Skip to yearly menu bar Skip to main content


Poster

Towards a Self-contained Data-driven Global Weather Forecasting Framework

Yi Xiao · LEI BAI · Wei Xue · Hao Chen · Kun Chen · kang chen · Tao Han · Wanli Ouyang

Hall C 4-9 #201
[ ] [ Project Page ]
Wed 24 Jul 4:30 a.m. PDT — 6 a.m. PDT

Abstract:

Data-driven weather forecasting models are advancing rapidly, yet they rely on initial states (i.e., analysis states) typically produced by traditional data assimilation algorithms. Four-dimensional variational assimilation (4DVar) is one of the most widely adopted data assimilation algorithms in numerical weather prediction centers; it is accurate but computationally expensive. In this paper, we aim to couple the AI forecasting model, FengWu, with 4DVar to build a self-contained data-driven global weather forecasting framework, FengWu-4DVar. To achieve this, we propose an AI-embedded 4DVar algorithm that includes three components: (1) a 4DVar objective function embedded with the FengWu forecasting model and its error representation to enhance efficiency and accuracy; (2) a spherical-harmonic-transform-based (SHT-based) approximation strategy for capturing the horizontal correlation of background error; and (3) an auto-differentiation (AD) scheme for determining the optimal analysis fields. Experimental results show that under the ERA5 simulated observational data with varying proportions and noise levels, FengWu-4DVar can generate accurate analysis fields; remarkably, it has achieved stable self-contained global weather forecasts for an entire year for the first time, demonstrating its potential for real-world applications. Additionally, our framework is approximately 100 times faster than the traditional 4DVar algorithm under similar experimental conditions, highlighting its significant computational efficiency.

Live content is unavailable. Log in and register to view live content