Poster
Accelerating Federated Learning with Quick Distributed Mean Estimation
Ran Ben Basat · Shay Vargaftik · Amit Portnoy · Gil Einziger · Yaniv Ben Itzhak · Michael Mitzenmacher
Hall C 4-9 #1207
Abstract:
Distributed Mean Estimation (DME), in which $n$ clients communicate vectors to a parameter server that estimates their average, is a fundamental building block in communication-efficient federated learning. In this paper, we improve on previous DME techniques that achieve the optimal $O(1/n)$ Normalized Mean Squared Error (NMSE) guarantee by asymptotically improving the complexity for either encoding or decoding (or both). To achieve this, we formalize the problem in a novel way that allows us to use off-the-shelf mathematical solvers to design the quantization. Using various datasets and training tasks, we demonstrate how QUIC-FL achieves state of the art accuracy with faster encoding and decoding times compared to other DME methods.
Chat is not available.