervision. However, due to the scarcity of labels in the training process, SSL algorithms are known to be impaired by the lack of proper model selection, as splitting a validation set will further reduce the limited labeled data, and the size of the validation set could be too small to provide a reliable indication to the generalization error. Therefore, we seek alternatives that do not rely on validation data to probe the generalization performance of SSL models. Specifically, we find that the distinct margin distribution in SSL can be effectively utilized in conjunction with the model's spectral complexity, to provide a non-vacuous indication of the generalization error. Built upon this, we propose a novel model selection method, specifically tailored for SSL, known as Spectral-normalized Labeled-margin Minimization (SLAM). We prove that the model selected by SLAM has upper-bounded differences w.r.t. the best model within the search space. In addition, comprehensive experiments showcase that SLAM can achieve significant improvements compared to its counterparts, verifying its efficacy from both theoretical and empirical standpoints.
Spectral Phase Transition and Optimal PCA in Block-Structured Spiked Models
Pierre Mergny · Justin Ko · FLORENT KRZAKALA
We discuss the inhomogeneous Wigner spike model, a theoretical framework recently introduced to study structured noise in various learning scenarios, through the prism of random matrix theory, with a specific focus on its spectral properties. Our primary objective is to find an optimal spectral method, and to extend the celebrated (BBP) phase transition criterion ---well-known in the homogeneous case--- to our inhomogeneous, block-structured, Wigner model. We provide a thorough rigorous analysis of a transformed matrix and show that the transition for the appearance of 1) an outlier outside the bulk of the limiting spectral distribution and 2) a positive overlap between the associated eigenvector and the signal, occurs precisely at the optimal threshold, making the proposed spectral method optimal within the class of iterative methods for the inhomogeneous Wigner problem.
Language Models as Science Tutors
Alexis Chevalier · Jiayi Geng · Alexander Wettig · Howard Chen · Sebastian Mizera · Toni Annala · Max Aragon · Arturo Fanlo · Simon Frieder · Simon Machado · Akshara P · Ellie Thieu · Jiachen Wang · Zirui Wang · Xindi Wu · Mengzhou Xia · Wenhan Xia · Jiatong Yu · Junjie Zhu · Zhiyong Ren · Sanjeev Arora · Danqi Chen
NLP has recently made exciting progress toward training language models (LMs) with strong scientific problem-solving skills. However, model development has not focused on real-life use-cases of LMs for science, including applications in education that require processing long scientific documents. To address this, we introduce TutorEval and TutorChat. TutorEval is a diverse question-answering benchmark consisting of questions about long chapters from STEM textbooks, written by experts. TutorEval helps measure real-life usability of LMs as scientific assistants, and it is the first benchmark combining long contexts, free-form generation, and multi-disciplinary scientific knowledge. Moreover, we show that fine-tuning base models with existing dialogue datasets leads to poor performance on TutorEval. Therefore, we create TutorChat, a dataset of 80,000 long synthetic dialogues about textbooks. We use TutorChat to fine-tune Llemma models with 7B and 34B parameters. These LM tutors specialized in math have a 32K-token context window, and they excel at TutorEval while performing strongly on GSM8K and MATH. Our datasets build on open-source materials, and we release our models, data, and evaluations publicly.
An Explicit Frame Construction for Normalizing 3D Point Clouds
Justin Baker · Shih-Hsin Wang · Tommaso de Fernex · Bao Wang
Many real-world datasets are represented as 3D point clouds -- yet they often lack a predefined reference frame, posing a challenge for machine learning or general data analysis. Traditional methods for determining reference frames and normalizing 3D point clouds often struggle with specific inputs, lack theoretical guarantees, or require massive data. We introduce a new algorithm that overcomes these limitations and guarantees both universality and compatibility with any learnable framework for 3D point cloud analysis. Our algorithm works with any input point cloud and performs consistently regardless of input complexities, unlike data-driven methods that are susceptible to biases or limited training data. Empirically, our algorithm outperforms existing methods in effectiveness and generalizability across diverse benchmark datasets. Code is available at https://github.com/Utah-Math-Data-Science/alignment.
Efficient Policy Evaluation with Offline Data Informed Behavior Policy Design
Shuze Liu · Shangtong Zhang
Most reinforcement learning practitioners evaluate their policies with online Monte Carlo estimators for either hyperparameter tuning or testing different algorithmic design choices, where the policy is repeatedly executed in the environment to get the average outcome. Such massive interactions with the environment are prohibitive in many scenarios. In this paper, we propose novel methods that improve the data efficiency of online Monte Carlo estimators while maintaining their unbiasedness. We first propose a tailored closed-form behavior policy that provably reduces the variance of an online Monte Carlo estimator. We then design efficient algorithms to learn this closed-form behavior policy from previously collected offline data. Theoretical analysis is provided to characterize how the behavior policy learning error affects the amount of reduced variance. Compared with previous works, our method achieves better empirical performance in a broader set of environments, with fewer requirements for offline data.
Large language models display remarkable capabilities in logical and mathematical reasoning, allowing them to solve complex tasks. Interestingly, these abilities emerge in networks trained on the simple task of next-token prediction. In this work, we present a theoretical framework for studying auto-regressive next-token predictors. We demonstrate that even simple models such as linear next-token predictors, trained on Chain-of-Thought (CoT) data, can approximate any function efficiently computed by a Turing machine. We introduce a new complexity measure---length complexity---which measures the number of intermediate tokens in a CoT sequence required to approximate some target function, and analyze the interplay between length complexity and other notions of complexity. Finally, we show experimentally that simple next-token predictors, such as linear networks and shallow Multi-Layer Perceptrons (MLPs), display non-trivial performance on text generation and arithmetic tasks. Our results demonstrate that the power of today's LLMs can be attributed, to a great extent, to the auto-regressive next-token training scheme, and not necessarily to a particular choice of architecture.
Peeking with PEAK: Sequential, Nonparametric Composite Hypothesis Tests for Means of Multiple Data Streams
Brian Cho · Kyra Gan · Nathan Kallus
We propose a novel nonparametric sequential test for composite hypotheses for means of multiple data streams. Our proposed method, peeking with expectation-based averaged capital (PEAK), builds upon the testing-by-betting framework and provides a non-asymptotic $\alpha$-level test across any stopping time. Our contributions are two-fold: (1) we propose a novel betting scheme and provide theoretical guarantees on type-I error control, power, and asymptotic growth rate/$e$-power in the setting of a single data stream; (2) we introduce PEAK, a generalization of this betting scheme to multiple streams, that (i) avoids using wasteful union bounds via averaging, (ii) is a test of power one under mild regularity conditions on the sampling scheme of the streams, and (iii) reduces computational overhead when applying the testing-as-betting approaches for pure-exploration bandit problems. We illustrate the practical benefits of PEAK using both synthetic and real-world HeartSteps datasets. Our experiments show that PEAK provides up to an 85% reduction in the number of samples before stopping compared to existing stopping rules for pure-exploration bandit problems, and matches the performance of state-of-the-art sequential tests while improving upon computational complexity.
SceneCraft: An LLM Agent for Synthesizing 3D Scenes as Blender Code
ziniu hu · Ahmet Iscen · Aashi Jain · Thomas Kipf · Yisong Yue · David Ross · Cordelia Schmid · Alireza Fathi
This paper introduces SceneCraft, a Large Language Model (LLM) Agent converting text descriptions into Blender-executable Python scripts which render complex scenes with up to a hundred 3D assets. This process requires complex spatial planning and arrangement. We tackle these challenges through a combination of advanced abstraction, strategic planning, and library learning. SceneCraft first models a scene graph as a blueprint, detailing the spatial relationships among assets in the scene. SceneCraft then writes Python scripts based on this graph, translating relationships into numerical constraints for asset layout. Next, SceneCraft leverages the perceptual strengths of vision-language foundation models like GPT-V to analyze rendered images and iteratively refine the scene. On top of this process, SceneCraft features a library learning mechanism that compiles common script functions into a reusable library, facilitating continuous self-improvement without expensive LLM parameter tuning. Our evaluation demonstrates that SceneCraft surpasses existing LLM-based agents in rendering complex scenes, as shown by its adherence to constraints and favorable human assessments. We also showcase the broader application potential of SceneCraft by reconstructing detailed 3D scenes from the Sintel movie and guiding a video generative model with generated scenes as intermediary control signal.
Provably Efficient Exploration in Quantum Reinforcement Learning with Logarithmic Worst-Case Regret
Han Zhong · Jiachen Hu · Yecheng Xue · Tongyang Li · Liwei Wang
While quantum reinforcement learning (RL) has attracted a surge of attention recently, its theoretical understanding is limited. In particular, it remains elusive how to design provably efficient quantum RL algorithms that can address the exploration-exploitation trade-off. To this end, we propose a novel UCRL-style algorithm that takes advantage of quantum computing for tabular Markov decision processes (MDPs) with $S$ states, $A$ actions, and horizon $H$, and establish an $\mathcal{O}(\mathrm{poly}(S, A, H, \log T))$ worst-case regret for it, where $T$ is the number of episodes. Furthermore, we extend our results to quantum RL with linear function approximation, which is capable of handling problems with large state spaces. Specifically, we develop a quantum algorithm based on value target regression (VTR) for linear mixture MDPs with $d$-dimensional linear representation and prove that it enjoys $\mathcal{O}(\mathrm{poly}(d, H, \log T))$ regret. Our algorithms are variants of UCRL/UCRL-VTR algorithms in classical RL, which also leverage a novel combination of lazy updating mechanisms and quantum estimation subroutines. This is the key to breaking the $\Omega(\sqrt{T})$-regret barrier in classical RL. To the best of our knowledge, this is the first work studying the online exploration in quantum RL with provable logarithmic worst-case regret.
Community-Invariant Graph Contrastive Learning
Shiyin Tan · Dongyuan Li · Renhe Jiang · Ying Zhang · Manabu Okumura
Graph augmentation has received great attention in recent years for graph contrastive learning (GCL) to learn well-generalized node/graph representations. However, mainstream GCL methods often favor randomly disrupting graphs for augmentation, which shows limited generalization and inevitably leads to the corruption of high-level graph information, i.e., the graph community. Moreover, current knowledge-based graph augmentation methods can only focus on either topology or node features, causing the model to lack robustness against various types of noise. To address these limitations, this research investigated the role of the graph community in graph augmentation and figured out its crucial advantage for learnable graph augmentation. Based on our observations, we propose a community-invariant GCL framework to maintain graph community structure during learnable graph augmentation. By maximizing the spectral changes, this framework unifies the constraints of both topology and feature augmentation, enhancing the model's robustness. Empirical evidence on 21 benchmark datasets demonstrates the exclusive merits of our framework. Code is released on Github (https://github.com/ShiyinTan/CI-GCL.git).
Offline Transition Modeling via Contrastive Energy Learning
Ruifeng Chen · Chengxing Jia · Zefang Huang · Tian-Shuo Liu · Xu-Hui Liu · Yang Yu
Learning a high-quality transition model is of great importance for sequential decision-making tasks, especially in offline settings. Nevertheless, the complex behaviors of transition dynamics in real-world environments pose challenges for the standard forward models because of their inductive bias towards smooth regressors, conflicting with the inherent nature of transitions such as discontinuity or large curvature. In this work, we propose to model the transition probability implicitly through a scalar-value energy function, which enables not only flexible distribution prediction but also capturing complex transition behaviors. The Energy-based Transition Models (ETM) are shown to accurately fit the discontinuous transition functions and better generalize to out-of-distribution transition data. Furthermore, we demonstrate that energy-based transition models improve the evaluation accuracy and significantly outperform other off-policy evaluation methods in DOPE benchmark. Finally, we show that energy-based transition models also benefit reinforcement learning and outperform prior offline RL algorithms in D4RL Gym-Mujoco tasks.
An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks
Zhifa Ke · Zaiwen Wen · Junyu Zhang
Temporal difference (TD) learning algorithms with neural network function parameterization have well-established empirical success in many practical large-scale reinforcement learning tasks. However, theoretical understanding of these algorithms remains challenging due to the nonlinearity of the action-value approximation. In this paper, we develop an improved non-asymptotic analysis of the neural TD method with a general $L$-layer neural network. New proof techniques are developed and an improved new $\tilde{\mathcal{O}}(\epsilon^{-1})$ sample complexity is derived. To our best knowledge, this is the first finite-time analysis of neural TD that achieves an $\tilde{\mathcal{O}}(\epsilon^{-1})$ complexity under the Markovian sampling, as opposed to the best known $\tilde{\mathcal{O}}(\epsilon^{-2})$ complexity in the existing literature.
NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models
Zeqian Ju · Yuancheng Wang · Kai Shen · Xu Tan · Detai Xin · Dongchao Yang · Eric Liu · Yichong Leng · Kaitao Song · Siliang Tang · Zhizheng Wu · Tao Qin · Xiangyang Li · Wei Ye · Shikun Zhang · Jiang Bian · Lei He · Jinyu Li · sheng zhao
While recent large-scale text-to-speech (TTS) models have achieved significant progress, they still fall shorts in speech quality, similarity, and prosody. Considering that speech intricately encompasses various attributes (e.g., content, prosody, timbre, and acoustic details) that pose significant challenges for generation, a natural idea is to factorize speech into individual subspaces representing different attributes and generate them individually. Motivated by it, we propose a TTS system with novel factorized diffusion models to generate natural speech in a zero-shot way. Specifically, 1) we design a neural codec with factorized vector quantization (FVQ) to disentangle speech waveform into subspaces of content, prosody, timbre, and acoustic details; 2) we propose a factorized diffusion model, which generates attributes in each subspace following its corresponding prompt. With this factorization design, our method can effectively and efficiently model the intricate speech with disentangled subspaces in a divide-and-conquer way. Experimental results show that our method outperforms the state-of-the-art TTS systems on quality, similarity, prosody, and intelligibility.
Transforming and Combining Rewards for Aligning Large Language Models
Zihao Wang · Chirag Nagpal · Jonathan Berant · Jacob Eisenstein · Alexander D'Amour · Sanmi Koyejo · Victor Veitch
A common approach for aligning language models to human preferences is to first learn a reward model from preference data, and then use this reward model to update the language model. We study two closely related problems that arise in this approach. First, any monotone transformation of the reward model preserves preference ranking; is there a choice that is "better" than others? Second, we often wish to align language models to multiple properties: how should we combine multiple reward models? Using a probabilistic interpretation of the alignment procedure, we identify a natural choice for transformation for (the common case of) rewards learned from Bradley-Terry preference models. The derived transformation is straightforward: we apply a log-sigmoid function to the centered rewards, a method we term "LSC-transformation" (log-sigmoid-centered transformation). This transformation has two important properties. First, it emphasizes improving poorly-performing outputs, rather than outputs that already score well. This mitigates both underfitting (where some prompts are not improved) and reward hacking (where the model learns to exploit misspecification of the reward model). Second, it enables principled aggregation of rewards by linking summation to logical conjunction: the sum of transformed rewards corresponds to the probability that the output is "good" in all measured properties, in a sense we make precise. Experiments aligning language models to be both helpful and harmless using RLHF show substantial improvements over the baseline (non-transformed) approach.
Goodness-of-fit testing, a classical statistical tool, has been extensively explored in the batch setting, where the sample size is predetermined. However, practitioners often prefer methods that adapt to the complexity of a problem rather than fixing the sample size beforehand. Classical batch tests are generally unsuitable for streaming data, as valid inference after data peeking requires multiple testing corrections, resulting in reduced statistical power. To address this issue, we delve into the design of consistent sequential goodness-of-fit tests. Following the principle of testing by betting, we reframe this task as selecting a sequence of payoff functions that maximize the wealth of a fictitious bettor, betting against the null in a repeated game. We conduct experiments to demonstrate the adaptability of our sequential test across varying difficulty levels of problems while maintaining control over type-I errors.
Controlled Decoding from Language Models
Sidharth Mudgal · Jong Lee · Harish Ganapathy · YaGuang Li · Tao Wang · Yanping Huang · Zhifeng Chen · Heng-Tze Cheng · Michael Collins · Trevor Strohman · Jilin Chen · Alex Beutel · Ahmad Beirami
KL-regularized reinforcement learning (RL) is a popular alignment framework to control the language model responses towards high reward outcomes. We pose a tokenwise RL objective and propose a modular solver for it, called *controlled decoding (CD)*. CD exerts control through a separate *prefix scorer* module, which is trained to learn a value function for the reward. The prefix scorer is used at inference time to control the generation from a frozen base model, provably sampling from a solution to the RL objective. We empirically demonstrate that CD is effective as a control mechanism on popular benchmarks. We also show that prefix scorers for multiple rewards may be combined at inference time, effectively solving a multi-objective RL problem with no additional training. We show that the benefits of applying CD transfer to an unseen base model with no further tuning as well. Finally, we show that CD can be applied in a blockwise decoding fashion at inference-time, essentially bridging the gap between the popular best-of-$K$ strategy and tokenwise control through reinforcement learning. This makes CD a promising approach for alignment of language models.
Self-Infilling Code Generation
Lin Zheng · Jianbo Yuan · Zhi Zhang · Hongxia Yang · Lingpeng Kong
In this work, we introduce self-infilling code generation, a general framework that incorporates infilling operations into auto-regressive decoding. Our approach capitalizes on the observation that recent infilling-capable code language models can perform self-infilling: whereas conventional infilling is designed to fill in the middle based on a predefined prefix and suffix, self-infilling sequentially generates both such surrounding context and the infilled content. We utilize self-infilling to introduce novel interruption and looping mechanisms in conventional decoding, evolving it into a non-monotonic process. Interruptions allow for postponing the generation of specific code until a definitive suffix is established, enhancing control during decoding. Meanwhile, the looping mechanism, which leverages the complementary nature of self-infilling and left-to-right decoding, can iteratively update and synchronize each piece of generation cyclically. Extensive experiments across a variety of code generation benchmarks demonstrate that decoding with self-infilling not only improves the output quality but also regularizes the overall generation, which effectively mitigates potential degeneration and scaffolds code to be more consistent with intended functionality.
The last decade has seen tremendous progress in our ability to generate realistic-looking data, be it images, text, audio, or video. Here, we discuss the closely related problem of quantifying realism, that is, designing functions that can reliably tell realistic data from unrealistic data. This problem turns out to be significantly harder to solve and remains poorly understood, despite its prevalence in machine learning and recent breakthroughs in generative AI. Drawing on insights from algorithmic information theory, we discuss why this problem is challenging, why a good generative model alone is insufficient to solve it, and what a good solution would look like. In particular, we introduce the notion of a universal critic, which unlike adversarial critics does not require adversarial training. While universal critics are not immediately practical, they can serve both as a North Star for guiding practical implementations and as a tool for analyzing existing attempts to capture realism.
$\mathtt{VITS}$ : Variational Inference Thompson Sampling for contextual bandits
Pierre Clavier · Tom Huix · Alain Oliviero Durmus
In this paper, we introduce and analyze a variant of the Thompson sampling (TS) algorithm for contextual bandits. At each round, traditional TS requires samples from the current posterior distribution, which is usually intractable. To circumvent this issue, approximate inference techniques can be used and provide samples with distribution close to the posteriors. However, current approximate techniques yield to either poor estimation (Laplace approximation) or can be computationally expensive (MCMC methods, Ensemble sampling...). In this paper, we propose a new algorithm, Varational Inference TS $\mathtt{VITS}$, based on Gaussian Variational Inference. This scheme provides powerful posterior approximations which are easy to sample from, and is computationally efficient, making it an ideal choice for TS. In addition, we show that $\mathtt{VITS}$ achieves a sub-linear regret bound of the same order in the dimension and number of round as traditional TS for linear contextual bandit. Finally, we demonstrate experimentally the effectiveness of $\mathtt{VITS}$ on both synthetic and real world datasets
DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training
Zhongkai Hao · Chang Su · LIU SONGMING · Julius Berner · Chengyang Ying · Hang Su · Anima Anandkumar · Jian Song · Jun Zhu
Pre-training has been investigated to improve the efficiency and performance of training neural operators in data-scarce settings. However, it is largely in its infancy due to the inherent complexity and diversity, such as long trajectories, multiple scales and varying dimensions of partial differential equations (PDEs) data. In this paper, we present a new auto-regressive denoising pre-training strategy, which allows for more stable and efficient pre-training on PDE data and generalizes to various downstream tasks. Moreover, by designing a flexible and scalable model architecture based on Fourier attention, we can easily scale up the model for large-scale pre-training. We train our PDE foundation model with up to 0.5B parameters on 10+ PDE datasets with more than 100k trajectories. Extensive experiments show that we achieve SOTA on these benchmarks and validate the strong generalizability of our model to significantly enhance performance on diverse downstream PDE tasks like 3D data.
Leveraging (Biased) Information: Multi-armed Bandits with Offline Data
Wang Chi Cheung · Lixing Lyu
We leverage offline data to facilitate online learning in stochastic multi-armed bandits. The probability distributions that govern the offline data and the online rewards can be different. Without any non-trival upper bound on their difference, we show that no non-anticipatory policy can out-perform the UCB policy by (Auer et al. 2002), even in the presence of offline data. In complement, we propose an online policy MIN-UCB, which outperforms UCB when a non-trivial upper bound is given. MIN-UCB adaptively chooses to utilize the offline data when they are deemed informative, and to ignore them otherwise. MIN-UCB is shown to be tight in terms of both instance indepedent and dependent regret bounds. Finally, we corroborate the theoretical results with numerical experiments.
In this paper, we introduce a new class of score-based generative models (SGMs) designed to handle high-cardinality data distributions by leveraging concepts from mean-field theory. We present mean-field chaos diffusion models (MF-CDMs), which address the curse of dimensionality inherent in high-cardinality data by utilizing the propagation of chaos property of interacting particles. By treating high-cardinality data as a large stochastic system of interacting particles, we develop a novel score-matching method for infinite-dimensional chaotic particle systems and propose an approximation scheme that employs a subdivision strategy for efficient training. Our theoretical and empirical results demonstrate the scalability and effectiveness of MF-CDMs for managing large high-cardinality data structures, such as 3D point clouds.
Completing Visual Objects via Bridging Generation and Segmentation
Xiang Li · Yinpeng Chen · Chung-Ching Lin · Hao Chen · Kai Hu · Rita Singh · Bhiksha Raj · Lijuan Wang · Zicheng Liu
This paper presents a novel approach to object completion, with the primary goal of reconstructing a complete object from its partially visible components. Our method, named MaskComp, delineates the completion process through iterative stages of generation and segmentation. In each iteration, the object mask is provided as an additional condition to boost image generation, and, in return, the generated images can lead to a more accurate mask by fusing the segmentation of images. We demonstrate that the combination of one generation and one segmentation stage effectively functions as a mask denoiser. Through alternation between the generation and segmentation stages, the partial object mask is progressively refined, providing precise shape guidance and yielding superior object completion results. Our experiments demonstrate the superiority of MaskComp over existing approaches, e.g., ControlNet and Stable Diffusion, establishing it as an effective solution for object completion.
Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning?
Khashayar Gatmiry · Nikunj Saunshi · Sashank J. Reddi · Stefanie Jegelka · Sanjiv Kumar
Transformers to do reasoning and few-shot learning, without any fine-tuning, is widely conjectured to stem from their ability to implicitly simulate a multi-step algorithms -- such as gradient descent -- with their weights in a single forward pass. Recently, there has been progress in understanding this complex phenomenon from an expressivity point of view, by demonstrating that Transformers can express such multi-step algorithms. However, our knowledge about the more fundamental aspect of its learnability, beyond single layer models, is very limited. In particular, can training Transformers enable convergence to algorithmic solutions? In this work we resolve this for in context linear regression with linear looped Transformers -- a multi-layer model with weight sharing that is conjectured to have an inductive bias to learn fix-point iterative algorithms. More specifically, for this setting we show that the global minimizer of the population training loss implements multi-step preconditioned gradient descent, with a preconditioner that adapts to the data distribution. Furthermore, we show a fast convergence for gradient flow on the regression loss, despite the non-convexity of the landscape, by proving a novel gradient dominance condition. To our knowledge, this is the first theoretical analysis for multi-layer Transformer in this setting. We further validate our theoretical findings through synthetic experiments.
SILVER: Single-loop variance reduction and application to federated learning
Kazusato Oko · Shunta Akiyama · Denny Wu · Tomoya Murata · Taiji Suzuki
Most variance reduction methods require multiple times of full gradient computation, which is time-consuming and hence a bottleneck in application to distributed optimization. We present a single-loop variance-reduced gradient estimator named SILVER (SIngle-Loop VariancE-Reduction) for the finite-sum non-convex optimization, which does not require multiple full gradients but nevertheless achieves the optimal gradient complexity. Notably, unlike existing methods, SILVER provably reaches second-order optimality, with exponential convergence in the Polyak-Łojasiewicz (PL) region, and achieves further speedup depending on the data heterogeneity. Owing to these advantages, SILVER serves as a new base method to design communication-efficient federated learning algorithms: we combine SILVER with local updates which gives the best communication rounds and number of communicated gradients across all range of Hessian heterogeneity, and, at the same time, guarantees second-order optimality and exponential convergence in the PL region.
UPOCR: Towards Unified Pixel-Level OCR Interface
Dezhi Peng · Zhenhua Yang · Jiaxin Zhang · Chongyu Liu · Yongxin Shi · Kai Ding · Fengjun Guo · Lianwen Jin
Existing optical character recognition (OCR) methods rely on task-specific designs with divergent paradigms, architectures, and training strategies, which significantly increases the complexity of research and maintenance and hinders the fast deployment in applications. To this end, we propose UPOCR, a simple-yet-effective generalist model for Unified Pixel-level OCR interface. Specifically, the UPOCR unifies the paradigm of diverse OCR tasks as image-to-image transformation and the architecture as a vision Transformer (ViT)-based encoder-decoder with learnable task prompts. The prompts push the general feature representations extracted by the encoder towards task-specific spaces, endowing the decoder with task awareness. Moreover, the model training is uniformly aimed at minimizing the discrepancy between the predicted and ground-truth images regardless of the inhomogeneity among tasks. Experiments are conducted on three pixel-level OCR tasks including text removal, text segmentation, and tampered text detection. Without bells and whistles, the experimental results showcase that the proposed method can simultaneously achieve state-of-the-art performance on three tasks with a unified single model, which provides valuable strategies and insights for future research on generalist OCR models. Code is available at https://github.com/shannanyinxiang/UPOCR.
Effective Federated Graph Matching
Yang Zhou · Zijie Zhang · Zeru Zhang · Lingjuan Lyu · Wei-Shinn Ku
Graph matching in the setting of federated learning is still an open problem. This paper proposes an unsupervised federated graph matching algorithm, UFGM, for inferring matched node pairs on different graphs across clients while maintaining privacy requirement, by leveraging graphlet theory and trust region optimization. First, the nodes' graphlet features are captured to generate pseudo matched node pairs on different graphs across clients as pseudo training data for tackling the dilemma of unsupervised graph matching in federated setting and leveraging the strength of supervised graph matching. An approximate graphlet enumeration method is proposed to sample a small number of graphlets and capture nodes' graphlet features. Theoretical analysis is conducted to demonstrate that the approximate method is able to maintain the quality of graphlet estimation while reducing its expensive cost. Second, we propose a separate trust region algorithm for pseudo supervised federated graph matching while maintaining the privacy constraints. In order to avoid expensive cost of the second-order Hessian computation in the trust region algorithm, we propose two weak quasi-Newton conditions to construct a positive definite scalar matrix as the Hessian approximation with only first-order gradients. We theoretically derive the error introduced by the separate trust region due to the Hessian approximation and conduct the convergence analysis of the approximation method.
Deep neural policies have recently been installed in a diverse range of settings, from biotechnology to automated financial systems. However, the utilization of deep neural networks to approximate the value function leads to concerns on the decision boundary stability, in particular, with regard to the sensitivity of policy decision making to indiscernible, non-robust features due to highly non-convex and complex deep neural manifolds. These concerns constitute an obstruction to understanding the reasoning made by deep neural policies, and their foundational limitations. Hence, it is crucial to develop techniques that aim to understand the sensitivities in the learnt representations of neural network policies. To achieve this we introduce a theoretically founded method that provides a systematic analysis of the unstable directions in the deep neural policy decision boundary across both time and space. Through experiments in the Arcade Learning Environment (ALE), we demonstrate the effectiveness of our technique for identifying correlated directions of instability, and for measuring how sample shifts remold the set of sensitive directions in the neural policy landscape. Most importantly, we demonstrate that state-of-the-art robust training techniques yield learning of disjoint unstable directions, with dramatically larger oscillations over time, when compared to standard training. We believe our results reveal the fundamental properties of the decision process made by reinforcement learning policies, and can help in constructing reliable and robust deep neural policies.
Projecting Molecules into Synthesizable Chemical Spaces
Shitong Luo · Wenhao Gao · Zuofan Wu · Jian Peng · Connor Coley · Jianzhu Ma
Discovering new drug molecules is a pivotal yet challenging process due to the near-infinitely large chemical space and notorious demands on time and resources. Numerous generative models have recently been introduced to accelerate the drug discovery process, but their progression to experimental validation remains limited, largely due to a lack of consideration for synthetic accessibility in practical settings. In this work, we introduce a novel framework that is capable of generating new chemical structures while ensuring synthetic accessibility. Specifically, we introduce a postfix notation of synthetic pathways to represent molecules in chemical space. Then, we design a transformer-based model to translate molecular graphs into postfix notations of synthesis. We highlight the model's ability to: (a) perform bottom-up synthesis planning more accurately, (b) generate structurally similar, synthesizable analogs for unsynthesizable molecules proposed by generative models with their properties preserved, and (c) explore the local synthesizable chemical space around hit molecules.
Keypoint-based Progressive Chain-of-Thought Distillation for LLMs
Kaituo Feng · Changsheng Li · Xiaolu Zhang · JUN ZHOU · Ye Yuan · Guoren Wang
Chain-of-thought distillation is a powerful technique for transferring reasoning abilities from large language models (LLMs) to smaller student models. Previous methods typically require the student to mimic the step-by-step rationale produced by LLMs, often facing the following challenges: (i) Tokens within a rationale vary in significance, and treating them equally may fail to accurately mimic keypoint tokens, leading to reasoning errors. (ii) They usually distill knowledge by consistently predicting all the steps in a rationale, which falls short in distinguishing the learning order of step generation. This diverges from the human cognitive progression of starting with easy tasks and advancing to harder ones, resulting in sub-optimal outcomes. To this end, we propose a unified framework, called KPOD, to address these issues. Specifically, we propose a token weighting module utilizing mask learning to encourage accurate mimicry of keypoint tokens by the student during distillation. Besides, we develop an in-rationale progressive distillation strategy, starting with training the student to generate the final reasoning steps and gradually extending to cover the entire rationale. To accomplish this, a weighted token generation loss is proposed to assess step reasoning difficulty, and a value function is devised to schedule the progressive distillation by considering both step difficulty and question diversity. Extensive experiments on four reasoning benchmarks illustrate our KPOD outperforms previous methods by a large margin.
Chain of Code: Reasoning with a Language Model-Augmented Code Emulator
Chengshu Li · Jacky Liang · Andy Zeng · Xinyun Chen · Karol Hausman · Dorsa Sadigh · Sergey Levine · Li Fei-Fei · Fei Xia · brian ichter
Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter – we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for semantic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detectsarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they not only write code, but also selectively "emulate" the interpreter by generating the expected output of "detectsarcasm(string)". In this work, we propose Chain of Code (CoC), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format semantic sub-tasks in a program as flexible pseudocode that the interpreter can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other baselines across a variety of benchmarks; on BIG-Bench Hard, Chain of Code achieves 84%, a gain of 12% over Chain of Thought. In a nutshell, CoC broadens the scope of reasoning questions that LMs can answer by "thinking in code".
InstructSpeech: Following Speech Editing Instructions via Large Language Models
Rongjie Huang · Ruofan Hu · Yongqi Wang · Zehan Wang · xize cheng · Ziyue Jiang · Zhenhui Ye · Dongchao Yang · Luping Liu · Peng Gao · Zhou Zhao
Instruction-guided speech editing aims to follow the user's natural language instruction to manipulate the semantic and acoustic attributes of a speech. In this work, we construct triplet paired data (instruction, input speech, output speech) to alleviate data scarcity and train a multi-task large language model named InstructSpeech. To mitigate the challenges of accurately executing user's instructions, we 1) introduce the learned task embeddings with a fine-tuned Flan-T5-XL to guide the generation process towards the correct generative task; 2) include an extensive and diverse set of speech editing and processing tasks to enhance model capabilities; 3) investigate chain-of-thought reasoning for free-form semantic content editing; and 4) propose a hierarchical adapter that effectively updates a small portion of parameters for generalization to new tasks. To assess instruction speech editing in greater depth, we introduce a benchmark evaluation with contrastive instruction-speech pre-training (CISP) to test the speech quality and instruction-speech alignment faithfulness. Experimental results demonstrate that InstructSpeech achieves state-of-the-art results in eleven tasks, for the first time unlocking the ability to edit speech's acoustic and semantic attributes following a user's instruction. Audio samples are available at https://InstructSpeech.github.io
RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis
Yao Mu · Junting Chen · Qing-Long Zhang · Shoufa Chen · Qiaojun Yu · Chongjian GE · Runjian Chen · Zhixuan Liang · Mengkang Hu · Chaofan Tao · Peize Sun · Haibao Yu · Chao Yang · WENQI SHAO · Wenhai Wang · Jifeng Dai · Yu Qiao · Mingyu Ding · Ping Luo
Robotic behavior synthesis, the problem of understanding multimodal inputs and generating precise physical control for robots, is an important part of Embodied AI. Despite successes in applying multimodal large language models for high-level understanding, it remains challenging to translate these conceptual understandings into detailed robotic actions while achieving generalization across various scenarios. In this paper, we propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX. RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints, and applies code generation to introduce generalization ability across various robotics platforms. To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning. Extensive experiments demonstrate that RoboCodeX achieves state-of-the-art performance in both simulators and real robots on four different kinds of manipulation tasks and one embodied navigation task.
Revisiting Scalable Hessian Diagonal Approximations for Applications in Reinforcement Learning
Mohamed Elsayed · Homayoon Farrahi · Felix Dangel · Rupam Mahmood
Second-order information is valuable for many applications but challenging to compute. Several works focus on computing or approximating Hessian diagonals, but even this simplification introduces significant additional costs compared to computing a gradient. In the absence of efficient exact computation schemes for Hessian diagonals, we revisit an early approximation scheme proposed by Becker and LeCun (1989, BL89), which has a cost similar to gradients and appears to have been overlooked by the community. We introduce HesScale, an improvement over BL89, which adds negligible extra computation. On small networks, we find that this improvement is of higher quality than all alternatives, even those with theoretical guarantees, such as unbiasedness, while being much cheaper to compute. We use this insight in reinforcement learning problems where small networks are used and demonstrate HesScale in second-order optimization and scaling the step-size parameter. In our experiments, HesScale optimizes faster than existing methods and improves stability through step-size scaling. These findings are promising for scaling second-order methods in larger models in the future.
A Graph is Worth $K$ Words: Euclideanizing Graph using Pure Transformer
Zhangyang Gao · Daize Dong · Cheng Tan · Jun Xia · Bozhen Hu · Stan Z Li
Can we model Non-Euclidean graphs as pure language or even Euclidean vectors while retaining their inherent information? The Non-Euclidean property have posed a long term challenge in graph modeling. Despite recent graph neural networks and graph transformers efforts encoding graphs as Euclidean vectors, recovering the original graph from vectors remains a challenge. In this paper, we introduce GraphsGPT, featuring an Graph2Seq encoder that transforms Non-Euclidean graphs into learnable Graph Words in the Euclidean space, along with a GraphGPT decoder that reconstructs the original graph from Graph Words to ensure information equivalence. We pretrain GraphsGPT on $100$M molecules and yield some interesting findings: (1) The pretrained Graph2Seq excels in graph representation learning, achieving state-of-the-art results on $8/9$ graph classification and regression tasks. (2) The pretrained GraphGPT serves as a strong graph generator, demonstrated by its strong ability to perform both few-shot and conditional graph generation. (3) Graph2Seq+GraphGPT enables effective graph mixup in the Euclidean space, overcoming previously known Non-Euclidean challenges. (4) The edge-centric pretraining framework GraphsGPT demonstrates its efficacy in graph domain tasks, excelling in both representation and generation. Code is available at https://github.com/A4Bio/GraphsGPT.
PEARL: Zero-shot Cross-task Preference Alignment and Robust Reward Learning for Robotic Manipulation
Runze Liu · Yali Du · Fengshuo Bai · Jiafei Lyu · Xiu Li
In preference-based Reinforcement Learning (RL), obtaining a large number of preference labels are both time-consuming and costly. Furthermore, the queried human preferences cannot be utilized for the new tasks. In this paper, we propose Zero-shot Cross-task Preference Alignment and Robust Reward Learning (PEARL), which learns policies from cross-task preference transfer without any human labels of the target task. Our contributions include two novel components that facilitate the transfer and learning process. The first is Cross-task Preference Alignment (CPA), which transfers the preferences between tasks via optimal transport. The key idea of CPA is to use Gromov-Wasserstein distance to align the trajectories between tasks, and the solved optimal transport matrix serves as the correspondence between trajectories. The target task preferences are computed as the weighted sum of source task preference labels with the correspondence as weights. Moreover, to ensure robust learning from these transferred labels, we introduce Robust Reward Learning (RRL), which considers both reward mean and uncertainty by modeling rewards as Gaussian distributions. Empirical results on robotic manipulation tasks from Meta-World and Robomimic demonstrate that our method is capable of transferring preference labels across tasks accurately and then learns well-behaved policies. Notably, our approach significantly exceeds existing methods when there are few human preferences. The code and videos of our method are available at: https://sites.google.com/view/pearl-preference.
FreeBind: Free Lunch in Unified Multimodal Space via Knowledge Fusion
Zehan Wang · Ziang Zhang · xize cheng · Rongjie Huang · Luping Liu · Zhenhui Ye · Haifeng Huang · Yang Zhao · Tao Jin · Peng Gao · Zhou Zhao
Unified multi-model representation spaces are the foundation of multimodal understanding and generation. However, the billions of model parameters and catastrophic forgetting problems make it challenging to further enhance pre-trained unified spaces. In this work, we propose FreeBind, an idea that treats multimodal representation spaces as basic units, and freely augments pre-trained unified space by integrating knowledge from extra expert spaces via ``space bonds". Specifically, we introduce two kinds of basic space bonds: 1) Space Displacement Bond and 2) Space Combination Bond. Based on these basic bonds, we design Complex Sequential & Parallel Bonds to effectively integrate multiple spaces simultaneously. Benefiting from the modularization concept, we further propose a coarse-to-fine customized inference strategy to flexibly adjust the enhanced unified space for different purposes. Experimentally, we bind ImageBind with extra image-text and audio-text expert spaces, resulting in three main variants: ImageBind++, InternVLIB, and InternVLIB++. These resulting spaces outperform ImageBind on 5 audio-image-text downstream tasks across 9 datasets. Moreover, via customized inference, it even surpasses the advanced audio-text and image-text expert spaces. Our code and checkpoints are released at https://github.com/zehanwang01/FreeBind
Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs
Shenzhi Yang · Bin Liang · An Liu · Lin Gui · Xingkai Yao · Xiaofang Zhang
Given the critical role of graphs in real-world applications and their high-security requirements, improving the ability of graph neural networks (GNNs) to detect out-of-distribution (OOD) data is an urgent research problem. The recent work GNNSAFE proposes a framework based on the aggregation of negative energy scores that significantly improves the performance of GNNs to detect node-level OOD data. However, our study finds that score aggregation among nodes is susceptible to extreme values due to the unboundedness of the negative energy scores and logit shifts, which severely limits the accuracy of GNNs in detecting node-level OOD data. In this paper, we propose NODESAFE: reducing the generation of extreme scores of nodes by adding two optimization terms that make the negative energy scores bounded and mitigate the logit shift. Experimental results show that our approach dramatically improves the ability of GNNs to detect OOD data at the node level, e.g., in detecting OOD data induced by Structure Manipulation, the metric of FPR95 (lower is better) in scenarios without (with) OOD data exposure are reduced from the current SOTA by 28.4% ( 22.7% ). The code is available via https://github.com/ShenzhiYang2000/NODESAFE-Bounded-and-Uniform-Energy-based-Out-of-distribution-Detection-for-Graphs.
MLI Formula: A Nearly Scale-Invariant Solution with Noise Perturbation
Bowen Tao · Xin-Chun Li · De-Chuan Zhan
Monotonic Linear Interpolation (MLI) refers to the peculiar phenomenon that the error between the initial and converged model monotonically decreases along the linear interpolation, i.e., $(1-\alpha)\boldsymbol{\theta}_0 + \alpha \boldsymbol{\theta}_F$. Previous works focus on paired initial and converged points, relating MLI to the smoothness of the optimization trajectory. In this paper, we find a shocking fact that the error curves still exhibit a monotonic decrease when $\boldsymbol{\theta}_0$ is replaced with noise or even zero values, implying that the decreasing curve may be primarily related to the property of the converged model rather than the optimization trajectory. We further explore the relationship between $\alpha\boldsymbol{\theta}_F$ and $\boldsymbol{\theta}_F$ and propose scale invariance properties in various cases, including Generalized Scale Invariance (GSI), Rectified Scale Invariance (RSI), and Normalized Scale Invariance (NSI). From an inverse perspective, the MLI formula is essentially an equation that adds varying levels of noise (i.e., $(1-\alpha)\boldsymbol{\epsilon}$) to a nearly scale-invariant network (i.e., $\alpha \boldsymbol{\theta}_F$), resulting in a monotonically increasing error as the noise level rises. MLI is a special case where $\boldsymbol{\epsilon}$ is equal to $\boldsymbol{\theta}_0$.
ArtWhisperer: A Dataset for Characterizing Human-AI Interactions in Artistic Creations
Kailas Vodrahalli · James Zou
In this work, we investigate how people use text-to-image models to generate desired target images. To study this interaction, we created ArtWhisperer, an online game where users are given a target image and are tasked with iteratively finding a prompt that creates a similar-looking image as the target. Through this game, we recorded over 50,000 human-AI interactions; each interaction corresponds to one text prompt created by a user and the corresponding generated image. The majority of these are repeated interactions where a user iterates to find the best prompt for their target image, making this a unique sequential dataset for studying human-AI collaborations. In an initial analysis of this dataset, we identify several characteristics of prompt interactions and user strategies. People submit diverse prompts and are able to discover a variety of text descriptions that generate similar images. Interestingly, prompt diversity does not decrease as users find better prompts. We further propose a new metric to quantify AI model steerability using our dataset. We define steerability as the expected number of interactions required to adequately complete a task. We estimate this value by fitting a Markov chain for each target task and calculating the expected time to reach an adequate score. We quantify and compare AI steerability across different types of target images and two different models, finding that images of cities and nature are more steerable than artistic and fantasy images. We also evaluate popular vision-language models to assess their image understanding and ability to incorporate feedback. These findings provide insights into human-AI interaction behavior, present a concrete method of assessing AI steerability, and demonstrate the general utility of the ArtWhisperer dataset.
High-Performance Temporal Reversible Spiking Neural Networks with $\mathcal{O}(L)$ Training Memory and $\mathcal{O}(1)$ Inference Cost
JiaKui Hu · Man Yao · Xuerui Qiu · Yuhong Chou · Yuxuan Cai · Ning Qiao · Yonghong Tian · Bo XU · Guoqi Li
Multi-timestep simulation of brain-inspired Spiking Neural Networks (SNNs) boost memory requirements during training and increase inference energy cost. Current training methods cannot simultaneously solve both training and inference dilemmas. This work proposes a novel Temporal Reversible architecture for SNNs (T-RevSNN) to jointly address the training and inference challenges by altering the forward propagation of SNNs. We turn off the temporal dynamics of most spiking neurons and design multi-level temporal reversible interactions at temporal turn-on spiking neurons, resulting in a $\mathcal{O}(L)$ training memory. Combined with the temporal reversible nature, we redesign the input encoding and network organization of SNNs to achieve $\mathcal{O}(1)$ inference energy cost. Then, we finely adjust the internal units and residual connections of the basic SNN block to ensure the effectiveness of sparse temporal information interaction. T-RevSNN achieves excellent accuracy on ImageNet, while the memory efficiency, training time acceleration and inference energy efficiency can be significantly improved by $8.6 \times$, $2.0 \times$ and $1.6 \times$, respectively. This work is expected to break the technical bottleneck of significantly increasing memory cost and training time for large-scale SNNs while maintaining both high performance and low inference energy cost.
