Registration Desk: Registration Tue 23 Jul 08:00 a.m.
Opening Remarks Tue 23 Jul 08:45 a.m.
Invited Talk: Soumith Chintala
Unapologetically Open Science -- the complexity and challenges of making openness win!
In the past 5 years, AI has been trending towards becoming a closed and propreitary field -- undoing hard work from the previous decade. This is alarming for scientific progress. The reasons for this trend are complex, and so are the solutions -- ranging from energy and resources to capital pressure to geopolitics to breaking previous societal mechanics around intellectual property. I will give an opinionated view of how to get us as a field to a better place.
Bio :
Oral 1E Time Series Tue 23 Jul 10:30 a.m.
[ Straus 1-3 ]

Abstract
This paper introduces SparseTSF, a novel, extremely lightweight model for Long-term Time Series Forecasting (LTSF), designed to address the challenges of modeling complex temporal dependencies over extended horizons with minimal computational resources. At the heart of SparseTSF lies the Cross-Period Sparse Forecasting technique, which simplifies the forecasting task by decoupling the periodicity and trend in time series data. This technique involves downsampling the original sequences to focus on cross-period trend prediction, effectively extracting periodic features while minimizing the model's complexity and parameter count. Based on this technique, the SparseTSF model uses fewer than 1k parameters to achieve competitive or superior performance compared to state-of-the-art models. Furthermore, SparseTSF showcases remarkable generalization capabilities, making it well-suited for scenarios with limited computational resources, small samples, or low-quality data. The code is publicly available at this repository: https://github.com/lss-1138/SparseTSF.
[ Straus 1-3 ]
Abstract
We study the probabilistic modeling performed by Autoregressive Large Language Models (LLMs) through the angle of time directionality, addressing a question first raised in (Shannon, 1951). For large enough models, we empirically find a time asymmetry in their ability to learn natural language: a difference in the average log-perplexity when trying to predict the next token versus when trying to predict the previous one. This difference is at the same time subtle and very consistent across various modalities (language, model size, training time, ...). Theoretically, this is surprising: from an information-theoretic point of view, there should be no such difference. We provide a theoretical framework to explain how such an asymmetry can appear from sparsity and computational complexity considerations, and outline a number of perspectives opened by our results.
[ Straus 1-3 ]

Abstract
Deep learning for time series forecasting has traditionally operated within a one-model-per-dataset framework, limiting its potential to leverage the game-changing impact of large pre-trained models. The concept of universal forecasting, emerging from pre-training on a vast collection of time series datasets, envisions a single Large Time Series Model capable of addressing diverse downstream forecasting tasks. However, constructing such a model poses unique challenges specific to time series data: (i) cross-frequency learning, (ii) accommodating an arbitrary number of variates for multivariate time series, and (iii) addressing the varying distributional properties inherent in large-scale data. To address these challenges, we present novel enhancements to the conventional time series Transformer architecture, resulting in our proposed Masked Encoder-based Universal Time Series Forecasting Transformer (Moirai). Trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains, Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models. Code, data, and model weights can be found at https://github.com/SalesforceAIResearch/uni2ts.
[ Straus 1-3 ]

Abstract
Transformer-based architectures achieved breakthrough performance in natural language processing and computer vision, yet they remain inferior to simpler linear baselines in multivariate long-term forecasting. To better understand this phenomenon, we start by studying a toy linear forecasting problem for which we show that transformers are incapable of converging to their true solution despite their high expressive power. We further identify the attention of transformers as being responsible for this low generalization capacity. Building upon this insight, we propose a shallow lightweight transformer model that successfully escapes bad local minima when optimized with sharpness-aware optimization. We empirically demonstrate that this result extends to all commonly used real-world multivariate time series datasets. In particular, SAMformer surpasses current state-of-the-art methods and is on par with the biggest foundation model MOIRAI while having significantly fewer parameters. The code is available at https://github.com/romilbert/samformer.
Oral 1A Alignment Tue 23 Jul 10:30 a.m.
[ Hall C 1-3 ]

Abstract
Common methods for aligning large language models (LLMs) with desired behaviour heavily rely on human-labelled data. However, as models grow increasingly sophisticated, they will surpass human expertise, and the role of human evaluation will evolve into non-experts overseeing experts. In anticipation of this, we ask: can weaker models assess the correctness of stronger models? We investigate this question in an analogous setting, where stronger models (experts) possess the necessary information to answer questions and weaker models (non-experts) lack this information. The method we evaluate is debate, where two LLM experts each argue for a different answer, and a non-expert selects the answer. We find that debate consistently helps both non-expert models and humans answer questions, achieving 76% and 88% accuracy respectively (naive baselines obtain 48% and 60%). Furthermore, optimising expert debaters for persuasiveness in an unsupervised manner improves non-expert ability to identify the truth in debates. Our results provide encouraging empirical evidence for the viability of aligning models with debate in the absence of ground truth.
[ Hall C 1-3 ]

Abstract
Widely used alignment techniques, such as reinforcement learning from human feedback (RLHF), rely on the ability of humans to supervise model behavior---for example, to evaluate whether a model faithfully followed instructions or generated safe outputs. However, future superhuman models will behave in complex ways too difficult for humans to reliably evaluate; humans will only be able to weakly supervise superhuman models. We study an analogy to this problem: can weak model supervision elicit the full capabilities of a much stronger model? We test this using a range of pretrained language models in the GPT-4 family on natural language processing (NLP), chess, and reward modeling tasks. We find that when we naively finetune strong pretrained models on labels generated by a weak model, they consistently perform better than their weak supervisors, a phenomenon we call weak-to-strong generalization. However, we are still far from recovering the full capabilities of strong models with naive finetuning alone, suggesting that techniques like RLHF may scale poorly to superhuman models without further work. We find that simple methods can often significantly improve weak-to-strong generalization: for example, when finetuning GPT-4 with a GPT-2-level supervisor and an auxiliary confidence loss, we can recover close to GPT-3.5-level performance …
[ Hall C 1-3 ]

Abstract
While alignment algorithms are commonly used to tune pre-trained language models towards user preferences, we lack explanations for the underlying mechanisms in which models become ``aligned'', thus making it difficult to explain phenomena like jailbreaks. In this work we study a popular algorithm, direct preference optimization (DPO), and the mechanisms by which it reduces toxicity. Namely, we first study how toxicity is represented and elicited in pre-trained language models (GPT2-medium, Llama2-7b). We then apply DPO with a carefully crafted pairwise dataset to reduce toxicity. We examine how the resulting models avert toxic outputs, and find that capabilities learned from pre-training are not removed, but rather bypassed. We use this insight to demonstrate a simple method to un-align the models, reverting them back to their toxic behavior.
[ Hall C 1-3 ]

Abstract
Reinforcement Learning from Human Feedback (RLHF) is currently the most widely used method to align large language models (LLMs) with human preferences. Existing RLHF methods can be roughly categorized as either reward-based or reward-free. Novel applications such as ChatGPT and Claude leverage reward-based methods that first learn a reward model and apply actor-critic algorithms, such as Proximal Policy Optimization (PPO). However, in academic benchmarks, state-of-the-art results are often achieved via reward-free methods, such as Direct Preference Optimization (DPO). Is DPO truly superior to PPO? Why does PPO perform poorly on these benchmarks? In this paper, we first conduct both theoretical and empirical studies on the algorithmic properties of DPO and show that DPO may have fundamental limitations. Moreover, we also comprehensively examine PPO and reveal the key factors for the best performances of PPO in fine-tuning LLMs. Finally, we benchmark DPO and PPO across a collection of RLHF testbeds, ranging from dialogue to code generation. Experiment results demonstrate that PPO is able to surpass other alignment methods in all cases and achieve state-of-the-art results in challenging code competitions.
Oral 1C Clustering Tue 23 Jul 10:30 a.m.
[ Hall A2 ]
Abstract
Graph clustering is a fundamental problem in machine learning. Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers. Such limitation motivates us to pose a more challenging problem of graph clustering with unknown cluster number. We propose to address this problem from a fresh perspective of graph information theory (i.e., structural information). In the literature, structural information has not yet been introduced to deep clustering, and its classic definition falls short of discrete formulation and modeling node features. In this work, we first formulate a differentiable structural information (DSI) in the continuous realm, accompanied by several theoretical results. By minimizing DSI, we construct the optimal partitioning tree where densely connected nodes in the graph tend to have the same assignment, revealing the cluster struc- ture. DSI is also theoretically presented as a new graph clustering objective, not requiring the pre-defined cluster number. Furthermore, we design a neural LSEnet in the Lorentz model of hyperbolic space, where we integrate node features to structural information via manifold-valued graph convolution. Extensive empirical results on real graphs show the superiority of our approach.
[ Hall A2 ]
Abstract
The core of clustering lies in incorporating prior knowledge to construct supervision signals. From classic k-means based on data compactness to recent contrastive clustering guided by self-supervision, the evolution of clustering methods intrinsically corresponds to the progression of supervision signals. At present, substantial efforts have been devoted to mining internal supervision signals from data. Nevertheless, the abundant external knowledge such as semantic descriptions, which naturally conduces to clustering, is regrettably overlooked. In this work, we propose leveraging external knowledge as a new supervision signal to guide clustering. To implement and validate our idea, we design an externally guided clustering method (Text-Aided Clustering, TAC), which leverages the textual semantics of WordNet to facilitate image clustering. Specifically, TAC first selects and retrieves WordNet nouns that best distinguish images to enhance the feature discriminability. Then, TAC collaborates text and image modalities by mutually distilling cross-modal neighborhood information. Experiments demonstrate that TAC achieves state-of-the-art performance on five widely used and three more challenging image clustering benchmarks, including the full ImageNet-1K dataset. The code can be accessed at https://github.com/XLearning-SCU/2024-ICML-TAC.
[ Hall A2 ]

Abstract
As a staple of data analysis and unsupervised learning, the problem of private clustering has been widely studied, under various privacy models. Centralized differential privacy is the first of them, and the problem has also been studied for the local and the shuffle variation. In each case, the goal is to design an algorithm that computes privately a clustering, with the smallest possible error. The study of each variation gave rise to new algorithm: the landscape of private clustering algorithm is therefore quite intricate. In this paper, we show that a 20 year-old algorithm can be slightly modified to work for any of those models. This provides a unified picture: while matching almost all previously known results, it allows us to improve some of them, and extend to a new privacy model, the continual observation setting, where the input is changing over time and the algorithm must output a new solution at each time step.
[ Hall A2 ]
Abstract
Given a graph with positive and negative edge labels, the correlation clustering problem aims to cluster the nodes so to minimize the total number of between-cluster positive and within-cluster negative edges. This problem has many applications in data mining, particularly in unsupervised learning. Inspired by the prevalence of large graphs and constantly changing data in modern applications, we study correlation clustering in dynamic, parallel (MPC), and local computation (LCA) settings. We design an approach that improves state-of-the-art runtime complexities in all these settings. In particular, we provide the first fully dynamic algorithm that runs in an expected amortized constant time, without any dependence on the graph size. Moreover, our algorithm essentially matches the approximation guarantee of the celebrated Pivot algorithm.
Oral 1D Video Tue 23 Jul 10:30 a.m.
[ Hall A8 ]
Abstract
We introduce Genie, the first generative interactive environment trained in an unsupervised manner from unlabelled Internet videos. The model can be prompted to generate an endless variety of action-controllable virtual worlds described through text, synthetic images, photographs, and even sketches. At 11B parameters, Genie can be considered a foundation world model. It is comprised of a spatiotemporal video tokenizer, an autoregressive dynamics model, and a simple and scalable latent action model. Genie enables users to act in the generated environments on a frame-by-frame basis despite training without any ground-truth action labels or other domain specific requirements typically found in the world model literature. Further the resulting learned latent action space facilitates training agents to imitate behaviors from unseen videos, opening the path for training generalist agents of the future.
[ Hall A8 ]

Abstract
In light of recent advances in multimodal Large Language Models (LLMs), there is increasing attention to scaling them from image-text data to more informative real-world videos. Compared to static images, video poses unique challenges for effective large-scale pre-training due to the modeling of its spatiotemporal dynamics. In this paper, we address such limitations in video-language pre-training with an efficient video decomposition that represents each video as keyframes and temporal motions. These are then adapted to an LLM using well-designed tokenizers that discretize visual and temporal information as a few tokens, thus enabling unified generative pre-training of videos, images, and text. At inference, the generated tokens from the LLM are carefully recovered to the original continuous pixel space to create various video content. Our proposed framework is both capable of comprehending and generating image and video content, as demonstrated by its competitive performance across 13 multimodal benchmarks in image and video understanding and generation. Our code and models are available at https://video-lavit.github.io.
[ Hall A8 ]

Abstract
Existing research of video understanding still struggles to achieve in-depth comprehension and reasoning in complex videos, primarily due to the under-exploration of two key bottlenecks: fine-grained spatial-temporal perceptive understanding and cognitive-level video scene comprehension. This paper bridges the gap by presenting a novel solution. We first introduce a novel video Multimodal Large Language Model (MLLM), MotionEpic, which achieves fine-grained pixel-level spatial-temporal video grounding by integrating video spatial-temporal scene graph (STSG) representation. Building upon MotionEpic, we then develop a Video-of-Thought (VoT) reasoning framework. VoT inherits the Chain-of-Thought (CoT) core, breaking down a complex task into simpler and manageable sub-problems, and addressing them step-by-step from a low-level pixel perception to high-level cognitive interpretation. Extensive experiments across various complex video QA benchmarks demonstrate that our overall framework strikingly boosts existing state-of-the-art. To our knowledge, this is the first attempt at successfully implementing the CoT technique for achieving human-level video reasoning, where we show great potential in extending it to a wider range of video understanding scenarios. Systems and codes will be open later.
[ Hall A8 ]
Abstract
We present VideoPoet, a language model capable of synthesizing high-quality video from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting the ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/
Oral 1B Positions on How We Do Machine Learning Research Tue 23 Jul 10:30 a.m.
[ Hall A1 ]

Abstract
Publications proposing novel machine learning methods are often primarily rated by exhibited predictive performance on selected problems. In this position paper we argue that predictive performance alone is not a good indicator for the worth of a publication. Using it as such even fosters problems like inefficiencies of the machine learning research community as a whole and setting wrong incentives for researchers. We therefore put out a call for the publication of ``negative'' results, which can help alleviate some of these problems and improve the scientific output of the machine learning research community. To substantiate our position, we present the advantages of publishing negative results and provide concrete measures for the community to move towards a paradigm where their publication is normalized.
[ Hall A1 ]
Abstract
Independent evaluation and red teaming are critical for identifying the risks posed by generative AI systems. However, the terms of service and enforcement strategies used by prominent AI companies to deter model misuse have disincentives on good faith safety evaluations. This causes some researchers to fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal. Although some companies offer researcher access programs, they are an inadequate substitute for independent research access, as they have limited community representation, receive inadequate funding, and lack independence from corporate incentives. We propose that major generative AI developers commit to providing a legal and technical safe harbor, protecting public interest safety research and removing the threat of account suspensions or legal reprisal. These proposals emerged from our collective experience conducting safety, privacy, and trustworthiness research on generative AI systems, where norms and incentives could be better aligned with public interests, without exacerbating model misuse. We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.
[ Hall A1 ]
Abstract
The performance of differentially private machine learning can be boosted significantly by leveraging the transfer learning capabilities of non-private models pretrained on large public datasets. We critically review this approach. We primarily question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving. We further scrutinize whether existing machine learning benchmarks are appropriate for measuring the ability of pretrained models to generalize to sensitive domains. Finally, we observe that reliance on large pretrained models may lose other forms of privacy, requiring data to be outsourced to a more compute-powerful third party.
[ Hall A1 ]
Abstract
What is agency, and why does it matter? In this work, we draw from the political science and philosophy literature and give two competing visions of what it means to be an (ethical) agent. The first view, which we term mechanistic, is commonly— and implicitly—assumed in AI research, yet it is a fundamentally limited means to understand the ethical characteristics of AI. Under the second view, which we term volitional, AI can no longer be considered an ethical agent. We discuss the implications of each of these views for two critical questions: first, what the ideal system “ought” to look like, and second, how accountability may be achieved. In light of this discussion, we ultimately argue that, in the context of ethically-significant behavior, AI should be viewed not as an agent but as the outcome of political processes.
Oral 1F Applications in Biology and Chemistry Tue 23 Jul 10:30 a.m.
[ Lehar 1-4 ]

Abstract
Neuronal morphology is essential for studying brain functioning and understanding neurodegenerative disorders. As acquiring real-world morphology data is expensive, computational approaches for morphology generation have been studied. Traditional methods heavily rely on expert-set rules and parameter tuning, making it difficult to generalize across different types of morphologies. Recently, MorphVAE was introduced as the sole learning-based method, but its generated morphologies lack plausibility, i.e., they do not appear realistic enough and most of the generated samples are topologically invalid. To fill this gap, this paper proposes MorphGrower, which mimicks the neuron natural growth mechanism for generation. Specifically, MorphGrower generates morphologies layer by layer, with each subsequent layer conditioned on the previously generated structure. During each layer generation, MorphGrower utilizes a pair of sibling branches as the basic generation block and generates branch pairs synchronously. This approach ensures topological validity and allows for fine-grained generation, thereby enhancing the realism of the final generated morphologies. Results on four real-world datasets demonstrate that MorphGrower outperforms MorphVAE by a notable margin. Importantly, the electrophysiological response simulation demonstrates the plausibility of our generated samples from a neuroscience perspective. Our code is available at https://github.com/Thinklab-SJTU/MorphGrower.
[ Lehar 1-4 ]

Abstract
Predicting the binding sites of target proteins plays a fundamental role in drug discovery. Most existing deep-learning methods consider a protein as a 3D image by spatially clustering its atoms into voxels and then feed the voxelized protein into a 3D CNN for prediction. However, the CNN-based methods encounter several critical issues: 1) defective in representing irregular protein structures; 2) sensitive to rotations; 3) insufficient to characterize the protein surface; 4) unaware of protein size shift. To address the above issues, this work proposes EquiPocket, an E(3)-equivariant Graph Neural Network (GNN) for binding site prediction, which comprises three modules: the first one to extract local geometric information for each surface atom, the second one to model both the chemical and spatial structure of protein and the last one to capture the geometry of the surface via equivariant message passing over the surface atoms. We further propose a dense attention output layer to alleviate the effect incurred by variable protein size. Extensive experiments on several representative benchmarks demonstrate the superiority of our framework to the state-of-the-art methods.
[ Lehar 1-4 ]

Abstract
[ Lehar 1-4 ]

Abstract
Molecule synthesis through machine learning is one of the fundamental problems in drug discovery. Current data-driven strategies employ one-step retrosynthesis models and search algorithms to predict synthetic routes in a top-bottom manner. Despite their effective performance, these strategies face limitations in the molecule synthetic route generation due to a greedy selection of the next molecule set without any lookahead. Furthermore, existing strategies cannot control the generation of synthetic routes based on possible criteria such as material costs, yields, and step count. In this work, we propose a general and principled framework via conditional residual energy-based models (EBMs), that focus on the quality of the entire synthetic route based on the specific criteria. By incorporating an additional energy-based function into our probabilistic model, our proposed algorithm can enhance the quality of the most probable synthetic routes (with higher probabilities) generated by various strategies in a plug-and-play fashion. Extensive experiments demonstrate that our framework can consistently boost performance across various strategies and outperforms previous state-of-the-art top-1 accuracy by a margin of 2.5%. Code is available at https://github.com/SongtaoLiu0823/CREBM.
Poster Session 1 Tue 23 Jul 11:30 a.m.
[ Hall C 4-9 ]

Abstract
No-reference image- and video-quality metrics are widely used in video processing benchmarks. The robustness of learning-based metrics under video attacks has not been widely studied. In addition to having success, attacks on metrics that can be employed in video processing benchmarks must be fast and imperceptible. This paper introduces an Invisible One-Iteration (IOI) adversarial attack on no-reference image and video quality metrics. The proposed method uses two modules to ensure high visual quality and temporal stability of adversarial videos and runs for one iteration, which makes it fast. We compared our method alongside eight prior approaches using image and video datasets via objective and subjective tests. Our method exhibited superior visual quality across various attacked metric architectures while maintaining comparable attack success and speed. We made the code available on GitHub: https://github.com/katiashh/ioi-attack.
[ Hall C 4-9 ]
Abstract
Large language models (LLMs) frequently hallucinate, e.g., making factual errors, yet our understanding of why they make these errors remains limited. In this study, we aim to understand the underlying mechanisms of LLM hallucinations from the perspective of inner representations. We discover a pattern associated with hallucinations: correct generations tend to have sharper context activations in the hidden states of the in-context tokens, compared to that of the incorrect generations. Leveraging this signal, we propose an entropy-based metric to quantify the sharpness among the in-context hidden states and incorporate it into the decoding process, i.e, use the entropy value to adjust the next token prediction distribution to improve the factuality and overall quality of the generated text. Experiments on knowledge-seeking datasets (Natural Questions, HotpotQA, TriviaQA) and hallucination benchmark (TruthfulQA) demonstrate our consistent effectiveness, e.g., up to 8.6 absolute points on TruthfulQA. We believe this study can improve our understanding of hallucinations and serve as a practical solution for hallucination mitigation.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Modeling symmetry breaking is essential for understanding the fundamental changes in the behaviors and properties of physical systems, from microscopic particle interactions to macroscopic phenomena like fluid dynamics and cosmic structures. Thus, identifying sources of asymmetry is an important tool for understanding physical systems. In this paper, we focus on learning asymmetries of data using relaxed group convolutions. We provide both theoretical and empirical evidence that this flexible convolution technique allows the model to maintain the highest level of equivariance that is consistent with data and discover the subtle symmetry-breaking factors in various physical systems. We employ various relaxed group convolution architectures to uncover various symmetry-breaking factors that are interpretable and physically meaningful in different physical systems, including the phase transition of crystal structure, the isotropy and homogeneity breaking in turbulent flow, and the time-reversal symmetry breaking in pendulum systems.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Uncertainty estimation (UE), as an effective means of quantifying predictive uncertainty, is crucial for safe and reliable decision-making, especially in high-risk scenarios. Existing UE schemes usually assume that there are completely-labeled samples to support fully-supervised learning. In practice, however, many UE tasks often have no sufficiently-labeled data to use, such as the Multiple Instance Learning (MIL) with only weak instance annotations. To bridge this gap, this paper, for the first time, addresses the weakly-supervised issue of Multi-Instance UE (MIUE) and proposes a new baseline scheme, Multi-Instance Residual Evidential Learning (MIREL). Particularly, at the fine-grained instance UE with only weak supervision, we derive a multi-instance residual operator through the Fundamental Theorem of Symmetric Functions. On this operator derivation, we further propose MIREL to jointly model the high-order predictive distribution at bag and instance levels for MIUE. Extensive experiments empirically demonstrate that our MIREL not only could often make existing MIL networks perform better in MIUE, but also could surpass representative UE methods by large margins, especially in instance-level UE tasks. Our source code is available at https://github.com/liupei101/MIREL.
[ Hall C 4-9 ]

Abstract
In this paper, we explore a new generative approach for learning visual representations. Our method, DARL, employs a decoder-only Transformer to predict image patches autoregressively. We find that training with Mean Squared Error (MSE) alone leads to strong representations. To enhance the image generation ability, we replace the MSE loss with the diffusion objective by using a denoising patch decoder. We show that the learned representation can be improved by using tailored noise schedules and longer training in larger models. Notably, the optimal schedule differs significantly from the typical ones used in standard image diffusion models. Overall, despite its simple architecture, DARL delivers performance remarkably close to state-of-the-art masked prediction models under the fine-tuning protocol. This marks an important step towards a unified model capable of both visual perception and generation, effectively combining the strengths of autoregressive and denoising diffusion models.
[ Hall C 4-9 ]

