Skip to yearly menu bar Skip to main content


Poster

Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic

Nicolas Alder · Ralf Herbrich

Hall C 4-9 #1504
[ ] [ Paper PDF ]
[ Poster
Wed 24 Jul 2:30 a.m. PDT — 4 a.m. PDT

Abstract:

The widespread use of artificial intelligence requires finding energy-efficient paradigms for the field. We propose to reduce the energy consumption of Gaussian process regression using low-precision floating-point representations. We explore how low-precision representations impact the results of Gaussian process regression and how data set properties, implementation approach, model performance, and energy consumption interact. Our findings show that a well-conditioned kernel matrix allows reducing the energy consumption by up to 89.01% for 98.08% of arithmetic operations with little to no impact on model performance. Our findings are relevant whenever one needs to invert a symmetric full-rank matrix.

Chat is not available.