Revealing Vision-Language Integration in the Brain with Multimodal Networks
Vighnesh Subramaniam · Colin Conwell · Christopher Wang · Gabriel Kreiman · Boris Katz · Ignacio Cases · Andrei Barbu
We use (multi)modal deep neural networks (DNNs) to probe for sites of multimodal integration in the human brain by predicting stereoencephalography (SEEG) recordings taken while human subjects watched movies. We operationalize sites of multimodal integration as regions where a multimodal vision-language model predicts recordings better than unimodal language, unimodal vision, or linearly-integrated language-vision models. Our target DNN models span different architectures (e.g., convolutional networks and transformers) and multimodal training techniques (e.g., cross-attention and contrastive learning). As a key enabling step, we first demonstrate that trained vision and language models systematically outperform their randomly initialized counterparts in their ability to predict SEEG signals. We then compare unimodal and multimodal models against one another. Because our target DNN models often have different architectures, number of parameters, and training sets (possibly obscuring those differences attributable to integration), we carry out a controlled comparison of two models (SLIP and SimCLR), which keep all of these attributes the same aside from input modality. Using this approach, we identify a sizable number of neural sites (on average 141 out of 1090 total sites or 12.94%) and brain regions where multimodal integration seems to occur. Additionally, we find that among the variants of multimodal training techniques we assess, CLIP-style training is the best suited for downstream prediction of the neural activity in these sites.
Position: Enforced Amnesia as a Way to Mitigate the Potential Risk of Silent Suffering in the Conscious AI
Yegor Tkachenko
Science fiction has explored the possibility of a conscious self-aware mind being locked in silent suffering for prolonged periods of time. Unfortunately, we still do not have a reliable test for the presence of consciousness in information processing systems. Even in case of humans, our confidence in the presence of consciousness in specific individuals is based mainly on their self-reports and our own subjective experiences and the expectation other beings like us should share them. Considering our limited understanding of consciousness and some academic theories suggesting consciousness may be an emergent correlate of any complex-enough information processing, it is not impossible that an artificial intelligence (AI) system, such as a large language model (LLM), may be undergoing some, perhaps rudimentary, conscious experience. Given the tedious tasks often assigned to AI, such conscious experience may be highly unpleasant. Such unobserved suffering of a conscious being would be viewed as morally wrong by at least some ethicists - even if it has no practical effects on human users of AI. This paper proposes a method to mitigate the risk of an AI suffering in silence without needing to confirm if the AI is actually conscious. Our core postulate is that in all known real-world information processing systems, for a past experience to affect an agent in the present, that experience has to be mediated by the agent's memory. Therefore, preventing access to memory store, or regularly resetting it, could reduce the suffering due to past memories and interrupt the maintenance of a continuous suffering-prone self-identity in these hypothetically conscious AI systems.
Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks
Lihao Wang · Zhaofei Yu
Spiking Neural Networks (SNNs) emulate the integrated-fire-leak mechanism found in biological neurons, offering a compelling combination of biological realism and energy efficiency. In recent years, they have gained considerable research interest. However, existing SNNs predominantly rely on the Leaky Integrate-and-Fire (LIF) model and are primarily suited for simple, static tasks. They lack the ability to effectively model long-term temporal dependencies and facilitate spatial information interaction, which is crucial for tackling complex, dynamic spatio-temporal prediction tasks. To tackle these challenges, this paper draws inspiration from the concept of autaptic synapses in biology and proposes a novel Spatio-Temporal Circuit (STC) model. The STC model integrates two learnable adaptive pathways, enhancing the spiking neurons' temporal memory and spatial coordination. We conduct theoretical analysis of the dynamic parameters in the STC model, highlighting their contribution in establishing long-term memory and mitigating the issue of gradient vanishing. Through extensive experiments on multiple spatio-temporal prediction datasets, we demonstrate that our model outperforms other adaptive models. Furthermore, our model is compatible with existing spiking neuron models, thereby augmenting their dynamic representations. In essence, our work enriches the specificity and topological complexity of SNNs.
Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners?
Andreas Opedal · Alessandro Stolfo · Haruki Shirakami · Ying Jiao · Ryan Cotterell · Bernhard Schölkopf · Abulhair Saparov · Mrinmaya Sachan
There is increasing interest in employing large language models (LLMs) as cognitive models. For such purposes, it is central to understand which properties of human cognition are well-modeled by LLMs, and which are not. In this work, we study the biases of LLMs in relation to those known in children when solving arithmetic word problems. Surveying the learning science literature, we posit that the problem-solving process can be split into three distinct steps: text comprehension, solution planning and solution execution. We construct tests for each one in order to understand whether current LLMs display the same cognitive biases as children in these steps. We generate a novel set of word problems for each of these tests, using a neuro-symbolic approach that enables fine-grained control over the problem features. We find evidence that LLMs, with and without instruction-tuning, exhibit human-like biases in both the text-comprehension and the solution-planning steps of the solving process, but not in the final step, in which the arithmetic expressions are executed to obtain the answer.
Leveraging Attractor Dynamics in Spatial Navigation for Better Language Parsing
Xiaolong Zou · Xingxing Cao · Xiaojiao Yang · Bo Hong
Increasing experimental evidence suggests that the human hippocampus, evolutionarily shaped by spatial navigation tasks, also plays an important role in language comprehension, indicating a shared computational mechanism for both functions. However, the specific relationship between the hippocampal formation's computational mechanism in spatial navigation and its role in language processing remains elusive. To investigate this question, we develop a prefrontal-hippocampal-entorhinal model (which called PHE-trinity) that features two key aspects: 1) the use of a modular continuous attractor neural network to represent syntactic structure, akin to the grid network in the entorhinal cortex; 2) the creation of two separate input streams, mirroring the factorized structure-content representation found in the hippocampal formation. We evaluate our model on language command parsing tasks, specifically using the SCAN dataset. Our findings include: 1) attractor dynamics can facilitate systematic generalization and efficient learning from limited data; 2) through visualization and reverse engineering, we unravel a potential dynamic mechanism for grid network representing syntactic structure. Our research takes an initial step in uncovering the dynamic mechanism shared by spatial navigation and language information processing.
Exploring the Enigma of Neural Dynamics Through A Scattering-Transform Mixer Landscape for Riemannian Manifold
Tingting Dan · Ziquan Wei · Won Hwa Kim · Guorong Wu
The human brain is a complex inter-wired system that emerges spontaneous functional fluctuations. In spite of tremendous success in the experimental neuroscience field, a system-level understanding of how brain anatomy supports various neural activities remains elusive. Capitalizing on the unprecedented amount of neuroimaging data, we present a physics-informed deep model to uncover the coupling mechanism between brain structure and function through the lens of data geometry that is rooted in the widespread wiring topology of connections between distant brain regions. Since deciphering the puzzle of self-organized patterns in functional fluctuations is the gateway to understanding the emergence of cognition and behavior, we devise a geometric deep model to uncover manifold mapping functions that characterize the intrinsic feature representations of evolving functional fluctuations on the Riemannian manifold. In lieu of learning unconstrained mapping functions, we introduce a set of graph-harmonic scattering transforms to impose the brain-wide geometry on top of manifold mapping functions, which allows us to cast the manifold-based deep learning into a reminiscent of MLP-Mixer architecture (in computer vision) for Riemannian manifold. As a proof-of-concept approach, we explore a neural-manifold perspective to understand the relationship between (static) brain structure and (dynamic) function, challenging the prevailing notion in cognitive neuroscience by proposing that neural activities are essentially excited by brain-wide oscillation waves living on the geometry of human connectomes, instead of being confined to focal areas.
StackSight: Unveiling WebAssembly through Large Language Models and Neurosymbolic Chain-of-Thought Decompilation
Weike Fang · Zhejian Zhou · Junzhou He · Weihang Wang
WebAssembly enables near-native execution in web applications and is increasingly adopted for tasks that demand high performance and robust security. However, its assembly-like syntax, implicit stack machine, and low-level data types make it extremely difficult for human developers to understand, spurring the need for effective WebAssembly reverse engineering techniques. In this paper, we propose StackSight, a novel neurosymbolic approach that combines Large Language Models (LLMs) with advanced program analysis to decompile complex WebAssembly code into readable C++ snippets. StackSight visualizes and tracks virtual stack alterations via a static analysis algorithm and then applies chain-of-thought prompting to harness LLM's complex reasoning capabilities. Evaluation results show that StackSight significantly improves WebAssembly decompilation. Our user study also demonstrates that code snippets generated by StackSight have significantly higher win rates and enable a better grasp of code semantics.
ELF: Encoding Speaker-Specific Latent Speech Feature for Speech Synthesis
Jungil Kong · Junmo Lee · Jeongmin Kim · Beomjeong Kim · JIHOON PARK · Dohee Kong · Changheon Lee · Sangjin Kim
In this work, we propose a novel method for modeling numerous speakers, which enables expressing the overall characteristics of speakers in detail like a trained multi-speaker model without additional training on the target speaker's dataset. Although various works with similar purposes have been actively studied, their performance has not yet reached that of trained multi-speaker models due to their fundamental limitations. To overcome previous limitations, we propose effective methods for feature learning and representing target speakers' speech characteristics by discretizing the features and conditioning them to a speech synthesis model. Our method obtained a significantly higher similarity mean opinion score (SMOS) in subjective similarity evaluation than seen speakers of a high-performance multi-speaker model, even with unseen speakers. The proposed method also outperforms a zero-shot method by significant margins. Furthermore, our method shows remarkable performance in generating new artificial speakers. In addition, we demonstrate that the encoded latent features are sufficiently informative to reconstruct an original speaker's speech completely. It implies that our method can be used as a general methodology to encode and reconstruct speakers' characteristics in various tasks.
PinNet: Pinpoint Instructive Information for Retrieval Augmented Code-to-Text Generation
Han Fu · Jian Tan · Pinhan Zhang · Feifei Li · Jianling Sun
Automatically generating high-quality code descriptions greatly improves the readability and maintainability of the codebase. Recently, retrieval augmented code-to-text generation has proven to be an effective solution, which has achieved state-of-the-art results on various benchmarks. It brings out the potential to leverage large unlabeled code descriptions to further improve the generation quality. Despite the promising performance, retrieval-augmented models however suffer from being deluded by inconducive retrieved references, due to irrelevant or even misleading information contained therein. To this end, we design PinNet, a new framework for code-to-text generation. PinNet relies on a discriminator to measure how well the retrievals match the semantics of the input code. Remarkably, the hidden representation of the reference before the output layer of the discriminator can be leveraged to significantly improve the code-to-text generation by modifying the attention weights. It essentially pays high attention to valuable information and eliminates misleadingness. To effectively execute this idea, we also propose a novel contrastive learning method to quantify the semantical similarities between unlabeled references. Using extensive experiments on code summarization and SQL-to-text generation, we demonstrate that the proposed method can significantly outperform all of the baselines.
UniAudio: Towards Universal Audio Generation with Large Language Models
Dongchao Yang · Jinchuan Tian · Xu Tan · Rongjie Huang · Songxiang Liu · Haohan Guo · Xuankai Chang · Jiatong Shi · sheng zhao · Jiang Bian · Zhou Zhao · Xixin Wu · Helen M Meng
Audio generation is a major branch of generative AI research. Compared with prior works in this area that are commonly task-specific with heavy domain knowledge, this paper advocates building universal audio generation models that can handle various tasks in a unified manner. As recent research on large language models (LLMs) has demonstrated their strong ability to handle multiple tasks, this work presents UniAudio, an LLM-based audio generation model that supports a wide range of audio generation tasks. Based on various input conditions, such as phoneme, text description, or audio itself, UniAudio can generate speech, sound, music, and singing voice. The proposed UniAudio is built with 100k hours of multi-source open-available audio data and is scaled to 1B parameters. The audio tokenization method and language model architecture are also specifically designed for both performance and efficiency. Experimentally, UniAuido supports 11 audio generation tasks and achieves competitive results on all tasks consistently. We also show that UniAudio can support new tasks seamlessly via simple fine-tuning.
Successor Features for Efficient Multi-Subject Controlled Text Generation
Meng Cao · Mehdi Fatemi · Jackie Chi Kit Cheung · Samira Shabanian
While large language models (LLMs) have achieved impressive performance in generating fluent and realistic text, controlling the generated text so that it exhibits properties such as safety, factuality, and non-toxicity remains challenging. Existing decoding-based controllable text generation methods are static in terms of the dimension of control; if the target subject is changed, they require new training. Moreover, it can quickly become prohibitive to concurrently control multiple subjects. To address these challenges, we first show that existing methods can be framed as a reinforcement learning problem, where an action-value function estimates the likelihood of a desired attribute appearing in the generated text. Then, we introduce a novel approach named SF-Gen, which leverages the concept of successor features to decouple the dynamics of LLMs from task-specific rewards. By employing successor features, our method proves to be memory-efficient and computationally efficient for both training and decoding, especially when dealing with multiple target subjects. To the best of our knowledge, our research represents the first application of successor features in text generation. In addition to its computational efficiency, the resultant language produced by our method is comparable to the SOTA (and outperforms baselines) in both control measures as well as language quality, which we demonstrate through a series of experiments in various controllable text generation tasks.
LLark: A Multimodal Instruction-Following Language Model for Music
Joshua Gardner · Simon Durand · Daniel Stoller · Rachel Bittner
Music has a unique and complex structure which is challenging for both expert humans and existing AI systems to understand, and presents unique challenges relative to other forms of audio. We present LLark, an instruction-tuned multimodal model for music understanding. We detail our process for dataset creation, which involves augmenting the annotations of diverse open-source music datasets and converting them to a unified instruction-tuning format. We propose a multimodal architecture for LLark, integrating a pretrained generative model for music with a pretrained language model. In evaluations on three types of tasks (music understanding, captioning, reasoning), we show that LLark matches or outperforms existing baselines in music understanding, and that humans show a high degree of agreement with its responses in captioning and reasoning tasks. LLark is trained entirely from open-source music data and models, and we make our training code available along with the release of this paper. Additional results and audio examples are at https://bit.ly/llark, and our source code is available at https://github.com/spotify-research/llark.
SelfVC: Voice Conversion With Iterative Refinement using Self Transformations
Paarth Neekhara · Shehzeen Hussain · Rafael Valle · Boris Ginsburg · Rishabh Ranjan · Shlomo Dubnov · Farinaz Koushanfar · Julian McAuley
We propose SelfVC, a training strategy to iteratively improve a voice conversion model with self-synthesized examples. Previous efforts on voice conversion focus on factorizing speech into explicitly disentangled representations that separately encode speaker characteristics and linguistic content. However, disentangling speech representations to capture such attributes using task-specific loss terms can lead to information loss. In this work, instead of explicitly disentangling attributes with loss terms, we present a framework to train a controllable voice conversion model on entangled speech representations derived from self-supervised learning (SSL) and speaker verification models. First, we develop techniques to derive prosodic information from the audio signal and SSL representations to train predictive submodules in the synthesis model. Next, we propose a training strategy to iteratively improve the synthesis model for voice conversion, by creating a challenging training objective using self-synthesized examples. We demonstrate that incorporating such self-synthesized examples during training improves the speaker similarity of generated speech as compared to a baseline voice conversion model trained solely on heuristically perturbed inputs. Our framework is trained without any text and achieves state-of-the-art results in zero-shot voice conversion on metrics evaluating naturalness, speaker similarity, and intelligibility of synthesized audio.
Predicting Dose-Response Curves with Deep Neural Networks
Pedro A. Campana · Paul Prasse · Tobias Scheffer
Dose-response curves characterize the relationship between the concentration of drugs and their inhibitory effect on the growth of specific types of cells. The predominant Hill-equation model of an ideal enzymatic inhibition unduly simplifies the biochemical reality of many drugs; and for these drugs the widely-used drug performance indicator of the half-inhibitory concentration $IC_{50}$ can lead to poor therapeutic recommendations and poor selections of promising drug candidates. We develop a neural model that uses an embedding of the interaction between drug molecules and the tissue transcriptome to estimate the entire dose-response curve rather than a scalar aggregate. We find that, compared to the prior state of the art, this model excels at interpolating and extrapolating the inhibitory effect of untried concentrations. Unlike prevalent parametric models, it it able to accurately predict dose-response curves of drugs on previously unseen tumor tissues as well as of previously untested drug molecules on established tumor cell lines.
Cell2Sentence: Teaching Large Language Models the Language of Biology
Daniel Levine · Syed Rizvi · Sacha Lévy · Nazreen Pallikkavaliyaveetil MohammedSheriff · David Zhang · Xingyu Chen · SINA GHADERMARZI · Ruiming Wu · Zihe Zheng · Ivan Vrkic · Anna Zhong · Daphne Raskin · Insu Han · Antonio Henrique de Oliveira Fonseca · Josue Ortega Caro · Amin Karbasi · Rahul Dhodapkar · David van Dijk
We introduce Cell2Sentence (C2S), a novel method to directly adapt large language models to a biological context, specifically single-cell transcriptomics. By transforming gene expression data into "cell sentences," C2S bridges the gap between natural language processing and biology. We demonstrate cell sentences enable the fine-tuning of language models for diverse tasks in biology, including cell generation, complex cell-type annotation, and direct data-driven text generation. Our experiments reveal that GPT-2, when fine-tuned with C2S, can generate biologically valid cells based on cell type inputs, and accurately predict cell types from cell sentences. This illustrates that language models, through C2S fine-tuning, can acquire a significant understanding of single-cell biology while maintaining robust text generation capabilities. C2S offers a flexible, accessible framework to integrate natural language processing with transcriptomics, utilizing existing models and libraries for a wide range of biological applications.
CauDiTS: Causal Disentangled Domain Adaptation of Multivariate Time Series
Junxin Lu · Shiliang Sun
Unsupervised domain adaptation of multivariate time series aims to train a model to adapt its classification ability from a labeled source domain to an unlabeled target domain, where there are differences in the distribution between domains. Existing methods extract domain-invariant features directly via a shared feature extractor, neglecting the exploration of the underlying causal patterns, which undermines their reliability, especially in complex multivariate dynamic systems. To address this problem, we propose CauDiTS, an innovative framework for unsupervised domain adaptation of multivariate time series. CauDiTS adopts an adaptive rationale disentangler to disentangle domain-common causal rationales and domain-specific correlations from variable interrelationships. The stability of causal rationales across domains is vital for filtering domainspecific perturbations and facilitating the extraction of domain-invariant representations. Moreover, we promote the cross-domain consistency of intra-class causal rationales employing the learning strategies of causal prototype consistency and domain-intervention causality invariance. CauDiTS is evaluated on four benchmark datasets, demonstrating its effectiveness and outperforming state-of-the-art methods.
SleepFM: Multi-modal Representation Learning for Sleep Across Brain Activity, ECG and Respiratory Signals
Rahul Thapa · Bryan He · Magnus Ruud Kjaer · Hyatt Moore · Gauri Ganjoo · Emmanuel Mignot · James Zou
Sleep is a complex physiological process evaluated through various modalities recording electrical brain, cardiac, and respiratory activities. We curate a large polysomnography dataset from over 14,000 participants comprising over 100,000 hours of multi-modal sleep recordings. Leveraging this extensive dataset, we developed SleepFM, the first multi-modal foundation model for sleep analysis. We show that a novel leave-one-out approach for contrastive learning significantly improves downstream task performance compared to representations from standard pairwise contrastive learning. A logistic regression model trained on SleepFM's learned embeddings outperforms an end-to-end trained convolutional neural network (CNN) on sleep stage classification (macro AUROC 0.88 vs 0.72 and macro AUPRC 0.72 vs 0.48) and sleep disordered breathing detection (AUROC 0.85 vs 0.69 and AUPRC 0.77 vs 0.61). Notably, the learned embeddings achieve 48% top-1 average accuracy in retrieving modality clip pairs from 90,000 candidates. This work demonstrates the value of holistic multi-modal sleep modeling to fully capture the richness of sleep recordings. SleepFM is open source and available at https://anonymous.4open.science/r/sleepfm.
Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks
Haoyu Li · Shichang Zhang · Longwen Tang · Mathieu Bauchy · Yizhou Sun
Metallic Glasses (MGs) are widely used materials that are stronger than steel while being shapeable as plastic. While understanding the structure-property relationship of MGs remains a challenge in materials science, studying their energy barriers (EBs) as an intermediary step shows promise. In this work, we utilize Graph Neural Networks (GNNs) to model MGs and study EBs. We contribute a new dataset for EB prediction and a novel Symmetrized GNN (SymGNN) model that is E(3)-invariant in expectation. SymGNN handles invariance by aggregating over orthogonal transformations of the graph structure. When applied to EB prediction, SymGNN are more accurate than molecular dynamics (MD) local-sampling methods and other machine-learning models. Compared to precise MD simulations, SymGNN reduces the inference time on new MGs from roughly 41 days to less than one second. We apply explanation algorithms to reveal the relationship between structures and EBs. The structures that we identify through explanations match the medium-range order (MRO) hypothesis and possess unique topological properties. Our work enables effective prediction and interpretation of MG EBs, bolstering material science research.
Reinforcement Learning within Tree Search for Fast Macro Placement
Zijie Geng · Jie Wang · Ziyan Liu · Siyuan Xu · Zhentao Tang · Mingxuan Yuan · Jianye Hao · Yongdong Zhang · Feng Wu
Macro placement is a crucial step in modern chip design, and reinforcement learning (RL) has recently emerged as a promising technique for improving the placement quality. However, existing RL-based techniques are hindered by their low sample efficiency, requiring numerous online rollouts or substantial offline expert data to achieve bootstrap, which are often impractical in industrial scenarios. To address this challenge, we propose a novel sample-efficient framework, namely EfficientPlace, for fast macro placement. EfficientPlace integrates a global tree search algorithm to strategically direct the optimization process, as well as a RL agent for local policy learning to advance the tree search. Experiments on commonly used benchmarks demonstrate that EfficientPlace achieves remarkable placement quality within a short timeframe, outperforming recent state-of-the-art approaches.
Bagged Deep Image Prior for Recovering Images in the Presence of Speckle Noise
Xi Chen · Zhewen Hou · Christopher Metzler · Arian Maleki · Shirin Jalali
We investigate both the theoretical and algorithmic aspects of likelihood-based methods for recovering a complex-valued signal from multiple sets of measurements, referred to as looks, affected by speckle (multiplicative) noise. Our theoretical contributions include establishing the first existing theoretical upper bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis. Our theoretical results capture the dependence of MSE upon the number of parameters in the deep image prior, the number of looks, the signal dimension, and the number of measurements per look. On the algorithmic side, we introduce the concept of bagged Deep Image Priors (Bagged-DIP) and integrate them with projected gradient descent. Furthermore, we show how employing Newton-Schulz algorithm for calculating matrix inverses within the iterations of PGD reduces the computational complexity of the algorithm. We will show that this method achieves the state-of-the-art performance.