Abstract
Fine-tuning is becoming widely used for leveraging the power of pre-trained foundation models in new downstream tasks. While there are many successes of fine-tuning on various tasks, recent studies have observed challenges in the generalization of fine-tuned models to unseen distributions (i.e., out-of-distribution; OOD). To improve OOD generalization, some previous studies identify the limitations of fine-tuning data and regulate fine-tuning to preserve the general representation learned from pre-training data. However, potential limitations in the pre-training data and models are often ignored. In this paper, we contend that overly relying on the pre-trained representation may hinder fine-tuning from learning essential representations for downstream tasks and thus hurt its OOD generalization. It can be especially catastrophic when new tasks are from different (sub)domains compared to pre-training data. To address the issues in both pre-training and fine-tuning data, we propose a novel generalizable fine-tuning method LEVI (Layer-wise Ensemble of different VIews), where the pre-trained model is adaptively ensembled layer-wise with a small task-specific model, while preserving its efficiencies. By combining two complementing models, LEVI effectively suppresses problematic features in both the fine-tuning data and pre-trained model and preserves useful features for new tasks. Broad experiments with large language and …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Designing deep neural network classifiers that perform robustly on distributions differing from the available training data is an active area of machine learning research. However, out-of-distribution generalization for regression---the analogous problem for modeling continuous targets---remains relatively unexplored. To tackle this problem, we return to first principles and analyze how the closed-form solution for Ordinary Least Squares (OLS) regression is sensitive to covariate shift. We characterize the out-of-distribution risk of the OLS model in terms of the eigenspectrum decomposition of the source and target data. We then use this insight to propose a method called Spectral Adapted Regressor (SpAR) for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution. We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
The multi-plane representation has been highlighted for its fast training and inference across static and dynamic neural radiance fields. This approach constructs relevant features via projection onto learnable grids and interpolating adjacent vertices. However, it has limitations in capturing low-frequency details and tends to overuse parameters for low-frequency features due to its bias toward fine details, despite its multi-resolution concept. This phenomenon leads to instability and inefficiency when training poses are sparse. In this work, we propose a method that synergistically integrates multi-plane representation with a coordinate-based MLP network known for strong bias toward low-frequency signals. The coordinate-based network is responsible for capturing low-frequency details, while the multi-plane representation focuses on capturing fine-grained details. We demonstrate that using residual connections between them seamlessly preserves their own inherent properties. Additionally, the proposed progressive training scheme accelerates the disentanglement of these two features. We demonstrate empirically that our proposed method not only outperforms baseline models for both static and dynamic NeRFs with sparse inputs, but also achieves comparable results with fewer parameters.
[ Hall C 4-9 ]

Abstract
In this paper, we investigate the challenging framework of Byzantine-robust training in distributed machine learning (ML) systems, focusing on enhancing both efficiency and practicality. As distributed ML systems become integral for complex ML tasks, ensuring resilience against Byzantine failures—where workers may contribute incorrect updates due to malice or error—gains paramount importance. Our first contribution is the introduction of the Centered Trimmed Meta Aggregator (CTMA), an efficient meta-aggregator that upgrades baseline aggregators to optimal performance levels, while requiring low computational demands. Additionally, we propose harnessing a recently developed gradient estimation technique based on a double-momentum strategy within the Byzantine context. Our paper highlights its theoretical and practical advantages for Byzantine-robust training, especially in simplifying the tuning process and reducing the reliance on numerous hyperparameters. The effectiveness of this technique is supported by theoretical insights within the stochastic convex optimization (SCO) framework and corroborated by empirical evidence.
[ Hall C 4-9 ]

Abstract
Learning representations that generalize under distribution shifts is critical for building robust machine learning models. However, despite significant efforts in recent years, algorithmic advances in this direction have been limited. In this work, we seek to understand the fundamental difficulty of out-of-distribution generalization with deep neural networks. We first empirically show that perhaps surprisingly, even allowing a neural network to explicitly fit the representations obtained from a teacher network that can generalize out-of-distribution is insufficient for the generalization of the student network. Then, by a theoretical study of two-layer ReLU networks optimized by stochastic gradient descent (SGD) under a structured feature model, we identify a fundamental yet unexplored feature learning proclivity of neural networks, feature contamination: neural networks can learn uncorrelated features together with predictive features, resulting in generalization failure under distribution shifts. Notably, this mechanism essentially differs from the prevailing narrative in the literature that attributes the generalization failure to spurious correlations. Overall, our results offer new insights into the non-linear feature learning dynamics of neural networks and highlight the necessity of considering inductive biases in out-of-distribution generalization.
[ Hall C 4-9 ]
Abstract
Models trained on a labeled source domain often generalize poorly when deployed on an out-of-distribution (OOD) target domain. In the domain adaptation setting where unlabeled target data is available, self-supervised pretraining (e.g., contrastive learning or masked autoencoding) is a promising method to mitigate this performance drop. Pretraining depends on generic data augmentations (e.g., cropping or masking) to learn representations that generalize across domains, which may not work for all distribution shifts. In this paper, we show on real-world tasks that standard fine-tuning after pretraining does not consistently improve OOD error over simply training from scratch on labeled source data. To better leverage pretraining for distribution shifts, we propose the Connect Later framework, which fine-tunes the model with targeted augmentations designed with knowledge of the shift. Intuitively, pretraining learns good representations within the source and target domains, while fine-tuning with targeted augmentations improves generalization across domains. Connect Later achieves state-of-the-art OOD accuracy while maintaining comparable or better in-distribution accuracy on 4 real-world tasks in wildlife identification (iWildCam-WILDS), tumor detection (Camelyon17-WILDS), and astronomy (AstroClassification, Redshifts).
[ Hall C 4-9 ]

Abstract
We study the behavior of deterministic methods for solving inverse problems in imaging. These methods are commonly designed to achieve two goals: (1) attaining high perceptual quality, and (2) generating reconstructions that are consistent with the measurements. We provide a rigorous proof that the better a predictor satisfies these two requirements, the larger its Lipschitz constant must be, regardless of the nature of the degradation involved. In particular, to approach perfect perceptual quality and perfect consistency, the Lipschitz constant of the model must grow to infinity. This implies that such methods are necessarily more susceptible to adversarial attacks. We demonstrate our theory on single image super-resolution algorithms, addressing both noisy and noiseless settings. We also show how this undesired behavior can be leveraged to explore the posterior distribution, thereby allowing the deterministic model to imitate stochastic methods.
[ Hall C 4-9 ]

Abstract
Spiking neural networks (SNNs) are gaining popularity in deep learning due to their low energy budget on neuromorphic hardware. However, they still face challenges in lacking sufficient robustness to guard safety-critical applications such as autonomous driving. Many studies have been conducted to defend SNNs from the threat of adversarial attacks. This paper aims to uncover the robustness of SNN through the lens of the stability of nonlinear systems. We are inspired by the fact that searching for parameters altering the leaky integrate-and-fire dynamics can enhance their robustness. Thus, we dive into the dynamics of membrane potential perturbation and simplify the formulation of the dynamics. We present that membrane potential perturbation dynamics can reliably convey the intensity of perturbation. Our theoretical analyses imply that the simplified perturbation dynamics satisfy input-output stability. Thus, we propose a training framework with modified SNN neurons and to reduce the mean square of membrane potential perturbation aiming at enhancing the robustness of SNN. Finally, we experimentally verify the effectiveness of the framework in the setting of Gaussian noise training and adversarial training on the image classification task. Please refer to https://github.com/DingJianhao/stable-snn for our code implementation.
[ Hall C 4-9 ]

Abstract
Pixel-wise regression tasks (e.g., monocular depth estimation (MDE) and optical flow estimation (OFE)) have been widely involved in our daily life in applications like autonomous driving, augmented reality and video composition. Although certain applications are security-critical or bear societal significance, the adversarial robustness of such models are not sufficiently studied, especially in the black-box scenario. In this work, we introduce the first unified black-box adversarial patch attack framework against pixel-wise regression tasks, aiming to identify the vulnerabilities of these models under query-based black-box attacks. We propose a novel square-based adversarial patch optimization framework and employ probabilistic square sampling and score-based gradient estimation techniques to generate the patch effectively and efficiently, overcoming the scalability problem of previous black-box patch attacks. Our attack prototype, named BadPart, is evaluated on both MDE and OFE tasks, utilizing a total of 7 models. BadPart surpasses 3 baseline methods in terms of both attack performance and efficiency. We also apply BadPart on the Google online service for portrait depth estimation, causing 43.5% relative distance error with 50K queries. State-of-the-art (SOTA) countermeasures cannot defend our attack effectively.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Recent efforts have been made to integrate self-supervised learning (SSL) with the framework of federated learning (FL). One unique challenge of federated self-supervised learning (FedSSL) is that the global objective of FedSSL usually does not equal the weighted sum of local SSL objectives. Consequently, conventional approaches, such as federated averaging (FedAvg), fail to precisely minimize the FedSSL global objective, often resulting in suboptimal performance, especially when data is non-i.i.d.. To fill this gap, we propose a provable FedSSL algorithm, named FedSC, based on the spectral contrastive objective. In FedSC, clients share correlation matrices of data representations in addition to model weights periodically, which enables inter-client contrast of data samples in addition to intra-client contrast and contraction, resulting in improved quality of data representations. Differential privacy (DP) protection is deployed to control the additional privacy leakage on local datasets when correlation matrices are shared. We provide theoretical analysis on convergence and extra privacy leakage, and conduct numerical experiments to justify the effectiveness of our proposed algorithm.
[ Hall C 4-9 ]

Abstract
Implicit neural representations have emerged as a powerful paradigm to represent signals such as images and sounds. This approach aims to utilize neural networks to parameterize the implicit function of the signal. However, when representing implicit functions, traditional neural networks such as ReLU-based multilayer perceptrons face challenges in accurately modeling high-frequency components of signals. Recent research has begun to explore the use of Fourier Neural Networks (FNNs) to overcome this limitation. In this paper, we propose Quantum Implicit Representation Network (QIREN), a novel quantum generalization of FNNs. Furthermore, through theoretical analysis, we demonstrate that QIREN possesses a quantum advantage over classical FNNs. Lastly, we conducted experiments in signal representation, image superresolution, and image generation tasks to show the superior performance of QIREN compared to state-of-the-art (SOTA) models. Our work not only incorporates quantum advantages into implicit neural representations but also uncovers a promising application direction for Quantum Neural Networks.
[ Hall C 4-9 ]

Abstract
This paper explores the size-invariance of evaluation metrics in Salient Object Detection (SOD), especially when multiple targets of diverse sizes co-exist in the same image. We observe that current metrics are size-sensitive, where larger objects are focused, and smaller ones tend to be ignored. We argue that the evaluation should be size-invariant because bias based on size is unjustified without additional semantic information. In pursuit of this, we propose a generic approach that evaluates each salient object separately and then combines the results, effectively alleviating the imbalance. We further develop an optimization framework tailored to this goal, achieving considerable improvements in detecting objects of different sizes. Theoretically, we provide evidence supporting the validity of our new metrics and present the generalization analysis of SOD. Extensive experiments demonstrate the effectiveness of our method.
[ Hall C 4-9 ]
Abstract
The biological functions of proteins often depend on dynamic structural ensembles. In this work, we develop a flow-based generative modeling approach for learning and sampling the conformational landscapes of proteins. We repurpose highly accurate single-state predictors such as AlphaFold and ESMFold and fine-tune them under a custom flow matching framework to obtain sequence-conditioned generative models of protein structure called AlphaFlow and ESMFlow. When trained and evaluated on the PDB, our method provides a superior combination of precision and diversity compared to AlphaFold with MSA subsampling. When further trained on ensembles from all-atom MD, our method accurately captures conformational flexibility, positional distributions, and higher-order ensemble observables for unseen proteins. Moreover, our method can diversify a static PDB structure with faster wall-clock convergence to certain equilibrium properties than replicate MD trajectories, demonstrating its potential as a proxy for expensive physics-based simulations. Code is available at https://github.com/bjing2016/alphaflow.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Molecule synthesis through machine learning is one of the fundamental problems in drug discovery. Current data-driven strategies employ one-step retrosynthesis models and search algorithms to predict synthetic routes in a top-bottom manner. Despite their effective performance, these strategies face limitations in the molecule synthetic route generation due to a greedy selection of the next molecule set without any lookahead. Furthermore, existing strategies cannot control the generation of synthetic routes based on possible criteria such as material costs, yields, and step count. In this work, we propose a general and principled framework via conditional residual energy-based models (EBMs), that focus on the quality of the entire synthetic route based on the specific criteria. By incorporating an additional energy-based function into our probabilistic model, our proposed algorithm can enhance the quality of the most probable synthetic routes (with higher probabilities) generated by various strategies in a plug-and-play fashion. Extensive experiments demonstrate that our framework can consistently boost performance across various strategies and outperforms previous state-of-the-art top-1 accuracy by a margin of 2.5%. Code is available at https://github.com/SongtaoLiu0823/CREBM.
[ Hall C 4-9 ]

Abstract
Molecular modeling, a central topic in quantum mechanics, aims to accurately calculate the properties and simulate the behaviors of molecular systems. The molecular model is governed by physical laws, which impose geometric constraints such as invariance and equivariance to coordinate rotation and translation. While numerous deep learning approaches have been developed to learn molecular representations under these constraints, most of them are built upon heuristic and costly modules. We argue that there is a strong need for a general and flexible framework for learning both invariant and equivariant features. In this work, we introduce a novel Transformer-based molecular model called GeoMFormer to achieve this goal. Using the standard Transformer modules, two separate streams are developed to maintain and learn invariant and equivariant representations. Carefully designed cross-attention modules bridge the two streams, allowing information fusion and enhancing geometric modeling in each stream. As a general and flexible architecture, we show that many previous architectures can be viewed as special instantiations of GeoMFormer. Extensive experiments are conducted to demonstrate the power of GeoMFormer. All empirical results show that GeoMFormer achieves strong performance on both invariant and equivariant tasks of different types and scales. Code and models will be made publicly available at …
[ Hall C 4-9 ]

Abstract
A significant amount of protein function requires binding small molecules, including enzymatic catalysis. As such, designing binding pockets for small molecules has several impactful applications ranging from drug synthesis to energy storage. Towards this goal, we first develop HarmonicFlow, an improved generative process over 3D protein-ligand binding structures based on our self-conditioned flow matching objective. FlowSite extends this flow model to jointly generate a protein pocket's discrete residue types and the molecule's binding 3D structure. We show that HarmonicFlow improves upon state-of-the-art generative processes for docking in simplicity, generality, and average sample quality in pocket-level docking. Enabled by this structure modeling, FlowSite designs binding sites substantially better than baseline approaches.
[ Hall C 4-9 ]

Abstract
Predicting the mean-field Hamiltonian matrix in density functional theory is a fundamental formulation to leverage machine learning for solving molecular science problems. Yet, its applicability is limited by insufficient labeled data for training. In this work, we highlight that Hamiltonian prediction possesses a self-consistency principle, based on which we propose self-consistency training, an exact training method that does not require labeled data. It distinguishes the task from predicting other molecular properties by the following benefits: (1) it enables the model to be trained on a large amount of unlabeled data, hence addresses the data scarcity challenge and enhances generalization; (2) it is more efficient than running DFT to generate labels for supervised training, since it amortizes DFT calculation over a set of queries. We empirically demonstrate the better generalization in data-scarce and out-of-distribution scenarios, and the better efficiency over DFT labeling. These benefits push forward the applicability of Hamiltonian prediction to an ever-larger scale.
[ Hall C 4-9 ]
Abstract
This paper introduces diffusion protein language model (DPLM), a versatile protein language model that demonstrates strong generative and predictive capabilities for protein sequences. We first pre-train scalable DPLMs from evolutionary-scale protein sequences within a generative self-supervised discrete diffusion probabilistic framework, which generalizes language modeling for proteins in a principled way. After pre-training, DPLM exhibits the ability to generate structurally plausible, novel and diverse protein sequences for unconditional generation. We further demonstrate the proposed diffusion generative pre-training make DPLM possess a better understanding of proteins, making it a superior representation learner, which can be fine-tuned for various predictive tasks, comparing favorably to ESM2. Moreover, DPLM can be tailored for various needs, which showcases its prowess of conditional generation in several ways: (1) conditioning on partial peptide sequences, e.g., generating scaffolds for functional motifs with high success rate; (2) incorporating other modalities as conditioners, e.g., structure-conditioned generation for inverse folding; and (3) steering sequence generation towards desired properties, e.g., satisfying specified secondary structures, through a plug-and-play classifier guidance.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Many recent works use machine learning models to solve various complex algorithmic problems. However, these models attempt to reach a solution without considering the problem's required computational complexity, which can be detrimental to their ability to solve it correctly. In this work we investigate the effect of computational time and memory on generalization of implicit algorithmic solvers. To do so, we focus on the Differentiable Neural Computer (DNC), a general problem solver that also lets us reason directly about its usage of time and memory. In this work, we argue that the number of planning steps the model is allowed to take, which we call ”planning budget”, is a constraint that can cause the model to generalize poorly and hurt its ability to fully utilize its external memory. We evaluate our method on Graph Shortest Path, Convex Hull, Graph MinCut and Associative Recall, and show how the planning budget can drastically change the behavior of the learned algorithm, in terms of learned time complexity, training time, stability and generalization to inputs larger than those seen during training.
[ Hall C 4-9 ]

Abstract
Deep learning for time series forecasting has traditionally operated within a one-model-per-dataset framework, limiting its potential to leverage the game-changing impact of large pre-trained models. The concept of universal forecasting, emerging from pre-training on a vast collection of time series datasets, envisions a single Large Time Series Model capable of addressing diverse downstream forecasting tasks. However, constructing such a model poses unique challenges specific to time series data: (i) cross-frequency learning, (ii) accommodating an arbitrary number of variates for multivariate time series, and (iii) addressing the varying distributional properties inherent in large-scale data. To address these challenges, we present novel enhancements to the conventional time series Transformer architecture, resulting in our proposed Masked Encoder-based Universal Time Series Forecasting Transformer (Moirai). Trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains, Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models. Code, data, and model weights can be found at https://github.com/SalesforceAIResearch/uni2ts.
[ Hall C 4-9 ]
Abstract
A State Space Model (SSM) is a foundation model in time series analysis, which has recently been shown as an alternative to transformers in sequence modeling. In this paper, we theoretically study the generalization of SSMs and propose improvements to training algorithms based on the generalization results. Specifically, we give a data-dependent generalization bound for SSMs, showing an interplay between the SSM parameters and the temporal dependencies of the training sequences. Leveraging the generalization bound, we (1) set up a scaling rule for model initialization based on the proposed generalization measure, which significantly improves the robustness of the output value scales on SSMs to different temporal patterns in the sequence data; (2) introduce a new regularization method for training SSMs to enhance the generalization performance. Numerical results are conducted to validate our results.
[ Hall C 4-9 ]

Abstract
We consider the problem of test-time adaptation of predictive models trained on tabular data. Effective solution of this problem requires adaptation of predictive models trained on the source domain to a target domain, using only unlabeled target domain data, without access to source domain data. Existing test-time adaptation methods for tabular data have difficulty coping with the heterogeneous features and their complex dependencies inherent in tabular data. To overcome these limitations, we consider test-time adaptation in the setting wherein the logical structure of the rules is assumed to remain invariant despite distribution shift between source and target domains whereas the numerical parameters associated with the rules and the weights assigned to them can vary to accommodate distribution shift. TabLog discretizes numerical features, models dependencies between heterogeneous features, introduces a novel contrastive loss for coping with distribution shift, and presents an end-to-end framework for efficient training and test-time adaptation by taking advantage of a logical neural network representation of a rule ensemble. We present results of experiments using several benchmark data sets that demonstrate TabLog is competitive with or improves upon the state-of-the-art methods for test-time adaptation of predictive models trained on tabular data. Our code is available at https://github.com/WeijieyingRen/TabLog.
[ Hall C 4-9 ]

Abstract
Local steps are crucial for Federated Learning (FL) algorithms and have witnessed great empirical success in reducing communication costs and improving the generalization performance of deep neural networks. However, there are limited studies on the effect of local steps on heterogeneous FL. A few works investigate this problem from the optimization perspective. Woodworth et al. (2020a) showed that the iteration complexity of Local SGD, the most popular FL algorithm, is dominated by the baseline mini-batch SGD, which does not show the benefits of local steps. In addition, Levy (2023) proposed a new local update method that provably benefits over mini-batch SGD. However, in the same setting, there is still no work analyzing the effects of local steps to generalization in a heterogeneous FL setting. Motivated by our experimental findings where Local SGD learns more distinguishing features than parallel SGD, this paper studies the generalization benefits of local steps from a feature learning perspective. We propose a novel federated data model that exhibits a new form of data heterogeneity, under which we show that a convolutional neural network (CNN) trained by GD with global updates will miss some pattern-related features, while the network trained by GD with local updates can learn …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Transformer-based neural sequence models exhibit a remarkable ability to perform in-context learning. Given some training examples, a pre-trained model can make accurate predictions on an unseen input. This paper studies why transformers can learn different types of function classes in-context. We first show by construction that there exists a family of transformers (with different activation functions) that implement approximate gradient descent on the parameters of neural networks, and we provide an upper bound for the number of heads, hidden dimensions, and layers of the transformer. We also show that a transformer can learn linear functions, the indicator function of a unit ball, and smooth functions in-context by learning neural networks that approximate them. The above instances mainly focus on a transformer pre-trained on single tasks. We also prove that when pre-trained on two tasks: linear regression and classification, a transformer can make accurate predictions on both tasks simultaneously. Our results move beyond linearity in terms of in-context learning instances and provide a comprehensive understanding of why transformers can learn many types of function classes through the bridge of neural networks.
[ Hall C 4-9 ]

Abstract
The pretraining-finetuning paradigm has become the prevailing trend in modern deep learning. In this work, we discover an intriguing linear phenomenon in models that are initialized from a common pretrained checkpoint and finetuned on different tasks, termed as Cross-Task Linearity (CTL). Specifically, we show that if we linearly interpolate the weights of two finetuned models, the features in the weight-interpolated model are often approximately equal to the linear interpolation of features in two finetuned models at each layer. We provide comprehensive empirical evidence supporting that CTL consistently occurs for finetuned models that start from the same pretrained checkpoint. We conjecture that in the pretraining-finetuning paradigm, neural networks approximately function as linear maps, mapping from the parameter space to the feature space. Based on this viewpoint, our study unveils novel insights into explaining model merging/editing, particularly by translating operations from the parameter space to the feature space. Furthermore, we delve deeper into the root cause for the emergence of CTL, highlighting the role of pretraining.
[ Hall C 4-9 ]

Abstract
Previous theoretical results pertaining to meta-learning on sequences build on contrived and convoluted mixing time assumptions. We introduce new information-theoretic tools that lead to a concise yet general decomposition of error for a Bayes optimal predictor into two components: meta-learning error and intra-task error. These tools unify analyses across many meta-learning challenges. To illustrate, we apply them to establish new results about in-context learning with transformers and corroborate existing results a simple linear setting. Our theoretical results characterize how error decays in both the number of training sequences and sequence lengths. Our results are very general; for example, they avoid contrived mixing time assumptions made by all prior results that establish decay of error with sequence length.
[ Hall C 4-9 ]

Abstract
We presents VoxBind, a new score-based generative model for 3D molecules conditioned on protein structures. Our approach represents molecules as 3D atomic density grids and leverages a 3D voxel-denoising network for learning and generation. We extend the neural empirical Bayes formalism (Saremi & Hyvärinen, 2019) to the conditional setting and generate structure-conditioned molecules with a two-step procedure: (i) sample noisy molecules from the Gaussian-smoothed conditional distribution with underdamped Langevin MCMC using the learned score function and (ii) estimate clean molecules from the noisy samples with single-step denoising. Compared to the current state of the art, our model is simpler to train, significantly faster to sample from, and achieves better results on extensive in silico benchmarks—the generated molecules are more diverse, exhibit fewer steric clashes, and bind with higher affinity to protein pockets.
[ Hall C 4-9 ]
Abstract
We present our position on the elusive quest for a general-purpose framework for specifying and studying deep learning architectures. Our opinion is that the key attempts made so far lack a coherent bridge between specifying constraints which models must satisfy and specifying their implementations. Focusing on building a such a bridge, we propose to apply category theory---precisely, the universal algebra of monads valued in a 2-category of parametric maps---as a single theory elegantly subsuming both of these flavours of neural network design. To defend our position, we show how this theory recovers constraints induced by geometric deep learning, as well as implementations of many architectures drawn from the diverse landscape of neural networks, such as RNNs. We also illustrate how the theory naturally encodes many standard constructs in computer science and automata theory.
[ Hall C 4-9 ]
Abstract
The second-order properties of the training loss have a massive impact on the optimization dynamics of deep learning models. Fort & Scherlis (2019) discovered that a large excess of positive curvature and local convexity of the loss Hessian is associated with highly trainable initial points located in a region coined the "Goldilocks zone". Only a handful of subsequent studies touched upon this relationship, so it remains largely unexplained. In this paper, we present a rigorous and comprehensive analysis of the Goldilocks zone for homogeneous neural networks. In particular, we derive the fundamental condition resulting in excess of positive curvature of the loss, explaining and refining its conventionally accepted connection to the initialization norm. Further, we relate the excess of positive curvature to model confidence, low initial loss, and a previously unknown type of vanishing cross-entropy loss gradient. To understand the importance of excessive positive curvature for trainability of deep networks, we optimize fully-connected and convolutional architectures outside the Goldilocks zone and analyze the emergent behaviors. We find that strong model performance is not perfectly aligned with the Goldilocks zone, calling for further research into this relationship.
[ Hall C 4-9 ]

