Oral
Oral 4A Reinforcement Learning 2
Hall C 1-3
Offline Actor-Critic Reinforcement Learning Scales to Large Models
Jost Tobias Springenberg · Abbas Abdolmaleki · Jingwei Zhang · Oliver M Groth · Michael Bloesch · Thomas Lampe · Philemon Brakel · Sarah Bechtle · Steven Kapturowski · Roland Hafner · Nicolas Heess · Martin Riedmiller
We show that offline actor-critic reinforcement learning can scale to large models - such as transformers - and follows similar scaling laws as supervised learning. We find that offline actor-critic algorithms can outperform strong, supervised, behavioral cloning baselines for multi-task training on a large dataset; containing both sub-optimal and expert behavior on 132 continuous control tasks. We introduce a Perceiver-based actor-critic model and elucidate the key features needed to make offline RL work with self- and cross-attention modules. Overall, we find that: i) simple offline actor critic algorithms are a natural choice for gradually moving away from the currently predominant paradigm of behavioral cloning, and ii) via offline RL it is possible to learn multi-task policies that master many domains simultaneously, including real robotics tasks, from sub-optimal demonstrations or self-generated data.
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL
Jesse Farebrother · Jordi Orbay · Quan Vuong · Adrien Ali Taiga · Yevgen Chebotar · Ted Xiao · Alexander Irpan · Sergey Levine · Pablo Samuel Castro · Aleksandra Faust · Aviral Kumar · Rishabh Agarwal
Value functions are an essential component in deep reinforcement learning (RL), that are typically trained via mean squared error regression to match bootstrapped target values. However, scaling value-based RL methods to large networks has proven challenging. This difficulty is in stark contrast to supervised learning: by leveraging a cross-entropy classification loss, supervised methods have scaled reliably to massive networks. Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions. We show that training value functions with categorical cross-entropy significantly enhances performance and scalability across various domains, including single-task RL on Atari 2600 games, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers, achieving state-of-the-art results on these domains. Through careful analysis, we show that categorical cross-entropy mitigates issues inherent to value-based RL, such as noisy targets and non-stationarity. We argue that shifting to categorical cross-entropy for training value functions can substantially improve the scalability of deep RL at little-to-no cost.
SAPG: Split and Aggregate Policy Gradients
Jayesh Singla · Ananye Agarwal · Deepak Pathak
Despite extreme sample inefficiency, on-policy reinforcement learning, aka policy gradients, has become a fundamental tool in decision-making problems. With the recent advances in GPU-driven simulation, the ability to collect large amounts of data for RL training has scaled exponentially. However, we show that current RL methods, e.g. PPO, fail to ingest the benefit of parallelized environments beyond a certain point and their performance saturates. To address this, we propose a new on-policy RL algorithm that can effectively leverage large-scale environments by splitting them into chunks and fusing them back together via importance sampling. Our algorithm, termed SAPG, shows significantly higher performance across a variety of challenging environments where vanilla PPO and other strong baselines fail to achieve high performance. Webpage at https://sapg-rl.github.io/.
Rate-Optimal Policy Optimization for Linear Markov Decision Processes
Uri Sherman · Alon Cohen · Tomer Koren · Yishay Mansour
We study regret minimization in online episodic linear Markov Decision Processes, and propose a policy optimization algorithm that is computationally efficient, and obtains rate optimal $\widetilde O (\sqrt K)$ regret where $K$ denotes the number of episodes. Our work is the first to establish the optimal rate (in terms of $K$) of convergence in the stochastic setting with bandit feedback using a policy optimization based approach, and the first to establish the optimal rate in the adversarial setup with full information feedback, for which no algorithm with an optimal rate guarantee was previously known.