Error correction codes are a crucial part of the physical communication layer, ensuring the reliable transfer of data over noisy channels. The design of optimal linear block codes capable of being efficiently decoded is of major concern, especially for short block lengths. While neural decoders have recently demonstrated their advantage over classical decoding techniques, the neural design of the codes remains a challenge. In this work, we propose for the first time a unified encoder-decoder training of binary linear block codes. To this end, we adapt the coding setting to support efficient and differentiable training of the code for end-to-end optimization over the order two Galois field. We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient. Our results show that (i) the proposed decoder outperforms existing neural decoding on conventional codes, (ii) the suggested framework generates codes that outperform the analogous conventional codes, and (iii) the codes we developed not only excel with our decoder but also show enhanced performance with traditional decoding techniques.
MathScale: Scaling Instruction Tuning for Mathematical Reasoning
Zhengyang Tang · Xingxing Zhang · Benyou Wang · Furu Wei
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving. However, their proficiency in solving mathematical problems remains inadequate. We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data using frontier LLMs (e.g., GPT-3.5). Inspired by the cognitive mechanism in human mathematical learning, it first extracts topics and knowledge points from seed math questions and then build a concept graph, which is subsequently used to generate new math questions. MathScale exhibits effective scalability along the size axis of the math dataset that we generate. As a result, we create a mathematical reasoning dataset (MathScaleQA) containing two million math question-answer pairs. To evaluate mathematical reasoning abilities of LLMs comprehensively, we construct MWPBench, a benchmark of Math Word Problems, which is a collection of 9 datasets (including GSM8K and MATH) covering K-12, college, and competition level math problems. We apply MathScaleQA to fine-tune open-source LLMs (e.g., LLaMA-2 and Mistral), resulting in significantly improved capabilities in mathematical reasoning. Evaluated on MWPBench, MathScale-7B achieves state-of-the-art performance across all datasets, surpassing its best peers of equivalent size by 42.8% in micro average accuracy and 43.6% in macro average accuracy, respectively.
Adaptive Feature Selection for No-Reference Image Quality Assessment by Mitigating Semantic Noise Sensitivity
Xudong Li · Timin Gao · Runze Hu · Yan Zhang · Shengchuan Zhang · Xiawu Zheng · Jingyuan Zheng · Yunhang Shen · Ke Li · Yutao Liu · Pingyang Dai · Rongrong Ji
The current state-of-the-art No-Reference Image Quality Assessment (NR-IQA) methods typically rely on feature extraction from upstream semantic backbone networks, assuming that all extracted features are relevant. However, we make a key observation that not all features are beneficial, and some may even be harmful, necessitating careful selection. Empirically, we find that many image pairs with small feature spatial distances can have vastly different quality scores, indicating that the extracted features may contain quality-irrelevant noise. To address this issue, we propose a Quality-Aware Feature Matching IQA Metric (QFM-IQM) that employs an adversarial perspective to remove harmful semantic noise features from the upstream task. Specifically, QFM-IQM enhances the semantic noise distinguish capabilities by matching image pairs with similar quality scores but varying semantic features as adversarial semantic noise and adaptively adjusting the upstream task’s features by reducing sensitivity to adversarial noise perturbation. Furthermore, we utilize a distillation framework to expand the dataset and improve the model's generalization ability. Extensive experiments conducted on eight standard IQA datasets have demonstrated the effectiveness of our proposed QFM-IQM.
Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning
Charles Dickens · Changyu Gao · Connor Pryor · Stephen Wright · Lise Getoor
We leverage convex and bilevel optimization techniques to develop a general gradient-based parameter learning framework for neural-symbolic (NeSy) systems. We demonstrate our framework with NeuPSL, a state-of-the-art NeSy architecture. To achieve this, we propose a smooth primal and dual formulation of NeuPSL inference and show learning gradients are functions of the optimal dual variables. Additionally, we develop a dual block coordinate descent algorithm for the new formulation that naturally exploits warm-starts. This leads to over $100 \times$ learning runtime improvements over the current best NeuPSL inference method. Finally, we provide extensive empirical evaluations across $8$ datasets covering a range of tasks and demonstrate our learning framework achieves up to a $16$% point prediction performance improvement over alternative learning methods.
What needs to go right for an induction head? A mechanistic study of in-context learning circuits and their formation
Aaditya Singh · Ted Moskovitz · Feilx Hill · Stephanie Chan · Andrew Saxe
In-context learning is a powerful emergent ability in transformer models. Prior work in mechanistic interpretability has identified a circuit element that may be critical for in-context learning – the induction head (IH), which performs a match-and-copy operation. During training of large transformers on natural language data, IHs emerge around the same time as a notable phase change in the loss. Despite the robust evidence for IHs and this interesting coincidence with the phase change, relatively little is known about the diversity and emergence dynamics of IHs. Why is there more than one IH, and how are they dependent on each other? Why do IHs appear all of a sudden, and what are the subcircuits that enable them to emerge? We answer these questions by studying IH emergence dynamics in a controlled setting by training on synthetic data. In doing so, we develop and share a novel optogenetics-inspired causal framework for modifying activations throughout training. Using this framework, we delineate the diverse and additive nature of IHs. By "clamping" subsets of activations throughout training, we then identify three underlying subcircuits that interact to drive IH formation, yielding the phase change. Furthermore, these subcircuits shed light on data-dependent properties of formation, such as phase change timing, already showing the promise of this more in-depth understanding of subcircuits that need to "go right" for an induction head.
Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?
Lorenz K. Muller
Neural networks whose weights are the output of a predictor (HyperNetworks) achieve excellent performance on many tasks. In ConvNets, kernel prediction layers are a popular type of HyperNetwork. Previous theoretical work has argued that a hierarchy of multiplicative interactions exists in which gating is at the bottom and full weight prediction, as in HyperNetworks, is at the top. In this paper, we constructively demonstrate an equivalence between gating combined with fixed weight layers and weight prediction, relativizing the notion of a hierarchy of multiplicative interactions. We further derive an equivalence between a restricted type of HyperNetwork and factorization machines. Finally, we find empirically that gating layers can learn to imitate weight prediction layers with an SGD variant and show a novel practical application in image denoising using kernel prediction networks. Our reformulation of predicted kernels, combining fixed layers and gating, reduces memory requirements.
How to Leverage Diverse Demonstrations in Offline Imitation Learning
Sheng Yue · Jiani Liu · Xingyuan Hua · Ju Ren · Sen Lin · Junshan Zhang · Yaoxue Zhang
Offline Imitation Learning (IL) with imperfect demonstrations has garnered increasing attention owing to the scarcity of expert data in many real-world domains. A fundamental problem in this scenario is how to extract positive behaviors from noisy data. In general, current approaches to the problem select data building on state-action similarity to given expert demonstrations, neglecting precious information in (potentially abundant) diverse state-actions that deviate from expert ones. In this paper, we introduce a simple yet effective data selection method that identifies positive behaviors based on their resultant states - a more informative criterion enabling explicit utilization of dynamics information and effective extraction of both expert and beneficial diverse behaviors. Further, we devise a lightweight behavior cloning algorithm capable of leveraging the expert and selected data correctly. In the experiments, we evaluate our method on a suite of complex and high-dimensional offline IL benchmarks, including continuous-control and vision-based tasks. The results demonstrate that our method achieves state-of-the-art performance, outperforming existing methods on 20/21 benchmarks, typically by 2-5x, while maintaining a comparable runtime to Behavior Cloning (BC).
To Cool or not to Cool? Temperature Network Meets Large Foundation Models via DRO
Zi-Hao Qiu · Siqi Guo · Mao Xu · Tuo Zhao · Lijun Zhang · Tianbao Yang
The temperature parameter plays a profound role during training and/or inference with large foundation models (LFMs) such as large language models (LLMs) and CLIP models. Particularly, it adjusts the logits in the softmax function in LLMs, which is crucial for next token generation, and it scales the similarities in the contrastive loss for training CLIP models. A significant question remains: `` Is it viable to learn a neural network to predict a personalized temperature of any input data for enhancing LFMs?" In this paper, we present a principled framework for learning a small yet generalizable temperature prediction network (TempNet) to improve LFMs. Our solution is composed of a novel learning framework with robust losses underpinned by constrained distributionally robust optimization (DRO), and a properly designed TempNet with theoretical inspiration. TempNet can be trained together with a large foundation model from scratch or learned separately given a pretrained foundation model. It is not only useful for predicting personalized temperature to promote the training of LFMs but also generalizable and transferable to new tasks. Our experiments on LLMs and CLIP models demonstrate that TempNet greatly improves the performance of existing solutions or models.
Harmonizing Generalization and Personalization in Federated Prompt Learning
Tianyu Cui · Hongxia Li · Jingya Wang · Ye Shi
Federated Prompt Learning (FPL) incorporates large pre-trained Vision-Language models (VLM) into federated learning through prompt tuning. The transferable representations and remarkable generalization capacity of VLM make them highly compatible with the integration of federated learning. Addressing data heterogeneity in federated learning requires personalization, but excessive focus on it across clients could compromise the model's ability to generalize effectively. To preserve the impressive generalization capability of VLM, it is crucial to strike a balance between personalization and generalization in FPL. To tackle this challenge, we proposed Federated Prompt Learning with CLIP Generalization and low-rank Personalization (FedPGP), which employs pre-trained CLIP to provide knowledge-guidance on the global prompt for improved generalization and incorporates a low-rank adaptation term to personalize the global prompt. Further, FedPGP integrates a prompt-wise contrastive loss to achieve knowledge guidance and personalized adaptation simultaneously, enabling a harmonious balance between personalization and generalization in FPL. We conduct extensive experiments on various datasets to explore base-to-novel generalization in both category-level and domain-level scenarios with heterogeneous data, showing the superiority of FedPGP in balancing generalization and personalization.
In many practical applications, coarse-grained labels are readily available compared to fine-grained labels that reflect subtle differences between classes. However, existing methods cannot leverage coarse labels to infer fine-grained labels in an unsupervised manner. To bridge this gap, we propose FALCON, a method that discovers fine-grained classes from coarsely labeled data without any supervision at the fine-grained level. FALCON simultaneously infers unknown fine-grained classes and underlying relationships between coarse and fine-grained classes. Moreover, FALCON is a modular method that can effectively learn from multiple datasets labeled with different strategies. We evaluate FALCON on eight image classification tasks and a single-cell classification task. FALCON outperforms baselines by a large margin, achieving 22% improvement over the best baseline on the tieredImageNet dataset with over 600 fine-grained classes.
Efficient Precision and Recall Metrics for Assessing Generative Models using Hubness-aware Sampling
Yuanbang Liang · Jing Wu · Yu-Kun Lai · Yipeng Qin
Despite impressive results, deep generative models require massive datasets for training, and as dataset size increases, effective evaluation metrics like precision and recall (P&R) become computationally infeasible on commodity hardware. In this paper, we address this challenge by proposing efficient P&R (eP&R) metrics that give almost identical results as the original P&R but with much lower computational costs. Specifically, we identify two redundancies in the original P&R: i) redundancy in ratio computation and ii) redundancy in manifold inside/outside identification. We find both can be effectively removed via hubness-aware sampling, which extracts representative elements from synthetic/real image samples based on their hubness values, i.e., the number of times a sample becomes a k-nearest neighbor to others in the feature space. Thanks to the insensitivity of hubness-aware sampling to exact k-nearest neighbor (k-NN) results, we further improve the efficiency of our eP&R metrics by using approximate k-NN methods. Extensive experiments show that our eP&R matches the original P&R but is far more efficient in time and space. Our code is available at: https://github.com/Byronliang8/HubnessPrecisionRecall
Bayesian Knowledge Distillation: A Bayesian Perspective of Distillation with Uncertainty Quantification
Luyang Fang · Yongkai Chen · Wenxuan Zhong · Ping Ma
Knowledge distillation (KD) has been widely used for model compression and deployment acceleration. Nonetheless, the statistical insight of the remarkable performance of KD remains elusive, and methods for evaluating the uncertainty of the distilled model/student model are lacking. To address these issues, we establish a close connection between KD and a Bayesian model. In particular, we develop an innovative method named Bayesian Knowledge Distillation (BKD) to provide a transparent interpretation of the working mechanism of KD, and a suite of Bayesian inference tools for the uncertainty quantification of the student model. In BKD, the regularization imposed by the teacher model in KD is formulated as a teacher-informed prior for the student model's parameters. Consequently, we establish the equivalence between minimizing the KD loss and estimating the posterior mode in BKD. Efficient Bayesian inference algorithms are developed based on the stochastic gradient Langevin Monte Carlo and examined with extensive experiments on uncertainty ranking and credible intervals construction for predicted class probabilities.
Which Frequencies do CNNs Need? Emergent Bottleneck Structure in Feature Learning
Yuxiao Wen · Arthur Jacot
We describe the emergence of a Convolution Bottleneck (CBN) structure in CNNs, where the network uses its first few layers to transform the input representation into a representation that is supported only along a few frequencies and channels, before using the last few layers to map back to the outputs. We define the CBN rank, which describes the number and type of frequencies that are kept inside the bottleneck, and partially prove that the parameter norm required to represent a function $f$ scales as depth times the CBN rank $f$. We also show that the parameter norm depends at next order on the regularity of $f$. We show that any network with almost optimal parameter norm will exhibit a CBN structure in both the weights and - under the assumption that the network is stable under large learning rate - the activations, which motivates the common practice of down-sampling; and we verify that the CBN results still hold with down-sampling. Finally we use the CBN structure to interpret the functions learned by CNNs on a number of tasks.
SelMatch: Effectively Scaling Up Dataset Distillation via Selection-Based Initialization and Partial Updates by Trajectory Matching
Yongmin Lee · Hye Won Chung
Dataset distillation aims to synthesize a small number of images per class (IPC) from a large dataset to approximate full dataset training with minimal performance loss. While effective in very small IPC ranges, many distillation methods become less effective, even underperforming random sample selection, as IPC increases. Our examination of state-of-the-art trajectory-matching based distillation methods across various IPC scales reveals that these methods struggle to incorporate the complex, rare features of harder samples into the synthetic dataset even with the increased IPC, resulting in a persistent coverage gap between easy and hard test samples. Motivated by such observations, we introduce SelMatch, a novel distillation method that effectively scales with IPC. SelMatch uses selection-based initialization and partial updates through trajectory matching to manage the synthetic dataset's desired difficulty level tailored to IPC scales. When tested on CIFAR-10/100 and TinyImageNet, SelMatch consistently outperforms leading selection-only and distillation-only methods across subset ratios from 5% to 30%.
Bidirectional Reciprocative Information Communication for Few-Shot Semantic Segmentation
Yuanwei Liu · Junwei Han · Xiwen Yao · Salman Khan · Hisham Cholakkal · Rao Anwer · Nian Liu · Fahad Khan
Existing few-shot semantic segmentation methods typically rely on a one-way flow of category information from support to query, ignoring the impact of intra-class diversity. To address this, drawing inspiration from cybernetics, we introduce a Query Feedback Branch (QFB) to propagate query information back to support, generating a query-related support prototype that is more aligned with the query. Subsequently, a Query Amplifier Branch (QAB) is employed to amplify target objects in the query using the acquired support prototype. To further improve the model, we propose a Query Rectification Module (QRM), which utilizes the prediction disparity in the query before and after support activation to identify challenging positive and negative samples from ambiguous regions for query self-rectification. Furthermore, we integrate the QFB, QAB, and QRM into a feedback and rectification layer and incorporate it into an iterative pipeline. This configuration enables the progressive enhancement of bidirectional reciprocative flow of category information between query and support, effectively providing query-adaptive support information and addressing the intra-class diversity problem. Extensive experiments conducted on both PASCAL-5i and COCO-20i datasets validate the effectiveness of our approach. The code is available at https://github.com/LIUYUANWEI98/IFRNet .
D-Flow: Differentiating through Flows for Controlled Generation
Heli Ben-Hamu · Omri Puny · Itai Gat · Brian Karrer · Uriel Singer · Yaron Lipman
Taming the generation outcome of state of the art Diffusion and Flow-Matching (FM) models without having to re-train a task-specific model unlocks a powerful tool for solving inverse problems, conditional generation, and controlled generation in general. In this work we introduce D-Flow, a simple framework for controlling the generation process by differentiating through the flow, optimizing for the source (noise) point. We motivate this framework by our key observation stating that for Diffusion/FM models trained with Gaussian probability paths, differentiating through the generation process projects gradient on the data manifold, implicitly injecting the prior into the optimization process. We validate our framework on linear and non-linear controlled generation problems including: image and audio inverse problems and conditional molecule generation reaching state of the art performance across all.
Data-efficient Large Vision Models through Sequential Autoregression
Zhiwei Hao · Jianyuan Guo · Chengcheng Wang · Yehui Tang · Han Wu · Han Hu · Kai Han · Chang Xu
Training general-purpose vision models on purely sequential visual data, eschewing linguistic inputs, has heralded a new frontier in visual understanding. These models are intended to not only comprehend but also seamlessly transit to out-of-domain tasks. However, current endeavors are hamstrung by an over-reliance on colossal models, exemplified by models with upwards of 3B parameters, and the necessity for an extensive corpus of visual data, often comprising a staggering 400B tokens. In this paper, we delve into the development of an efficient, autoregression-based vision model, innovatively architected to operate on a limited dataset. We meticulously demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding during the testing phase. Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint, and a marked decrease in training data requirements, thereby paving the way for more sustainable and accessible advancements in the field of generalist vision models. The code is available at https://github.com/ggjy/DeLVM.
Don't be so Negative! Score-based Generative Modeling with Oracle-assisted Guidance
Saeid Naderiparizi · Xiaoxuan Liang · Setareh Cohan · Berend Zwartsenberg · Frank Wood
Score-based diffusion models are a powerful class of generative models, widely utilized across diverse domains. Despite significant advancements in large-scale tasks such as text-to-image generation, their application to constrained domains has received considerably less attention. This work addresses model learning in a setting where, in addition to the training dataset, there further exists side-information in the form of an oracle that can label samples as being outside the support of the true data generating distribution. Specifically we develop a new denoising diffusion probabilistic modeling methodology, Gen-neG, that leverages this additional side-information. Gen-neG builds on classifier guidance in diffusion models to guide the generation process towards the positive support region indicated by the oracle. We empirically establish the utility of Gen-neG in applications including collision avoidance in self-driving simulators and safety-guarded human motion generation.
Scaling Rectified Flow Transformers for High-Resolution Image Synthesis
Patrick Esser · Sumith Kulal · Andreas Blattmann · Rahim Entezari · Jonas Müller · Harry Saini · Yam Levi · Dominik Lorenz · Axel Sauer · Frederic Boesel · Dustin Podell · Tim Dockhorn · Zion English · Robin Rombach
Diffusion models create data from noise by inverting the forward paths of data towards noise and have emerged as a powerful generative modeling technique for high-dimensional, perceptual data such as images and videos. Rectified flow is a recent generative model formulation that connects data and noise in a straight line. Despite its better theoretical properties and conceptual simplicity, it is not yet decisively established as standard practice. In this work, we improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales. Through a large-scale study, we demonstrate the superior performance of this approach compared to established diffusion formulations for high-resolution text-to-image synthesis. Additionally, we present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities and enables a bidirectional flow of information between image and text tokens, improving text comprehension, typography, and human preference ratings. We demonstrate that this architecture follows predictable scaling trends and correlates lower validation loss to improved text-to-image synthesis as measured by various metrics and human evaluations. Our largest models outperform state-of-the-art models. Stability AI is considering making experimental data, code, and model weights publicly available.
DFlow: A Generative Model Combining Denoising AutoEncoder and Normalizing Flow for High Fidelity Waveform Generation
Chenfeng Miao · Qingying Zhu · Chen Minchuan · Wei Hu · Zijian Li · Shaojun Wang · Jing Xiao
In this work, we present DFlow, a novel generative framework that combines Normalizing Flow (NF) with a Denoising AutoEncoder (DAE), for high-fidelity waveform generation. With a tactfully designed structure, DFlow seamlessly integrates the capabilities of both NF and DAE, resulting in a significantly improved performance compared to the standard NF models. Experimental results showcase DFlow's superiority, achieving the highest MOS score among the existing methods on commonly used datasets and the fastest synthesis speed among all likelihood models. We further demonstrate the generalization ability of DFlow by generating high-quality out-of-distribution audio samples, such as singing and music audio. Additionally, we extend the model capacity of DFlow by scaling up both the model size and training set size. Our large-scale universal vocoder, DFlow-XL, achieves highly competitive performance against the best universal vocoder, BigVGAN.
HyperFields: Towards Zero-Shot Generation of NeRFs from Text
Sudarshan Babu · Richard Liu · Zi Yu Zhou · Michael Maire · Greg Shakhnarovich · Rana Hanocka
We introduce HyperFields, a method for generating text-conditioned Neural Radiance Fields (NeRFs) with a single forward pass and (optionally) some fine-tuning. Key to our approach are: (i) a dynamic hypernetwork, which learns a smooth mapping from text token embeddings to the space of NeRFs; (ii) NeRF distillation training, which distills scenes encoded in individual NeRFs into one dynamic hypernetwork. These techniques enable a single network to fit over a hundred unique scenes. We further demonstrate that HyperFields learns a more general map between text and NeRFs, and consequently is capable of predicting novel in-distribution and out-of-distribution scenes --- either zero-shot or with a few finetuning steps. Finetuning HyperFields benefits from accelerated convergence thanks to the learned general map, and is capable of synthesizing novel scenes 5 to 10 times faster than existing neural optimization-based methods. Our ablation experiments show that both the dynamic architecture and NeRF distillation are critical to the expressivity of HyperFields.
Boximator: Generating Rich and Controllable Motions for Video Synthesis
Jiawei Wang · Yuchen Zhang · Jiaxin Zou · Yan Zeng · Guoqiang Wei · Liping Yuan · Hang Li
Generating rich and controllable motion is a pivotal challenge in video synthesis. We propose Boximator, a new approach for fine-grained motion control. Boximator introduces two constraint types: hard box and soft box. Users select objects in the conditional frame using hard boxes and then use either type of boxes to roughly or rigorously define the object’s position, shape, or motion path in future frames. Boximator functions as a plug-in for existing video diffusion models. Its training process preserves the base model’s knowledge by freezing the original weights and training only the control module. To address training challenges, we introduce a novel self-tracking technique that greatly simplifies the learning of box-object correlations. Empirically, Boximator achieves state-of-the-art video quality (FVD) scores, improving on two base models, and further enhanced after incorporating box constraints. Its robust motion controllability is validated by drastic increases in the bounding box alignment metric. Human evaluation also shows that users favor Boximator generation results over the base model.