Abstract
Modern ML systems increasingly augment input instances with additional relevant information to enhance final prediction. Despite growing interest in such retrieval-augmented models, their fundamental properties and training are not well understood. We propose a statistical framework to study such models with two components: 1) a retriever to identify the relevant information out of a large corpus via a data-dependent metric; and 2) a predictor that consumes the input instances along with the retrieved information to make the final predictions. We present a principled method for end-to-end training of both components and draw connections with various training approaches in the literature. Furthermore, we establish excess risk bounds for retrieval-augmented models while delineating the contributions of both retriever and predictor towards the model performance.We validate the utility of our proposed training methods along with the key takeaways from our statistical analysis on open domain question answering task where retrieval augmentation is important.
[ Hall C 4-9 ]

Abstract
Multi-layer perceptron (MLP) is a fundamental component of deep learning, and recent MLP-based architectures, especially the MLP-Mixer, have achieved significant empirical success. Nevertheless, our understanding of why and how the MLP-Mixer outperforms conventional MLPs remains largely unexplored. In this work, we reveal that sparseness is a key mechanism underlying the MLP-Mixers. First, the Mixers have an effective expression as a wider MLP with Kronecker-product weights, clarifying that the Mixers efficiently embody several sparseness properties explored in deep learning. In the case of linear layers, the effective expression elucidates an implicit sparse regularization caused by the model architecture and a hidden relation to Monarch matrices, which is also known as another form of sparse parameterization. Next, for general cases, we empirically demonstrate quantitative similarities between the Mixer and the unstructured sparse-weight MLPs. Following a guiding principle proposed by Golubeva, Neyshabur and Gur-Ari (2021), which fixes the number of connections and increases the width and sparsity, the Mixers can demonstrate improved performance.
[ Hall C 4-9 ]
Abstract
The maximum entropy encoding framework provides a unified perspective for many non-contrastive learning methods like SimSiam, Barlow Twins, and MEC. Inspired by this framework, we introduce Matrix-SSL, a novel approach that leverages matrix information theory to interpret the maximum entropy encoding loss as matrix uniformity loss. Furthermore, Matrix-SSL enhances the maximum entropy encoding method by seamlessly incorporating matrix alignment loss, directly aligning covariance matrices in different branches. Experimental results reveal that Matrix-SSL outperforms state-of-the-art methods on the ImageNet dataset under linear evaluation settings and on MS-COCO for transfer learning tasks. Specifically, when performing transfer learning tasks on MS-COCO, our method outperforms previous SOTA methods such as MoCo v2 and BYOL up to 3.3% with only 400 epochs compared to 800 epochs pre-training. We also try to introduce representation learning into the language modeling regime by fine-tuning a 7B model using matrix cross-entropy loss, with a margin of 3.1% on the GSM8K dataset over the standard cross-entropy loss.
[ Hall C 4-9 ]
Abstract
There are a thousand ways to caption an image. Contrastive Language Pretraining (CLIP) on the other hand, works by mapping an image and its caption to a single vector -- limiting how well CLIP-like models can represent the diverse ways to describe an image. In this work, we introduce Llip, Latent Language Image Pretraining, which models the diversity of captions that could match an image. Llip's vision encoder outputs a set of visual features that are mixed into a final representation by conditioning on information derived from the text. We show that Llip outperforms non-contextualized baselines like CLIP and SigLIP on a variety of tasks even with large-scale encoders. Llip improves zero-shot classification by an average of 2.9% zero-shot classification benchmarks with a ViT-G/14 encoder. Specifically, Llip attains a zero-shot top-1 accuracy of 83.5% on ImageNet outperforming a similarly sized CLIP by 1.4%. We also demonstrate improvement on zero-shot retrieval on MS-COCO by 6.0%. We provide a comprehensive analysis of the components introduced by the method and demonstrate that Llip leads to richer visual representations.
[ Hall C 4-9 ]
Abstract
Contrastive learning is a powerful paradigm for representation learning with prominent success in computer vision and NLP, but how to extend its success to high-dimensional tensors remains a challenge. This is because tensor data often exhibit high-order mode-interactions that are hard to profile and with negative samples growing combinatorially faster than second-order contrastive learning; furthermore, many real-world tensors have ordinal entries that necessitate more delicate comparative levels. To solve the challenge, we propose High-Order Contrastive Tensor Completion (HOCTC), an innovative network to extend contrastive learning to sparse ordinal tensor data. HOCTC employs a novel attention-based strategy with query-expansion to capture high-order mode interactions even in case of very limited tokens, which transcends beyond second-order learning scenarios. Besides, it extends two-level comparisons (positive-vs-negative) to fine-grained contrast-levels using ordinal tensor entries as a natural guidance. Efficient sampling scheme is proposed to enforce such delicate comparative structures, generating comprehensive self-supervised signals for high-order representation learning. Extensive experiments show that HOCTC has promising results in sparse tensor completion in traffic/recommender applications.
[ Hall C 4-9 ]

Abstract
The ability of deep networks to learn superior representations hinges on leveraging the proper inductive biases, considering the inherent properties of datasets. In tabular domains, it is critical to effectively handle heterogeneous features (both categorical and numerical) in a unified manner and to grasp irregular functions like piecewise constant functions. To address the challenges in the self-supervised learning framework, we propose a novel pretext task based on the classical binning method. The idea is straightforward: reconstructing the bin indices (either orders or classes) rather than the original values. This pretext task provides the encoder with an inductive bias to capture the irregular dependencies, mapping from continuous inputs to discretized bins, and mitigates the feature heterogeneity by setting all features to have category-type targets. Our empirical investigations ascertain several advantages of binning: capturing the irregular function, compatibility with encoder architecture and additional modifications, standardizing all features into equal sets, grouping similar values within a feature, and providing ordering information. Comprehensive evaluations across diverse tabular datasets corroborate that our method consistently improves tabular representation learning performance for a wide range of downstream tasks. The codes are available in https://github.com/kyungeun-lee/tabularbinning.
[ Hall C 4-9 ]

Abstract
De novo protein design aims to create novel protein structures and sequences unseen in nature. Recent structure-oriented design methods typically employ a two-stage strategy, where structure design and sequence design modules are trained separately, and the backbone structures and sequences are generated sequentially in inference. While diffusion-based generative models like RFdiffusion show great promise in structure design, they face inherent limitations within the two-stage framework. First, the sequence design module risks overfitting, as the accuracy of the generated structures may not align with that of the crystal structures used for training. Second, the sequence design module lacks interaction with the structure design module to further optimize the generated structures. To address these challenges, we propose CarbonNovo, a unified energy-based model for jointly generating protein structure and sequence. Specifically, we leverage a score-based generative model and Markov Random Fields for describing the energy landscape of protein structure and sequence. In CarbonNovo, the structure and sequence design module communicates at each diffusion step, encouraging the generation of more coherent structure-sequence pairs. Moreover, the unified framework allows for incorporating the protein language models as evolutionary constraints for generated proteins. The rigorous evaluation demonstrates that CarbonNovo outperforms two-stage methods across various metrics, including designability, …
[ Hall C 4-9 ]
Abstract
Enzymes are genetically encoded biocatalysts capable of accelerating chemical reactions. How can we automatically design functional enzymes? In this paper, we propose EnzyGen, an approach to learn a unified model to design enzymes across all functional families. Our key idea is to generate an enzyme's amino acid sequence and their three-dimensional (3D) coordinates based on functionally important sites and substrates corresponding to a desired catalytic function. These sites are automatically mined from enzyme databases. EnzyGen consists of a novel interleaving network of attention and neighborhood equivariant layers, which captures both long-range correlation in an entire protein sequence and local influence from nearest amino acids in 3D space. To learn the generative model, we devise a joint training objective, including a sequence generation loss, a position prediction loss and an enzyme-substrate interaction loss. We further construct EnzyBench, a dataset with 3157 enzyme families, covering all available enzymes within the protein data bank (PDB). Experimental results show that our EnzyGen consistently achieves the best performance across all 323 testing families, surpassing the best baseline by 10.79% in terms of substrate binding affinity. These findings demonstrate EnzyGen's superior capability in designing well-folded and effective enzymes binding to specific substrates with high affinities. Our …
[ Hall C 4-9 ]
Abstract
Developing an effective molecular generation framework even with a limited number of molecules is often important for its practical deployment, e.g., drug discovery, since acquiring task-related molecular data requires expensive and time-consuming experimental costs. To tackle this issue, we introduce Hierarchical Textual Inversion for Molecular Generation (HI-Mol), a novel data-efficient molecular generation method. HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution. We propose to use multi-level embeddings to reflect such hierarchical features based on the adoption of the recent textual inversion technique in the visual domain, which achieves data-efficient image generation. Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution. We then generate molecules based on the interpolation of the multi-level token embeddings. Extensive experiments demonstrate the superiority of HI-Mol with notable data-efficiency. For instance, on QM9, HI-Mol outperforms the prior state-of-the-art method with 50x less training data. We also show the effectiveness of molecules generated by HI-Mol in low-shot molecular property prediction. Code is available at https://github.com/Seojin-Kim/HI-Mol.
[ Hall C 4-9 ]

Abstract
Increasing works for antibody design are emerging to generate sequences and structures in Complementarity Determining Regions (CDRs), but problems still exist. We focus on two of them: (i) authenticity of the generated structure and (ii) rationality of the affinity maturation, and propose GeoAB as a solution. In specific, GeoAB-Designergenerates CDR structures with realistic internal geometries, composed of a generative geometry initializer (Geo-Initializer) and a position refiner (Geo-Refiner); GeoAB-Optimizer achieves affinity maturation by accurately predicting both the mutation effects and structures of mutant antibodies with the same network architecture as Geo-Refiner. Experiments show that GeoAB achieves state-of-the-art performance in CDR co-design and mutation effect predictions, and fulfills the discussed tasks effectively.
[ Hall C 4-9 ]

Abstract
Machine Learning (ML) has emerged as a promising alternative to numerical methods for physics-based simulation due to its flexibility and efficiency. Flood modeling is a key case study for ML-based simulation due to its relevance as a tool for supporting preventive and emergency measures to mitigate flood risks. However, the complexity of the topography or domain (ground elevation) and the sparsity of the time-evolving precipitations (external forcing) can be challenging for most existing ML approaches for simulating flooding processes in space and time. Another critical challenge is incorporating physics domain knowledge (hydraulics) into these data-driven models. This paper addresses these challenges by introducing a hydraulics-informed graph neural network for flood simulation. Given a (geographical) region and precipitation data, our model predicts water depths in an auto-regressive fashion. We propose a message-passing framework inspired by the conservation of momentum and mass expressed in the shallow-water equations, which describe the physical process of a flooding event. Empirical results on a dataset covering 9 regions and 7 historical precipitation events demonstrate that our model outperforms the best baseline, and can capture the propagation of water flow more effectively, especially at the very early stage of the flooding event when the amount of water …
[ Hall C 4-9 ]

Abstract
This work tackles the problem of geo-localization with a new paradigm using a large vision-language model (LVLM) augmented with human inference knowledge. A primary challenge here is the scarcity of data for training the LVLM - existing street-view datasets often contain numerous low-quality images lacking visual clues, and lack any reasoning inference. To address the data-quality issue, we devise a CLIP-based network to quantify the degree of street-view images being locatable, leading to the creation of a new dataset comprising highly locatable street views. To enhance reasoning inference, we integrate external knowledge obtained from real geo-localization games, tapping into valuable human inference capabilities. The data are utilized to train GeoReasoner, which undergoes fine-tuning through dedicated reasoning and location-tuning stages. Qualitative and quantitative evaluations illustrate that GeoReasoner outperforms counterpart LVLMs by more than 25% at country-level and 38% at city-level geo-localization tasks, and surpasses StreetCLIP performance while requiring fewer training resources. The data and code are available at https://github.com/lingli1996/GeoReasoner.
[ Hall C 4-9 ]

Abstract
As machine learning becomes more prominent there is a growing demand to perform several inference tasks in parallel. Multi-task learning (MTL) addresses this challenge by learning a single model that solves several tasks simultaneously and efficiently. Often optimizing MTL models entails first computing the gradient of the loss for each task, and then aggregating all the gradients to obtain a combined update direction. However, common methods following this approach do not consider an important aspect, the sensitivity in the dimensions of the gradients. Some dimensions may be more lenient for changes while others may be more restrictive. Here, we introduce a novel gradient aggregation procedure using Bayesian inference. We place a probability distribution over the task-specific parameters, which in turn induce a distribution over the gradients of the tasks. This valuable information allows us to quantify the uncertainty associated with each of the gradients' dimensions which is factored in when aggregating them. We empirically demonstrate the benefits of our approach in a variety of datasets, achieving state-of-the-art performance.
[ Hall C 4-9 ]

Abstract
Clustering is a fundamental learning task widely used as a first step in data analysis. For example, biologists use cluster assignments to analyze genome sequences, medical records, or images. Since downstream analysis is typically performed at the cluster level, practitioners seek reliable and interpretable clustering models. We propose a new deep-learning framework for general domain tabular data that predicts interpretable cluster assignments at the instance and cluster levels. First, we present a self-supervised procedure to identify the subset of the most informative features from each data point. Then, we design a model that predicts cluster assignments and a gate matrix that provides cluster-level feature selection. Overall, our model provides cluster assignments with an indication of the driving feature for each sample and each cluster. We show that the proposed method can reliably predict cluster assignments in biological, text, image, and physics tabular datasets. Furthermore, using previously proposed metrics, we verify that our model leads to interpretable results at a sample and cluster level. Our code is available on https://github.com/jsvir/idc.
[ Hall C 4-9 ]
Abstract
Federated learning (FL) is an emerging machine learning paradigm for preserving data privacy. However, diverse client hardware often has varying computation resources. Such system heterogeneity limits the participation of resource-constrained clients in FL, and hence degrades the global model accuracy. To enable heterogeneous clients to participate in and contribute to FL training, previous works tackle this problem by assigning customized sub-models to individual clients with model pruning, distillation, or low-rank based techniques. Unfortunately, the global model trained by these methods still encounters performance degradation due to heterogeneous sub-model aggregation. Besides, most methods are heuristic-based and lack convergence analysis. In this work, we propose the FedLMT framework to bridge the performance gap, by assigning clients with a homogeneous pre-factorized low-rank model to substantially reduce resource consumption without conducting heterogeneous aggregation. We theoretically prove that the convergence of the low-rank model can guarantee the convergence of the original full model. To further meet clients' personalized resource needs, we extend FedLMT to pFedLMT, by separating model parameters into common and custom ones. Finally, extensive experiments are conducted to verify our theoretical analysis and show that FedLMT and pFedLMT outperform other baselines with much less communication and computation costs.
[ Hall C 4-9 ]
Abstract
Deep equilibrium (DEQ) models are widely recognized as a memory efficient alternative to standard neural networks, achieving state-of-the-art performance in language modeling and computer vision tasks. These models solve a fixed point equation instead of explicitly computing the output, which sets them apart from standard neural networks. However, existing DEQ models often lack formal guarantees of the existence and uniqueness of the fixed point, and the convergence of the numerical scheme used for computing the fixed point is not formally established. As a result, DEQ models are potentially unstable in practice. To address these drawbacks, we introduce a novel class of DEQ models called positive concave deep equilibrium (pcDEQ) models. Our approach, which is based on nonlinear Perron-Frobenius theory, enforces nonnegative weights and activation functions that are concave on the positive orthant. By imposing these constraints, we can easily ensure the existence and uniqueness of the fixed point without relying on additional complex assumptions commonly found in the DEQ literature, such as those based on monotone operator theory in convex analysis. Furthermore, the fixed point can be computed with the standard fixed point algorithm, and we provide theoretical guarantees of its geometric convergence, which, in particular, simplifies the training process. …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Although deep learning models have taken on commercial and political relevance, key aspects of their training and operation remain poorly understood. This has sparked interest in science of deep learning projects, many of which require large amounts of time, money, and electricity. But how much of this research really needs to occur at scale? In this paper, we introduce MNIST-1D: a minimalist, procedurally generated, low-memory, and low-compute alternative to classic deep learning benchmarks. Although the dimensionality of MNIST-1D is only 40 and its default training set size only 4000, MNIST-1D can be used to study inductive biases of different deep architectures, find lottery tickets, observe deep double descent, metalearn an activation function, and demonstrate guillotine regularization in self-supervised learning. All these experiments can be conducted on a GPU or often even on a CPU within minutes, allowing for fast prototyping, educational use cases, and cutting-edge research on a low budget.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Variational Inequality (VI) problems have attracted great interest in the machine learning (ML) community due to their application in adversarial and multi-agent training. Despite its relevance in ML, the oft-used strong-monotonicity and Lipschitz continuity assumptions on VI problems are restrictive and do not hold in many machine learning problems. To address this, we relax smoothness and monotonicity assumptions and study structured non-monotone generalized smoothness. The key idea of our results is in adaptive stepsizes. We prove the first-known convergence results for solving generalized smooth VIs for the three popular methods, namely, projection, Korpelevich, and Popov methods. Our convergence rate results for generalized smooth VIs match or improve existing results on smooth VIs. We present numerical experiments that support our theoretical guarantees and highlight the efficiency of proposed adaptive stepsizes.
[ Hall C 4-9 ]
Abstract
Minimax optimization is fundamental and important for enormous machine learning applications such as generative adversarial network, adversarial training, and robust optimization. Recently, a variety of minimax algorithms with theoretical guarantees based on Lipschitz smoothness have been proposed. However, these algorithms could fail to converge in practice because the requisite Lipschitz smooth condition may not hold even in some classic minimax problems. We will present some counterexamples to reveal this divergence issue. Thus, to fill this gap, we are motivated to delve into the convergence analysis of minimax algorithms under a relaxed Lipschitz smoothness condition, i.e., generalized smoothness. We prove that variants of basic minimax optimization algorithms GDA, SGDA, GDmax and SGDmax can still converge in generalized smooth problems, and hence their theoretical guarantees can be extended to a wider range of applications. We also conduct a numerical experiment to validate the performance of our proposed algorithms.
[ Hall C 4-9 ]
Abstract
This paper introduces a finite smoothing algorithm (FSA), a novel approach to tackle computational challenges in applying support vector machines (SVM) and quantile regression to high-dimensional data. The critical issue with these methods is the non-smooth nature of their loss functions, which traditionally limits the use of highly efficient coordinate descent techniques in high-dimensional settings. FSA innovatively addresses this issue by transforming these loss functions into their smooth counterparts, thereby facilitating more efficient computation. A distinctive feature of FSA is its theoretical foundation: FSA can yield exact solutions, not just approximations, despite the smoothing approach. Our simulation and benchmark tests demonstrate that FSA significantly outpaces its competitors in speed, often by orders of magnitude, while improving or at least maintaining precision. We have implemented FSA in two open-source R packages: hdsvm for high-dimensional SVM and hdqr for high-dimensional quantile regression.
[ Hall C 4-9 ]
Abstract
The Bures-Wasserstein (BW) gradient descent method has gained considerable attention in various domains, including Gaussian barycenter, matrix recovery and variational inference problems, due to its alignment with the Wasserstein geometry of normal distributions. Despite its popularity, existing convergence analysis are often contingent upon specific loss functions, and the exploration of constrained settings within this framework remains limited. In this work, we make an attempt to bridge this gap by providing a general convergence rate guarantee for BW gradient descent when the Euclidean strong convexity of the loss and the constraints is assumed. In an effort to advance practical implementations, we also derive a closed-form solution for the projection onto BW distance-constrained sets, which enables the fast implementation of projected BW gradient descent for problems that arise in the constrained barycenter and distributionally robust optimization literature. Experimental results demonstrate significant improvements in computational efficiency and convergence speed, underscoring the efficacy of our method in practical scenarios.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Sharpness-aware minimization (SAM) methods have gained increasing popularity by formulating the problem of minimizing both loss value and loss sharpness as a minimax objective. In this work, we increase the efficiency of the maximization and minimization parts of SAM's objective to achieve a better loss-sharpness trade-off. By taking inspiration from the Lookahead optimizer, which uses multiple descent steps ahead, we propose Lookbehind, which performs multiple ascent steps behind to enhance the maximization step of SAM and find a worst-case perturbation with higher loss. Then, to mitigate the variance in the descent step arising from the gathered gradients across the multiple ascent steps, we employ linear interpolation to refine the minimization step. Lookbehind leads to a myriad of benefits across a variety of tasks. Particularly, we show increased generalization performance, greater robustness against noisy weights, as well as improved learning and less catastrophic forgetting in lifelong learning settings. Our code is available at https://github.com/chandar-lab/Lookbehind-SAM.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
This work focuses on addressing two major challenges in the context of large-scale nonconvex Bi-Level Optimization (BLO) problems, which are increasingly applied in machine learning due to their ability to model nested structures. These challenges involve ensuring computational efficiency and providing theoretical guarantees. While recent advances in scalable BLO algorithms have primarily relied on lower-level convexity simplification, our work specifically tackles large-scale BLO problems involving nonconvexity in both the upper and lower levels. We simultaneously address computational and theoretical challenges by introducing an innovative single-loop gradient-based algorithm, utilizing the Moreau envelope-based reformulation, and providing non-asymptotic convergence analysis for general nonconvex BLO problems. Notably, our algorithm relies solely on first-order gradient information, enhancing its practicality and efficiency, especially for large-scale BLO learning tasks. We validate our approach's effectiveness through experiments on various synthetic problems, two typical hyper-parameter learning tasks, and a real-world neural architecture search application, collectively demonstrating its superior performance.
[ Hall C 4-9 ]

Abstract
This paper addresses the complex issue of resource-constrained scheduling, an NP-hard problem that spans critical areas including chip design and high-performance computing. Traditional scheduling methods often stumble over scalability and applicability challenges. We propose a novel approach using a differentiable combinatorial scheduling framework, utilizing Gumbel-Softmax differentiable sampling technique. This new technical allows for a fully differentiable formulation of linear programming (LP) based scheduling, extending its application to a broader range of LP formulations. To encode inequality constraints for scheduling tasks, we introduce constrained Gumbel Trick, which adeptly encodes arbitrary inequality constraints. Consequently, our method facilitates an efficient and scalable scheduling via gradient descent without the need for training data. Comparative evaluations on both synthetic and real-world benchmarks highlight our capability to significantly improve the optimization efficiency of scheduling, surpassing state-of-the-art solutions offered by commercial and open-source solvers such as CPLEX, Gurobi, and CP-SAT in the majority of the designs.
[ Hall C 4-9 ]
Abstract
The lifted multicut problem has diverse applications in the field of computer vision. Exact algorithms based on linear programming require an understanding of lifted multicut polytopes. Despite recent progress, two fundamental questions about these polytopes have remained open: Which lower box inequalities define facets, and which cut inequalities define facets? In this article, we answer the first question by establishing conditions that are necessary, sufficient and efficiently decidable. Toward the second question, we show that deciding facet-definingness of cut inequalities is NP-hard. This completes the analysis of canonical facets of lifted multicut polytopes.
[ Hall C 4-9 ]

Abstract
Unbalanced optimal transport (UOT) has recently gained much attention due to its flexible framework for handling un-normalized measures and its robustness properties. In this work, we explore learning (structured) sparse transport plans in the UOT setting, i.e., transport plans have an upper bound on the number of non-sparse entries in each column (structured sparse pattern) or in the whole plan (general sparse pattern). We propose novel sparsity-constrained UOT formulations building on the recently explored maximum mean discrepancy based UOT. We show that the proposed optimization problem is equivalent to the maximization of a weakly submodular function over a uniform matroid or a partition matroid. We develop efficient gradient-based discrete greedy algorithms and provide the corresponding theoretical guarantees. Empirically, we observe that our proposed greedy algorithms select a diverse support set and we illustrate the efficacy of the proposed approach in various applications.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Humans use context to specify preferences over behaviors, i.e. their reward functions. Yet, algorithms for inferring reward models from preference data do not take this social learning view into account. Inspired by pragmatic human communication, we study how to extract fine-grained data regarding why an example is preferred that is useful for learning an accurate reward model. We propose to enrich preference queries to ask both (1) which features of a given example are preferable in addition to (2) comparisons between objects. We derive an approach for learning from these feature-level preferences, both for cases where users specify which features are reward-relevant, and when users do not. We evaluate our approach on linear bandit settings in both visual and language-based domains. Results support the efficiency of our approach in quickly converging to accurate rewards with less comparisons vs. example-only labels. Finally, we validate the real-world applicability with a behavioral experiment on a mushroom foraging task. Our findings suggest that incorporating pragmatic feature preferences is a promising approach for more efficient user-aligned reward learning.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In the field of safe reinforcement learning (RL), finding a balance between satisfying safety constraints and optimizing reward performance presents a significant challenge. A key obstacle in this endeavor is the estimation of safety constraints, which is typically more difficult than estimating a reward metric due to the sparse nature of the constraint signals. To address this issue, we introduce a novel framework named Feasibility Consistent Safe Reinforcement Learning (FCSRL). This framework combines representation learning with feasibility-oriented objectives to identify and extract safety-related information from the raw state for safe RL. Leveraging self-supervised learning techniques and a more learnable safety metric, our approach enhances the policy learning and constraint estimation. Empirical evaluations across a range of vector-state and image-based tasks demonstrate that our method is capable of learning a better safety-aware embedding and achieving superior performance than previous representation learning baselines.
[ Hall C 4-9 ]

