Oral
Oral 3A Reinforcement Learning 1
Hall C 1-3
Position: Automatic Environment Shaping is the Next Frontier in RL
Younghyo Park · Gabriel Margolis · Pulkit Agrawal
Many roboticists dream of presenting a robot with a task in the evening and returning the next morning to find the robot capable of solving the task. What is preventing us from achieving this? Sim-to-real reinforcement learning (RL) has achieved impressive performance on challenging robotics tasks, but requires substantial human effort to set up the task in a way that is amenable to RL. It's our position that algorithmic improvements in policy optimization and other ideas should be guided towards resolving the primary bottleneck of shaping the training environment, i.e., designing observations, actions, rewards and simulation dynamics. Most practitioners don't tune the RL algorithm, but other environment parameters to obtain a desirable controller. We posit that scaling RL to diverse robotic tasks will only be achieved if the community focuses on automating environment shaping procedures.
Pausing Policy Learning in Non-stationary Reinforcement Learning
Hyunin Lee · Ming Jin · Javad Lavaei · Somayeh Sojoudi
Real-time inference is a challenge of real-world reinforcement learning due to temporal differences in time-varying environments: the system collects data from the past, updates the decision model in the present, and deploys it in the future. We tackle a common belief that continually updating the decision is optimal to minimize the temporal gap. We propose forecasting an online reinforcement learning framework and show that strategically pausing decision updates yields better overall performance by effectively managing aleatoric uncertainty. Theoretically, we compute an optimal ratio between policy update and hold duration, and show that a non-zero policy hold duration provides a sharper upper bound on the dynamic regret. Our experimental evaluations on three different environments also reveal that a non-zero policy hold duration yields higher rewards compared to continuous decision updates.
OMPO: A Unified Framework for RL under Policy and Dynamics Shifts
Yu Luo · Tianying Ji · Fuchun Sun · Jianwei Zhang · Huazhe Xu · Xianyuan Zhan
Training reinforcement learning policies using environment interaction data collected from varying policies or dynamics presents a fundamental challenge. Existing works often overlook the distribution discrepancies induced by policy or dynamics shifts, or rely on specialized algorithms with task priors, thus often resulting in suboptimal policy performances and high learning variances. In this paper, we identify a unified strategy for online RL policy learning under diverse settings of policy and dynamics shifts: transition occupancy matching. In light of this, we introduce a surrogate policy learning objective by considering the transition occupancy discrepancies and then cast it into a tractable min-max optimization problem through dual reformulation. Our method, dubbed Occupancy-Matching Policy Optimization (OMPO), features a specialized actor-critic structure equipped with a distribution discriminator and a small-size local buffer. We conduct extensive experiments based on the OpenAI Gym, Meta-World, and Panda Robots environments, encompassing policy shifts under stationary and non-stationary dynamics, as well as domain adaption. The results demonstrate that OMPO outperforms the specialized baselines from different categories in all settings. We also find that OMPO exhibits particularly strong performance when combined with domain randomization, highlighting its potential in RL-based robotics applications.
Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning
Qiankun Zhang · Aocheng Shen · Boyu Zhang · Hanrui Jiang · Bingqian Du
For a specific online optimization problem, for example, online bipartite matching (OBM), research efforts could be made in two directions before it is finally closed, i.e., the optimal competitive online algorithm is found. One is to continuously design algorithms with better performance. To this end, reinforcement learning (RL) has demonstrated great success in literature. However, little is known on the other direction: whether RL helps explore how hard an online problem is. In this paper, we study a generalized model of OBM, named online matching with stochastic rewards (OMSR, FOCS 2012), for which the optimal competitive ratio is still unknown. We adopt an adversarial RL approach that trains two RL agents adversarially and iteratively: the algorithm agent learns for algorithms with larger competitive ratios, while the adversarial agent learns to produce a family of hard instances. Through such a framework, agents converge at the end with a robust algorithm, which empirically outperforms the state of the art (STOC 2020). Much more significantly, it allows to track how the hard instances are generated. We succeed in distilling two structural properties from the learned graph patterns, which remarkably reduce the action space, and further enable theoretical improvement on the best-known hardness result of OMSR, from $0.621$ (FOCS 2012) to $0.597$. To the best of our knowledge, this gives the first evidence that RL can help enhance the theoretical understanding of an online problem.