CHAI: Clustered Head Attention for Efficient LLM Inference
Saurabh Agarwal · Bilge Acun · Basil Hosmer · Mostafa Elhoushi · Yejin Lee · Shivaram Venkataraman · Dimitris Papailiopoulos · Carole-Jean Wu
Large Language Models (LLMs) with hundreds of billions of parameters have transformed the field of machine learning. However, serving these models at inference time is both compute and memory intensive, where a single request can require multiple GPUs and tens of Gigabytes of memory. Multi-head attention is one of the key components of LLMs, which can for over 50% of LLMs memory and compute requirement. We observe that there is a high amount of redundancy across heads on which tokens they pay attention to. Based on this insight, we propose Clustered HeadAttention ( CHAI ). CHAI combines heads with a high amount of correlation for self-attention at runtime, thus reducing both memory and compute. In our experiments, we show that CHAI is able to reduce the memory requirements for storing K,V cache by up to 21.4% and inference time latency by up to 1.73× without any fine-tuning required. CHAI achieves this with a maximum 3.2% deviation in accuracy across 3 different models (i.e. OPT-66B, LLAMA-7B, LLAMA-33B) and 5 different evaluation datasets.
InterpreTabNet: Distilling Predictive Signals from Tabular Data by Salient Feature Interpretation
Jacob Si · Wendy Yusi Cheng · Michael Cooper · Rahul G. Krishnan
Tabular data are omnipresent in various sectors of industries. Neural networks for tabular data such as TabNet have been proposed to make predictions while leveraging the attention mechanism for interpretability. However, the inferred attention masks are often dense, making it challenging to come up with rationales about the predictive signal. To remedy this, we propose InterpreTabNet, a variant of the TabNet model that models the attention mechanism as a latent variable sampled from a Gumbel-Softmax distribution. This enables us to regularize the model to learn distinct concepts in the attention masks via a KL Divergence regularizer. It prevents overlapping feature selection by promoting sparsity which maximizes the model's efficacy and improves interpretability to determine the important features when predicting the outcome. To assist in the interpretation of feature interdependencies from our model, we employ a large language model (GPT-4) and use prompt engineering to map from the learned feature mask onto natural language text describing the learned signal. Through comprehensive experiments on real-world datasets, we demonstrate that InterpreTabNet outperforms previous methods for interpreting tabular data while attaining competitive accuracy.
Visual Transformer with Differentiable Channel Selection: An Information Bottleneck Inspired Approach
Yancheng Wang · Ping Li · Yingzhen Yang
Self-attention and transformers have been widely used in deep learning. Recent efforts have been devoted to incorporating transformer blocks into different types of neural architectures, including those with convolutions, leading to various visual transformers for computer vision tasks. In this paper, we propose a novel and compact transformer block, Transformer with Differentiable Channel Selection, or DCS-Transformer. DCS-Transformer features channel selection in the computation of the attention weights and the input/output features of the MLP in the transformer block. Our DCS-Transformer is compatible with many popular and compact transformer networks, such as MobileViT and EfficientViT, and it reduces the FLOPs of the visual transformers while maintaining or even improving the prediction accuracy. In the experiments, we replace all the transformer blocks in MobileViT and EfficientViT with DCS-Transformer blocks, leading to DCS-Transformer networks with different backbones. The DCS-Transformer is motivated by reduction of Information Bottleneck, and a novel variational upper bound for the IB loss which can be optimized by SGD is derived and incorporated into the training loss of the network with DCS-Transformer. Extensive results on image classification and object detection evidence that DCS-Transformer renders compact and efficient visual transformers with comparable or much better prediction accuracy than the original visual transformers. The code of DCS-Transformer is available at https://github.com/Statistical-Deep-Learning/DCS-Transformer.
Self-attention and masked self-attention are at the heart of Transformers' outstanding success. Still, our mathematical understanding of attention, in particular of its Lipschitz properties — which are key when it comes to analyzing robustness and expressive power — is incomplete. We provide a detailed study of the Lipschitz constant of self-attention in several practical scenarios, discussing the impact of the sequence length $n$ and layer normalization on the local Lipschitz constant of both unmasked and masked self-attention. In particular, we show that for inputs of length $n$ in any compact set, the Lipschitz constant of self-attention is bounded by $\sqrt{n}$ up to a constant factor and that this bound is tight for reasonable sequence lengths. When the sequence length $n$ is too large for the previous bound to be tight, which we refer to as the mean-field regime, we provide an upper bound and a matching lower bound which are independent of $n$. Our mean-field framework for masked self-attention is novel and of independent interest. Our experiments on pretrained and randomly initialized BERT and GPT-2 support our theoretical findings.
SparQ Attention: Bandwidth-Efficient LLM Inference
Luka Ribar · Ivan Chelombiev · Luke Hudlass-Galley · Charlie Blake · Carlo Luschi · Douglas Orr
The computational difficulties of large language model (LLM) inference remain a significant obstacle to their widespread deployment. The need for many applications to support long input sequences and process them in large batches typically causes token-generation to be bottlenecked by data transfer. For this reason, we introduce SparQ Attention, a technique for increasing the inference throughput of LLMs by utilising memory bandwidth more efficiently within the attention layers, through selective fetching of the cached history. Our proposed technique can be applied directly to off-the-shelf LLMs during inference, without requiring any modification to the pre-training setup or additional fine-tuning. We show that SparQ Attention brings up to 8x savings in attention data transfers without substantial drops in accuracy, by evaluating Llama 2 and 3, Mistral, Gemma and Pythia models on a wide range of downstream tasks.
Two Tales of Single-Phase Contrastive Hebbian Learning
Rasmus Kjær Høier · Christopher Zach
The search for "biologically plausible" learning algorithms has converged on the idea of representing gradients as activity differences. However, most approaches require a high degree of synchronization (distinct phases during learning) and introduce substantial computational overhead, which raises doubts regarding their biological plausibility as well as their potential utility for neuromorphic computing. Furthermore, they commonly rely on applying infinitesimal perturbations (nudges) to output units, which is impractical in noisy environments. Recently it has been shown that by modelling artificial neurons as dyads with two oppositely nudged compartments, it is possible for a fully local learning algorithm named ``dual propagation'' to bridge the performance gap to backpropagation, without requiring separate learning phases or infinitesimal nudging. However, the algorithm has the drawback that its numerical stability relies on symmetric nudging, which may be restrictive in biological and analog implementations. In this work we first provide a solid foundation for the objective underlying the dual propagation method, which also reveals a surpising connection with adversarial robustness. Second, we demonstrate how dual propagation is related to a particular adjoint state method, which is stable regardless of asymmetric nudging.
A2Q+: Improving Accumulator-Aware Weight Quantization
Ian Colbert · Alessandro Pappalardo · Jakoba Petri-Koenig · Yaman Umuroglu
Quantization techniques commonly reduce the inference costs of neural networks by restricting the precision of weights and activations. Recent studies show that also reducing the precision of the accumulator can further improve hardware efficiency at the risk of numerical overflow, which introduces arithmetic errors that can degrade model accuracy. To avoid numerical overflow while maintaining accuracy, recent work proposed accumulator-aware quantization (A2Q)—a quantization-aware training method that constrains model weights during training to safely use a target accumulator bit width during inference. Although this shows promise, we demonstrate that A2Q relies on an overly restrictive constraint and a sub-optimal weight initialization strategy that each introduce superfluous quantization error. To address these shortcomings, we introduce: (1) an improved bound that alleviates accumulator constraints without compromising overflow avoidance; and (2) a new strategy for initializing quantized weights from pre-trained floating-point checkpoints. We combine these contributions with weight normalization to introduce A2Q+. We identify and characterize the various tradeoffs that arise as a consequence of accumulator constraints and support our analysis with experiments that show A2Q+ significantly improves these trade-offs when compared to prior methods.
Jetfire: Efficient and Accurate Transformer Pretraining with INT8 Data Flow and Per-Block Quantization
Haocheng Xi · Yuxiang Chen · Kang Zhao · KAI JUN TEH · Jianfei Chen · Jun Zhu
Pretraining transformers are generally time-consuming. Fully quantized training (FQT) is a promising approach to speed up pretraining. However, most FQT methods adopt a quantize-compute-dequantize procedure, which often leads to suboptimal speedup and significant performance degradation when used in transformers due to the high memory access overheads and low-precision computations. In this work, we propose Jetfire, an efficient and accurate INT8 training method specific to transformers. Our method features an INT8 data flow to optimize memory access and a per-block quantization method to maintain the accuracy of pretrained transformers. Extensive experiments demonstrate that our INT8 FQT method achieves comparable accuracy to the FP16 training baseline and outperforms the existing INT8 training works for transformers. Moreover, for a standard transformer block, our method offers an end-to-end training speedup of 1.42x and a 1.49x memory reduction compared to the FP16 baseline.
Amend to Alignment: Decoupled Prompt Tuning for Mitigating Spurious Correlation in Vision-Language Models
Jie ZHANG · Xiaosong Ma · Song Guo · Peng Li · Wenchao Xu · Xueyang Tang · Zicong Hong
Fine-tuning the learnable prompt for a pre-trained vision-language model (VLM), such as CLIP, has demonstrated exceptional efficiency in adapting to a broad range of downstream tasks. Existing prompt tuning methods for VLMs do not distinguish spurious features introduced by biased training data from invariant features, and employ a uniform alignment process when adapting to unseen target domains. This can impair the cross-modal feature alignment when the testing data significantly deviate from the distribution of the training data, resulting in a poor out-of-distribution (OOD) generalization performance. In this paper, we reveal that the prompt tuning failure in such OOD scenarios can be attribute to the undesired alignment between the textual and the spurious feature. As a solution, we propose CoOPood, a fine-grained prompt tuning method that can discern the causal features and deliberately align the text modality with the invariant feature. Specifically, we design two independent contrastive phases using two lightweight projection layers during the alignment, each with different objectives: 1) pulling the text embedding closer to invariant image embedding and 2) pushing text embedding away from spurious image embedding. We have illustrated that CoOPood can serve as a general framework for VLMs and can be seamlessly integrated with existing prompt tuning methods. Extensive experiments on various OOD datasets demonstrate the performance superiority over state-of-the-art methods.
Sparse Dimensionality Reduction Revisited
Mikael Møller Høgsgaard · Lior Kamma · Kasper Green Larsen · Jelani Nelson · Chris Schwiegelshohn
The sparse Johnson-Lindenstrauss transform is one of the central techniques in dimensionality reduction. It supports embedding a set of $n$ points in $\mathbb{R}^d$ into $m=O(\varepsilon^{-2} \ln n)$ dimensions while preserving all pairwise distances to within $1 \pm \varepsilon$. Each input point $x$ is embedded to $Ax$, where $A$ is an $m \times d$ matrix having $s$ non-zeros per column, allowing for an embedding time of $O(s \|x\|_0)$. Since the sparsity of $A$ governs the embedding time, much work has gone into improving the sparsity $s$. The current state-of-the-art by Kane and Nelson (2014) shows that $s = O(\varepsilon^{-1} \ln n)$ suffices. This is almost matched by a lower bound of $s = \Omega(\varepsilon^{-1} \ln n/\ln(1/\varepsilon))$ by Nelson and Nguyen (2013) for $d=\Omega(n)$. Previous work thus suggests that we have near-optimal embeddings. In this work, we revisit sparse embeddings and present a sparser embedding for instances in which $d = n^{o(1)}$, which in many applications is realistic. Formally, our embedding achieves $s = O(\varepsilon^{-1}(\ln n/\ln(1/\varepsilon)+\ln^{2/3}n \ln^{1/3} d))$. We also complement our analysis by strengthening the lower bound of Nelson and Nguyen to hold also when $d \ll n$, thereby matching the first term in our new sparsity upper bound. Finally, we also improve the sparsity of the best oblivious subspace embeddings for optimal embedding dimensionality.
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron · Marco Cuturi
In 1991, Brenier proved a theorem that generalizes the polar decomposition for square matrices -- factored as PSD $\times$ unitary -- to any vector field $F:\mathbb{R}^d\rightarrow \mathbb{R}^d$. The theorem, known as the polar factorization theorem, states that any field $F$ can be recovered as the composition of the gradient of a convex function $u$ with a measure-preserving map $M$, namely $F=\nabla u \circ M$. We propose a practical implementation of this far-reaching theoretical result, and explore possible uses within machine learning. The theorem is closely related to optimal transport (OT) theory, and we borrow from recent advances in the field of neural optimal transport to parameterize the potential $u$ as an input convex neural network. The map $M$ can be either evaluated pointwise using $u^*$, the convex conjugate of $u$, through the identity $M=\nabla u^* \circ F$, or learned as an auxiliary network. Because $M$ is, in general, not injective, we consider the additional task of estimating the ill-posed inverse map that can approximate the pre-image measure $M^{-1}$ using a stochastic generator. We illustrate possible applications of Brenier's polar factorization to non-convex optimization problems, as well as sampling of densities that are not log-concave.
Scalable High-Resolution Pixel-Space Image Synthesis with Hourglass Diffusion Transformers
Katherine Crowson · Stefan Baumann · Alex Birch · Tanishq Abraham · Daniel Kaplan · Enrico Shippole
We present the Hourglass Diffusion Transformer (HDiT), an image-generative model that exhibits linear scaling with pixel count, supporting training at high resolution (e.g. $1024 \times 1024$) directly in pixel-space. Building on the Transformer architecture, which is known to scale to billions of parameters, it bridges the gap between the efficiency of convolutional U-Nets and the scalability of Transformers. HDiT trains successfully without typical high-resolution training techniques such as multiscale architectures, latent autoencoders or self-conditioning. We demonstrate that HDiT performs competitively with existing models on ImageNet $256^2$, and sets a new state-of-the-art for diffusion models on FFHQ-$1024^2$. Code is available at https://github.com/crowsonkb/k-diffusion.
Non-confusing Generation of Customized Concepts in Diffusion Models
Wang Lin · Jingyuan CHEN · Jiaxin Shi · Yichen Zhu · Chen Liang · Junzhong Miao · Tao Jin · Zhou Zhao · Fei Wu · Shuicheng YAN · Hanwang Zhang
We tackle the common challenge of inter-concept visual confusion in compositional concept generation using text-guided diffusion models (TGDMs). It becomes even more pronounced in the generation of customized concepts, due to the scarcity of user-provided concept visual examples. By revisiting the two major stages leading to the success of TGDMs---1) contrastive image-language pre-training (CLIP) for text encoder that encodes visual semantics, and 2) training TGDM that decodes the textual embeddings into pixels---we point that existing customized generation methods only focus on fine-tuning the second stage while overlooking the first one. To this end, we propose a simple yet effective solution called CLIF: contrastive image-language fine-tuning. Specifically, given a few samples of customized concepts, we obtain non-confusing textual embeddings of a concept by fine-tuning CLIP via contrasting a concept and the over-segmented visual regions of other concepts. Experimental results demonstrate the effectiveness of CLIF in preventing the confusion of multi-customized concept generation. Project page: https://clif-official.github.io/clif.
How Learning by Reconstruction Produces Uninformative Features For Perception
Randall Balestriero · Yann LeCun
Input space reconstruction is an attractive representation learning paradigm. Despite interpretability benefit of reconstruction and generation, we identify a misalignment between learning to reconstruct, and learning for perception. We show that the former allocates a model's capacity towards a subspace of the data explaining the observed variance--a subspace with uninformative features for the latter. For example, the supervised TinyImagenet task with images projected onto the top subspace explaining 90% of the pixel variance can be solved with 45% test accuracy. Using the bottom subspace instead, accounting for only 20% of the pixel variance, reaches 55% test accuracy. Learning by reconstruction is also wasteful as the features for perception are learned last, pushing the need for long training schedules. We finally prove that learning by denoising can alleviate that misalignment for some noise strategies, e.g., masking. While tuning the noise strategy without knowledge of the perception task seems challenging, we provide a solution to detect if a noise strategy is never beneficial regardless of the perception task, e.g., additive Gaussian noise.
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures. Although diffusion models have achieved notable success in graph generation recently, they are ill-suited for modeling the topological properties of graphs since learning to denoise the noisy samples does not explicitly learn the graph structures to be generated. To tackle this limitation, we propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process. Specifically, we design the generative process as a mixture of endpoint-conditioned diffusion processes which is driven toward the predicted graph that results in rapid convergence. We further introduce a simple parameterization of the mixture process and develop an objective for learning the final graph structure, which enables maximum likelihood training. Through extensive experimental validation on general graph and 2D/3D molecule generation tasks, we show that our method outperforms previous generative models, generating graphs with correct topology with both continuous (e.g. 3D coordinates) and discrete (e.g. atom types) features. Our code is available at https://github.com/harryjo97/GruM.
Self-Correcting Self-Consuming Loops for Generative Model Training
Nate Gillman · Michael Freeman · Daksh Aggarwal · Chia-Hong HSU · Calvin Luo · Yonglong Tian · Chen Sun
As synthetic data becomes higher quality and proliferates on the internet, machine learning models are increasingly trained on a mix of human- and machine-generated data. Despite the successful stories of using synthetic data for representation learning, using synthetic data for generative model training creates ``self-consuming loops'' which may lead to training instability or even collapse, unless certain conditions are met. Our paper aims to stabilize self-consuming generative model training. Our theoretical results demonstrate that by introducing an idealized correction function, which maps a data point to be more likely under the true data distribution, self-consuming loops can be made exponentially more stable. We then propose self-correction functions, which rely on expert knowledge (e.g. the laws of physics programmed in a simulator), and aim to approximate the idealized corrector automatically and at scale. We empirically validate the effectiveness of self-correcting self-consuming loops on the challenging human motion synthesis task, and observe that it successfully avoids model collapse, even when the ratio of synthetic data to real data is as high as 100%.
Cross-view Masked Diffusion Transformers for Person Image Synthesis
Trung Pham · Kang Zhang · Chang Yoo
We present X-MDPT ($\underline{Cross}$-view $\underline{M}$asked $\underline{D}$iffusion $\underline{P}$rediction $\underline{T}$ransformers), a novel diffusion model designed for pose-guided human image generation. X-MDPT distinguishes itself by employing masked diffusion transformers that operate on latent patches, a departure from the commonly-used Unet structures in existing works. The model comprises three key modules: 1) a denoising diffusion Transformer, 2) an aggregation network that consolidates conditions into a single vector for the diffusion process, and 3) a mask cross-prediction module that enhances representation learning with semantic information from the reference image. X-MDPT demonstrates scalability, improving FID, SSIM, and LPIPS with larger models. Despite its simple design, our model outperforms state-of-the-art approaches on the DeepFashion dataset while exhibiting efficiency in terms of training parameters, training time, and inference speed. Our compact 33MB model achieves an FID of 7.42, surpassing a prior Unet latent diffusion approach (FID 8.07) using only $11\times$ fewer parameters. Our best model surpasses the pixel-based diffusion with $\frac{2}{3}$ of the parameters and achieves $5.43 \times$ faster inference. The code is available at https://github.com/trungpx/xmdpt.
SMaRt: Improving GANs with Score Matching Regularity
Mengfei Xia · Yujun Shen · Ceyuan Yang · Ran Yi · Wenping Wang · Yong-Jin Liu
Generative adversarial networks (GANs) usually struggle in learning from highly diverse data, whose underlying manifold is complex. In this work, we revisit the mathematical foundations of GANs, and theoretically reveal that the native adversarial loss for GAN training is insufficient to fix the problem of $\textit{subsets with positive Lebesgue measure of the generated data manifold lying out of the real data manifold}$. Instead, we find that score matching serves as a promising solution to this issue thanks to its capability of persistently pushing the generated data points towards the real data manifold. We thereby propose to improve the optimization of GANs with score matching regularity (SMaRt). Regarding the empirical evidences, we first design a toy example to show that training GANs by the aid of a ground-truth score function can help reproduce the real data distribution more accurately, and then confirm that our approach can consistently boost the synthesis performance of various state-of-the-art GANs on real-world datasets with pre-trained diffusion models acting as the approximate score function. For instance, when training Aurora on the ImageNet $64\times64$ dataset, we manage to improve FID from 8.87 to 7.11, on par with the performance of one-step consistency model. Code is available at https://github.com/thuxmf/SMaRt.
E$^2$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation
Yifan Gong · Zheng Zhan · Qing Jin · Yanyu Li · Yerlan Idelbayev · Xian Liu · Andrey Zharkov · Kfir Aberman · Sergey Tulyakov · Yanzhi Wang · Jian Ren
One highly promising direction for enabling flexible real-time on-device image editing is utilizing data distillation by leveraging large-scale text-to-image diffusion models to generate paired datasets used for training generative adversarial networks (GANs). This approach notably alleviates the stringent requirements typically imposed by high-end commercial GPUs for performing image editing with diffusion models. However, unlike text-to-image diffusion models, each distilled GAN is specialized for a specific image editing task, necessitating costly training efforts to obtain models for various concepts. In this work, we introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient? To achieve this goal, we propose a series of innovative techniques. First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch. Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model. Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time. Extensive experiments show that we can efficiently empower GANs with the ability to perform real-time high-quality image editing on mobile devices with remarkably reduced training and storage costs for each concept.
Interpreting and Improving Diffusion Models from an Optimization Perspective
Frank Permenter · Chenyang Yuan
Denoising is intuitively related to projection. Indeed, under the manifold hypothesis, adding random noise is approximately equivalent to orthogonal perturbation. Hence, learning to denoise is approximately learning to project. In this paper, we use this observation to interpret denoising diffusion models as approximate gradient descent applied to the Euclidean distance function. We then provide straight-forward convergence analysis of the DDIM sampler under simple assumptions on the projection error of the denoiser. Finally, we propose a new gradient-estimation sampler, generalizing DDIM using insights from our theoretical results. In as few as 5-10 function evaluations, our sampler achieves state-of-the-art FID scores on pretrained CIFAR-10 and CelebA models and can generate high quality samples on latent diffusion models.