Abstract
Offline reinforcement learning (RL) is crucial for real-world applications where exploration can be costly or unsafe. However, offline learned policies are often suboptimal, and further online fine-tuning is required. In this paper, we tackle the fundamental dilemma of offline-to-online fine-tuning: if the agent remains pessimistic, it may fail to learn a better policy, while if it becomes optimistic directly, performance may suffer from a sudden drop. We show that Bayesian design principles are crucial in solving such a dilemma. Instead of adopting optimistic or pessimistic policies, the agent should act in a way that matches its belief in optimal policies. Such a probability-matching agent can avoid a sudden performance drop while still being guaranteed to find the optimal policy. Based on our theoretical findings, we introduce a novel algorithm that outperforms existing methods on various benchmarks, demonstrating the efficacy of our approach. Overall, the proposed approach provides a new perspective on offline-to-online RL that has the potential to enable more effective learning from offline data.
[ Hall C 4-9 ]

Abstract
In large deep neural networks that seem to perform surprisingly well on many tasks, we also observe a few failures related to accuracy, social biases, and alignment with human values, among others. Therefore, before deploying these models, it is crucial to characterize this failure landscape for engineers to debug and legislative bodies to audit models. Nevertheless, it is infeasible to exhaustively test for all possible combinations of factors that could lead to a model's failure. In this paper, we introduce a post-hoc method that utilizes deep reinforcement learning to explore and construct the landscape of failure modes in pre-trained discriminative and generative models. With the aid of limited human feedback, we then demonstrate how to restructure the failure landscape to be more desirable by moving away from the discovered failure modes. We empirically show the effectiveness of the proposed method across common Computer Vision, Natural Language Processing, and Vision-Language tasks.
[ Hall C 4-9 ]
Abstract
Exploration is a major challenge in reinforcement learning, especially for high-dimensional domains that require function approximation. We propose exploration objectives---policy optimization objectives that enable downstream maximization of any reward function---as a conceptual framework to systematize the study of exploration. We introduce a new objective, L1-Coverage, which generalizes previous exploration schemes and supports three fundamental desiderata: 1. Intrinsic complexity control. L1-Coverage is associated with a structural parameter, L1-Coverability, which reflects the intrinsic statistical difficulty of the underlying MDP, subsuming Block and Low-Rank MDPs. 2. Efficient planning. For a known MDP, L1-Coverage efficiently reduces to standard policy optimization, allowing flexible integration with off-the-shelf methods such as policy gradient and Q-learning approaches. 3. Efficient exploration. L1-Coverage enables the first computationally efficient model-based and model-free algorithms for online (reward-free or reward-driven) reinforcement learning in MDPs with low coverability. Empirically, we find that L1-Coverage effectively drives off-the-shelf policy optimization algorithms to explore the state space.
[ Hall C 4-9 ]

Abstract
Incomplete multi-view clustering (IMVC) methods typically encounter three drawbacks: (1) intense time and/or space overheads; (2) intractable hyper-parameters; (3) non-zero variance results. With these concerns in mind, we give a simple yet effective IMVC scheme, termed as ToRES. Concretely, instead of self-expression affinity, we manage to construct prototype-sample affinity for incomplete data so as to decrease the memory requirements. To eliminate hyper-parameters, besides mining complementary features among views by view-wise prototypes, we also attempt to devise cross-view prototypes to capture consensus features for jointly forming high-quality clustering representation. To avoid the variance, we successfully unify representation learning and clustering operation, and directly optimize the discrete cluster indicators from incomplete data. Then, for the resulting objective function, we provide two equivalent solutions from perspectives of feasible region partitioning and objective transformation. Many results suggest that ToRES exhibits advantages against 20 SOTA algorithms, even in scenarios with a higher ratio of incomplete data.
[ Hall C 4-9 ]

Abstract
We leverage multilevel Monte Carlo (MLMC) to improve the performance of multi-step look- ahead Bayesian optimization (BO) methods that involve nested expectations and maximizations. Often these expectations must be computed by Monte Carlo (MC). The complexity rate of naive MC degrades for nested operations, whereas MLMC is capable of achieving the canonical MC convergence rate for this type of problem, independently of dimension and without any smoothness assumptions. Our theoretical study focuses on the approximation improvements for two- and three-step look-ahead acquisition functions, but, as we discuss, the approach is generalizable in various ways, including beyond the context of BO. Our findings are verified numerically and the benefits of MLMC for BO are illustrated on several benchmark examples. Code is available at https://github.com/Shangda-Yang/MLMCBO.
[ Hall C 4-9 ]

Abstract
This paper studies sample average approximation (SAA) and its simple regularized variation in solving convex or strongly convex stochastic programming problems. Under heavy-tailed assumptions and comparable regularity conditions as in the typical SAA literature, we show --- perhaps for the first time --- that the sample complexity can be completely free from any complexity measure (e.g., logarithm of the covering number) of the feasible region. As a result, our new bounds can be more advantageous than the state-of-the-art in terms of the dependence on the problem dimensionality.
[ Hall C 4-9 ]

Abstract
Reinforcement Learning from Human Feedback (RLHF) has shown potential in qualitative tasks where easily defined performance measures are lacking. However, there are drawbacks when RLHF is commonly used to optimize for average human preferences, especially in generative tasks that demand diverse model responses. Meanwhile, Quality Diversity (QD) algorithms excel at identifying diverse and high-quality solutions but often rely on manually crafted diversity metrics. This paper introduces Quality Diversity through Human Feedback (QDHF), a novel approach that progressively infers diversity metrics from human judgments of similarity among solutions, thereby enhancing the applicability and effectiveness of QD algorithms in complex and open-ended domains. Empirical studies show that QDHF significantly outperforms state-of-the-art methods in automatic diversity discovery and matches the efficacy of QD with manually crafted diversity metrics on standard benchmarks in robotics and reinforcement learning. Notably, in open-ended generative tasks, QDHF substantially enhances the diversity of text-to-image generation from a diffusion model and is more favorably received in user studies. We conclude by analyzing QDHF's scalability, robustness, and quality of derived diversity metrics, emphasizing its strength in open-ended optimization tasks. Code and tutorials are available at https://liding.info/qdhf.
[ Hall C 4-9 ]
Abstract
Optimization layers in deep neural networks have enjoyed a growing popularity in structured learning, improving the state of the art on a variety of applications. Yet, these pipelines lack interpretability since they are made of two opaque layers: a highly non-linear prediction model, such as a deep neural network, and an optimization layer, which is typically a complex black-box solver. Our goal is to improve the transparency of such methods by providing counterfactual explanations. We build upon variational autoencoders a principled way of obtaining counterfactuals: working in the latent space leads to a natural notion of plausibility of explanations. We finally introduce a variant of the classic loss for VAE training that improves their performance in our specific structured context. These provide the foundations of CF-OPT, a first-order optimization algorithm that can find counterfactual explanations for a broad class of structured learning architectures. Our numerical results show that both close and plausible explanations can be obtained for problems from the recent literature.
[ Hall C 4-9 ]

Abstract
Ordinary differential equations (ODEs) are widely used to describe dynamical systems in science, but identifying parameters that explain experimental measurements is challenging. In particular, although ODEs are differentiable and would allow for gradient-based parameter optimization, the nonlinear dynamics of ODEs often lead to many local minima and extreme sensitivity to initial conditions. We therefore propose diffusion tempering, a novel regularization technique for probabilistic numerical methods which improves convergence of gradient-based parameter optimization in ODEs. By iteratively reducing a noise parameter of the probabilistic integrator, the proposed method converges more reliably to the true parameters. We demonstrate that our method is effective for dynamical systems of different complexity and show that it obtains reliable parameter estimates for a Hodgkin--Huxley model with a practically relevant number of parameters.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Inverse optimization involves inferring unknown parameters of an optimization problem from known solutions and is widely used in fields such as transportation, power systems, and healthcare. We study the contextual inverse optimization setting that utilizes additional contextual information to better predict the unknown problem parameters. We focus on contextual inverse linear programming (CILP) addressing the challenges posed by the non-differentiable nature of LPs. For a linear prediction model, we reduce CILP to a convex feasibility problem allowing the use of standard algorithms such as alternating projections. The resulting algorithm for CILP is equipped with theoretical convergence guarantees without additional assumptions such as degeneracy or interpolation. Next, we reduce CILP to empirical risk minimization (ERM) on a smooth, convex loss that satisfies the Polyak-Lojasiewicz condition. This reduction enables the use of scalable first-order optimization methods to solve large non-convex problems while maintaining theoretical guarantees in the convex setting. Subsequently, we use the reduction to ERM to quantify the generalization performance of the proposed algorithm on previously unseen instances. Finally, we experimentally validate our approach on synthetic and real-world problems and demonstrate improved performance compared to existing methods.
[ Hall C 4-9 ]
Abstract
In nonconvex-nonconcave minimax optimization, two-timescale gradient methods have shown their potential to find local minimax (optimal) points, provided that the timescale separation between the min and the max player is sufficiently large. However, existing two-timescale variants of gradient descent ascent and extragradient methods face two shortcomings, especially when we search for non-strict local minimax points that are prevalent in modern overparameterized setting. In specific, (1) these methods can be unstable at some non-strict local minimax points even with sufficiently large timescale separation, and even (2) computing a proper amount of timescale separation is infeasible in practice. To remedy these two issues, we propose to incorporate two simple but provably effective schemes, double-step alternating update and increasing timescale separation, into the two-timescale extragradient method, respectively. Under mild conditions, we show that the proposed methods converge to non-strict local minimax points that all existing two-timescale methods fail to converge.
[ Hall C 4-9 ]

Abstract
In goal-conditioned hierarchical reinforcement learning (HRL), a high-level policy specifies a subgoal for the low-level policy to reach. Effective HRL hinges on a suitable subgoal representation function, abstracting state space into latent subgoal space and inducing varied low-level behaviors. Existing methods adopt a subgoal representation that provides a deterministic mapping from state space to latent subgoal space. Instead, this paper utilizes Gaussian Processes (GPs) for the first probabilistic subgoal representation. Our method employs a GP prior on the latent subgoal space to learn a posterior distribution over the subgoal representation functions while exploiting the long-range correlation in the state space through learnable kernels. This enables an adaptive memory that integrates long-range subgoal information from prior planning steps allowing to cope with stochastic uncertainties. Furthermore, we propose a novel learning objective to facilitate the simultaneous learning of probabilistic subgoal representations and policies within a unified framework. In experiments, our approach outperforms state-of-the-art baselines in standard benchmarks but also in environments with stochastic elements and under diverse reward conditions. Additionally, our model shows promising capabilities in transferring low-level policies across different tasks.
[ Hall C 4-9 ]
Abstract
Reinforcement Learning (RL) for constrained MDPs (CMDPs) is an increasingly important problem for various applications. Often, the average criterion is more suitable than the discounted criterion. Yet, RL for average-CMDPs (ACMDPs) remains a challenging problem. Algorithms designed for discounted constrained RL problems often do not perform well for the average CMDP setting. In this paper, we introduce a new policy optimization with function approximation algorithm for constrained MDPs with the average criterion. The Average-Constrained Policy Optimization (ACPO) algorithm is inspired by trust region-based policy optimization algorithms. We develop basic sensitivity theory for average CMDPs, and then use the corresponding bounds in the design of the algorithm. We provide theoretical guarantees on its performance, and through extensive experimental work in various challenging OpenAI Gym environments, show its superior empirical performance when compared to other state-of-the-art algorithms adapted for the ACMDPs.
[ Hall C 4-9 ]

Abstract
We focus on the task of learning the value function in the reinforcement learning (RL) setting. This task is often solved by updating a pair of online and target networks while ensuring that the parameters of these two networks are equivalent. We propose Lookahead-Replicate (LR), a new value-function approximation algorithm that is agnostic to this parameter-space equivalence. Instead, the LR algorithm is designed to maintain an equivalence between the two networks in the function space. This value-based equivalence is obtained by employing a new target-network update. We show that LR leads to a convergent behavior in learning the value function. We also present empirical results demonstrating that LR-based target-network updates significantly improve deep RL on the Atari benchmark.
[ Hall C 4-9 ]

Abstract
Model-based reinforcement learning agents utilizing transformers have shown improved sample efficiency due to their ability to model extended context, resulting in more accurate world models. However, for complex reasoning and planning tasks, these methods primarily rely on continuous representations. This complicates modeling of discrete properties of the real world such as disjoint object classes between which interpolation is not plausible. In this work, we introduce discrete abstract representations for transformer-based learning (DART), a sample-efficient method utilizing discrete representations for modeling both the world and learning behavior. We incorporate a transformer-decoder for auto-regressive world modeling and a transformer-encoder for learning behavior by attending to task-relevant cues in the discrete representation of the world model. For handling partial observability, we aggregate information from past time steps as memory tokens. DART outperforms previous state-of-the-art methods that do not use look-ahead search on the Atari 100k sample efficiency benchmark with a median human-normalized score of 0.790 and beats humans in 9 out of 26 games. We release our code at https://pranaval.github.io/DART/.
[ Hall C 4-9 ]
Abstract
In offline reinforcement learning, the challenge of out-of-distribution (OOD) is pronounced. To address this, existing methods often constrain the learned policy through policy regularization. However, these methods often suffer from the issue of unnecessary conservativeness, hampering policy improvement. This occurs due to the indiscriminate use of all actions from the behavior policy that generates the offline dataset as constraints. The problem becomes particularly noticeable when the quality of the dataset is suboptimal. Thus, we propose Adaptive Advantage-guided Policy Regularization (A2PR), obtaining high-advantage actions from an augmented behavior policy combined with VAE to guide the learned policy. A2PR can select high-advantage actions that differ from those present in the dataset, while still effectively maintaining conservatism from OOD actions. This is achieved by harnessing the VAE capacity to generate samples matching the distribution of the data points. We theoretically prove that the improvement of the behavior policy is guaranteed. Besides, it effectively mitigates value overestimation with a bounded performance gap. Empirically, we conduct a series of experiments on the D4RL benchmark, where A2PR demonstrates state-of-the-art performance. Furthermore, experimental results on additional suboptimal mixed datasets reveal that A2PR exhibits superior performance. Code is available at https://github.com/ltlhuuu/A2PR.
[ Hall C 4-9 ]

Abstract
The diffusion model has demonstrated impressive performance in offline reinforcement learning. However, non-deterministic sampling in diffusion models can lead to unstable performance. Furthermore, the lack of confidence measurements makes it difficult to evaluate the reliability and trustworthiness of the sampled decisions. To address these issues, we present ReDiffuser, which utilizes confidence estimation to ensure reliable decision-making. We achieve this by learning a confidence function based on Random Network Distillation. The confidence function measures the reliability of sampled decisions and contributes to quantitative recognition of reliable decisions. Additionally, we integrate the confidence function into task-specific sampling procedures to realize adaptive-horizon planning and value-embedded planning. Experiments show that the proposed ReDiffuser achieves state-of-the-art performance on standard offline RL datasets.
[ Hall C 4-9 ]

Abstract
Decision Transformer-based decision-making agents have shown the ability to generalize across multiple tasks. However, their performance relies on massive data and computation. We argue that this inefficiency stems from the forgetting phenomenon, in which a model memorizes its behaviors in parameters throughout training. As a result, training on a new task may deteriorate the model's performance on previous tasks. In contrast to LLMs' implicit memory mechanism, the human brain utilizes distributed memory storage, which helps manage and organize multiple skills efficiently, mitigating the forgetting phenomenon. Inspired by this, we propose a working memory module to store, blend, and retrieve information for different downstream tasks. Evaluation results show that the proposed method improves training efficiency and generalization in Atari games and Meta-World object manipulation tasks. Moreover, we demonstrate that memory fine-tuning further enhances the adaptability of the proposed architecture.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Decision Transformer (DT) is an innovative algorithm leveraging recent advances of the transformer architecture in reinforcement learning (RL). However, a notable limitation of DT is its reliance on recalling trajectories from datasets, losing the capability to seamlessly stitch sub-optimal trajectories together. In this work we introduce a general sequence modeling framework for studying sequential decision making through the lens of Hierarchical RL. At the time of making decisions, a high-level policy first proposes an ideal prompt for the current state, a low-level policy subsequently generates an action conditioned on the given prompt. We show DT emerges as a special case of this framework with certain choices of high-level and low-level policies, and discuss the potential failure of these choices. Inspired by these observations, we study how to jointly optimize the high-level and low-level policies to enable the stitching ability, which further leads to the development of new offline RL algorithms. Our empirical results clearly show that the proposed algorithms significantly surpass DT on several control and navigation benchmarks. We hope our contributions can inspire the integration of transformer architectures within the field of RL.
[ Hall C 4-9 ]

Abstract
Model-based offline reinforcement Learning (RL) is a promising approach that leverages existing data effectively in many real-world applications, especially those involving high-dimensional inputs like images and videos. To alleviate the distribution shift issue in offline RL, existing model-based methods heavily rely on the uncertainty of learned dynamics. However, the model uncertainty estimation becomes significantly biased when observations contain complex distractors with non-trivial dynamics. To address this challenge, we propose a new approach - Separated Model-based Offline Policy Optimization (SeMOPO) - decomposing latent states into endogenous and exogenous parts via conservative sampling and estimating model uncertainty on the endogenous states only. We provide a theoretical guarantee of model uncertainty and performance bound of SeMOPO. To assess the efficacy, we construct the Low-Quality Vision Deep Data-Driven Datasets for RL (LQV-D4RL), where the data are collected by non-expert policy and the observations include moving distractors. Experimental results show that our method substantially outperforms all baseline methods, and further analytical experiments validate the critical designs in our method. The project website is https://sites.google.com/view/semopo.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
The policies learned by humans in simple scenarios can be deployed in complex scenarios with the same task logic through limited feature alignment training, a process referred to as cognitive generalization or systematic generalization. Thus, a plausible conjecture is that unlocking cognitive generalization in DRL could enable effective generalization of policies from simple to complex scenarios through reward-agnostic fine-tuning. This would eliminate the need for designing reward functions in complex scenarios, thus reducing environment-building costs. In this paper, we propose a general framework to enhance the cognitive generalization ability of standard DRL methods. Our framework builds a cognitive latent space in a simple scenario, then segments the latent space to cluster samples with similar environmental influences into same subregion. During the fine-tuning in the complex scenario, the policy uses cognitive latent space to align the new sample with the same subregion sample collected from the simple scenario and approximates the rewards and Q values of the new samples for policy update. Based on this framework, we propose Granular Ball Reinforcement Leaning (GBRL), a practical algorithm via Variational Autoencoder (VAE) and Granular Ball Representation. GBRL achieves effective policy generalization on various difficult scenarios with the same task logic.
[ Hall C 4-9 ]

Abstract
A key aspect of intelligence is the ability to demonstrate a broad spectrum of behaviors for adapting to unexpected situations. Over the past decade, advancements in deep reinforcement learning have led to groundbreaking achievements to solve complex continuous control tasks. However, most approaches return only one solution specialized for a specific problem. We introduce Quality-Diversity Actor-Critic (QDAC), an off-policy actor-critic deep reinforcement learning algorithm that leverages a value function critic and a successor features critic to learn high-performing and diverse behaviors. In this framework, the actor optimizes an objective that seamlessly unifies both critics using constrained optimization to (1) maximize return, while (2) executing diverse skills. Compared with other Quality-Diversity methods, QDAC achieves significantly higher performance and more diverse behaviors on six challenging continuous control locomotion tasks. We also demonstrate that we can harness the learned skills to adapt better than other baselines to five perturbed environments. Finally, qualitative analyses showcase a range of remarkable behaviors: adaptive-intelligent-robotics.github.io/QDAC.
[ Hall C 4-9 ]
Abstract
The ability to efficiently explore high-dimensional state spaces is essential for the practical success of deep Reinforcement Learning (RL). This paper introduces a new exploration technique called Random Latent Exploration (RLE), that combines the strengths of exploration bonuses and randomized value functions (two popular approaches for effective exploration in deep RL). RLE leverages the idea of perturbing rewards by adding structured random rewards to the original task rewards in certain (random) states of the environment, to encourage the agent to explore the environment during training. RLE is straightforward to implement and performs well in practice. To demonstrate the practical effectiveness of RLE, we evaluate it on the challenging Atari and IsaacGym benchmarks and show that RLE exhibits higher overall scores across all the tasks than other approaches, including action-noise and randomized value function exploration.
[ Hall C 4-9 ]

Abstract
Coverage path planning (CPP) is the problem of finding a path that covers the entire free space of a confined area, with applications ranging from robotic lawn mowing to search-and-rescue. When the environment is unknown, the path needs to be planned online while mapping the environment, which cannot be addressed by offline planning methods that do not allow for a flexible path space. We investigate how suitable reinforcement learning is for this challenging problem, and analyze the involved components required to efficiently learn coverage paths, such as action space, input feature representation, neural network architecture, and reward function. We propose a computationally feasible egocentric map representation based on frontiers, and a novel reward term based on total variation to promote complete coverage. Through extensive experiments, we show that our approach surpasses the performance of both previous RL-based approaches and highly specialized methods across multiple CPP variations.
[ Hall C 4-9 ]

Abstract
Standard exploration methods typically rely on random coverage of the state space or coverage-promoting exploration bonuses. However, in partially observed settings, the biggest exploration challenge is often posed by the need to discover information-gathering strategies---e.g., an agent that has to navigate to a location in traffic might learn to first check traffic conditions and then choose a route. In this work, we design a POMDP agent that gathers information about the hidden state, using ideas from the meta-exploration literature. Our approach provides an exploration bonus that rewards the agent for gathering information about the state that is relevant for completing the task. While this requires the agent to know what this information is during training, it can obtained in several ways: in the most general case, off-policy algorithms can leverage knowledge about the entire trajectory to determine such information in hindsight, but the user can also provide prior knowledge (e.g., privileged information) to help inform the training process. Through experiments in several partially-observed environments, we find that our approach is competitive with prior methods when minimal exploration is needed, but substantially outperforms them when more complex strategies are required. Our algorithm also shows the ability to learn without any privileged …
[ Hall C 4-9 ]

Abstract
Exploration remains a critical issue in deep reinforcement learning for an agent to attain high returns in unknown environments. Although the prevailing exploration Random Network Distillation (RND) algorithm has been demonstrated to be effective in numerous environments, it often needs more discriminative power in bonus allocation. This paper highlights the ``bonus inconsistency'' issue within RND, pinpointing its primary limitation. To address this issue, we introduce the Distributional RND (DRND), a derivative of the RND. DRND enhances the exploration process by distilling a distribution of random networks and implicitly incorporating pseudo counts to improve the precision of bonus allocation. This refinement encourages agents to engage in more extensive exploration. Our method effectively mitigates the inconsistency issue without introducing significant computational overhead. Both theoretical analysis and experimental results demonstrate the superiority of our approach over the original RND algorithm. Our method excels in challenging online exploration scenarios and effectively serves as an anti-exploration mechanism in D4RL offline tasks. Our code is publicly available at https://github.com/yk7333/DRND.
[ Hall C 4-9 ]
Abstract
Combining Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) for policy search has been proven to improve RL performance. However, previous works largely overlook value-based RL in favor of merging EAs with policy-based RL. This paper introduces Value-Evolutionary-Based Reinforcement Learning (VEB-RL) that focuses on the integration of EAs with value-based RL. The framework maintains a population of value functions instead of policies and leverages negative Temporal Difference error as the fitness metric for evolution. The metric is more sample-efficient for population evaluation than cumulative rewards and is closely associated with the accuracy of the value function approximation. Additionally, VEB-RL enables elites of the population to interact with the environment to offer high-quality samples for RL optimization, whereas the RL value function participates in the population's evolution in each generation. Experiments on MinAtar and Atari demonstrate the superiority of VEB-RL in significantly improving DQN, Rainbow, and SPR. Our code is available on https://github.com/yeshenpy/VEB-RL.
[ Hall C 4-9 ]