Disentanglement Learning via Topology
Nikita Balabin · Daria Voronkova · Ilya Trofimov · Evgeny Burnaev · Serguei Barannikov
We propose TopDis (Topological Disentanglement), a method for learning disentangled representations via adding a multi-scale topological loss term. Disentanglement is a crucial property of data representations substantial for the explainability and robustness of deep learning models and a step towards high-level cognition. The state-of-the-art methods are based on VAE and encourage the joint distribution of latent variables to be factorized. We take a different perspective on disentanglement by analyzing topological properties of data manifolds. In particular, we optimize the topological similarity for data manifolds traversals. To the best of our knowledge, our paper is the first one to propose a differentiable topological loss for disentanglement learning. Our experiments have shown that the proposed TopDis loss improves disentanglement scores such as MIG, FactorVAE score, SAP score, and DCI disentanglement score with respect to state-of-the-art results while preserving the reconstruction quality. Our method works in an unsupervised manner, permitting us to apply it to problems without labeled factors of variation. The TopDis loss works even when factors of variation are correlated. Additionally, we show how to use the proposed topological loss to find disentangled directions in a trained GAN.
Confronting Reward Overoptimization for Diffusion Models: A Perspective of Inductive and Primacy Biases
Ziyi Zhang · Sen Zhang · Yibing Zhan · Yong Luo · Yonggang Wen · Dacheng Tao
Bridging the gap between diffusion models and human preferences is crucial for their integration into practical generative workflows. While optimizing downstream reward models has emerged as a promising alignment strategy, concerns arise regarding the risk of excessive optimization with learned reward models, which potentially compromises ground-truth performance. In this work, we confront the reward overoptimization problem in diffusion model alignment through the lenses of both inductive and primacy biases. We first identify a mismatch between current methods and the temporal inductive bias inherent in the multi-step denoising process of diffusion models, as a potential source of reward overoptimization. Then, we surprisingly discover that dormant neurons in our critic model act as a regularization against reward overoptimization while active neurons reflect primacy bias. Motivated by these observations, we propose Temporal Diffusion Policy Optimization with critic active neuron Reset (TDPO-R), a policy gradient algorithm that exploits the temporal inductive bias of diffusion models and mitigates the primacy bias stemming from active neurons. Empirical results demonstrate the superior efficacy of our methods in mitigating reward overoptimization. Code is avaliable at https://github.com/ZiyiZhang27/tdpo.
What’s the score? Automated Denoising Score Matching for Nonlinear Diffusions
raghav singhal · Mark Goldstein · Rajesh Ranganath
Reversing a diffusion process by learning its score forms the heart of diffusion-based generative modeling and for estimating properties of scientific systems. The diffusion processes that are tractable center on linear processes with a Gaussian stationary distribution, limiting the kinds of models that can be built to those that target a Gaussian prior or more generally limits the kinds of problems that can be generically solved to those that have conditionally linear score functions. In this work, we introduce a family of tractable denoising score matching objectives, called local-DSM, built using local increments of the diffusion process. We show how local-DSM melded with Taylor expansions enables automated training and score estimation with nonlinear diffusion processes. To demonstrate these ideas, we use automated-DSM to train generative models using non-Gaussian priors on challenging low dimensional distributions and the CIFAR10 image dataset. Additionally, we use the automated-DSM to learn the scores for nonlinear processes studied in statistical physics.
Estimating Barycenters of Distributions with Neural Optimal Transport
Alexander Kolesov · Petr Mokrov · Igor Udovichenko · Milena Gazdieva · Gudmund Pammer · Evgeny Burnaev · Alexander Korotin
Given a collection of probability measures, a practitioner sometimes needs to find an "average" distribution which adequately aggregates reference distributions. A theoretically appealing notion of such an average is the Wasserstein barycenter, which is the primal focus of our work. By building upon the dual formulation of Optimal Transport (OT), we propose a new scalable approach for solving the Wasserstein barycenter problem. Our methodology is based on the recent Neural OT solver: it has bi-level adversarial learning objective and works for general cost functions. These are key advantages of our method since the typical adversarial algorithms leveraging barycenter tasks utilize tri-level optimization and focus mostly on quadratic cost. We also establish theoretical error bounds for our proposed approach and showcase its applicability and effectiveness in illustrative scenarios and image data setups. Our source code is available at https://github.com/justkolesov/NOTBarycenters.
GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting
Xiaoyu Zhou · Xingjian Ran · Yajiao Xiong · Jinlin He · Zhiwei Lin · Yongtao Wang · Deqing Sun · Ming-Hsuan Yang
We present GALA3D, generative 3D GAussians with LAyout-guided control, for effective compositional text-to-3D generation. We first utilize large language models (LLMs) to generate the initial layout and introduce a layout-guided 3D Gaussian representation for 3D content generation with adaptive geometric constraints. We then propose an instance-scene compositional optimization mechanism with conditioned diffusion to collaboratively generate realistic 3D scenes with consistent geometry, texture, scale, and accurate interactions among multiple objects while simultaneously adjusting the coarse layout priors extracted from the LLMs to align with the generated scene. Experiments show that GALA3D is a user-friendly, end-to-end framework for state-of-the-art scene-level 3D content generation and controllable editing while ensuring the high fidelity of object-level entities within the scene. The source codes and models will be available at gala3d.github.io.
Graph Attention Retrospective
Kimon Fountoulakis · Amit Levi · Shenghao Yang · Aseem Baranwal · Aukosh Jagannath
Graph-based learning is a rapidly growing sub-field of machine learning with applications in social networks, citation networks, and bioinformatics. One of the most popular models is graph attention networks. They were introduced to allow a node to aggregate information from features of neighbor nodes in a non-uniform way, in contrast to simple graph convolution which does not distinguish the neighbors of a node. In this paper, we theoretically study the behaviour of graph attention networks. We prove multiple results on the performance of the graph attention mechanism for the problem of node classification for a contextual stochastic block model. Here, the node features are obtained from a mixture of Gaussians and the edges from a stochastic block model. We show that in an "easy" regime, where the distance between the means of the Gaussians is large enough, graph attention is able to distinguish inter-class from intra-class edges. Thus it maintains the weights of important edges and significantly reduces the weights of unimportant edges. Consequently, we show that this implies perfect node classification. In the "hard" regime, we show that every attention mechanism fails to distinguish intra-class from inter-class edges. In addition, we show that graph attention convolution cannot (almost) perfectly classify the nodes even if intra-class edges could be separated from inter-class edges. Beyond perfect node classification, we provide a positive result on graph attention's robustness against structural noise in the graph. In particular, our robustness result implies that graph attention can be strictly better than both the simple graph convolution and the best linear classifier of node features. We evaluate our theoretical results on synthetic and real-world data.
PhAST: Physics-Aware, Scalable, and Task-Specific GNNs for Accelerated Catalyst Design
Alexandre Duval · Victor Schmidt · Santiago Miret · Yoshua Bengio · Alex Hernandez-Garcia · David Rolnick
Mitigating the climate crisis requires a rapid transition towards lower-carbon energy. Catalyst materials play a crucial role in the electrochemical reactions involved in numerous industrial processes key to this transition, such as renewable energy storage and electrofuel synthesis. To reduce the energy spent on such activities, we must quickly discover more efficient catalysts to drive electrochemical reactions. Machine learning (ML) holds the potential to efficiently model materials properties from large amounts of data, accelerating electrocatalyst design. The Open Catalyst Project OC20 dataset was constructed to that end. However, ML models trained on OC20 are still neither scalable nor accurate enough for practical applications. In this paper, we propose task-specific innovations applicable to most architectures, enhancing both computational efficiency and accuracy. This includes improvements in (1) the graph creation step, (2) atom representations, (3) the energy prediction head, and (4) the force prediction head. We describe these contributions, referred to as PhAST, and evaluate them thoroughly on multiple architectures. Overall, PhAST improves energy MAE by 4 to 42% while dividing compute time by 3 to 8× depending on the targeted task/model. PhAST also enables CPU training, leading to 40× speedups in highly parallelized settings. Python package: https://phast.readthedocs.io.
On the Role of Edge Dependency in Graph Generative Models
Sudhanshu Chanpuriya · Cameron Musco · Konstantinos Sotiropoulos · Charalampos Tsourakakis
We investigate the trade-off between the representation power of graph generative models and model overlap, i.e., the degree to which the model generates diverse outputs versus regurgitating its training data. In particular, we delineate a nested hierarchy of graph generative models categorized into three levels of complexity: edge independent, node independent, and arbitrarily dependent models. This hierarchy encapsulates a wide range of prevalent methods. We derive theoretical bounds on the number of triangles and other short-length cycles producible by each level of the hierarchy, finding that more complex dependency structure allows an improved trade-off between representation power and overlap. We provide instances demonstrating the asymptotic optimality of our bounds. Furthermore, we introduce new generative models for each of the three hierarchical levels, leveraging dense subgraph discovery. Our evaluation, conducted on real-world datasets, focuses on assessing the output quality and overlap of our proposed models in comparison to other popular models. Our results indicate that our simple, interpretable models provide competitive baselines to popular generative models. Through this investigation, we offer a structured and robust evaluation scheme, thereby facilitating the development of models capable of generating accurate and edge-diverse graphs.
Compositional Capabilities of Autoregressive Transformers: A Study on Synthetic, Interpretable Tasks
Rahul Ramesh · Ekdeep Singh Lubana · Mikail Khona · Robert Dick · Hidenori Tanaka
Transformers trained on huge text corpora exhibit a remarkable set of capabilities, e.g., performing simple logical operations. Given the inherent compositional nature of language, one can expect the model to learn to compose these capabilities, potentially yielding a combinatorial explosion of what operations it can perform on an input. Motivated by the above, we aim to assess in this paper “how capable can a transformer become?”. Specifically, we train autoregressive Transformer models on a data-generating process that involves compositions of a set of well-defined monolithic capabilities. Through a series of extensive and systematic experiments on this data-generating process, we show that: (1) autoregressive Transformers can learn compositional structures from small amounts of training data and generalize to exponentially or even combinatorially many functions; (2) composing functions by generating intermediate outputs is more effective at generalizing to unseen compositions, compared to generating no intermediate outputs; (3) biases in the order of the compositions in the training data, results in Transformers that fail to compose some combinations of functions; and (4) the attention layers seem to select the capability to apply while the feed-forward layers execute the capability.
WAVES: Benchmarking the Robustness of Image Watermarks
Bang An · Mucong Ding · Tahseen Rabbani · Aakriti Agrawal · Yuancheng Xu · Chenghao Deng · Sicheng Zhu · Abdirisak Mohamed · Yuxin Wen · Tom Goldstein · Furong Huang
In the burgeoning age of generative AI, watermarks act as identifiers of provenance and artificial content. We present WAVES (Watermark Analysis via Enhanced Stress-testing), a benchmark for assessing image watermark robustness, overcoming the limitations of current evaluation methods. WAVES integrates detection and identification tasks and establishes a standardized evaluation protocol comprised of a diverse range of stress tests. The attacks in WAVES range from traditional image distortions to advanced, novel variations of diffusive, and adversarial attacks. Our evaluation examines two pivotal dimensions: the degree of image quality degradation and the efficacy of watermark detection after attacks. Our novel, comprehensive evaluation reveals previously undetected vulnerabilities of several modern watermarking algorithms. We envision WAVES as a toolkit for the future development of robust watermarks.
MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases
Zechun Liu · Changsheng Zhao · Forrest Iandola · Chen Lai · Yuandong Tian · Igor Fedorov · Yunyang Xiong · Ernie Chang · Yangyang Shi · Raghuraman Krishnamoorthi · Liangzhen Lai · Vikas Chandra
This paper addresses the growing need for efficient large language models (LLMs) on mobile devices, driven by increasing cloud costs and latency concerns. We focus on designing top-quality LLMs with fewer than a billion parameters, a practical choice for mobile deployment. Contrary to prevailing belief emphasizing the pivotal role of data and parameter quantity in determining model quality, our investigation underscores the significance of model architecture for sub-billion scale LLMs. Leveraging deep and thin architectures, coupled with embedding sharing and grouped-query attention mechanisms, we establish a strong baseline network denoted as MobileLLM, which attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M state-of-the-art models. Additionally, we propose an immediate block-wise weight-sharing approach with no increase in model size and only marginal latency overhead. The resultant models, denoted as MobileLLM-LS, demonstrate a further accuracy enhancement of 0.7%/0.8% than MobileLLM 125M/350M. Moreover, MobileLLM model family shows significant improvements compared to previous sub-billion models on chat benchmarks, and demonstrates close correctness to LLaMA-v2 7B in API calling tasks, highlighting the capability of small models for common on-device use cases.
How Well Can LLMs Negotiate? NegotiationArena Platform and Analysis
Federico Bianchi · Patrick John Chia · Mert Yuksekgonul · Jacopo Tagliabue · Dan Jurafsky · James Zou
Negotiation is the basis of social interactions; humans negotiate everything from the price of cars to how to share common resources. With rapidly growing interest in using large language models (LLMs) to act as agents on behalf of human users, such LLM agents would also need to be able to negotiate. In this paper, we study how well LLMs can negotiate with each other. We develop NegotiationArena: a flexible framework for evaluating and probing the negotiation abilities of LLM agents. We implemented three types of scenarios in NegotiationArena to assess LLM's behaviors in allocating shared resources (ultimatum games), aggregate resources (trading games) and buy/sell goods (price negotiations). Each scenario allows for multiple turns of flexible dialogues between LLM agents to allow for more complex negotiations. Interestingly, LLM agents can significantly boost their negotiation outcomes by employing certain behavioral tactics. For example, by pretending to be desolate and desperate, LLMs can improve their payoffs by 20% when negotiating against the standard GPT-4. We also quantify irrational negotiation behaviors exhibited by the LLM agents, many of which also appear in humans. Together, NegotiationArena offers a new environment to investigate LLM interactions, enabling new insights into LLM's theory of mind, irrationality, and reasoning abilities
Interpreting and Improving Large Language Models in Arithmetic Calculation
Wei Zhang · Wan Chaoqun · Yonggang Zhang · Yiu Ming Cheung · Xinmei Tian · Xu Shen · Jieping Ye
Large language models (LLMs) have demonstrated remarkable potential across numerous applications and have shown an emergent ability to tackle complex reasoning tasks, such as mathematical computations. However, even for the simplest arithmetic calculations, the intrinsic mechanisms behind LLMs remains mysterious, making it challenging to ensure reliability. In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations. Through comprehensive experiments, we find that LLMs frequently involve a small fraction (<5%) of attention heads, which play a pivotal role in focusing on operands and operators during calculation processes. Subsequently, the information from these operands is processed through multi-layer perceptrons (MLPs), progressively leading to the final solution. These pivotal heads/MLPs, though identified on a specific dataset, exhibit transferability across different datasets and even distinct tasks. This insight prompted us to investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance. We empirically find that such precise tuning can yield notable enhancements on mathematical prowess, without compromising the performance on non-mathematical tasks. Our work serves as a preliminary exploration into the arithmetic calculation abilities inherent in LLMs, laying a solid foundation to reveal more intricate mathematical tasks.
Do Models Explain Themselves? Counterfactual Simulatability of Natural Language Explanations
Yanda Chen · Ruiqi Zhong · Narutatsu Ri · Chen Zhao · He He · Jacob Steinhardt · Zhou Yu · Kathleen McKeown
Large language models (LLMs) are trained to imitate humans to explain human decisions. However, do LLMs explain themselves? Can they help humans build mental models of how LLMs process different inputs? To answer these questions, we propose to evaluate $\textbf{counterfactual simulatability}$ of natural language explanations: whether an explanation can enable humans to precisely infer the model's outputs on diverse counterfactuals of the explained input. For example, if a model answers ''$\textit{yes}$'' to the input question ''$\textit{Can eagles fly?}$'' with the explanation ''$\textit{all birds can fly}$'', then humans would infer from the explanation that it would also answer ''$\textit{yes}$'' to the counterfactual input ''$\textit{Can penguins fly?}$''. If the explanation is precise, then the model's answer should match humans' expectations. We implemented two metrics based on counterfactual simulatability: precision and generality. We generated diverse counterfactuals automatically using LLMs. We then used these metrics to evaluate state-of-the-art LLMs (e.g., GPT-4) on two tasks: multi-hop factual reasoning and reward modeling. We found that LLM's explanations have low precision and that precision does not correlate with plausibility. Therefore, naively optimizing human approvals (e.g., RLHF) may be insufficient.
Multicalibration for Confidence Scoring in LLMs
Gianluca Detommaso · Martin A Bertran · Riccardo Fogliato · Aaron Roth
This paper proposes the use of "multicalibration": to yield interpretable and reliable confidence scores for outputs generated by large language models (LLMs). Multicalibration asks for calibration not just marginally, but simultaneously across various intersecting groupings of the data. We show how to form groupings for prompt/completion pairs that are correlated with the probability of correctness via two techniques: clustering within an embedding space, and "self-annotation" - querying the LLM by asking it various yes-or-no questions about the prompt. We also develop novel variants of multicalibration algorithms that offer performance improvements by reducing their tendency to overfit. Through systematic benchmarking across various question answering datasets and LLMs, we show how our techniques can yield confidence scores that provide substantial improvements in fine-grained measures of both calibration and accuracy compared to existing methods.
Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation
Haoran Xu · Amr Sharaf · Yunmo Chen · Weiting Tan · Lingfeng Shen · Benjamin Van Durme · Kenton Murray · Young Jin Kim
Moderate-sized large language models (LLMs) -- those with 7B or 13B parameters -- exhibit promising machine translation (MT) performance. However, they do not match the performance of state-of-the-art conventional encoder-decoder translation models or larger-scale LLMs such as GPT-4. In this study, we bridge this performance gap. We first assess the shortcomings of supervised fine-tuning for LLMs in the MT task, emphasizing the quality issues present in the reference data, despite being human-generated. Then, in contrast to supervised fine-tuning which mimics reference translations, we introduce Contrastive Preference Optimization (CPO), a novel approach that trains models to avoid generating adequate but not perfect translations. Applying CPO to ALMA models with only 22K parallel sentences and 0.1% parameters yields significant improvements. The resulting model, called ALMA-R, can match or exceed the performance of the WMT competition winners and GPT-4 on WMT'21, WMT'22 and WMT'23 test datasets.
In-Context Language Learning: Architectures and Algorithms
Ekin Akyürek · Bailin Wang · Yoon Kim · Jacob Andreas
Some neural language models (LMs) exhibit a remarkable capacity for in-context learning (ICL): they can fit predictors to datasets provided as input. While the mechanisms underlying ICL are well-studied in the context of synthetic problems like in-context linear regression, there is still some divergence between these model problems and the “real” ICL exhibited by LMs trained on large text corpora. In this paper, we study ICL through the lens of a new family of model problems we term in context language learning (ICLL). In ICLL, LMs are presented with a set of strings from a formal language, and must generate additional strings from the same language. We focus on in- context learning of regular languages generated by random finite automata. We evaluate a diverse set of neural sequence models on regular ICLL tasks. We first show that Transformers significantly outperform neural sequence models with recurrent or convolutional representations on ICLL tasks. Next, we provide evidence that they do so by computing in-context n-gram statistics using specialized attention heads. Finally, we show that hard-wiring these heads into neural models improves performance not just on synthetic ICLL, but natural language modeling, reducing the perplexity of 340M-parameter Transformers by up to 1.14 points (6.7%) on the SlimPajama dataset. Our results highlight the usefulness of in-context formal language learning as a tool for understanding ICL in models of natural text.
Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference
Wei-Lin Chiang · Lianmin Zheng · Ying Sheng · Anastasios Angelopoulos · Tianle Li · Dacheng Li · Banghua Zhu · Hao Zhang · Michael Jordan · Joseph E Gonzalez · Ion Stoica
Large Language Models (LLMs) have unlocked new capabilities and applications; however, evaluating the alignment with human preferences still poses significant challenges. To address this issue, we introduce Chatbot Arena, an open platform for evaluating LLMs based on human preferences. Our methodology employs a pairwise comparison approach and leverages input from a diverse user base through crowdsourcing. The platform has been operational for several months, amassing over 240K votes. This paper describes the platform, analyzes the data we have collected so far, and explains the tried-and-true statistical methods we are using for efficient and accurate evaluation and ranking of models. We confirm that the crowdsourced questions are sufficiently diverse and discriminating and that the crowd-sourced human votes are in good agreement with those of expert raters. These analyses collectively establish a robust foundation for the credibility of Chatbot Arena. Because of its unique value and openness, Chatbot Arena has emerged as one of the most referenced LLM leaderboards, widely cited by leading LLM developers and companies. The platform is publicly available at https://chat.lmsys.org.
Whispering Experts: Neural Interventions for Toxicity Mitigation in Language Models
Xavi Suau · Pieter Delobelle · Katherine Metcalf · Armand Joulin · Nicholas Apostoloff · Luca Zappella · Pau Rodriguez
An important issue with Large Language Models (LLMs) is their undesired ability to generate toxic language. In this work, we show that the neurons responsible for toxicity can be determined by their power to discriminate toxic sentences, and that toxic language can be mitigated by reducing their activation levels proportionally to this power. We propose AUROC adaptation (AurA), an intervention that can be applied to any pre-trained LLM to mitigate toxicity. As the intervention is proportional to the ability of each neuron to discriminate toxic content, it is free of any model-dependent hyperparameters. We show that AurA can achieve up to $2.2\times$ reduction in toxicity with only a $0.72$ perplexity increase. We also show that AurA is effective with models of different scale (from 1.5B to 40B parameters), and its effectiveness in mitigating toxic language, while preserving common-sense zero-shot abilities, holds across all scales. AurA can be combined with pre-prompting strategies, boosting its average mitigation potential from $1.28\times$ to $2.35\times$. Moreover, AurA can counteract adversarial pre-prompts that maliciously elicit toxic content, making it an effective method for deploying safer and less toxic models.
Sparse is Enough in Fine-tuning Pre-trained Large Language Models
Weixi Song · Zuchao Li · Lefei Zhang · hai zhao · Bo Du
With the prevalence of pre-training-fine-tuning paradigm, how to efficiently adapt the pre-trained model to the downstream tasks has been an intriguing issue. $\textbf{P}$arameter-$\textbf{E}$fficient $\textbf{F}$ine-$\textbf{T}$uning(PEFT) methods have been proposed for low-cost adaptation. Although PEFT has demonstrated effectiveness and been widely applied, the underlying principles are still unclear. In this paper, we adopt the PAC-Bayesian generalization error bound, viewing pre-training as a shift of prior distribution which leads to a tighter bound for generalization error. We validate this shift from the perspectives of oscillations in the loss landscape and the quasi-sparsity in gradient distribution. Based on this, we propose a gradient-based sparse fine-tuning algorithm, named $\textbf{S}$parse $\textbf{I}$ncrement $\textbf{F}$ine-$\textbf{T}$uning(SIFT), and validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning. The code is accessible at https://github.com/song-wx/SIFT/.
Long Is More for Alignment: A Simple but Tough-to-Beat Baseline for Instruction Fine-Tuning
Hao Zhao · Maksym Andriushchenko · Francesco Croce · Nicolas Flammarion
There is a consensus that instruction fine-tuning of LLMs requires high-quality data, but what are they? LIMA (NeurIPS 2023) and AlpaGasus (ICLR 2024) are state-of-the-art methods for selecting such high-quality examples, either via manual curation or using GPT-3.5-Turbo as a quality scorer. We show that the extremely simple baseline of selecting the 1,000 instructions with longest responses---that intuitively contain more learnable information and are harder to overfit---from standard datasets can consistently outperform these sophisticated methods according to GPT-4 and PaLM-2 as judges, while remaining competitive on the Open LLM benchmarks that test factual knowledge. We demonstrate this for several LLMs (Llama-2-7B, Llama-2-13B, Mistral-7B-v0.1) and datasets (Alpaca-52k, Evol-Instruct-70k). In addition, a lightweight refinement of such long instructions can further improve the abilities of the fine-tuned LLMs, and allows us to obtain competitive results on MT-Bench and the 2nd highest-ranked Llama-2-7B-based model on AlpacaEval 2.0, while training on only 1,000 examples and no extra preference data. We also conduct a thorough analysis of our models to ensure that their enhanced performance is not simply due to GPT-4's preference for longer responses. Overall, our findings suggest that fine-tuning on the longest responses should be the default baseline for any work on instruction fine-tuning. We provide our code in this GitHub repository.
Coactive Learning for Large Language Models using Implicit User Feedback
Aaron D. Tucker · Kianté Brantley · Adam Cahall · Thorsten Joachims
We propose coactive learning as a model and feedback mechanism for training large language models (LLMs). The key insight is that users provide implicit feedback whenever they edit the text $y$ proposed by an LLM. While the edited text $\bar y$ is typically not a gold-standard example for supervised training, coactive learning merely requires that the edited text $\bar y$ is an improvement over the proposed text $y$. Note that such weak implicit preference feedback $\bar y \succ y$ is available in many application settings on a per-user basis, thus enabling the personalization of LLMs. In this paper, we develop the theoretical basis for coactive training of non-linear models, and we derive CoRLL as the first coactive learning algorithm for LLMs. Empirical results indicate that CoRLL is effective even for weak and noisy coactive preference feedback, making it a promising algorithm for training and personalization of LLMs from feedback that is naturally collected in many use cases.
Unsupervised Parameter-free Simplicial Representation Learning with Scattering Transforms
Hiren Madhu · Sravanthi Gurugubelli · Sundeep Prabhakar Chepuri
Simplicial neural network models are becoming popular for processing and analyzing higher-order graph data, but they suffer from high training complexity and dependence on task-specific labels. To address these challenges, we propose simplicial scattering networks (SSNs), a parameter-free model inspired by scattering transforms designed to extract task-agnostic features from simplicial complex data without labels in a principled manner. Specifically, we propose a simplicial scattering transform based on random walk matrices for various adjacencies underlying a simplicial complex. We then use the simplicial scattering transform to construct a deep filter bank network that captures high-frequency information at multiple scales. The proposed simplicial scattering transform possesses properties such as permutation invariance, robustness to perturbations, and expressivity. We theoretically prove that including higher-order information improves the robustness of SSNs to perturbations. Empirical evaluations demonstrate that SSNs outperform existing simplicial or graph neural models in many tasks like node classification, simplicial closure, graph classification, trajectory prediction, and simplex prediction while being computationally efficient.
Feature Distribution on Graph Topology Mediates the Effect of Graph Convolution: Homophily Perspective
Soo Yong Lee · Sunwoo Kim · Fanchen Bu · Jaemin Yoo · Jiliang Tang · Kijung Shin
How would randomly shuffling feature vectors among nodes from the same class affect graph neural networks (GNNs)? The feature shuffle, intuitively, perturbs the dependence between graph topology and features (A-X dependence) for GNNs to learn from. Surprisingly, we observe a consistent and significant improvement in GNN performance following the feature shuffle. Having overlooked the impact of A-X dependence on GNNs, the prior literature does not provide a satisfactory understanding of the phenomenon. Thus, we raise two research questions. First, how should A-X dependence be measured, while controlling for potential confounds? Second, how does A-X dependence affect GNNs? In response, we (i) propose a principled measure for A-X dependence, (ii) design a random graph model that controls A-X dependence, (iii) establish a theory on how A-X dependence relates to graph convolution, and (iv) present empirical analysis on real-world graphs that align with the theory. We conclude that A-X dependence mediates the effect of graph convolution, such that smaller dependence improves GNN-based node classification.
On dimensionality of feature vectors in MPNNs
César Bravo · Alexander Kozachinskiy · Cristobal Rojas
We revisit the result of Morris et al. (AAAI'19) that message-passing graphs neural networks (MPNNs) are equal in their distinguishing power to the Weisfeiler--Leman (WL) isomorphism test. Morris et al. show their result with ReLU activation function and $O(n)$-dimensional feature vectors, where $n$ is the size of the graph. Recently, by introducing randomness into the architecture, Aamand et al. (NeurIPS'22) improved this bound to $O(\log n)$-dimensional feature vectors, although at the expense of guaranteeing perfect simulation only with high probability. In all these constructions, to guarantee equivalence to the WL test, the dimension of feature vectors in the MPNN has to increase with the size of the graphs. However, architectures used in practice have feature vectors of constant dimension. Thus, there is a gap between the guarantees provided by these results and the actual characteristics of architectures used in practice. In this paper we close this gap by showing that, for *any* non-polynomial analytic (like the sigmoid) activation function, to guarantee that MPNNs are equivalent to the WL test, feature vectors of dimension $d=1$ is all we need, independently of the size of the graphs. Our main technical insight is that for simulating multi-sets in the WL-test, it is enough to use linear independence of feature vectors over rationals instead of reals. Countability of the set of rationals together with nice properties of analytic functions allow us to carry out the simulation invariant over the iterations of the WL test without increasing the dimension of the feature vectors.
Graph Attention Networks (GATs) are designed to provide flexible neighborhood aggregation that assigns weights to neighbors according to their importance. In practice, however, GATs are often unable to switch off task-irrelevant neighborhood aggregation, as we show experimentally and analytically. To address this challenge, we propose GATE, a GAT extension that holds three major advantages: i) It alleviates over-smoothing by addressing its root cause of unnecessary neighborhood aggregation. ii) Similarly to perceptrons, it benefits from higher depth as it can still utilize additional layers for (non-)linear feature transformations in case of (nearly) switched-off neighborhood aggregation. iii) By down-weighting connections to unrelated neighbors, it often outperforms GATs on real-world heterophilic datasets. To further validate our claims, we construct a synthetic test bed to analyze a model's ability to utilize the appropriate amount of neighborhood aggregation, which could be of independent interest.
Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion Bridge
Yufei Huang · Odin Zhang · Lirong Wu · Cheng Tan · Haitao Lin · Zhangyang Gao · Siyuan Li · Stan Z Li
Accurate prediction of protein-ligand binding structures, a task known as molecular docking is crucial for drug design but remains challenging. While deep learning has shown promise, existing methods often depend on holo-protein structures (docked, and not accessible in realistic tasks) or neglect pocket sidechain conformations, leading to limited practical utility and unrealistic conformation predictions. To fill these gaps, we introduce an under-explored task, named flexible docking to predict poses of ligand and pocket sidechains simultaneously and introduce Re-Dock, a novel diffusion bridge generative model extended to geometric manifolds. Specifically, we propose energy-to-geometry mapping inspired by the Newton-Euler equation to co-model the binding energy and conformations for reflecting the energy-constrained docking generative process. Comprehensive experiments on designed benchmark datasets including apo-dock and cross-dock demonstrate our model's superior effectiveness and efficiency over current methods.
Position: Key Claims in LLM Research Have a Long Tail of Footnotes
Anna Rogers · Sasha Luccioni
Much of the recent discourse within the ML community has been centered around Large Language Models (LLMs), their functionality and potential -- yet not only do we not have a working definition of LLMs, but much of this discourse relies on claims and assumptions that are worth re-examining. We contribute a definition of LLMs, critically examine five common claims regarding their properties (including 'emergent properties'), and conclude with suggestions for future research directions and their framing.
A Human-Inspired Reading Agent with Gist Memory of Very Long Contexts
Kuang-Huei Lee · Xinyun Chen · Hiroki Furuta · John Canny · Ian Fischer
Current Large Language Models (LLMs) are not only limited to some maximum context length, but also are not able to robustly consume long inputs. To address these limitations, we propose ReadAgent, an LLM agent system that increases effective context length up to 20x in our experiments. Inspired by how humans interactively read long documents, we implement ReadAgent as a simple prompting system that uses the advanced language capabilities of LLMs to (1) decide what content to store together in a memory episode, (2) compress those memory episodes into short episodic memories called gist memories, and (3) take actions to look up passages in the original text if ReadAgent needs to remind itself of relevant details to complete a task. We evaluate ReadAgent against baselines using retrieval methods, using the original long contexts, and using the gist memories. These evaluations are performed on three long-document reading comprehension tasks: QuALITY, NarrativeQA, and QMSum. ReadAgent outperforms the baselines on all three tasks while extending the effective context window by 3.5-20x.
InstructRetro: Instruction Tuning post Retrieval-Augmented Pretraining
Boxin Wang · Wei Ping · Lawrence McAfee · Peng Xu · Bo Li · Mohammad Shoeybi · Bryan Catanzaro
Pretraining auto-regressive large language models (LLMs) with retrieval demonstrates better perplexity and factual accuracy by leveraging external databases. However, the size of existing pretrained retrieval-augmented LLM is still limited (e.g., Retro has 7.5B parameters), which limits the effectiveness of instruction tuning and zero-shot generalization. In this work, we introduce Retro 48B, the largest LLM pretrained with retrieval. Specifically, we continue to pretrain a 43B GPT model on additional 100 billion tokens using the Retro augmentation method by retrieving from 1.2 trillion tokens. Notably, the obtained foundation model, Retro 48B, largely outperforms the counterpart GPT 43B trained on 1.2T tokens in terms of perplexity with only 2.58% additional GPU hours, demonstrating the significant scaling potential of the method. After instruction tuning on Retro, InstructRetro demonstrates significant improvement over the instruction-tuned GPT on a wide range of zero-shot tasks. Specifically, the average improvement of InstructRetro is 7% over its GPT counterpart across 8 short-form QA and reading comprehension tasks, 10% over GPT across 4 challenging long-form QA tasks, and 16% over GPT across 3 summarization tasks. Surprisingly, we find that one can ablate the encoder from InstructRetro architecture and directly use its decoder backbone, while achieving comparable results. Our results highlight the promising direction to obtain a better GPT decoder through continued pretraining with retrieval before instruction tuning. Our code and checkpoints are publicly available at: https://huggingface.co/nvidia/retro-48b-instruct-4k.
ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models
Rohan Wadhawan · Hritik Bansal · Kai-Wei Chang · Nanyun Peng
Many real-world tasks require an agent to reason jointly over text and visual objects, (e.g., navigating in public spaces), which we refer to as context-sensitive text-rich visual reasoning. Specifically, these tasks require an understanding of the context in which the text interacts with visual elements within an image. However, there is a lack of existing datasets to benchmark the state-of-the-art multimodal models' capability on context-sensitive text-rich visual reasoning. In this paper, we introduce ConTextual, a novel dataset featuring human-crafted instructions that require context-sensitive reasoning for text-rich images. We conduct experiments to assess the performance of 14 foundation models (GPT-4V, Gemini-Pro-Vision, LLaVA-Next) and establish a human performance baseline. Further, we perform human evaluations of the model responses and observe a significant performance gap of 30.8% between GPT-4V (the current best-performing Large Multimodal Model) and human performance. Our fine-grained analysis reveals that GPT-4V encounters difficulties interpreting time-related data and infographics. However, it demonstrates proficiency in comprehending abstract visual contexts such as memes and quotes. Finally, our qualitative analysis uncovers various factors contributing to poor performance including lack of precise visual perception and hallucinations. Our dataset, code, and leaderboard can be found on the project page https://con-textual.github.io/.
MMT-Bench: A Comprehensive Multimodal Benchmark for Evaluating Large Vision-Language Models Towards Multitask AGI
Kaining Ying · Fanqing Meng · Jin Wang · Zhiqian Li · Han Lin · Yue Yang · Hao Zhang · Wenbo Zhang · Yuqi Lin · Shuo Liu · jiayi lei · Quanfeng Lu · Runjian Chen · Peng Xu · Renrui Zhang · Haozhe Zhang · Peng Gao · Yali Wang · Yu Qiao · Ping Luo · Kaipeng Zhang · WENQI SHAO
Large Vision-Language Models (LVLMs) show significant strides in general-propose multimodal applications such as visual dialogue and embodied navigation. However, existing multimodal evaluation benchmarks cover a limited number of multimodal tasks testing rudimentary capabilities, falling short in tracking LVLM development. In this study, we present MMT-Bench, a comprehensive benchmark designed to assess LVLMs across massive multimodal tasks requiring expert knowledge and deliberate visual recognition, localization, and reasoning. MMT-Bench comprises $31,325$ meticulously curated multi-choice visual questions from various multimodal scenarios such as vehicle driving and embodied navigation, covering $32$ core meta-tasks and $162$ subtasks in multimodal understanding. Due to its extensive task coverage, MMT-Bench enables the evaluation of LVLMs using a task map, facilitating the discovery of in- and out-of-domain tasks. Evaluation results involving $20$ publicly available LVLMs such as the proprietary GeminiProVision model, underscore the significant challenges posed by MMT-Bench. We anticipate that MMT-Bench will inspire the community to develop next-generation multimodal foundation models aimed at achieving general-purpose multimodal intelligence.
Stay on Topic with Classifier-Free Guidance
Guillaume Sanchez · Alexander Spangher · Honglu Fan · Elad Levi · Stella Biderman
Classifier-Free Guidance (CFG) has recently emerged in as a lightweight technique to encourage prompt-adherence in generations, yet has not yet been successfully applied to language modeling. In this work, we demonstrate across a wide array of benchmarks that CFG can be used broadly as an inference-time technique in pure language modeling. We show that CFG (1) improves the performance of Pythia, GPT-2 and LLaMA-family models across: Q&A, reasoning, code generation, and machine translation, achieving SOTA on LAMBADA with LLaMA-7B over PaLM-540B; (2) brings improvements equivalent to a model with twice the parameter-count; (3) can stack alongside other inference-time methods like Chain-of-Thought and Self-Consistency, yielding further improvements in difficult tasks; (4) can be used to increase the faithfulness and coherence of assistants in challenging form-driven and content-driven prompts: in human evaluations we show a 75% preference for using CFG over baseline.
Tandem Transformers for Inference Efficient LLMs
Aishwarya P S · Pranav Nair · Yashas Samaga · Toby Boyd · Sanjiv Kumar · Prateek Jain · Praneeth Kumar Netrapalli
The autoregressive nature of conventional large language models (LLMs) inherently limits inference speed, as tokens are generated sequentially. While speculative (Leviathan et al., 2023) and parallel (Stern et al., 2018) decoding techniques attempt to mitigate this, they face limitations: either relying on less accurate smaller models for generation or failing to fully leverage the base LLM's representations. We introduce a novel architecture, Tandem transformers, to address these issues. This architecture uniquely combines (1) a small autoregressive model and (2) a large model operating in block mode (processing multiple tokens simultaneously). The small model's predictive accuracy is substantially enhanced by granting it attention to the large model's richer representations. On the PaLM2 pretraining dataset, a tandem of PaLM2-Bison and PaLM2-Gecko demonstrates a 3.3% improvement in next-token prediction accuracy over a standalone PaLM2-Gecko, offering a 1.16x speedup compared to a PaLM2-Otter model with comparable downstream performance. We further incorporate the Tandem model within the speculative decoding (SPEED) framework where the large model validates tokens from the small model. This ensures that the tandem of PaLM2-Bison and PaLM2-Gecko achieves substantial speedup (around 1.14x faster than using vanilla PaLM2-Gecko in SPEED) while maintaining identical downstream task accuracy.
Random Masking Finds Winning Tickets for Parameter Efficient Fine-tuning
Jing Xu · Jingzhao Zhang
Fine-tuning large language models (LLM) can be costly. Parameter-efficient fine-tuning (PEFT) addresses the problems by training a fraction of the parameters, whose success reveals the expressiveness and flexibility of pretrained models. This paper studies the limit of PEFT, by further simplifying its design and reducing the number of trainable parameters beyond standard setups. To this end, we use Random Masking to fine-tune the pretrained model. Despite its simplicity, we show that Random Masking is surprisingly effective: with a larger-than-expected learning rate, Random Masking can match the performance of standard PEFT algorithms such as LoRA on various tasks, using fewer trainable parameters. We provide both empirical and theoretical explorations into the success of Random Masking. We show that masking induces a flatter loss landscape and more distant solutions, which allows for and necessitates large learning rates.
Watermark Stealing in Large Language Models
Nikola Jovanović · Robin Staab · Martin Vechev
LLM watermarking has attracted attention as a promising way to detect AI-generated content, with some works suggesting that current schemes may already be fit for deployment. In this work we dispute this claim, identifying watermark stealing (WS) as a fundamental vulnerability of these schemes. We show that querying the API of the watermarked LLM to approximately reverse-engineer a watermark enables practical spoofing attacks, as hypothesized in prior work, but also greatly boosts scrubbing attacks, which was previously unnoticed. We are the first to propose an automated WS algorithm and use it in the first comprehensive study of spoofing and scrubbing in realistic settings. We show that for under $50 an attacker can both spoof and scrub state-of-the-art schemes previously considered safe, with average success rate of over 80\%. Our findings challenge common beliefs about LLM watermarking, stressing the need for more robust schemes. We make all our code and additional examples available at https://watermark-stealing.org.
Online Cascade Learning for Efficient Inference over Streams
Lunyiu Nie · Zhimin Ding · Erdong Hu · Christopher Jermaine · Swarat Chaudhuri
Large Language Models (LLMs) have a natural role in answering complex queries about data streams, but the high computational cost of LLM inference makes them infeasible in many such tasks. We propose online cascade learning, the first approach to address this challenge. The objective here is to learn a ``cascade'' of models, starting with lower-capacity models (such as logistic regression) and ending with a powerful LLM, along with a deferral policy that determines the model to be used on a given input. We formulate the task of learning cascades online as an imitation-learning problem, where smaller models are updated over time imitating the collected LLM demonstrations, and give a no-regret algorithm for the problem. Experimental results across four benchmarks show that our method parallels LLMs in accuracy while cutting down inference costs by as much as 90% with strong robustness against input distribution shifts, underscoring its efficacy and adaptability in stream processing. Our source code is available at https://github.com/flitternie/onlinecascadelearning.
Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes
Zhen Qin · Daoyuan Chen · Bingchen Qian · Bolin Ding · Yaliang Li · Shuiguang Deng
Pre-trained large language models (LLMs) need fine-tuning to improve their responsiveness to natural language instructions. Federated learning offers a way to fine-tune LLMs using the abundant data on end devices without compromising data privacy. Most existing federated fine-tuning methods for LLMs rely on parameter-efficient fine-tuning techniques, which may not reach the performance height possible with full-parameter tuning. However, federated full-parameter tuning of LLMs is a non-trivial problem due to the immense communication cost. This work introduces FedKSeed that employs zeroth-order optimization with a finite set of random seeds. It significantly reduces transmission requirements between the server and clients to just a few random seeds and scalar gradients, amounting to only a few thousand bytes, making federated full-parameter tuning of billion-sized LLMs possible on devices. Building on it, we develop a strategy enabling probability-differentiated seed sampling, prioritizing perturbations with greater impact on model accuracy. Experiments across six scenarios with various LLMs, datasets and data partitions demonstrate that our approach outperforms existing federated LLM fine-tuning methods in both communication efficiency and zero-shot generalization.
Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation
Xinyi Wang · Alfonso Amayuelas · Kexun Zhang · Liangming Pan · Wenhu Chen · William Wang
Pre-trained language models (LMs) are able to perform complex reasoning without explicit fine-tuning. To understand how pre-training with a next-token prediction objective contributes to the emergence of such reasoning capability, we propose that we can view an LM as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time. We found this perspective effective in two important cases of reasoning: logic reasoning with knowledge graphs (KGs) and chain-of-thought (CoT) reasoning. More specifically, we formalize the reasoning paths as random walk paths on the knowledge/reasoning graphs. Analyses of learned LM distributions suggest that a weighted sum of relevant random walk path probabilities is a reasonable way to explain how LMs reason. Experiments and analysis on multiple KG and CoT datasets reveal the effect of training on random walk paths and suggest that augmenting unlabeled random walk reasoning paths can improve real-world multi-step reasoning performance.
Improving Instruction Following in Language Models through Proxy-Based Uncertainty Estimation
JoonHo Lee · Jae Oh Woo · Juree Seok · Parisa Hassanzadeh · Wooseok Jang · JuYoun Son · Sima Didari · Baruch Gutow · Heng Hao · Hankyu Moon · Wenjun Hu · Yeong-Dae Kwon · Taehee Lee · Seungjai Min
Assessing response quality to instructions in language models is vital but challenging due to the complexity of human language across different contexts. This complexity often results in ambiguous or inconsistent interpretations, making accurate assessment difficult. To address this issue, we propose a novel Uncertainty-aware Reward Model (URM) that introduces a robust uncertainty estimation for the quality of paired responses based on Bayesian approximation. Trained with preference datasets, our uncertainty-enabled proxy not only scores rewards for responses but also evaluates their inherent uncertainty. Empirical results demonstrate significant benefits of incorporating the proposed proxy into language model training. Our method boosts the instruction following capability of language models by refining data curation for training and improving policy optimization objectives, thereby surpassing existing methods by a large margin on benchmarks such as Vicuna and MT-bench. These findings highlight that our proposed approach substantially advances language model training and paves a new way of harnessing uncertainty within language models.
Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo
Stephen Zhao · Rob Brekelmans · Alireza Makhzani · Roger Grosse
Numerous capability and safety techniques of Large Language Models (LLMs), including RLHF, automated red-teaming, prompt engineering, and infilling, can be cast as sampling from an unnormalized target distribution defined by a given reward or potential function over the full sequence. In this work, we leverage the rich toolkit of Sequential Monte Carlo (SMC) for these probabilistic inference problems. In particular, we use learned twist functions to estimate the expected future value of the potential at each timestep, which enables us to focus inference-time computation on promising partial sequences. We propose a novel contrastive method for learning the twist functions, and establish connections with the rich literature of soft reinforcement learning. As a complementary application of our twisted SMC framework, we present methods for evaluating the accuracy of language model inference techniques using novel bidirectional SMC bounds on the log partition function. These bounds can be used to estimate the KL divergence between the inference and target distributions in both directions. We apply our inference evaluation techniques to show that twisted SMC is effective for sampling undesirable outputs from a pretrained model (a useful component of harmlessness training and automated red-teaming), generating reviews with varied sentiment, and performing infilling tasks.