Abstract
Imitation learning heavily relies on the quality of provided demonstrations. In scenarios where demonstrations are imperfect and rare, a prevalent approach for refining policies is through online fine-tuning with reinforcement learning, in which a Kullback–Leibler (KL) regularization is often employed to stabilize the learning process. However, our investigation reveals that on the one hand, imperfect demonstrations can bias the online learning process, the KL regularization will further constrain the improvement of online policy exploration. To address the above issues, we propose Iterative Regularized Policy Optimization (IRPO), a framework that involves iterative offline imitation learning and online reinforcement exploration. Specifically, the policy learned online is used to serve as the demonstrator for successive learning iterations, with a demonstration boosting to consistently enhance the quality of demonstrations. Experimental validations conducted across widely used benchmarks and a novel fixed-wing UAV control task consistently demonstrate the effectiveness of IRPO in improving both the demonstration quality and the policy performance. Our code is available at https://github.com/GongXudong/IRPO.
[ Hall C 4-9 ]

Abstract
Sample labeling is the most primary and fundamental step of semi-supervised learning. In literature, most existing methods randomly label samples with a given ratio, but achieve unpromising and unstable results due to the randomness, especially in multi-view settings. To address this issue, we propose a Dynamic Multi-view Labeling Strategy with Shared and Specific Information. To be brief, by building two classifiers with existing labels to utilize decoupled shared and specific information, we select the samples of low classification confidence and label them in high priorities. The newly generated labels are also integrated to update the classifiers adaptively. The two processes are executed alternatively until a satisfying classification performance. To validate the effectiveness of the proposed method, we conduct extensive experiments on popular benchmarks, achieving promising performance. The code is publicly available at https://github.com/wanxinhang/ICML2024decouplethen_classify.
[ Hall C 4-9 ]
Abstract
Both Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) have demonstrated powerful capabilities in policy search with different principles. A promising direction is to combine the respective strengths of both for efficient policy optimization. To this end, many works have proposed various mechanisms to integrate EAs and RL. However, it is still unclear which of these mechanisms are complementary and can be fully combined. In this paper, we revisit different mechanisms from five perspectives: 1) Interaction Mode, 2) Individual Architecture, 3) EAs and operators, 4) Impact of EA on RL, and 5) Fitness Surrogate and Usage. We evaluate the effectiveness of each mechanism and experimentally analyze the reasons for the more effective mechanisms. Using the most effective mechanisms, we develop EvoRainbow and EvoRainbow-Exp, which outperform strong baselines and provide state-of-the-art performance across various tasks with distinct characteristics. To promote community development, we release the code on https://github.com/yeshenpy/EvoRainbow.
[ Hall C 4-9 ]

Abstract
This paper addresses a policy optimization task with the conditional value-at-risk (CVaR) objective. We introduce the predictive CVaR policy gradient, a novel approach that seamlessly integrates risk-neutral policy gradient algorithms with minimal modifications. Our method incorporates a reweighting strategy in gradient calculation -- individual cost terms are reweighted in proportion to their predicted contribution to the objective. These weights can be easily estimated through a separate learning procedure. We provide theoretical and empirical analyses, demonstrating the validity and effectiveness of our proposed method.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Multi-agent reinforcement learning (MARL) remains difficult to scale to many agents. Recent MARL using Mean Field Control (MFC) provides a tractable and rigorous approach to otherwise difficult cooperative MARL. However, the strict MFC assumption of many independent, weakly-interacting agents is too inflexible in practice. We generalize MFC to instead simultaneously model many similar and few complex agents – as Major-Minor Mean Field Control (M3FC). Theoretically, we give approximation results for finite agent control, and verify the sufficiency of stationary policies for optimality together with a dynamic programming principle. Algorithmically, we propose Major-Minor Mean Field MARL (M3FMARL) for finite agent systems instead of the limiting system. The algorithm is shown to approximate the policy gradient of the underlying M3FC MDP. Finally, we demonstrate its capabilities experimentally in various scenarios. We observe a strong performance in comparison to state-of-the-art policy gradient MARL methods.
[ Hall C 4-9 ]

Abstract
Ad hoc teamwork poses a challenging problem, requiring the design of an agent to collaborate with teammates without prior coordination or joint training. Open ad hoc teamwork (OAHT) further complicates this challenge by considering environments with a changing number of teammates, referred to as open teams. One promising solution in practice to this problem is leveraging the generalizability of graph neural networks to handle an unrestricted number of agents with various agent-types, named graph-based policy learning (GPL). However, its joint Q-value representation over a coordination graph lacks convincing explanations. In this paper, we establish a new theory to understand the representation of the joint Q-value for OAHT and its learning paradigm, through the lens of cooperative game theory. Building on our theory, we propose a novel algorithm named CIAO, based on GPL's framework, with additional provable implementation tricks that can facilitate learning. The demos of experimental results are available on https://sites.google.com/view/ciao2024, and the code of experiments is published on https://github.com/hsvgbkhgbv/CIAO.
[ Hall C 4-9 ]

Abstract
The inverse reinforcement learning approach to imitation learning is a double-edged sword. On the one hand, it can enable learning from a smaller number of expert demonstrations with more robustness to error compounding than behavioral cloning approaches. On the other hand, it requires that the learner repeatedly solve a computationally expensive reinforcement learning (RL) problem. Often, much of this computation is wasted searching over policies very dissimilar to the expert's. In this work, we propose using hybrid RL -- training on a mixture of online and expert data -- to curtail unnecessary exploration. Intuitively, the expert data focuses the learner on good states during training, which reduces the amount of exploration required to compute a strong policy. Notably, such an approach doesn't need the ability to reset the learner to arbitrary states in the environment, a requirement of prior work in efficient inverse RL. More formally, we derive a reduction from inverse RL to expert-competitive RL (rather than globally optimal RL) that allows us to dramatically reduce interaction during the inner policy search loop while maintaining the benefits of the IRL approach. This allows us to derive both model-free and model-based hybrid inverse RL algorithms with strong policy performance guarantees. …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
We develop a novel probabilistic model for interpersonal coordination as a latent phenomenon explaining statistical temporal influence between multiple components in a system. For example, the state of one person can influence that of another at a later time, as indicated by their observed behaviors. We characterize coordination as the degree to which the distributions for such states at one time point are merged for the next salient time point. We evaluate our model in the context of three-person teams executing a virtual search and rescue (SAR) mission. We first use synthetic data to confirm that our technical definition of coordination is consistent with expectations and that we can recover generated coordination despite noise. We then show that captured coordination can be predictive of team performance on real data. Here we use speech vocalics and semantics to infer coordination for 36 teams carrying out two successive SAR missions. In two different datasets, we find that coordination is generally predictive of team score for the second mission, but not for the first, where teams are largely learning to play the game. In addition, we found that including a semantic modality improves prediction in some scenarios. This shows that our intuitive technical …
[ Hall C 4-9 ]

Abstract
As a well-known machine learning algorithm, sparse Bayesian learning (SBL) can find sparse representations in linearly probabilistic models by imposing a sparsity-promoting prior on model coefficients. However, classical SBL algorithms lack the essential theoretical guarantees of global convergence. To address this issue, we propose an iterative Min-Min optimization method to solve the marginal likelihood function (MLF) of SBL based on the concave-convex procedure. The method can optimize the hyperparameters related to both the prior and noise level analytically at each iteration by re-expressing MLF using auxiliary functions. Particularly, we demonstrate that the method globally converges to a local minimum or saddle point of MLF. With rigorous theoretical guarantees, the proposed novel SBL algorithm outperforms classical ones in finding sparse representations on simulation and real-world examples, ranging from sparse signal recovery to system identification and kernel regression.
[ Hall C 4-9 ]

Abstract
We derive a novel, provably robust, efficient, and closed-form Bayesian update rule for online filtering in state-space models in the presence of outliers and misspecified measurement models. Our method combines generalised Bayesian inference with filtering methods such as the extended and ensemble Kalman filter. We use the former to show robustness and the latter to ensure computational efficiency in the case of nonlinear models. Our method matches or outperforms other robust filtering methods (such as those based on variational Bayes) at a much lower computational cost. We show this empirically on a range of filtering problems with outlier measurements, such as object tracking, state estimation in high-dimensional chaotic systems, and online learning of neural networks.
[ Hall C 4-9 ]

Abstract
We study the certifiable robustness of ML classifiers on dirty datasets that could contain missing values. A test point is certifiably robust for an ML classifier if the classifier returns the same prediction for that test point, regardless of which cleaned version (among exponentially many) of the dirty dataset the classifier is trained on. In this paper, we show theoretically that for Naive Bayes Classifiers (NBC) over dirty datasets with missing values: (i) there exists an efficient polynomial time algorithm to decide whether multiple input test points are all certifiably robust over a dirty dataset; and (ii) the data poisoning attack, which aims to make all input test points certifiably non-robust by inserting missing cells to the clean dataset, is in polynomial time for single test points but NP-complete for multiple test points. Extensive experiments demonstrate that our algorithms are efficient and outperform existing baselines.
[ Hall C 4-9 ]
Abstract
This paper presents a comprehensive Bayesian framework for FANOVA models. We provide guidelines for tuning and practical implementation to improve scalability of learning and prediction. Our model is very flexible and can handle different levels of sparsity across and within decomposition orders, as well as among covariates. This flexibility enables the modeling of complex real-world data while enhancing interpretability. Additionally, it allows our model to unify diverse deterministic and Bayesian non-parametric approaches into a single equation, making comparisons and understanding easier. Notably, our model serves as the Bayesian counterpart of several deterministic methods allowing uncertainty quantification. This general framework unlocks potential for novel model developments that have been previously overlooked, such as the proposed Dirichlet mixing model that addresses limitations of existing models.
[ Hall C 4-9 ]

Abstract
The objective to be minimized in the variational quantum eigensolver (VQE) has a restricted form, which allows a specialized sequential minimal optimization (SMO) that requires only a few observations in each iteration. However, the SMO iteration is still costly due to the observation noise---one observation at a point typically requires averaging over hundreds to thousands of repeated quantum measurement shots for achieving a reasonable noise level. In this paper, we propose an adaptive cost control method, named subspace in confident region (SubsCoRe), for SMO. SubsCoRe uses the Gaussian process (GP) surrogate, and requires it to have low uncertainty over the subspace being updated, so that optimization in each iteration is performed with guaranteed accuracy. Adaptive cost control is performed by setting the required accuracy according to the progress of the optimization, and identifying the minimum number of measurement shots, as well as their distribution, satisfying the SubsCoRe requirement.
[ Hall C 4-9 ]
Abstract
We propose an approach to do learning in Gaussian factor graphs. We treat all relevant quantities (inputs, outputs, parameters, activations) as random variables in a graphical model, and view training and prediction as inference problems with different observed nodes. Our experiments show that these problems can be efficiently solved with belief propagation (BP), whose updates are inherently local, presenting exciting opportunities for distributed and asynchronous training. Our approach can be scaled to deep networks and provides a natural means to do continual learning: use the BP-estimated posterior of the current task as a prior for the next. On a video denoising task we demonstrate the benefit of learnable parameters over a classical factor graph approach and we show encouraging performance of deep factor graphs for continual image classification.
[ Hall C 4-9 ]
Abstract
Probabilistic Circuits (PCs) are a general framework for tractable deep generative models, which support exact and efficient probabilistic inference on their learned distributions. Recent modeling and training advancements have enabled their application to complex real-world tasks. However, the time and memory inefficiency of existing PC implementations hinders further scaling up. This paper proposes PyJuice, a general GPU implementation design for PCs that improves prior art in several regards. Specifically, PyJuice is 1-2 orders of magnitude faster than existing systems (including very recent ones) at training large-scale PCs. Moreover, PyJuice consumes 2-5x less GPU memory, which enables us to train larger models. At the core of our system is a compilation process that converts a PC into a compact representation amenable to efficient block-based parallelization, which significantly reduces IO and makes it possible to leverage Tensor Cores available in modern GPUs. Empirically, PyJuice can be used to improve state-of-the-art PCs trained on image (e.g., ImageNet32) and language (e.g., WikiText, CommonGen) datasets. We further establish a new set of baselines on natural image and language datasets by benchmarking existing PC structures but with much larger sizes and more training epochs, with the hope of incentivizing future research. Code is available at https://github.com/Tractables/pyjuice.
[ Hall C 4-9 ]

Abstract
Replica exchange stochastic gradient Langevin dynamics (reSGLD) is an effective sampler for non-convex learning in large-scale datasets. However, the simulation may encounter stagnation issues when the high-temperature chain delves too deeply into the distribution tails. To tackle this issue, we propose reflected reSGLD (r2SGLD): an algorithm tailored for constrained non-convex exploration by utilizing reflection steps within a bounded domain. Theoretically, we observe that reducing the diameter of the domain enhances mixing rates, exhibiting a quadratic behavior. Empirically, we test its performance through extensive experiments, including identifying dynamical systems with physical constraints, simulations of constrained multi-modal distributions, and image classification tasks. The theoretical and empirical findings highlight the crucial role of constrained exploration in improving the simulation efficiency.
[ Hall C 4-9 ]

Abstract
Distribution shifts pose significant challenges for model calibration and model selection tasks in the unsupervised domain adaptation problem---a scenario where the goal is to perform well in a distribution shifted domain without labels. In this work, we tackle difficulties coming from distribution shifts by developing a novel importance weighted group accuracy estimator. Specifically, we present a new perspective of addressing the model calibration and model selection tasks by estimating the group accuracy. Then, we formulate an optimization problem for finding an importance weight that leads to an accurate group accuracy estimation with theoretical analyses. Our extensive experiments show that our approach improves state-of-the-art performances by 22% in the model calibration task and 14% in the model selection task.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
We investigate the learning of implicit neural representation (INR) using an overparameterized multilayer perceptron (MLP) via a novel nonparametric teaching perspective. The latter offers an efficient example selection framework for teaching nonparametrically defined (viz. non-closed-form) target functions, such as image functions defined by 2D grids of pixels. To address the costly training of INRs, we propose a paradigm called Implicit Neural Teaching (INT) that treats INR learning as a nonparametric teaching problem, where the given signal being fitted serves as the target function. The teacher then selects signal fragments for iterative training of the MLP to achieve fast convergence. By establishing a connection between MLP evolution through parameter-based gradient descent and that of function evolution through functional gradient descent in nonparametric teaching, we show for the first time that teaching an overparameterized MLP is consistent with teaching a nonparametric learner. This new discovery readily permits a convenient drop-in of nonparametric teaching algorithms to broadly enhance INR training efficiency, demonstrating 30%+ training time savings across various input modalities.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
The effectiveness of neural processes (NPs) in modelling posterior prediction maps---the mapping from data to posterior predictive distributions---has significantly improved since their inception. This improvement can be attributed to two principal factors: (1) advancements in the architecture of permutation invariant set functions, which are intrinsic to all NPs; and (2) leveraging symmetries present in the true posterior predictive map, which are problem dependent. Transformers are a notable development in permutation invariant set functions, and their utility within NPs has been demonstrated through the family of models we refer to as TNPs. Despite significant interest in TNPs, little attention has been given to incorporating symmetries. Notably, the posterior prediction maps for data that are stationary---a common assumption in spatio-temporal modelling---exhibit translation equivariance. In this paper, we introduce of a new family of translation equivariant TNPs that incorporate translation equivariance. Through an extensive range of experiments on synthetic and real-world spatio-temporal data, we demonstrate the effectiveness of TE-TNPs relative to their non-translation-equivariant counterparts and other NP baselines.
[ Hall C 4-9 ]

Abstract
Calibration of probabilistic forecasts in the regression setting has been widely studied in the single dimensional case, where the output variables are assumed to be univariate. In many problem settings, however, the output variables are multi-dimensional, and in the presence of dependence across the output dimensions, measuring calibration and performing recalibration for each dimension separately can be both misleading and detrimental. In this work, we focus on representing predictive uncertainties via samples, and propose a recalibration method which accounts for the joint distribution across output dimensions to produce calibrated samples. Based on the concept of highest density regions (HDR), we define the notion of HDR calibration, and show that our recalibration method produces samples which are HDR calibrated. We demonstrate the performance of our method and the quality of the recalibrated samples on a suite of benchmark datasets in multi-dimensional regression, a real-world dataset in modeling plasma dynamics during nuclear fusion reactions, and on a decision-making application in forecasting demand.
[ Hall C 4-9 ]

Abstract
Variational logistic regression is a popular method for approximate Bayesian inference seeing wide-spread use in many areas of machine learning including: Bayesian optimization, reinforcement learning and multi-instance learning to name a few. However, due to the intractability of the Evidence Lower Bound, authors have turned to the use of Monte Carlo, quadrature or bounds to perform inference, methods which are costly or give poor approximations to the true posterior. In this paper we introduce a new bound for the expectation of softplus function and subsequently show how this can be applied to variational logistic regression and Gaussian process classification. Unlike other bounds, our proposal does not rely on extending the variational family, or introducing additional parameters to ensure the bound is tight. In fact, we show that this bound is tighter than the state-of-the-art, and that the resulting variational posterior achieves state-of-the-art performance, whilst being significantly faster to compute than Monte-Carlo methods.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
This paper proposes a novel online evaluation protocol for Test Time Adaptation (TTA) methods, which penalizes slower methods by providing them with fewer samples for adaptation. TTA methods leverage unlabeled data at test time to adapt to distribution shifts. Though many effective methods have been proposed, their impressive performance usually comes at the cost of significantly increased computation budgets. Current evaluation protocols overlook the effect of this extra computation cost, affecting their real-world applicability. To address this issue, we propose a more realistic evaluation protocol for TTA methods, where data is received in an online fashion from a constant-speed data stream, thereby accounting for the method's adaptation speed. We apply our proposed protocol to benchmark several TTA methods on multiple datasets and scenarios. Extensive experiments shows that, when accounting for inference speed, simple and fast approaches can outperform more sophisticated but slower methods. For example, SHOT from 2020, outperforms the state-of-the-art method SAR from 2023 under our online setting. Our results reveal the importance of developing practical TTA methods that are both accurate and efficient.
[ Hall C 4-9 ]

Abstract
Transfer learning is a critical part of real-world machine learning deployments and has been extensively studied in experimental works with overparameterized neural networks. However, even in the simplest setting of linear regression a notable gap still exists in the theoretical understanding of transfer learning. In-distribution research on high-dimensional linear regression has led to the identification of a phenomenon known as benign overfitting, in which linear interpolators overfit to noisy training labels and yet still generalize well. This behavior occurs under specific conditions on the source covariance matrix and input data dimension. Therefore, it is natural to wonder how such high-dimensional linear models behave under transfer learning. We prove the first non-asymptotic excess risk bounds for benignly-overfit linear interpolators in the transfer learning setting. From our analysis, we propose a taxonomy of beneficial and malignant covariate shifts based on the degree of overparameterization. We follow our analysis with empirical studies that show these beneficial and malignant covariate shifts for linear interpolators on real image data, and for fully-connected neural networks in settings where the input data dimension is larger than the training sample size.
[ Hall C 4-9 ]
Abstract
Graph-based methods, pivotal for label inference over interconnected objects in many real-world applications, often encounter generalization challenges, if the graph used for model training differs significantly from the graph used for testing. This work delves into Graph Domain Adaptation (GDA) to address the unique complexities of distribution shifts over graph data, where interconnected data points experience shifts in features, labels, and in particular, connecting patterns. We propose a novel, theoretically principled method, Pairwise Alignment (Pair-Align) to counter graph structure shift by mitigating conditional structure shift (CSS) and label shift (LS). Pair-Align uses edge weights to recalibrate the influence among neighboring nodes to handle CSS and adjusts the classification loss with label weights to handle LS. Our method demonstrates superior performance in real-world applications, including node classification with region shift in social networks, and the pileup mitigation task in particle colliding experiments. For the first application, we also curate the largest dataset by far for GDA studies. Our method shows strong performance in synthetic and other existing benchmark datasets.
[ Hall C 4-9 ]
Abstract
Recent works have studied the design of algorithms for selecting representative sortition panels. However, the most central question remains unaddressed: Do these panels reflect the entire population's opinion? We present a positive answer by adopting the concept of metric distortion from computational social choice, which aims to quantify how much a panel's decision aligns with the ideal decision of the population when preferences and agents lie on a metric space. We show that uniform selection needs only logarithmically many agents in terms of the number of alternatives to achieve almost optimal distortion. We also show that Fair Greedy Capture, a selection algorithm introduced recently by Ebadian and Micha (2024), matches uniform selection's guarantees of almost optimal distortion and also achieves constant ex-post distortion, ensuring a ``best of both worlds'' performance.
[ Hall C 4-9 ]

Abstract
Autoencoders are a prominent model in many empirical branches of machine learning and lossy data compression. However, basic theoretical questions remain unanswered even in a shallow two-layer setting. In particular, to what degree does a shallow autoencoder capture the structure of the underlying data distribution? For the prototypical case of the 1-bit compression of sparse Gaussian data, we prove that gradient descent converges to a solution that completely disregards the sparse structure of the input. Namely, the performance of the algorithm is the same as if it was compressing a Gaussian source -- with no sparsity. For general data distributions, we give evidence of a phase transition phenomenon in the shape of the gradient descent minimizer, as a function of the data sparsity: below the critical sparsity level, the minimizer is a rotation taken uniformly at random (just like in the compression of non-sparse data); above the critical sparsity, the minimizer is the identity (up to a permutation). Finally, by exploiting a connection with approximate message passing algorithms, we show how to improve upon Gaussian performance for the compression of sparse data: adding a denoising function to a shallow architecture already reduces the loss provably, and a suitable multi-layer decoder …
[ Hall C 4-9 ]
Abstract
Transformers have recently revolutionized many domains in modern machine learning and one salient discovery is their remarkable in-context learning capability, where models can solve an unseen task by utilizing task-specific prompts without further parameters fine-tuning. This also inspired recent theoretical studies aiming to understand the in-context learning mechanism of transformers, which however focused only on linear transformers. In this work, we take the first step toward studying the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent in order to in-context learn linear function classes. We consider a structured data model, where each token is randomly sampled from a set of feature vectors in either balanced or imbalanced fashion. For data with balanced features, we establish the finite-time convergence guarantee with near-zero prediction error by navigating our analysis over two phases of the training dynamics of the attention map. More notably, for data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process, where the transformer first converges to a near-zero prediction error for the query tokens of dominant features, and then converges later to a near-zero error for query tokens of under-represented features, via one and four training phases. Our proof …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
We refine and generalize what is known about coresets for classification problems via the sensitivity sampling framework. Such coresets seek the smallest possible subsets of input data, so one can optimize a loss function on the coreset and ensure approximation guarantees with respect to the original data. Our analysis provides the first no dimensional coresets, so the size does not depend on the dimension. Moreover, our results are general, apply for distributional input and can use iid samples, so provide sample complexity bounds, and work for a variety of loss functions. A key tool we develop is a Radamacher complexity version of the main sensitivity sampling approach, which can be of independent interest.
[ Hall C 4-9 ]

Abstract
We investigate the test risk of a continuous time stochastic gradient flow dynamics in learning theory. Using a path integral formulation we provide, in the regime of small learning rate, a general formula for computing the difference between test risk curves of pure gradient and stochastic gradient flows. We apply the general theory to a simple model of weak features, which displays the double descent phenomenon, and explicitly compute the corrections brought about by the added stochastic term in the dynamics, as a function of time and model parameters. The analytical results are compared to simulations of discrete time stochastic gradient descent and show good agreement.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Understanding the generalization properties of heavy-tailed stochastic optimization algorithms has attracted increasing attention over the past years. While illuminating interesting aspects of stochastic optimizers by using heavy-tailed stochastic differential equations as proxies, prior works either provided expected generalization bounds, or introduced non-computable information theoretic terms. Addressing these drawbacks, in this work, we prove high-probability generalization bounds for heavy-tailed SDEs which do not contain any nontrivial information theoretic terms. To achieve this goal, we develop new proof techniques based on estimating the entropy flows associated with the so-called fractional Fokker-Planck equation (a partial differential equation that governs the evolution of the distribution of the corresponding heavy-tailed SDE). In addition to obtaining high-probability bounds, we show that our bounds have a better dependence on the dimension of parameters as compared to prior art. Our results further identify a phase transition phenomenon, which suggests that heavy tails can be either beneficial or harmful depending on the problem structure. We support our theory with experiments conducted in a variety of settings.
[ Hall C 4-9 ]

Abstract
We investigate the out-of-domain generalization of random feature (RF) models and Transformers. We first prove that in the `generalization on the unseen (GOTU)' setting, where training data is fully seen in some part of the domain but testing is made on another part, and for RF models in the small feature regime, the convergence takes place to interpolators of minimal degree as in the Boolean case (Abbe et al., 2023). We then consider the sparse target regime and explain how this regime relates to the small feature regime, but with a different regularization term that can alter the picture in the non-Boolean case. We show two different outcomes for the sparse regime with q-ary data tokens: (1) if the data is embedded with roots of unities, then a min-degree interpolator is learned like in the Boolean case for RF models, (2) if the data is not embedded as such, e.g., simply as integers, then RF models and Transformers may not learn minimal degree interpolators. This shows that the Boolean setting and its roots of unities generalization are special cases where the minimal degree interpolator offers a rare characterization of how learning takes place. For more general integer and real-valued settings, …
[ Hall C 4-9 ]