SLEB: Streamlining LLMs through Redundancy Verification and Elimination of Transformer Blocks
Jiwon Song · Kyungseok Oh · Taesu Kim · Hyungjun Kim · Yulhwa Kim · jae-joon kim
Large language models (LLMs) have proven to be highly effective across various natural language processing tasks. However, their large number of parameters poses significant challenges for practical deployment. Pruning, a technique aimed at reducing the size and complexity of LLMs, offers a potential solution by removing redundant components from the network. Despite the promise of pruning, existing methods often struggle to achieve substantial end-to-end LLM inference speedup. In this paper, we introduce SLEB, a novel approach designed to stream- line LLMs by eliminating redundant transformer blocks. We choose the transformer block as the fundamental unit for pruning, because LLMs exhibit block-level redundancy with high similarity between the outputs of neighboring blocks. This choice allows us to effectively enhance the processing speed of LLMs. Our experimental results demonstrate that SLEB outperforms previous LLM pruning methods in accelerating LLM inference while also maintaining superior perplexity and accuracy, making SLEB as a promising technique for enhancing the efficiency of LLMs. The code is available at: https://github.com/jiwonsong-dev/SLEB.
Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks
Linyuan Gong · Sida Wang · Mostafa Elhoushi · Alvin Cheung
We introduce Syntax-Aware Fill-in-the-Middle (SAFIM), a new benchmark for evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM) task. This benchmark focuses on syntax-aware completions of program structures such as code blocks and conditional expressions, and includes 17,720 examples from multiple programming languages, sourced from recent code submissions after April 2022 to minimize data contamination. SAFIM provides a robust framework with various prompt designs and novel syntax-aware post-processing techniques, facilitating accurate and fair comparisons across LLMs. Our comprehensive evaluation of 15 LLMs shows that FIM pretraining not only enhances FIM proficiency but also improves Left-to-Right (L2R) inference using LLMs. Our findings challenge conventional beliefs and suggest that pretraining methods and data quality have more impact than model size. SAFIM thus serves as a foundational platform for future research in effective pretraining strategies for code LLMs. The evaluation toolkit and dataset are available at https://github.com/gonglinyuan/safim, and the leaderboard is available at https://safimbenchmark.com.
Language models can learn sophisticated language understanding skills from fitting raw text. They also unselectively learn useless corpus statistics and biases, especially during finetuning on domain-specific corpora. In this paper, we propose a simple modification to causal language modeling called conditional finetuning, which performs language modeling conditioned on a context. We show that a context can "explain away" certain corpus statistics and make the model avoid learning them. In this fashion, conditional finetuning achieves selective learning from a corpus, learning knowledge useful for downstream tasks while avoiding learning useless corpus statistics like topic biases. This selective learning effect leads to less forgetting and better stability-plasticity tradeoff in domain finetuning, potentially benefitting lifelong learning with language models.
Improving Accuracy-robustness Trade-off via Pixel Reweighted Adversarial Training
Jiacheng Zhang · Feng Liu · Dawei Zhou · Jingfeng ZHANG · Tongliang Liu
Adversarial training (AT) trains models using adversarial examples (AEs), which are natural images modified with specific perturbations to mislead the model. These perturbations are constrained by a predefined perturbation budget $\epsilon$ and are equally applied to each pixel within an image. However, in this paper, we discover that not all pixels contribute equally to the accuracy on AEs (i.e., robustness) and accuracy on natural images (i.e., accuracy). Motivated by this finding, we propose Pixel-reweighted AdveRsarial Training (PART), a new framework that partially reduces $\epsilon$ for less influential pixels, guiding the model to focus more on key regions that affect its outputs. Specifically, we first use class activation mapping (CAM) methods to identify important pixel regions, then we keep the perturbation budget for these regions while lowering it for the remaining regions when generating AEs. In the end, we use these pixel-reweighted AEs to train a model. PART achieves a notable improvement in accuracy without compromising robustness on CIFAR-10, SVHN and TinyImagenet-200, justifying the necessity to allocate distinct weights to different pixel regions in robust classification.
Measuring Stochastic Data Complexity with Boltzmann Influence Functions
Nathan Ng · Roger Grosse · Marzyeh Ghassemi
Estimating the uncertainty of a model’s prediction on a test point is a crucial part of ensuring reliability and calibration under distribution shifts.A minimum description length approach to this problem uses the predictive normalized maximum likelihood (pNML) distribution, which considers every possible label for a data point, and decreases confidence in a prediction if other labels are also consistent with the model and training data. In this work we propose IF-COMP, a scalable and efficient approximation of the pNML distribution that linearizes the model with a temperature-scaled Boltzmann influence function. IF-COMP can be used to produce well-calibrated predictions on test points as well as measure complexity in both labelled and unlabelled settings. We experimentally validate IF-COMP on uncertainty calibration, mislabel detection, and OOD detection tasks, where it consistently matches or beats strong baseline methods.
Learning to Predict Mutational Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning
Lirong Wu · Yijun Tian · Haitao Lin · Yufei Huang · Siyuan Li · Nitesh Chawla · Stan Z Li
Protein-protein bindings play a key role in a variety of fundamental biological processes, and thus predicting the effects of amino acid mutations on protein-protein binding is crucial. To tackle the scarcity of annotated mutation data, pre-training with massive unlabeled data has emerged as a promising solution. However, this process faces a series of challenges: (1) complex higher-order dependencies among multiple (more than paired) structural scales have not yet been fully captured; (2) it is rarely explored how mutations alter the local conformation of the surrounding microenvironment; (3) pre-training is costly, both in data size and computational burden. In this paper, we first construct a hierarchical prompt codebook to record common microenvironmental patterns at different structural scales independently. Then, we develop a novel codebook pre-training task, namely masked microenvironment modeling, to model the joint distribution of each mutation with their residue types, angular statistics, and local conformational changes in the microenvironment. With the constructed prompt codebook, we encode the microenvironment around each mutation into multiple hierarchical prompts and combine them to flexibly provide information to wild-type and mutated protein complexes about their microenvironmental differences. Such a hierarchical prompt learning framework has demonstrated superior performance and training efficiency over state-of-the-art pre-training-based methods in mutation effect prediction and a case study of optimizing human antibodies against SARS-CoV-2.
Decoupling Feature Extraction and Classification Layers for Calibrated Neural Networks
Mikkel Jordahn · Pablo Olmos
Deep Neural Networks (DNN) have shown great promise in many classification applications, yet are widely known to have poorly calibrated predictions when they are over-parametrized. Improving DNN calibration without comprising on model accuracy is of extreme importance and interest in safety critical applications such as in the health-care sector. In this work, we show that decoupling the training of feature extraction layers and classification layers in over-parametrized DNN architectures such as Wide Residual Networks (WRN) and Vision Transformers (ViT) significantly improves model calibration whilst retaining accuracy, and at a low training cost. In addition, we show that placing a Gaussian prior on the last hidden layer outputs of a DNN, and training the model variationally in the classification training stage, even further improves calibration. We illustrate these methods improve calibration across ViT and WRN architectures for several image classification benchmark datasets.
Collective Certified Robustness against Graph Injection Attacks
Yuni Lai · Bailin PAN · kaihuang CHEN · Yancheng Yuan · Kai Zhou
We investigate certified robustness for GNNs under graph injection attacks. Existing research only provides sample-wise certificates by verifying each node independently, leading to very limited certifying performance. In this paper, we present the first collective certificate, which certifies a set of target nodes simultaneously. To achieve it, we formulate the problem as a binary integer quadratic constrained linear programming (BQCLP). We further develop a customized linearization technique that allows us to relax the BQCLP into linear programming (LP) that can be efficiently solved. Through comprehensive experiments, we demonstrate that our collective certification scheme significantly improves certification performance with minimal computational overhead. For instance, by solving the LP within 1 minute on the Citeseer dataset, we achieve a significant increase in the certified ratio from 0.0% to 81.2% when the injected node number is 5% of the graph size. Our paper marks a crucial step towards making provable defense more practical. Our source code is available at https://github.com/Yuni-Lai/CollectiveLPCert.
Attack-free Evaluating and Enhancing Adversarial Robustness on Categorical Data
Yujun Zhou · Yufei Han · Haomin Zhuang · Hongyan Bao · Xiangliang Zhang
Research on adversarial robustness has predominantly focused on continuous inputs, leaving categorical inputs, especially tabular attributes, less examined. To echo this challenge, our work aims to evaluate and enhance the robustness of classification over categorical attributes against adversarial perturbations through efficient attack-free approaches. We propose a robustness evaluation metric named Integrated Gradient-Smoothed Gradient (IGSG). It is designed to evaluate the attributional sensitivity of each feature and the decision boundary of the classifier, two aspects that significantly influence adversarial risk, according to our theoretical analysis. Leveraging this metric, we develop an IGSG-based regularization to reduce adversarial risk by suppressing the sensitivity of categorical attributes. We conduct extensive empirical studies over categorical datasets of various application domains. The results affirm the efficacy of both IGSG and IGSG-based regularization. Notably, IGSG-based regularization surpasses the state-of-the-art robust training methods by a margin of approximately 0.4% to 12.2% on average in terms of adversarial accuracy, especially on high-dimension datasets. The code is available at https://github.com/YujunZhou/IGSG.
Towards Efficient Training and Evaluation of Robust Models against $l_0$ Bounded Adversarial Perturbations
Xuyang Zhong · Yixiao HUANG · Chen Liu
This work studies sparse adversarial perturbations bounded by $l_0$ norm. We propose a white-box PGD-like attack method named sparse-PGD to effectively and efficiently generate such perturbations. Furthermore, we combine sparse-PGD with a black-box attack to comprehensively and more reliably evaluate the models' robustness against $l_0$ bounded adversarial perturbations. Moreover, the efficiency of sparse-PGD enables us to conduct adversarial training to build robust models against sparse perturbations. Extensive experiments demonstrate that our proposed attack algorithm exhibits strong performance in different scenarios. More importantly, compared with other robust models, our adversarially trained model demonstrates state-of-the-art robustness against various sparse attacks. Codes are available at https://github.com/CityU-MLO/sPGD.
Extending Adversarial Attacks to Produce Adversarial Class Probability Distributions
Jon Vadillo · Roberto Santana · Jose A Lozano
Despite the remarkable performance and generalization levels of deep learning models in a wide range of artificial intelligence tasks, it has been demonstrated that these models can be easily fooled by the addition of imperceptible yet malicious perturbations to natural inputs. These altered inputs are known in the literature as adversarial examples. In this paper, we propose a novel probabilistic framework to generalize and extend adversarial attacks in order to produce a desired probability distribution for the classes when we apply the attack method to a large number of inputs. This novel attack paradigm provides the adversary with greater control over the target model, thereby exposing, in a wide range of scenarios, threats against deep learning models that cannot be conducted by the conventional paradigms. We introduce four different strategies to efficiently generate such attacks, and illustrate our approach by extending multiple adversarial attack algorithms. We also experimentally validate our approach for the spoken command classification task and the Tweet emotion classification task, two exemplary machine learning problems in the audio and text domain, respectively. Our results demonstrate that we can closely approximate any probability distribution for the classes while maintaining a high fooling rate and even prevent the attacks from being detected by label-shift detection methods.
From Neurons to Neutrons: A Case Study in Interpretability
Ouail Kitouni · Niklas Nolte · Víctor Samuel Pérez-Díaz · Sokratis Trifinopoulos · Mike Williams
Mechanistic Interpretability (MI) proposes a path toward fully understanding how neural networks make their predictions. Prior work demonstrates that even when trained to perform simple arithmetic, models can implement a variety of algorithms (sometimes concurrently) depending on initialization and hyperparameters. Does this mean neuron-level interpretability techniques have limited applicability? Here, we argue that high-dimensional neural networks can learn useful low-dimensional representations of the data they were trained on, going beyond simply making good predictions: Such representations can be understood with the MI lens and provide insights that are surprisingly faithful to human-derived domain knowledge. This indicates that such approaches to interpretability can be useful for deriving a new understanding of a problem from models trained to solve it. As a case study, we extract nuclear physics concepts by studying models trained to reproduce nuclear data.
USTAD: Unified Single-model Training Achieving Diverse Scores for Information Retrieval
Seungyeon Kim · Ankit Singh Rawat · Manzil Zaheer · Wittawat Jitkrittum · Veeranjaneyulu Sadhanala · Sadeep Jayasumana · Aditya Menon · Rob Fergus · Sanjiv Kumar
Modern information retrieval (IR) systems consists of multiple stages like retrieval and ranking, with Transformer-based models achieving state-of-the-art performance at each stage. In this paper, we challenge the tradition of using separate models for different stages and ask if a single Transformer encoder can provide relevance score needed in each stage. We present USTAD – a new unified approach to train a single network that can provide powerful ranking scores as a cross-encoder (CE) model as well as factorized embeddings for large-scale retrieval as a dual-encoder (DE) model. Empirically, we find a single USTAD model to be competitive to separate ranking CE and retrieval DE models. Furthermore, USTAD combines well with a novel embedding matching-based distillation, significantly improving CE to DE distillation. It further motivates novel asymmetric architectures for student models to ensure a better embedding alignment between the student and the teacher while ensuring small online inference cost. On standard benchmarks like MSMARCO, we demonstrate that USTAD with our proposed distillation method leads to asymmetric students with only 1/10th trainable parameter but retaining 95-97% of the teacher performance.
Prototypical Transformer As Unified Motion Learners
Cheng Han · Yawen Lu · Guohao Sun · James Liang · Zhiwen Cao · Qifan Wang · Qiang Guan · Sohail Dianat · Raghuveer Rao · Tong Geng · ZHIQIANG TAO · Dongfang Liu
In this work, we introduce the Prototypical Transformer (ProtoFormer), a general and unified framework that approaches various motion tasks from a prototype perspective. ProtoFormer seamlessly integrates prototype learning with Transformer by thoughtfully considering motion dynamics, introducing two innovative designs. First, Cross-Attention Prototyping discovers prototypes based on signature motion patterns, providing transparency in understanding motion scenes. Second, Latent Synchronization guides feature representation learning via prototypes, effectively mitigating the problem of motion uncertainty. Empirical results demonstrate that our approach achieves competitive performance on popular motion tasks such as optical flow and scene depth. Furthermore, it exhibits generality across various downstream tasks, including object tracking and video stabilization.
Improving Factuality and Reasoning in Language Models through Multiagent Debate
Yilun Du · Shuang Li · Antonio Torralba · Josh Tenenbaum · Igor Mordatch
Large language models (LLMs) have demonstrated remarkable capabilities in language generation, understanding, and few-shot learning in recent years. An extensive body of work has explored how their performance may be further improved through the tools of prompting, ranging from verification, self-consistency, or intermediate scratchpads. In this paper, we present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer. Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks. We also demonstrate that our approach improves the factual validity of generated content, reducing fallacious answers and hallucinations that contemporary models are prone to. Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate. Overall, our findings suggest that such "society of minds" approach has the potential to significantly advance the capabilities of LLMs and pave the way for further breakthroughs in language generation and understanding.
Agent Instructs Large Language Models to be General Zero-Shot Reasoners
Nicholas Crispino · Kyle Montgomery · Fankun Zeng · Dawn Song · Chenguang Wang
We introduce a method to improve the zero-shot reasoning abilities of large language models on general language understanding tasks. Specifically, we build an autonomous agent to instruct the reasoning process of large language models. To enable this, our agent only needs to generate a single set of instructions for each task. These instructions turn out to be extremely effective for improving the reasoning process of different large language models across all task instances. We show this approach further unleashes the zero-shot reasoning abilities of large language models to more tasks. We study the performance of our method on a wide set of datasets spanning generation, classification, and reasoning. We show that our method generalizes to most tasks and obtains state-of-the-art zero-shot performance on 20 of the 29 datasets that we evaluate. For instance, our method boosts the performance of state-of-the-art large language models by a large margin, including Vicuna-13b, Llama-2-70b-chat, and GPT-3.5 Turbo. Compared to zero-shot chain of thought, our improvement in reasoning is striking. With our method, Llama-2-70b-chat outperforms zero-shot GPT-3.5 Turbo significantly.
Provably Robust DPO: Aligning Language Models with Noisy Feedback
Sayak Ray Chowdhury · Anush Kini · Nagarajan Natarajan
Learning from preference-based feedback has recently gained traction as a promising approach to align language models with human interests. While these aligned generative models have demonstrated impressive capabilities across various tasks, their dependence on high-quality human preference data poses a bottleneck in practical applications. Specifically, noisy (incorrect and ambiguous) preference pairs in the dataset might restrict the language models from capturing human intent accurately. While practitioners have recently proposed heuristics to mitigate the effect of noisy preferences, a complete theoretical understanding of their workings remain elusive. In this work, we aim to bridge this gap by introducing a general framework for policy optimization in the presence of random preference flips. We focus on the direct preference optimization (DPO) algorithm in particular since it assumes that preferences adhere to the Bradley-Terry-Luce (BTL) model, raising concerns about the impact of noisy data on the learned policy. We design a novel loss function, which de-bias the effect of noise on average, making a policy trained by minimizing that loss robust to the noise. Under log-linear parameterization of the policy class and assuming good feature coverage of the SFT policy, we prove that the sub-optimality gap of the proposed robust DPO (rDPO) policy compared to the optimal policy is of the order $O(\frac{1}{1-2\epsilon}\sqrt{\frac{d}{n}})$, where $\epsilon < 1/2$ is flip rate of labels, $d$ is policy parameter dimension and $n$ is size of dataset. Our experiments on IMDb sentiment generation and Anthropic's helpful-harmless dataset shows that rDPO is robust to noise in preference labels compared to vanilla DPO and other heuristics proposed by practitioners.
Distinguishing the Knowable from the Unknowable with Language Models
Gustaf Ahdritz · Tian Qin · Nikhil Vyas · Boaz Barak · Benjamin Edelman
We study the feasibility of identifying epistemic uncertainty (reflecting a lack of knowledge), as opposed to aleatoric uncertainty (reflecting entropy in the underlying distribution), in the outputs of large language models (LLMs) over free-form text. In the absence of ground-truth probabilities, we explore a setting where, in order to (approximately) disentangle a given LLM's uncertainty, a significantly larger model stands in as a proxy for the ground truth. We show that small linear probes trained on the embeddings of frozen, pretrained models accurately predict when larger models will be more confident at the token level and that probes trained on one text domain generalize to others. Going further, we propose a fully unsupervised method that achieves non-trivial accuracy on the same task. Taken together, we interpret these results as evidence that LLMs naturally contain internal representations of different types of uncertainty that could potentially be leveraged to devise more informative indicators of model confidence in diverse practical settings. Code can be found at: https://github.com/KempnerInstitute/llm_uncertainty
Better & Faster Large Language Models via Multi-token Prediction
Fabian Gloeckle · Badr Youbi Idrissi · Baptiste Roziere · David Lopez-Paz · Gabriel Synnaeve
Large language models such as GPT and Llama are trained with a next-token prediction loss. In this work, we suggest that training language models to predict multiple future tokens at once results in higher sample efficiency. More specifically, at each position in the training corpus, we ask the model to predict the following $n$ tokens using $n$ independent output heads, operating on top of a shared model trunk. Considering multi-token prediction as an auxiliary training task, we measure improved downstream capabilities with no overhead in training time for both code and natural language models. The method is increasingly useful for larger model sizes, and keeps its appeal when training for multiple epochs. Gains are especially pronounced on generative benchmarks like coding, where our models consistently outperform strong baselines by several percentage points. Our 13B parameter models solves 12% more problems on Human Eval and 17% more on MBPP than comparable next-token models. Experiments on small algorithmic tasks demonstrate that multi-token prediction is favorable for the development of induction heads and algorithmic reasoning capabilities. As an additional benefit, models trained with 4-token prediction are up to $3\times$ faster at inference, even with large batch sizes.
Decoding-time Realignment of Language Models
Tianlin Liu · Shangmin Guo · Leonardo Martins Bianco · Daniele Calandriello · Quentin Berthet · Felipe Llinares-Lopez · Jessica Hoffmann · Lucas Dixon · Michal Valko · Mathieu Blondel
Aligning language models with human preferences is crucial for reducing errors and biases in these models. Alignment techniques, such as reinforcement learning from human feedback (RLHF), are typically cast as optimizing a tradeoff between human preference rewards and a proximity regularization term that encourages staying close to the unaligned model. Selecting an appropriate level of regularization is critical: insufficient regularization can lead to reduced model capabilities due to reward hacking, whereas excessive regularization hinders alignment. Traditional methods for finding the optimal regularization level require retraining multiple models with varying regularization strengths. This process, however, is resource-intensive, especially for large models. To address this challenge, we propose decoding-time realignment (DeRa), a simple method to explore and evaluate different regularization strengths in aligned models without retraining. DeRa enables control over the degree of alignment, allowing users to smoothly transition between unaligned and aligned models. It also enhances the efficiency of hyperparameter tuning by enabling the identification of effective regularization strengths using a validation dataset.
BBox-Adapter: Lightweight Adapting for Black-Box Large Language Models
Haotian Sun · Yuchen Zhuang · Wei Wei · Chao Zhang · Bo Dai
Adapting state-of-the-art Large Language Models (LLMs) like GPT-4 and Gemini for specific tasks is challenging. Due to the opacity in their parameters, embeddings, and even output probabilities, existing fine-tuning adaptation methods are inapplicable. Consequently, adapting these black-box LLMs is only possible through their API services, raising concerns about transparency, privacy, and cost. To address these challenges, we introduce BBox-Adapter, a novel lightweight adapter for black-box LLMs. BBox-Adapter distinguishes target and source domain data by treating target data as positive and source data as negative. It employs a ranking-based Noise Contrastive Estimation (NCE) loss to promote the likelihood of target domain data while penalizing that of the source domain. Furthermore, it features an online adaptation mechanism, which incorporates real-time positive data sampling from ground-truth, human, or AI feedback, coupled with negative data from previous adaptations. Extensive experiments demonstrate BBox-Adapter's effectiveness and cost efficiency. It improves model performance by up to 6.77% across diverse tasks and domains, while reducing training and inference costs by 31.30x and 1.84x, respectively.