Abstract
Continual learning requires learning incremental tasks with dynamic data distributions. So far, it has been observed that employing a combination of contrastive loss and distillation loss for training in continual learning yields strong performance. To the best of our knowledge, however, this contrastive continual learning framework lacks convincing theoretical explanations. In this work, we fill this gap by establishing theoretical performance guarantees, which reveal how the performance of the model is bounded by training losses of previous tasks in the contrastive continual learning framework. Our theoretical explanations further support the idea that pre-training can benefit continual learning. Inspired by our theoretical analysis of these guarantees, we propose a novel contrastive continual learning algorithm called CILA, which uses adaptive distillation coefficients for different tasks. These distillation coefficients are easily computed by the ratio between average distillation losses and average contrastive losses from previous tasks. Our method shows great improvement on standard benchmarks and achieves new state-of-the-art performance.
[ Hall C 4-9 ]
Abstract
This paper considers the parameter learning and data clustering problem for MLR with multiple sub-models and arbitrary mixing weights. To deal with the data streaming case, we propose an online learning algorithm to estimate the unknown parameters. By utilizing Ljung's ODE method, we establish the almost sure convergence results of this MLR problem without the traditional i.i.d. assumption on the input data for the first time. Based on the convergence property and using the classical stochastic Lyapunov function method, we also obtain the convergence rate analysis of the proposed algorithm for the first time. In addition, the data clustering can asymptotically achieve the same performance as the case with known parameters. Future work will consider how to relax the asymptotically stationary and ergodic assumption on the input data, and how to design algorithms with global convergence performance for the MLR problem.
[ Hall C 4-9 ]

Abstract
Feature learning is thought to be one of the fundamental reasons for the success of deep neural networks. It is rigorously known that in two-layer fully-connected neural networks under certain conditions, one step of gradient descent on the first layer can lead to feature learning; characterized by the appearance of a separated rank-one component---spike---in the spectrum of the feature matrix. However, with a constant gradient descent step size, this spike only carries information from the linear component of the target function and therefore learning non-linear components is impossible. We show that with a learning rate that grows with the sample size, such training in fact introduces multiple rank-one components, each corresponding to a specific polynomial feature. We further prove that the limiting large-dimensional and large sample training and test errors of the updated neural networks are fully characterized by these spikes. By precisely analyzing the improvement in the training and test errors, we demonstrate that these non-linear features can enhance learning.
[ Hall C 4-9 ]
Abstract
This paper presents a new generalization error analysis for Decentralized Stochastic Gradient Descent (D-SGD) based on algorithmic stability. The obtained results overhaul a series of recent works that suggested an increased instability due to decentralization and a detrimental impact of poorly-connected communication graphs on generalization. On the contrary, we show, for convex, strongly convex and non-convex functions, that D-SGD can always recover generalization bounds analogous to those of classical SGD, suggesting that the choice of graph does not matter. We then argue that this result is coming from a worst-case analysis, and we provide a refined optimization-dependent generalization bound for general convex functions. This new bound reveals that the choice of graph can in fact improve the worst-case bound in certain regimes, and that surprisingly, a poorly-connected graph can even be beneficial for generalization.
[ Hall C 4-9 ]

Abstract
Generation of plausible but incorrect factual information, often termed hallucination, has attracted significant research interest. Retrieval-augmented language model (RALM)---which enhances models with up-to-date knowledge---emerges as a promising method to reduce hallucination. However, existing RALMs may instead exacerbate hallucination when retrieving lengthy contexts. To address this challenge, we propose COFT, a novel COarse-to-Fine highlighTing method to focus on different granularity-level key texts, thereby avoiding getting lost in lengthy contexts. Specifically, COFT consists of three components: recaller, scorer, and selector. First, recaller applies a knowledge graph to extract potential key entities in a given context. Second, scorer measures the importance of each entity by calculating its contextual weight. Finally, selector selects high contextual weight entities with a dynamic threshold algorithm and highlights the corresponding paragraphs, sentences, or words in a coarse-to-fine manner. Extensive experiments on knowledge hallucination benchmark demonstrate the effectiveness of COFT, leading to a superior performance over 30% in F1 score metric. Moreover, COFT also exhibits remarkable versatility across various long-form tasks, such as reading comprehension and question answering.
[ Hall C 4-9 ]

Abstract
Known learning rules tend to fall near one of two extremes: single-pass associative learning with low complexity and capacity, and multi-pass iterative learning with high complexity and capacity. In this work we investigate the mathematical feasibility of learning rules that are both single-pass and achieve the theoretical upper bound on capacity. We consider a fairly broad family of learning rules we call ``span rules,'' which include known rules such as Hebbian learning, perceptron learning, and backpropagation as special cases. To our knowledge, previous work has not determined whether single-pass, full-capacity span rules exist, even in the most fundamental case of a linear threshold neuron with binary input vectors, which is the focus of this study. We derive a necessary condition for the existence of such learning rules, which takes the form of a linear program, and show that the linear program is infeasible. This establishes an impossibility result that span rules can not be both single-pass and full-capacity.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Bandits with feedback graphs are powerful online learning models that interpolate between the full information and classic bandit problems, capturing many real-life applications. A recent work by [Zhang et al., 2023] studies the contextual version of this problem and proposes an efficient and optimal algorithm via a reduction to online regression. However, their algorithm crucially relies on seeing the feedback graph before making each decision, while in many applications, the feedback graph is uninformed, meaning that it is either only revealed after the learner makes her decision or even never fully revealed at all. This work develops the first contextual algorithms for such uninformed settings, via an efficient reduction to online regression over both the losses and the graphs. Importantly, we show that it is critical to learn the graphs using log loss instead of squared loss to obtain favorable regret guarantees. We also demonstrate the empirical effectiveness of our algorithm on a bidding application using both synthetic and real-world data.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
In this work, we present an arbitrary-scale super-resolution (SR) method to enhance the resolution of scientific data, which often involves complex challenges such as continuity, multi-scale physics, and the intricacies of high-frequency signals. Grounded in operator learning, the proposed method is resolution-invariant. The core of our model is a hierarchical neural operator that leverages a Galerkin-type self-attention mechanism, enabling efficient learning of mappings between function spaces. Sinc filters are used to facilitate the information transfer across different levels in the hierarchy, thereby ensuring representation equivalence in the proposed neural operator. Additionally, we introduce a learnable prior structure that is derived from the spectral resizing of the input data. This loss prior is model-agnostic and is designed to dynamically adjust the weighting of pixel contributions, thereby balancing gradients effectively across the model. We conduct extensive experiments on diverse datasets from different domains and demonstrate consistent improvements compared to strong baselines, which consist of various state-of-the-art SR methods.
[ Hall C 4-9 ]

Abstract
Scribble-supervised semantic segmentation presents a cost-effective training method that utilizes annotations generated through scribbling. It is valued in attaining high performance while minimizing annotation costs, which has made it highly regarded among researchers. Scribble supervision propagates information from labeled pixels to the surrounding unlabeled pixels, enabling semantic segmentation for the entire image. However, existing methods often ignore the features of classified pixels during feature propagation. To address these limitations, this paper proposes a prototype-based feature augmentation method that leverages feature prototypes to augment scribble supervision. Experimental results demonstrate that our approach achieves state-of-the-art performance on the PASCAL VOC 2012 dataset in scribble-supervised semantic segmentation tasks. The code is available at https://github.com/TranquilChan/PFA.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Effectively extracting motions from video is a critical and long-standing problem for action recognition. This problem is very challenging because motions (i) do not have an explicit form, (ii) have various concepts such as displacement, velocity, and acceleration, and (iii) often contain noise caused by unstable pixels. Addressing these challenges, we propose the Taylor video, a new video format that highlights the dominate motions (e.g., a waving hand) in each of its frames named the Taylor frame. Taylor video is named after Taylor series, which approximates a function at a given point using important terms. In the scenario of videos, we define an implicit motion-extraction function which aims to extract motions from video temporal block. In this block, using the frames, the difference frames, and higher-order difference frames, we perform Taylor expansion to approximate this function at the starting frame. We show the summation of the higher-order terms in the Taylor series gives us dominant motion patterns, where static objects, small and unstable motions are removed. Experimentally we show that Taylor videos are effective inputs to popular architectures including 2D CNNs, 3D CNNs, and transformers. When used individually, Taylor videos yield competitive action recognition accuracy compared to RGB videos and …
[ Hall C 4-9 ]
Abstract
To overcome the sim-to-real gap in reinforcement learning (RL), learned policies must maintain robustness against environmental uncertainties. While robust RL has been widely studied in single-agent regimes, in multi-agent environments, the problem remains understudied---despite the fact that the problems posed by environmental uncertainties are often exacerbated by strategic interactions. This work focuses on learning in distributionally robust Markov games (RMGs), a robust variant of standard Markov games, wherein each agent aims to learn a policy that maximizes its own worst-case performance when the deployed environment deviates within its own prescribed uncertainty set. This results in a set of robust equilibrium strategies for all agents that align with classic notions of game-theoretic equilibria. Assuming a non-adaptive sampling mechanism from a generative model, we propose a sample-efficient model-based algorithm (DRNVI) with finite-sample complexity guarantees for learning robust variants of various notions of game-theoretic equilibria. We also establish an information-theoretic lower bound for solving RMGs, which confirms the near-optimal sample complexity of DRNVI with respect to problem-dependent factors such as the size of the state space, the target accuracy, and the horizon length.
[ Hall C 4-9 ]

Abstract
Deep learning-based image restoration methods generally struggle with faithfully preserving the structures of the original image. In this work, we propose a novel Residual-Conditioned Optimal Transport (RCOT) approach, which models image restoration as an optimal transport (OT) problem for both unpaired and paired settings, introducing the transport residual as a unique degradation-specific cue for both the transport cost and the transport map. Specifically, we first formalize a Fourier residual-guided OT objective by incorporating the degradation-specific information of the residual into the transport cost. We further design the transport map as a two-pass RCOT map that comprises a base model and a refinement process, in which the transport residual is computed by the base model in the first pass and then encoded as a degradation-specific embedding to condition the second-pass restoration. By duality, the RCOT problem is transformed into a minimax optimization problem, which can be solved by adversarially training neural networks. Extensive experiments on multiple restoration tasks show that RCOT achieves competitive performance in terms of both distortion measures and perceptual quality, restoring images with more faithful structures as compared with state-of-the-art methods.
[ Hall C 4-9 ]
Abstract
Event cameras offer promising advantages such as high dynamic range and low latency, making them well-suited for challenging lighting conditions and fast-moving scenarios. However, reconstructing 3D scenes from raw event streams is difficult because event data is sparse and does not carry absolute color information. To release its potential in 3D reconstruction, we propose the first event-based generalizable 3D reconstruction framework, which reconstructs scenes as 3D Gaussians from only event input in a feedforward manner and can generalize to unseen cases without any retraining. This framework includes a depth estimation module, an intensity reconstruction module, and a Gaussian regression module. These submodules connect in a cascading manner, and we collaboratively train them with a designed joint loss to make them mutually promote. To facilitate related studies, we build a novel event-based 3D dataset with various material objects and calibrated labels of greyscale images, depth maps, camera poses, and silhouettes. Experiments show models that have jointly trained significantly outperform those trained individually. Our approach performs better than all baselines in reconstruction quality, and depth/intensity predictions with satisfactory rendering speed.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Tabular biomedical data poses challenges in machine learning because it is often high-dimensional and typically low-sample-size (HDLSS). Previous research has attempted to address these challenges via local feature selection, but existing approaches often fail to achieve optimal performance due to their limitation in identifying globally important features and their susceptibility to the co-adaptation problem. In this paper, we propose ProtoGate, a prototype-based neural model for feature selection on HDLSS data. ProtoGate first selects instance-wise features via adaptively balancing global and local feature selection. Furthermore, ProtoGate employs a non-parametric prototype-based prediction mechanism to tackle the co-adaptation problem, ensuring the feature selection results and predictions are consistent with underlying data clusters. We conduct comprehensive experiments to evaluate the performance and interpretability of ProtoGate on synthetic and real-world datasets. The results show that ProtoGate generally outperforms state-of-the-art methods in prediction accuracy by a clear margin while providing high-fidelity feature selection and explainable predictions. Code is available at https://github.com/SilenceX12138/ProtoGate.
[ Hall C 4-9 ]

Abstract
In healthcare analytics, addressing binary diagnosis or prognosis tasks presents unique challenges due to the inherent asymmetry between positive and negative samples. While positive samples, indicating patients with a disease, are defined based on stringent medical criteria, negative samples are defined in an open-ended manner and remain underexplored in prior research. To bridge this gap, we propose an innovative approach to facilitate cohort discovery within negative samples, leveraging a Shapley-based exploration of interrelationships between these samples, which holds promise for uncovering valuable insights concerning the studied disease, and related comorbidity and complications. We quantify each sample’s contribution using data Shapley values, subsequently constructing the Negative Sample Shapley Field to model the distribution of all negative samples. Next, we transform this field through manifold learning, preserving the essential data structure information while imposing an isotropy constraint in data Shapley values. Within this transformed space, we pinpoint cohorts of medical interest via density-based clustering. We empirically evaluate the effectiveness of our approach on the real-world electronic medical records from National University Hospital in Singapore, yielding clinically valuable insights aligned with existing knowledge, and benefiting medical research and clinical decision-making.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Reinforcement Learning from Human Feedback (RLHF) has achieved impressive empirical successes while relying on a small amount of human feedback. However, there is limited theoretical justification for this phenomenon. Additionally, most recent studies focus on value-based algorithms despite the recent empirical successes of policy-based algorithms. In this work, we consider an RLHF algorithm based on policy optimization (PO-RLHF). The algorithm is based on the popular Policy Cover-Policy Gradient (PC-PG) algorithm, which assumes knowledge of the reward function. In PO-RLHF, knowledge of the reward function is not assumed and the algorithm relies on trajectory-based comparison feedback to infer the reward function. We provide performance bounds for PO-RLHF with low query complexity, which provides insight into why a small amount of human feedback may be sufficient to get good performance with RLHF. A key novelty is our trajectory-level elliptical potential analysis technique used to infer reward function parameters when comparison queries rather than reward observations are used. We provide and analyze algorithms in two settings: linear and neural function approximation, PG-RLHF and NN-PG-RLHF, respectively.
[ Hall C 4-9 ]

Abstract
In this paper, we take a step towards a deeper understanding of learning from human preferences by systematically comparing the paradigm of reinforcement learning from human feedback (RLHF) with the recently proposed paradigm of direct preference optimization (DPO). We focus our attention on the class of loglinear policy parametrization and linear reward functions. In order to compare the two paradigms, we first derive minimax statistical bounds on the suboptimality gap induced by both RLHF and DPO, assuming access to an oracle that exactly solves the optimization problems. We provide a detailed discussion on the relative comparison between the two paradigms, simultaneously taking into account the sample size, policy and reward class dimensions, and the regularization temperature. Moreover, we extend our analysis to the approximate optimization setting and derive exponentially decaying convergence rates for both RLHF and DPO. Next, we analyze the setting where the ground-truth reward is not realizable and find that, while RLHF incurs a constant additional error, DPO retains its asymptotically decaying gap by just tuning the temperature accordingly. Finally, we extend our comparison to the Markov decision process setting, where we generalize our results with exact optimization. To the best of our knowledge, we are the first …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Skills are temporal abstractions that are intended to improve reinforcement learning (RL) performance through hierarchical RL. Despite our intuition about the properties of an environment that make skills useful, a precise characterization has been absent. We provide the first such characterization, focusing on the utility of deterministic skills in deterministic sparse-reward environments with finite action spaces. We show theoretically and empirically that RL performance gain from skills is worse in environments where solutions to states are less compressible. Additional theoretical results suggest that skills benefit exploration more than they benefit learning from existing experience, and that using unexpressive skills such as macroactions may worsen RL performance. We hope our findings can guide research on automatic skill discovery and help RL practitioners better decide when and how to use skills.
[ Hall C 4-9 ]

Abstract
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties. Such information is coined as guidance. For example, in text-to-image synthesis, text input is encoded as guidance to generate semantically aligned images. Proper guidance inputs are closely tied with the performance of diffusion models. A common observation is that strong guidance promotes a tight alignment to the task-specific information, while reduces the diversity of the generated samples. In this paper, we provide the first theoretical study towards the influence of guidance on diffusion models in the context of Gaussian mixture models. Under mild conditions, we prove that incorporating diffusion guidance not only boosts prediction confidence but also diminishes distribution diversity, leading to a reduction in the differential entropy of the output distribution. Our analysis covers the widely used DDPM and DDIM sampling schemes, and leverages comparison inequalities in differential equations as well as the Fokker-Planck equation that characterizes the evolution of probability density function, which may be of independent theoretical interest.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
The Gradient Descent-Ascent (GDA) algorithm, designed to solve minimax optimization problems, takes the descent and ascent steps either simultaneously (Sim-GDA) or alternately (Alt-GDA). While Alt-GDA is commonly observed to converge faster, the performance gap between the two is not yet well understood theoretically, especially in terms of global convergence rates. To address this theory-practice gap, we present fine-grained convergence analyses of both algorithms for strongly-convex-strongly-concave and Lipschitz-gradient objectives. Our new iteration complexity upper bound of Alt-GDA is strictly smaller than the lower bound of Sim-GDA; i.e., Alt-GDA is provably faster. Moreover, we propose Alternating-Extrapolation GDA (Alex-GDA), a general algorithmic framework that subsumes Sim-GDA and Alt-GDA, for which the main idea is to alternately take gradients from extrapolations of the iterates. We show that Alex-GDA satisfies a smaller iteration complexity bound, identical to that of the Extra-gradient method, while requiring less gradient computations. We also prove that Alex-GDA enjoys linear convergence for bilinear problems, for which both Sim-GDA and Alt-GDA fail to converge at all.
[ Hall C 4-9 ]

Abstract
The accurate classification of quantum states is crucial for advancing quantum computing, as it allows for the effective analysis and correct functioning of quantum devices by analyzing the statistics of the data from quantum measurements. Traditional supervised methods, which rely on extensive labeled measurement outcomes, are used to categorize unknown quantum states with different properties. However, the labeling process demands computational and memory resources that increase exponentially with the number of qubits. We propose SSL4Q, manage to achieve (for the first time) semi-supervised learning specifically designed for quantum state classification. SSL4Q's architecture is tailored to ensure permutation invariance for unordered quantum measurements and maintain robustness in the face of measurement uncertainties. Our empirical studies encompass simulations on two types of quantum systems: the Heisenberg Model and the Variational Quantum Circuit (VQC) Model, with system size reaching up to 50 qubits. The numerical results demonstrate SSL4Q's superiority over traditional supervised models in scenarios with limited labels, highlighting its potential in efficiently classifying quantum states with reduced computational and resource overhead.
[ Hall C 4-9 ]

Abstract
During the last few years, the field of dynamical systems has been developing innovative tools to study the asymptotic behavior of different optimizers in the context of neural networks. In this work, we redefine an extensively studied optimizer, employing classical techniques from hyperbolic geometry. This new definition is linked to a non-linear differential equation as a continuous limit. Additionally, by utilizing Lyapunov stability concepts, we analyze the asymptotic behavior of its critical points.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
To deal with changing environments, adaptive regret has been proposed to minimize the regret over every interval. Previous studies have established a small-loss adaptive regret bound for general convex functions under the smoothness condition, offering the advantage of being much tighter than minimax rates for benign problems. However, it remains unclear whether similar bounds are attainable for other types of convex functions, such as exp-concave and strongly convex functions. In this paper, we first propose a novel algorithm that achieves a small-loss adaptive regret bound for exp-concave and smooth function. Subsequently, to address the limitation that existing algorithms can only handle one type of convex functions, we further design a universal algorithm capable of delivering small-loss adaptive regret bounds for general convex, exp-concave, and strongly convex functions simultaneously. That is challenging because the universal algorithm follows the meta-expert framework, and we need to ensure that upper bounds for both meta-regret and expert-regret are of small-loss types. Moreover, we provide a novel analysis demonstrating that our algorithms are also equipped with minimax adaptive regret bounds when functions are non-smooth.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
This paper introduces a novel deep-learning-based approach for numerical simulation of a time-evolving Schrödinger equation inspired by stochastic mechanics and generative diffusion models. Unlike existing approaches, which exhibit computational complexity that scales exponentially in the problem dimension, our method allows us to adapt to the latent low-dimensional structure of the wave function by sampling from the Markovian diffusion. Depending on the latent dimension, our method may have far lower computational complexity in higher dimensions. Moreover, we propose novel equations for stochastic quantum mechanics, resulting in quadratic computational complexity with respect to the number of dimensions. Numerical simulations verify our theoretical findings and show a significant advantage of our method compared to other deep-learning-based approaches used for quantum mechanics.
[ Hall C 4-9 ]

Abstract
Modeling unsteady, fast transient, and advection-dominated physics problems is a pressing challenge for physics-aware deep learning (PADL). The physics of complex systems is governed by large systems of partial differential equations (PDEs) and ancillary constitutive models with nonlinear structures, as well as evolving state fields exhibiting sharp gradients and rapidly deforming material interfaces. Here, we investigate an inductive bias approach that is versatile and generalizable to model generic nonlinear field evolution problems. Our study focuses on the recent physics-aware recurrent convolutions (PARC), which incorporates a differentiator-integrator architecture that inductively models the spatiotemporal dynamics of generic physical systems. We extend the capabilities of PARC to simulate unsteady, transient, and advection-dominant systems. The extended model, referred to as PARCv2, is equipped with differential operators to model advection-reaction-diffusion equations, as well as a hybrid integral solver for stable, long-time predictions. PARCv2 is tested on both standard benchmark problems in fluid dynamics, namely Burgers and Navier-Stokes equations, and then applied to more complex shock-induced reaction problems in energetic materials. We evaluate the behavior of PARCv2 in comparison to other physics-informed and learning bias models and demonstrate its potential to model unsteady and advection-dominant dynamics regimes.
[ Hall C 4-9 ]

Abstract
Operator learning for Partial Differential Equations (PDEs) is rapidly emerging as a promising approach for surrogate modeling of intricate systems. Transformers with the self-attention mechanism---a powerful tool originally designed for natural language processing---have recently been adapted for operator learning. However, they confront challenges, including high computational demands and limited interpretability. This raises a critical question: Is there a more efficient attention mechanism for Transformer-based operator learning? This paper proposes the Position-induced Transformer (PiT), built on an innovative position-attention mechanism, which demonstrates significant advantages over the classical self-attention in operator learning. Position-attention draws inspiration from numerical methods for PDEs. Different from self-attention, position-attention is induced by only the spatial interrelations of sampling positions for input functions of the operators, and does not rely on the input function values themselves, thereby greatly boosting efficiency. PiT exhibits superior performance over current state-of-the-art neural operators in a variety of complex operator learning tasks across diverse PDE benchmarks. Additionally, PiT possesses an enhanced discretization convergence feature, compared to the widely-used Fourier neural operator.
[ Hall C 4-9 ]
Abstract
This work introduces reduced models based on Continuous Low Rank Adaptation (CoLoRA) that pre-train neural networks for a given partial differential equation and then continuously adapt low-rank weights in time to rapidly predict the evolution of solution fields at new physics parameters and new initial conditions. The adaptation can be either purely data-driven or via an equation-driven variational approach that provides Galerkin-optimal approximations. Because CoLoRA approximates solution fields locally in time, the rank of the weights can be kept small, which means that only few training trajectories are required offline so that CoLoRA is well suited for data-scarce regimes. Predictions with CoLoRA are orders of magnitude faster than with classical methods and their accuracy and parameter efficiency is higher compared to other neural network approaches.
[ Hall C 4-9 ]
Abstract
Analog electrical networks have long been investigated as energy-efficient computing platforms for machine learning, leveraging analog physics during inference. More recently, resistor networks have sparked particular interest due to their ability to learn using local rules (such as equilibrium propagation), enabling potentially important energy efficiency gains for training as well. Despite their potential advantage, the simulations of these resistor networks has been a significant bottleneck to assess their scalability, with current methods either being limited to linear networks or relying on realistic, yet slow circuit simulators like SPICE. Assuming ideal circuit elements, we introduce a novel approach for the simulation of nonlinear resistive networks, which we frame as a quadratic programming problem with linear inequality constraints, and which we solve using a fast, exact coordinate descent algorithm. Our simulation methodology significantly outperforms existing SPICE-based simulations, enabling the training of networks up to 327 times larger at speeds 160 times faster, resulting in a 50,000-fold improvement in the ratio of network size to epoch duration. Our approach can foster more rapid progress in the simulations of nonlinear analog electrical networks.
[ Hall C 4-9 ]

Abstract
We present a novel graph transformer framework, HAMLET, designed to address the challenges in solving partial differential equations (PDEs) using neural networks. The framework uses graph transformers with modular input encoders to directly incorporate differential equation information into the solution process. This modularity enhances parameter correspondence control, making HAMLET adaptable to PDEs of arbitrary geometries and varied input formats. Notably, HAMLET scales effectively with increasing data complexity and noise, showcasing its robustness. HAMLET is not just tailored to a single type of physical simulation, but can be applied across various domains. Moreover, it boosts model resilience and performance, especially in scenarios with limited data. We demonstrate, through extensive experiments, that our framework is capable of outperforming current techniques for PDEs.
[ Hall C 4-9 ]

Abstract
This paper studies the causal relations from subsampled time series, in which measurements are sparse and sampled at a coarser timescale than the causal timescale of the underlying system. In such data, because there are numerous missing time-slices (i.e., cross-sections at each time point) between two consecutive measurements, conventional causal discovery methods designed for standard time series data would produce significant errors. To learn causal relations from subsampled time series, a typical solution is to conduct different interventions and then make a comparison. However, full interventions are often expensive, unethical, or even infeasible, particularly in fields such as health and social science. In this paper, we first explore how readily available two-time-slices data can replace intervention data to improve causal ordering, and propose a novel Descendant Hierarchical Topology algorithm with Conditional Independence Test (DHT-CIT) to learn causal relations from subsampled time series using only two time-slices. Specifically, we develop a conditional independence criterion that can be applied iteratively to test each node from time series and identify all of its descendant nodes. Empirical results on both synthetic and real-world datasets demonstrate the superiority of our DHT-CIT algorithm.
[ Hall C 4-9 ]

Abstract
Causal representation learning aims at identifying high-level causal variables from perceptual data. Most methods assume that all latent causal variables are captured in the high-dimensional observations. We instead consider a partially observed setting, in which each measurement only provides information about a subset of the underlying causal state. Prior work has studied this setting with multiple domains or views, each depending on a fixed subset of latents. Here, we focus on learning from unpaired observations from a dataset with an instance-dependent partial observability pattern. Our main contribution is to establish two identifiability results for this setting: one for linear mixing functions without parametric assumptions on the underlying causal model, and one for piecewise linear mixing functions with Gaussian latent causal variables. Based on these insights, we propose two methods for estimating the underlying causal variables by enforcing sparsity in the inferred representation. Experiments on different simulated datasets and established benchmarks highlight the effectiveness of our approach in recovering the ground-truth latents.
[ Hall C 4-9 ]

Abstract
Counterfactual image editing is a challenging task within generative AI. The current literature on the topic focuses primarily on changing individual features while being silent about the causal relationships between features, which are present in the real world. In this paper, we first formalize this task through causal language, modeling the causal relationships between latent generative factors and images through a special type of causal model called augmented structural causal models (ASCMs). Second, we show two fundamental impossibility results: (1) counterfactual editing is impossible from i.i.d. image samples and their corresponding labels alone; (2) also, even when the causal relationships between latent generative factors and images are available, no guarantees regarding the output of the generative model can be provided. Third, we propose a relaxation over this hard problem aiming to approximate the non-identifiable target counterfactual distributions while still preserving features the users care about and that are causally consistent with the true generative model, which we call ctf-consistent estimators. Finally, we develop an efficient algorithm to generate counterfactual image samples leveraging neural causal models.
[ Hall C 4-9 ]

Abstract
This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors. Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by powerful graph neural networks (GNNs). However, predicting interacting dynamics in challenging scenarios such as out-of-distribution shift and complicated underlying rules remains unsolved. In this paper, we propose a new approach named Prototypical Graph ODE (PGODE) to address the problem. The core of PGODE is to incorporate prototype decomposition from contextual knowledge into a continuous graph ODE framework. Specifically, PGODE employs representation disentanglement and system parameters to extract both object-level and system-level contexts from historical trajectories, which allows us to explicitly model their independent influence and thus enhances the generalization capability under system changes. Then, we integrate these disentangled latent representations into a graph ODE model, which determines a combination of various interacting prototypes for enhanced model expressivity. The entire model is optimized using an end-to-end variational inference framework to maximize the likelihood. Extensive experiments in both in-distribution and out-of-distribution settings validate the superiority of PGODE compared to various baselines.
[ Hall C 4-9 ]
Abstract
Partial identification (PI) presents a significant challenge in causal inference due to the incomplete measurement of confounders. Given that obtaining auxiliary variables of confounders is not always feasible and relies on untestable assumptions, researchers are encouraged to explore the internal information of latent confounders without external assistance. However, these prevailing PI results often lack precise mathematical measurement from observational data or assume that the information pertaining to confounders falls within extreme scenarios. In our paper, we reassess the significance of the marginal confounder distribution in PI. We refrain from imposing additional restrictions on the marginal confounder distribution, such as entropy or mutual information. Instead, we establish the closed-form tight PI for any possible P(U) in the discrete case. Furthermore, we establish the if and only if criterion for discerning whether the marginal confounder information leads to non-vanilla PI regions. This reveals a fundamental negative result wherein the marginal confounder information minimally contributes to PI as the confounder’s cardinality increases. Our theoretical findings are supported by experiments.
[ Hall C 4-9 ]

Abstract
Measuring human feedback via randomized experimentation is a cornerstone of data-driven decision-making. The methodology used to estimate user preferences from their online behaviours is critically dependent on user identifiers. However, in today's digital landscape, consumers frequently interact with content across multiple devices, which are often recorded with different identifiers for the same consumer. The inability to match different device identities across consumers poses significant challenges for accurately estimating human preferences and other causal effects. Moreover, without strong assumptions about the device-user graph, the causal effects might not be identifiable. In this paper, we propose HIFIVE, a variational method to solve the problem of estimating global average treatment effects (GATE) from a fragmented view of exposures and outcomes. Experiments show that our estimator is superior to standard estimators, with a lower bias and greater robustness to network uncertainty.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Data augmentation (DA) methods tailored to specific domains generate synthetic samples by applying transformations that are appropriate for the characteristics of the underlying data domain, such as rotations on images and time warping on time series data. In contrast, domain-independent approaches, e.g. mixup, are applicable to various data modalities, and as such they are general and versatile. While regularizing classification tasks via DA is a well-explored research topic, the effect of DA on regression problems received less attention. To bridge this gap, we study the problem of domain-independent augmentation for regression, and we introduce FOMA: a new data-driven domain-independent data augmentation method. Essentially, our approach samples new examples from the tangent planes of the train distribution. Augmenting data in this way aligns with the network tendency towards capturing the dominant features of its input signals. We evaluate FOMA on in-distribution generalization and out-of-distribution robustness benchmarks, and we show that it improves the generalization of several neural architectures. We also find that strong baselines based on mixup are less effective in comparison to our approach. Our code is publicly available at https://github.com/azencot-group/FOMA
[ Hall C 4-9 ]

Abstract
The complexity of black-box algorithms can lead to various challenges, including the introduction of biases. These biases present immediate risks in the algorithms’ application. It was, for instance, shown that neural networks can deduce racial information solely from a patient's X-ray scan, a task beyond the capability of medical experts. If this fact is not known to the medical expert, automatic decision-making based on this algorithm could lead to prescribing a treatment (purely) based on racial information. While current methodologies allow for the "orthogonalization" or "normalization" of neural networks with respect to such information, existing approaches are grounded in linear models. Our paper advances the discourse by introducing corrections for non-linearities such as ReLU activations. Our approach also encompasses scalar and tensor-valued predictions, facilitating its integration into neural network architectures. Through extensive experiments, we validate our method's effectiveness in safeguarding sensitive data in generalized linear models, normalizing convolutional neural networks for metadata, and rectifying pre-existing embeddings for undesired attributes.
[ Hall C 4-9 ]

Abstract
Deep heteroscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood. However, recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation. While the literature addresses this by proposing alternate formulations to mitigate the impact of the predicted covariance, we focus on improving the predicted covariance itself. We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean? (2) In the absence of supervision, how can we quantify the accuracy of covariance estimation? We address (1) with a Taylor Induced Covariance (TIC), which captures the randomness of the predicted mean by incorporating its gradient and curvature through the second order Taylor polynomial. Furthermore, we tackle (2) by introducing a Task Agnostic Correlations (TAC) metric, which combines the notion of correlations and absolute error to evaluate the covariance. We evaluate TIC-TAC across multiple experiments spanning synthetic and real-world datasets. Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of the negative log-likelihood. Our code is available at https://github.com/vita-epfl/TIC-TAC
[ Hall C 4-9 ]

Abstract
Estimating the ratio of two probability densities from finitely many samples, is a central task in machine learning and statistics. In this work, we show that a large class of kernel methods for density ratio estimation suffers from error saturation, which prevents algorithms from achieving fast error convergence rates on highly regular learning problems. To resolve saturation, we introduce iterated regularization in density ratio estimation to achieve fast error rates. Our methods outperform its non-iteratively regularized versions on benchmarks for density ratio estimation as well as on large-scale evaluations for importance-weighted ensembling of deep unsupervised domain adaptation models.
[ Hall C 4-9 ]

Abstract
This paper aims to explain how a deep neural network (DNN) gradually extracts new knowledge and forgets noisy features through layers in forward propagation. Up to now, although how to define knowledge encoded by the DNN has not reached a consensus so far, previous studies have derived a series of mathematical evidences to take interactions as symbolic primitive inference patterns encoded by a DNN. We extend the definition of interactions and, for the first time, extract interactions encoded by intermediate layers. We quantify and track the newly emerged interactions and the forgotten interactions in each layer during the forward propagation, which shed new light on the learning behavior of DNNs. The layer-wise change of interactions also reveals the change of the generalization capacity and instability of feature representations of a DNN.
[ Hall C 4-9 ]

Abstract
Most transformer-based video encoders are limited to short temporal contexts due to their quadratic complexity. While various attempts have been made to extend this context, this has often come at the cost of both conceptual and computational complexity. We propose to instead re-purpose existing pre-trained video transformers by simply fine-tuning them to attend to memories derived non-parametrically from past activations. By leveraging redundancy reduction, our memory-consolidated vision transformer (MC-ViT) effortlessly extends its context far into the past and exhibits excellent scaling behavior when learning from longer videos. In doing so, MC-ViT sets a new state-of-the-art in long-context video understanding on EgoSchema, Perception Test, and Diving48, outperforming methods that benefit from orders of magnitude more parameters.
[ Hall C 4-9 ]
Abstract
Segmentation has emerged as a fundamental field of computer vision and natural language processing, which assigns a label to every pixel/feature to extract regions of interest from an image/text. To evaluate the performance of segmentation, the Dice and IoU metrics are used to measure the degree of overlap between the ground truth and the predicted segmentation. In this paper, we establish a theoretical foundation of segmentation with respect to the Dice/IoU metrics, including the Bayes rule and Dice-/IoU-calibration, analogous to classification-calibration or Fisher consistency in classification. We prove that the existing thresholding-based framework with most operating losses are not consistent with respect to the Dice/IoU metrics, and thus may lead to a suboptimal solution. To address this pitfall, we propose a novel consistent ranking-based framework, namely RankDice/RankIoU, inspired by plug-in rules of the Bayes segmentation rule. Three numerical algorithms with GPU parallel execution are developed to implement the proposed framework in large-scale and high-dimensional segmentation. We study statistical properties of the proposed framework. We show it is Dice-/IoU-calibrated, and its excess risk bounds and the rate of convergence are also provided. The numerical effectiveness of RankDice/mRankDice is demonstrated in various simulated examples and Fine-annotated CityScapes, Pascal VOC and Kvasir-SEG datasets …
[ Hall C 4-9 ]

Abstract
In this paper, we use matrix information theory as an analytical tool to analyze the dynamics of the information interplay between data representations and classification head vectors in the supervised learning process. Specifically, inspired by the theory of Neural Collapse, we introduce matrix mutual information ratio (MIR) and matrix entropy difference ratio (HDR) to assess the interactions of data representation and class classification heads in supervised learning, and we determine the theoretical optimal values for MIR and HDR when Neural Collapse happens. Our experiments show that MIR and HDR can effectively explain many phenomena occurring in neural networks, for example, the standard supervised training dynamics, linear mode connectivity, and the performance of label smoothing and pruning. Additionally, we use MIR and HDR to gain insights into the dynamics of grokking, which is an intriguing phenomenon observed in supervised training, where the model demonstrates generalization capabilities long after it has learned to fit the training data. Furthermore, we introduce MIR and HDR as loss terms in supervised and semi-supervised learning to optimize the information interactions among samples and classification heads. The empirical results provide evidence of the method's effectiveness, demonstrating that the utilization of MIR and HDR not only aids in …
[ Hall C 4-9 ]
Abstract
With the rise of social media and the proliferation of facial recognition surveillance, concerns surrounding privacy have escalated significantly. While numerous studies have concentrated on safeguarding users against unauthorized face recognition, a new and often overlooked issue has emerged due to advances in facial restoration techniques: traditional methods of facial obfuscation may no longer provide a secure shield, as they can potentially expose anonymous information to human perception. Our empirical study shows that blind face restoration (BFR) models can restore obfuscated faces with high probability by simply retraining them on obfuscated (e.g., pixelated) faces. To address it, we propose a transferable adversarial obfuscation method for privacy protection against BFR models. Specifically, we observed a common characteristic among BFR models, namely, their capability to approximate an inverse mapping of a transformation from a high-quality image domain to a low-quality image domain. Leveraging this shared model attribute, we have developed a domain-consistent adversarial method for generating obfuscated images. In essence, our method is designed to minimize overfitting to surrogate models during the perturbation generation process, thereby enhancing the generalization of adversarial obfuscated facial images. Extensive experiments on various BFR models demonstrate the effectiveness and transferability of the proposed method.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
The growing richness of large-scale datasets has been crucial in driving the rapid advancement and wide adoption of machine learning technologies. The massive collection and usage of data, however, pose an increasing risk for people's private and sensitive information due to either inadvertent mishandling or malicious exploitation. Besides legislative solutions, many technical approaches have been proposed towards data privacy protection. However, they bear various limitations such as leading to degraded data availability and utility, or relying on heuristics and lacking solid theoretical bases. To overcome these limitations, we propose a formal information-theoretic definition for this utility-preserving privacy protection problem, and design a data-driven learnable data transformation framework that is capable of selectively suppressing sensitive attributes from target datasets while preserving the other useful attributes, regardless of whether or not they are known in advance or explicitly annotated for preservation. We provide rigorous theoretical analyses on the operational bounds for our framework, and carry out comprehensive experimental evaluations using datasets of a variety of modalities, including facial images, voice audio clips, and human activity motion sensor signals. Results demonstrate the effectiveness and generalizability of our method under various configurations on a multitude of tasks. Our source code is available at this …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
As a staple of data analysis and unsupervised learning, the problem of private clustering has been widely studied, under various privacy models. Centralized differential privacy is the first of them, and the problem has also been studied for the local and the shuffle variation. In each case, the goal is to design an algorithm that computes privately a clustering, with the smallest possible error. The study of each variation gave rise to new algorithm: the landscape of private clustering algorithm is therefore quite intricate. In this paper, we show that a 20 year-old algorithm can be slightly modified to work for any of those models. This provides a unified picture: while matching almost all previously known results, it allows us to improve some of them, and extend to a new privacy model, the continual observation setting, where the input is changing over time and the algorithm must output a new solution at each time step.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
In the next few years, applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education. The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation, in particular from some of the major tech companies who are leading in AI development. While regulation is important, it is key that it does not put at risk the budding field of open-source Generative AI. We argue for the responsible open sourcing of generative AI models in the near and medium term. To set the stage, we first introduce an AI openness taxonomy system and apply it to 40 current large language models. We then outline differential benefits and risks of open versus closed source AI and present potential risk mitigation, ranging from best practices to calls for technical and scientific contributions. We hope that this report will add a much needed missing voice to the current public discourse on near to mid-term AI safety and other societal impact.
[ Hall C 4-9 ]
Abstract
What is agency, and why does it matter? In this work, we draw from the political science and philosophy literature and give two competing visions of what it means to be an (ethical) agent. The first view, which we term mechanistic, is commonly— and implicitly—assumed in AI research, yet it is a fundamentally limited means to understand the ethical characteristics of AI. Under the second view, which we term volitional, AI can no longer be considered an ethical agent. We discuss the implications of each of these views for two critical questions: first, what the ideal system “ought” to look like, and second, how accountability may be achieved. In light of this discussion, we ultimately argue that, in the context of ethically-significant behavior, AI should be viewed not as an agent but as the outcome of political processes.
[ Hall C 4-9 ]

Abstract
We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence (AGI) models and their precursors. This framework introduces levels of AGI performance, generality, and autonomy, providing a common language to compare models, assess risks, and measure progress along the path to AGI. To develop our framework, we analyze existing definitions of AGI, and distill six principles that a useful ontology for AGI should satisfy. With these principles in mind, we propose “Levels of AGI” based on depth (performance) and breadth (generality) of capabilities, and reflect on how current systems fit into this ontology. We discuss the challenging requirements for future benchmarks that quantify the behavior and capabilities of AGI models against these levels. Finally, we discuss how these levels of AGI interact with deployment considerations such as autonomy and risk, and emphasize the importance of carefully selecting Human-AI Interaction paradigms for responsible and safe deployment of highly capable AI systems.
[ Hall C 4-9 ]
Abstract
Independent evaluation and red teaming are critical for identifying the risks posed by generative AI systems. However, the terms of service and enforcement strategies used by prominent AI companies to deter model misuse have disincentives on good faith safety evaluations. This causes some researchers to fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal. Although some companies offer researcher access programs, they are an inadequate substitute for independent research access, as they have limited community representation, receive inadequate funding, and lack independence from corporate incentives. We propose that major generative AI developers commit to providing a legal and technical safe harbor, protecting public interest safety research and removing the threat of account suspensions or legal reprisal. These proposals emerged from our collective experience conducting safety, privacy, and trustworthiness research on generative AI systems, where norms and incentives could be better aligned with public interests, without exacerbating model misuse. We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.
[ Hall C 4-9 ]

Abstract
Algorithmic predictions are emerging as a promising solution concept for efficiently allocating societal resources. Fueling their use is an underlying assumption that such systems are necessary to identify individuals for interventions. We propose a principled framework for assessing this assumption: Using a simple mathematical model, we evaluate the efficacy of prediction-based allocations in settings where individuals belong to larger units such as hospitals, neighborhoods, or schools. We find that prediction-based allocations outperform baseline methods using aggregate unit-level statistics only when between-unit inequality is low and the intervention budget is high. Our results hold for a wide range of settings for the price of prediction, treatment effect heterogeneity, and unit-level statistics' learnability. Combined, we highlight the potential limits to improving the efficacy of interventions through prediction.
[ Hall C 4-9 ]

Abstract
Publications proposing novel machine learning methods are often primarily rated by exhibited predictive performance on selected problems. In this position paper we argue that predictive performance alone is not a good indicator for the worth of a publication. Using it as such even fosters problems like inefficiencies of the machine learning research community as a whole and setting wrong incentives for researchers. We therefore put out a call for the publication of ``negative'' results, which can help alleviate some of these problems and improve the scientific output of the machine learning research community. To substantiate our position, we present the advantages of publishing negative results and provide concrete measures for the community to move towards a paradigm where their publication is normalized.
[ Hall C 4-9 ]

Abstract
Merging various task-specific Transformer-based vision models trained on different tasks into a single unified model can execute all the tasks concurrently. Previous methods, exemplified by task arithmetic, have been proven to be both effective and scalable. Existing methods have primarily focused on seeking a static optimal solution within the original model parameter space. A notable challenge is mitigating the interference between parameters of different models, which can substantially deteriorate performance. In this paper, we propose to merge most of the parameters while upscaling the MLP of the Transformer layers to a weight-ensembling mixture of experts (MoE) module, which can dynamically integrate shared and task-specific knowledge based on the input, thereby providing a more flexible solution that can adapt to the specific needs of each instance. Our key insight is that by identifying and separating shared knowledge and task-specific knowledge, and then dynamically integrating them, we can mitigate the parameter interference problem to a great extent. We conduct the conventional multi-task model merging experiments and evaluate the generalization and robustness of our method. The results demonstrate the effectiveness of our method and provide a comprehensive understanding of our method. The code is available at https://github.com/tanganke/weight-ensembling_MoE
[ Hall C 4-9 ]
Abstract
In cross-domain few-shot classification, nearest centroid classifier (NCC) aims to learn representations to construct a metric space where few-shot classification can be performed by measuring the similarities between samples and the prototype of each class. An intuition behind NCC is that each sample is pulled closer to the class centroid it belongs to while pushed away from those of other classes. However, in this paper, we find that there exist high similarities between NCC-learned representations of two samples from different classes. In order to address this problem, we propose a bi-level optimization framework, maximizing optimized kernel dependence (MOKD) to learn a set of class-specific representations that match the cluster structures indicated by labeled data of the given task. Specifically, MOKD first optimizes the kernel adopted in Hilbert-Schmidt independence criterion (HSIC) to obtain the optimized kernel HSIC (opt-HSIC) that can capture the dependence more precisely. Then, an optimization problem regarding the opt-HSIC is addressed to simultaneously maximize the dependence between representations and labels and minimize the dependence among all samples. Extensive experiments on Meta-Dataset demonstrate that MOKD can not only achieve better generalization performance on unseen domains in most cases but also learn better data representation clusters. The project repository of …
[ Hall C 4-9 ]

Abstract
Few-shot open-set recognition (FSOSR) aims to detect instances from unseen classes by utilizing a small set of labeled instances from closed-set classes. Accurately rejecting instances from open-set classes in the few-shot setting is fundamentally more challenging due to the weaker supervised signals resulting from fewer labels. Transformer-based few-shot methods exploit attention mapping to achieve a consistent representation. However, the softmax-generated attention map normalizes all the instances that assign unnecessary high attentive weights to those instances not close to the closed-set classes that negatively impact the detection performance. In addition, open-set samples that are similar to a certain closed-set class also pose a significant challenge to most existing FSOSR models. To address these challenges, we propose a novel Meta Evidential Transformer (MET) based FSOSR model that uses an evidential open-set loss to learn more compact closed-set class representations by effectively leveraging similar closed-set classes. MET further integrates an evidence-to-variance ratio to detect fundamentally challenging tasks and uses an evidence-guided cross-attention mechanism to better separate the difficult open-set samples. Experiments on real-world datasets demonstrate consistent improvement over existing competitive methods in unseen class recognition without deteriorating closed-set performance.
[ Hall C 4-9 ]

Abstract
We introduce a novel Pseudo-Negative Regularization (PNR) framework for effective continual self-supervised learning (CSSL). Our PNR leverages pseudo-negatives obtained through model-based augmentation in a way that newly learned representations may not contradict what has been learned in the past. Specifically, for the InfoNCE-based contrastive learning methods, we define symmetric pseudo-negatives obtained from current and previous models and use them in both main and regularization loss terms. Furthermore, we extend this idea to non-contrastive learning methods which do not inherently rely on negatives. For these methods, a pseudo-negative is defined as the output from the previous model for a differently augmented version of the anchor sample and is asymmetrically applied to the regularization term. Extensive experimental results demonstrate that our PNR framework achieves state-of-the-art performance in representation learning during CSSL by effectively balancing the trade-off between plasticity and stability.
[ Hall C 4-9 ]

Abstract
Numerical solvers of Partial Differential Equations (PDEs) are of fundamental significance to science and engineering. To date, the historical reliance on legacy techniques has circumscribed possible integration of big data knowledge and exhibits sub-optimal efficiency for certain PDE formulations, while data-driven neural methods typically lack mathematical guarantee of convergence and correctness. This paper articulates a mathematically rigorous neural solver for linear PDEs. The proposed UGrid solver, built upon the principled integration of U-Net and MultiGrid, manifests a mathematically rigorous proof of both convergence and correctness, and showcases high numerical accuracy, as well as strong generalization power to various input geometry/values and multiple PDE formulations. In addition, we devise a new residual loss metric, which enables unsupervised training and affords more stability and a larger solution space over the legacy losses.
[ Hall C 4-9 ]

Abstract
We introduce Optimal Eye Surgeon (OES), a framework for pruning and training deep image generator networks. Typically, untrained deep convolutional networks, which include image sampling operations, serve as effective image priors. However, they tend to overfit to noise in image restoration tasks due to being overparameterized. OES addresses this by adaptively pruning networks at random initialization to a level of underparameterization. This process effectively captures low-frequency image components even without training, by just masking. When trained to fit noisy image, these pruned subnetworks, which we term Sparse-DIP, resist overfitting to noise. This benefit arises from underparameterization and the regularization effect of masking, constraining them in the manifold of image priors. We demonstrate that subnetworks pruned through OES surpass other leading pruning methods, such as the Lottery Ticket Hypothesis, which is known to be suboptimal for image recovery tasks. Our extensive experiments demonstrate the transferability of OES-masks and the characteristics of sparse-subnetworks for image generation. Code is available at https://github.com/Avra98/Optimal-Eye-Surgeon.
[ Hall C 4-9 ]

Abstract
Text data has become extremely valuable due to the emergence of machine learning algorithms that learn from it. A lot of high-quality text data generated in the real world is private and therefore cannot be shared or used freely due to privacy concerns. Generating synthetic replicas of private text data with a formal privacy guarantee, i.e., differential privacy (DP), offers a promising and scalable solution. However, existing methods necessitate DP finetuning of large language models (LLMs) on private data to generate DP synthetic data. This approach is not viable for proprietary LLMs (e.g., GPT-3.5) and also demands considerable computational resources for open-source LLMs. Lin et al. (2024) recently introduced the Private Evolution (PE) algorithm to generate DP synthetic images with only API access to diffusion models. In this work, we propose an augmented PE algorithm, named Aug-PE, that applies to the complex setting of text. We use API access to an LLM and generate DP synthetic text without any model training. We conduct comprehensive experiments on three benchmark datasets. Our results demonstrate that Aug-PE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines. This underscores the feasibility of relying solely on API access of LLMs …
[ Hall C 4-9 ]

Abstract
Fueled by the ever-increasing need for statistics that guarantee the privacy of their training sets, this article studies the centrally-private estimation of Sobolev-smooth densities of probability over the hypercube in dimension d. The contributions of this article are two-fold : Firstly, it generalizes the one-dimensional results of (Lalanne et al., 2023) to non-integer levels of smoothness and to a high-dimensional setting, which is important for two reasons : it is more suited for modern learning tasks, and it allows understanding the relations between privacy, dimensionality and smoothness, which is a central question with differential privacy. Secondly, this article presents a private strategy of estimation that is data-driven (usually referred to as adaptive in Statistics) in order to privately choose an estimator that achieves a good bias-variance trade-off among a finite family of private projection estimators without prior knowledge of the ground-truth smoothness β. This is achieved by adapting the Lepskii method for private selection, by adding a new penalization term that makes the estimation privacy-aware.
[ Hall C 4-9 ]

Abstract
Deep neural networks (DNNs) have a risk of remembering sensitive data from their training datasets, inadvertently leading to substantial information leakage through privacy attacks like membership inference attacks. DP-SGD is a simple but effective defense method, incorporating Gaussian noise into gradient updates to safeguard sensitive information. With the prevalence of large neural networks, DP-signSGD, a variant of DP-SGD, has emerged, aiming to curtail memory usage while maintaining security. However, it is noteworthy that most DP-signSGD algorithms default to Gaussian noise, suitable only for DP-SGD, without scant discussion of its appropriateness for signSGD. Our study delves into an intriguing question: "Can we find a more efficient substitute for Gaussian noise to secure privacy in DP-signSGD?" We propose an answer with a Logistic mechanism, which conforms to signSGD principles and is interestingly evolved from an exponential mechanism. In this paper, we provide both theoretical and experimental evidence showing that our method surpasses DP-signSGD.
[ Hall C 4-9 ]
Abstract
Pufferfish privacy is a flexible generalization of differential privacy that allows to model arbitrary secrets and adversary's prior knowledge about the data. Unfortunately, designing general and tractable Pufferfish mechanisms that do not compromise utility is challenging. Furthermore, this framework does not provide the composition guarantees needed for a direct use in iterative machine learning algorithms. To mitigate these issues, we introduce a Rényi divergence-based variant of Pufferfish and show that it allows us to extend the applicability of the Pufferfish framework. We first generalize the Wasserstein mechanism to cover a wide range of noise distributions and introduce several ways to improve its utility. Finally, as an alternative to composition, we prove privacy amplification results for contractive noisy iterations and showcase the first use of Pufferfish in private convex optimization. A common ingredient underlying our results is the use and extension of shift reduction lemmas.
[ Hall C 4-9 ]

Abstract
Large Language Models (LLMs) excel in natural language understanding by capturing hidden semantics in vector space. This process enriches the value of text embeddings for various downstream tasks, thereby fostering the Embedding-as-a-Service (EaaS) business model. However, the risk of privacy leakage due to direct text transmission to servers remains a critical concern. To address this, we introduce Split-N-Denoise (SnD), an private inference framework that splits the model to execute the token embedding layer on the client side at minimal computational cost. This allows the client to introduce noise prior to transmitting the embeddings to the server, and subsequently receive and denoise the perturbed output embeddings for downstream tasks. Our approach is designed for the inference stage of LLMs and requires no modifications to the model parameters. Extensive experiments demonstrate SnD’s effectiveness in optimizing the privacy-utility tradeoff across various LLM architectures and diverse downstream tasks. The results reveal an improvement in performance under the same privacy budget compared to the baselines by over 10% on average, offering clients a privacy-preserving solution for local privacy protection.
[ Hall C 4-9 ]
Abstract
Service providers of large language model (LLM) applications collect user instructions in the wild and use them in further aligning LLMs with users' intentions. These instructions, which potentially contain sensitive information, are annotated by human workers in the process. This poses a new privacy risk not addressed by the typical private optimization. To this end, we propose using synthetic instructions to replace real instructions in data annotation and model fine-tuning. Formal differential privacy is guaranteed by generating those synthetic instructions using privately fine-tuned generators. Crucial in achieving the desired utility is our novel filtering algorithm that matches the distribution of the synthetic instructions to that of the real ones. In both supervised fine-tuning and reinforcement learning from human feedback, our extensive experiments demonstrate the high utility of the final set of synthetic instructions by showing comparable results to real instructions. In supervised fine-tuning, models trained with private synthetic instructions outperform leading open-source models such as Vicuna.
[ Hall C 4-9 ]
Abstract
The performance of differentially private machine learning can be boosted significantly by leveraging the transfer learning capabilities of non-private models pretrained on large public datasets. We critically review this approach. We primarily question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving. We further scrutinize whether existing machine learning benchmarks are appropriate for measuring the ability of pretrained models to generalize to sensitive domains. Finally, we observe that reliance on large pretrained models may lose other forms of privacy, requiring data to be outsourced to a more compute-powerful third party.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Recently, diffusion models have become popular tools for image synthesis due to their high-quality outputs. However, like other large models, they may leak private information about their training data. Here, we demonstrate a privacy vulnerability of diffusion models through a membership inference (MI) attack, which aims to identify whether a target example belongs to the training set when given the trained diffusion model. Our proposed MI attack learns quantile regression models that predict (a quantile of) the distribution of reconstruction loss on examples not used in training. This allows us to define a granular hypothesis test for determining the membership of a point in the training set, based on thresholding the reconstruction loss of that point using a custom threshold tailored to the example. We also provide a simple bootstrap technique that takes a majority membership prediction over ''a bag of weak attackers'' which improves the accuracy over individual quantile regression models. We show that our attack outperforms the prior state-of-the-art attack while being substantially less computationally expensive --- prior attacks required training multiple ''shadow models'' with the same architecture as the model under attack, whereas our attack requires training only much smaller models.
[ Hall C 4-9 ]

Abstract
Unlearnable examples (UEs) seek to maximize testing error by making subtle modifications to training examples that are correctly labeled. Defenses against these poisoning attacks can be categorized based on whether specific interventions are adopted during training. The first approach is training-time defense, such as adversarial training, which can mitigate poisoning effects but is computationally intensive. The other approach is pre-training purification, e.g., image short squeezing, which consists of several simple compressions but often encounters challenges in dealing with various UEs. Our work provides a novel disentanglement mechanism to build an efficient pre-training purification method. Firstly, we uncover rate-constrained variational autoencoders (VAEs), demonstrating a clear tendency to suppress the perturbations in UEs. We subsequently conduct a theoretical analysis for this phenomenon. Building upon these insights, we introduce a disentangle variational autoencoder (D-VAE), capable of disentangling the perturbations with learnable class-wise embeddings. Based on this network, a two-stage purification approach is naturally developed. The first stage focuses on roughly eliminating perturbations, while the second stage produces refined, poison-free results, ensuring effectiveness and robustness across various scenarios. Extensive experiments demonstrate the remarkable performance of our method across CIFAR-10, CIFAR-100, and a 100-class ImageNet-subset. Code is available at https://github.com/yuyi-sd/D-VAE.
[ Hall C 4-9 ]
Abstract
Explainable machine learning significantly improves the transparency of deep neural networks. However, existing work is constrained to explaining the behavior of individual model predictions, and lacks the ability to transfer the explanation across various models and tasks. This limitation results in explaining various tasks being time- and resource-consuming. To address this problem, we introduce a Transferable Vision Explainer (TVE) that can effectively explain various vision models in downstream tasks. Specifically, the transferability of TVE is realized through a pre-training process on large-scale datasets towards learning the meta-attribution. This meta-attribution leverages the versatility of generic backbone encoders to comprehensively encode the attribution knowledge for the input instance, which enables TVE to seamlessly transfer to explaining various downstream tasks, without the need for training on task-specific data. Empirical studies involve explaining three different architectures of vision models across three diverse downstream datasets. The experiment results indicate TVE is effective in explaining these tasks without the need for additional training on downstream data.
[ Hall C 4-9 ]
Abstract
Adversarial Training (AT), which adversarially perturb the input samples during training, has been acknowledged as one of the most effective defenses against adversarial attacks, yet suffers from inevitably decreased clean accuracy. Instead of perturbing the samples, Sharpness-Aware Minimization (SAM) perturbs the model weights during training to find a more flat loss landscape and improve generalization. However, as SAM is designed for better clean accuracy, its effectiveness in enhancing adversarial robustness remains unexplored. In this work, considering the duality between SAM and AT, we investigate the adversarial robustness derived from SAM. Intriguingly, we find that using SAM alone can improve adversarial robustness. To understand this unexpected property of SAM, we first provide empirical and theoretical insights into how SAM can implicitly learn more robust features, and conduct comprehensive experiments to show that SAM can improve adversarial robustness notably without sacrificing any clean accuracy, shedding light on the potential of SAM to be a substitute for AT when accuracy comes at a higher priority. Code is available at https://github.com/weizeming/SAM_AT.
[ Hall C 4-9 ]

Abstract
Does the stethoscope in the picture make the adjacent person a doctor or a patient? This, of course, depends on the contextual relationship of the two objects. If it’s obvious, why don’t explanation methods for vision models use contextual information? In this paper, we (1) review the most popular methods of explaining computer vision models by pointing out that they do not take into account context information, (2) show examples of failures of popular XAI methods, (3) provide examples of real-world use cases where spatial context plays a significant role, (4) propose new research directions that may lead to better use of context information in explaining computer vision models, (5) argue that a change in approach to explanations is needed from where to how.
[ Hall C 4-9 ]

Abstract
Model extraction is to obtain a cloned model that replicates the functionality of a black-box victim model solely through query-based access. Present defense strategies exhibit shortcomings, manifesting as: (1) computational or memory inefficiencies during deployment; or (2) dependence on expensive defensive training methods that mandate the re-training of the victim model; or (3) watermarking-based methods only passively detect model theft without actively preventing model extraction. To address these limitations, we introduce an innovative Bayesian active watermarking technique to fine-tune the victim model and learn the watermark posterior distribution conditioned on input data. The fine-tuning process aims to maximize the log-likelihood on watermarked in-distribution training data for preserving model utility while simultaneously maximizing the change of model's outputs on watermarked out-of-distribution data, thereby achieving effective defense. During deployment, a watermark is randomly sampled from the estimated watermark posterior. This watermark is then added to the input query, and the victim model returns the prediction based on the watermarked input query to users. This proactive defense approach requires only slight fine-tuning of the victim model without the need of full re-training and demonstrates high efficiency in terms of memory and computation during deployment. Rigorous theoretical analysis and comprehensive experimental results demonstrate the …
[ Hall C 4-9 ]
Abstract
Various robust estimation methods or algorithms have been proposed to hedge against Byzantine failures in distributed learning. However, there is a lack of systematic approaches to provide theoretical guarantees of significance in detecting those Byzantine machines. In this paper, we develop a general detection procedure, ByMI, via error rate control to address this issue, which is applicable to many robust learning problems. The key idea is to apply the sample-splitting strategy on each worker machine to construct a score statistic integrated with a general robust estimation and then to utilize the symmetry property of those scores to derive a data-driven threshold. The proposed method is dimension insensitive and p-value free with the help of the symmetry property and can achieve false discovery rate control under mild conditions. Numerical experiments on both synthetic and real data validate the theoretical results and demonstrate the effectiveness of our proposed method on Byzantine machine identification.
[ Hall C 4-9 ]
Abstract
We focus on verifying relational properties defined over deep neural networks (DNNs) such as robustness against universal adversarial perturbations (UAP), certified worst-case hamming distance for binary string classifications, etc. Precise verification of these properties requires reasoning about multiple executions of the same DNN. However, most of the existing works in DNN verification only handle properties defined over single executions and as a result, are imprecise for relational properties. Though few recent works for relational DNN verification, capture linear dependencies between the inputs of multiple executions, they do not leverage dependencies between the outputs of hidden layers producing imprecise results. We develop a scalable relational verifier RACoon that utilizes cross-execution dependencies at all layers of the DNN gaining substantial precision over SOTA baselines on a wide range of datasets, networks, and relational properties.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Aligning large language models (LLMs) with human intentions has become a critical task for safely deploying models in real-world systems. While existing alignment approaches have seen empirical success, theoretically understanding how these methods affect model behavior remains an open question. Our work provides an initial attempt to theoretically analyze the learning dynamics of human preference alignment. We formally show how the distribution of preference datasets influences the rate of model updates and provide rigorous guarantees on the training accuracy. Our theory also reveals an intricate phenomenon where the optimization is prone to prioritizing certain behaviors with higher preference distinguishability. We empirically validate our findings on contemporary LLMs and alignment tasks, reinforcing our theoretical insights and shedding light on considerations for future alignment approaches. Disclaimer: This paper contains potentially offensive text; reader discretion is advised.
[ Hall C 4-9 ]
Abstract
Language models often exhibit undesirable behavior, e.g., generating toxic or gender-biased text. In the case of neural language models, an encoding of the undesirable behavior is often present in the model's representations. Thus, one natural (and common) approach to prevent the model from exhibiting undesirable behavior is to steer the model's representations in a manner that reduces the probability of it generating undesirable text. This paper investigates the formal and empirical properties of steering functions, i.e., transformation of the neural language model's representations that alter its behavior. First, we derive two optimal, in the least-squares sense, affine steering functions under different constraints. Our theory provides justification for existing approaches and offers a novel, improved steering approach. Second, we offer a series of experiments that demonstrate the empirical effectiveness of the methods in mitigating bias and reducing toxic generation.
[ Hall C 4-9 ]
Abstract
A key goal of current mechanistic interpretability research in NLP is to find linear features (also called "feature vectors") for transformers: directions in activation space corresponding to concepts that are used by a given model in its computation. Present state-of-the-art methods for finding linear features require large amounts of labelled data -- both laborious to acquire and computationally expensive to utilize. In this work, we introduce a novel method, called "observable propagation" (in short: ObProp), for finding linear features used by transformer language models in computing a given task -- using almost no data. Our paradigm centers on the concept of "observables", linear functionals corresponding to given tasks. We then introduce a mathematical theory for the analysis of feature vectors, including a similarity metric between feature vectors called the coupling coefficient which estimates the degree to which one feature's output correlates with another's. We use ObProp to perform extensive qualitative investigations into several tasks, including gendered occupational bias, political party prediction, and programming language detection. Our results suggest that ObProp surpasses traditional approaches for finding feature vectors in the low-data regime, and that ObProp can be used to better understand the mechanisms responsible for bias in large language models.
[ Hall C 4-9 ]
Abstract
The issue of hallucinations is a prevalent concern in existing Large Vision-Language Models (LVLMs). Previous efforts have primarily focused on investigating object hallucinations, which can be easily alleviated by introducing object detectors. However, these efforts neglect hallucinations in inter-object relationships, which is essential for visual comprehension. In this work, we introduce R-Bench, a novel benchmark for evaluating Vision Relationship Hallucination. R-Bench features image-level questions that focus on the existence of relationships and instance-level questions that assess local visual comprehension. We identify three types of relationship co-occurrences that lead to hallucinations: relationship-relationship, subject-relationship, and relationship-object. The visual instruction tuning dataset's long-tail distribution significantly impacts LVLMs' understanding of visual relationships. Additionally, our analysis reveals that current LVLMs tend to overlook visual content, overly rely on the common sense knowledge of Large Language Models (LLMs), and struggle with spatial relationship reasoning based on contextual information.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
The abundance of free internet data offers unprecedented opportunities for researchers and developers, but it also poses privacy risks. Utilizing data without explicit consent raises critical challenges in protecting personal information.Unlearnable examples have emerged as a feasible protection approach, which renders the data unlearnable, i.e., useless to third parties, by injecting imperceptible perturbations. However, these perturbations only exhibit unlearnable effects on either a particular dataset or label-consistent scenarios, thereby lacking broad applicability. To address both issues concurrently, we propose a universal perturbation generator that harnesses data with concept unlearnability, thereby broadening the scope of unlearnability beyond specific datasets or labels. Specifically, we leverage multi-modal pre-trained models to establish a connection between the data concepts in a shared embedding space. This connection enables the information transformation from image data to text concepts. Consequently, we can align the text embedding using concept-wise discriminant loss, and render the data unlearnable. Extensive experiments conducted on real-world datasets demonstrate the concept unlearnability, i.e., cross-dataset transferability and label-agnostic utility, of our proposed unlearnable examples, as well as their robustness against attacks.
[ Hall C 4-9 ]
Abstract
Machine learning (ML) methods are having a huge impact across all of the sciences. However, ML has a strong ontology — in which only the data exist — and a strong epistemology — in which a model is considered good if it performs well on held-out training data. These philosophies are in strong conflict with both standard practices and key philosophies in the natural sciences. Here we identify some locations for ML in the natural sciences at which the ontology and epistemology are valuable. For example, when an expressive machine learning model is used in a causal inference to represent the effects of confounders, such as foregrounds, backgrounds, or instrument calibration parameters, the model capacity and loose philosophy of ML can make the results more trustworthy. We also show that there are contexts in which the introduction of ML introduces strong, unwanted statistical biases. For one, when ML models are used to emulate physical (or first-principles) simulations, they amplify confirmation biases. For another, when expressive regressions are used to label datasets, those labels cannot be used in downstream joint or ensemble analyses without taking on uncontrolled biases. The question in the title is being asked of all of the natural …
[ Hall C 4-9 ]

Abstract
This work introduces a Byzantine resilient solution for learning low-dimensional linear representation. Our main contribution is the development of a provably Byzantine-resilient AltGDmin algorithm for solving this problem in a federated setting. We argue that our solution is sample-efficient, fast, and communicationefficient. In solving this problem, we also introduce a novel secure solution to the federated subspace learning meta-problem that occurs in many different applications.
[ Hall C 4-9 ]
Abstract
Adversarial camouflage is a widely used physical attack against vehicle detectors for its superiority in multi-view attack performance. One promising approach involves using differentiable neural renderers to facilitate adversarial camouflage optimization through gradient back-propagation. However, existing methods often struggle to capture environmental characteristics during the rendering process or produce adversarial textures that can precisely map to the target vehicle, resulting in suboptimal attack performance. Moreover, these approaches neglect diverse weather conditions, reducing the efficacy of generated camouflage across varying weather scenarios. To tackle these challenges, we propose a robust and accurate camouflage generation method, namely RAUCA. The core of RAUCA is a novel neural rendering component, Neural Renderer Plus (NRP), which can accurately project vehicle textures and render images with environmental characteristics such as lighting and weather. In addition, we integrate a multi-weather dataset for camouflage generation, leveraging the NRP to enhance the attack robustness. Experimental results on six popular object detectors show that RAUCA consistently outperforms existing methods in both simulation and real-world settings.
[ Hall C 4-9 ]

Abstract
Existing works have made great progress in improving adversarial robustness, but typically test their method only on data from the same distribution as the training data, i.e. in-distribution (ID) testing. As a result, it is unclear how such robustness generalizes under input distribution shifts, i.e. out-of-distribution (OOD) testing. This omission is concerning as such distribution shifts are unavoidable when methods are deployed in the wild. To address this issue we propose a benchmark named OODRobustBench to comprehensively assess OOD adversarial robustness using 23 dataset-wise shifts (i.e. naturalistic shifts in input distribution) and 6 threat-wise shifts (i.e., unforeseen adversarial threat models). OODRobustBench is used to assess 706 robust models using 60.7K adversarial evaluations. This large-scale analysis shows that: 1) adversarial robustness suffers from a severe OOD generalization issue; 2) ID robustness correlates strongly with OOD robustness in a positive linear way. The latter enables the prediction of OOD robustness from ID robustness. We then predict and verify that existing methods are unlikely to achieve high OOD robustness. Novel methods are therefore required to achieve OOD robustness beyond our prediction. To facilitate the development of these methods, we investigate a wide range of techniques and identify several promising directions. Code and models …
[ Hall C 4-9 ]

Abstract
The efficient and theoretically sound uncertainty quantification is crucial for building trust in deep learning models. This has spurred a growing interest in conformal prediction (CP), a powerful technique that provides a model-agnostic and distribution-free method for obtaining conformal prediction sets with theoretical guarantees. However, the vulnerabilities of such CP methods with regard to dedicated data poisoning attacks have not been studied previously. To bridge this gap, for the first time, we in this paper propose a new class of black-box data poisoning attacks against CP, where the adversary aims to cause the desired manipulations of some specific examples' prediction uncertainty results (instead of misclassifications). Additionally, we design novel optimization frameworks for our proposed attacks. Further, we conduct extensive experiments to validate the effectiveness of our attacks on various settings (e.g., the full and split CP settings). Notably, our extensive experiments show that our attacks are more effective in manipulating uncertainty results than traditional poisoning attacks that aim at inducing misclassifications, and existing defenses against conventional attacks are ineffective against our proposed attacks.
[ Hall C 4-9 ]

Abstract
This work studies the novel Crowdsourced Multi-Label Learning (CMLL) problem, where each instance is related to multiple true labels but the model only receives unreliable labels from different annotators. Although a few Crowdsourced Multi-Label Inference (CMLI) methods have been developed, they require both the training and testing sets to be assigned crowdsourced labels and focus on true label inferring rather than prediction, making them less practical. In this paper, by excavating the generation process of crowdsourced labels, we establish the first unbiased risk estimator for CMLL based on the crowdsourced transition matrices. To facilitate transition matrix estimation, we upgrade our unbiased risk estimator by aggregating crowdsourced labels and transition matrices from all annotators while guaranteeing its theoretical characteristics. Integrating with the unbiased risk estimator, we further propose a decoupled autoencoder framework to exploit label correlations and boost performance. We also provide a generalization error bound to ensure the convergence of the empirical risk estimator. Experiments on various CMLL scenarios demonstrate the effectiveness of our proposed method. The source code is available at https://github.com/MingxuanXia/CLEAR.
[ Hall C 4-9 ]
Abstract
Attribution methods shed light on the explainability of data-driven approaches such as deep learning models by uncovering the most influential features in a to-be-explained decision. While determining feature attributions via gradients delivers promising results, the internal access required for acquiring gradients can be impractical under safety concerns, thus limiting the applicability of gradient-based approaches. In response to such limited flexibility, this paper presents GEEX (gradient-estimation-based explanation), a method that produces gradient-like explanations through only query-level access. The proposed approach holds a set of fundamental properties for attribution methods, which are mathematically rigorously proved, ensuring the quality of its explanations. In addition to the theoretical analysis, with a focus on image data, the experimental results empirically demonstrate the superiority of the proposed method over state-of-the-art black-box methods and its competitive performance compared to methods with full access.
[ Hall C 4-9 ]
Abstract
Knowledge distillation is a widely adopted model compression technique that has been successfully applied to object detection. In feature distillation, it is common practice for the student model to imitate the feature responses of the teacher model, with the underlying objective of improving its own abilities by reducing the disparity with the teacher. However, it is crucial to recognize that the disparities between the student and teacher are inconsistent, highlighting their varying abilities. In this paper, we explore the inconsistency in the disparity between teacher and student feature maps and analyze their impact on the efficiency of the distillation. We find that regions with varying degrees of difference should be treated separately, with different distillation constraints applied accordingly. We introduce our distillation method called Disparity Feature Distillation(DFD). The core idea behind DFD is to apply different treatments to regions with varying learning difficulties, simultaneously incorporating leniency and strictness. It enables the student to better assimilate the teacher’s knowledge. Through extensive experiments, we demonstrate the effectiveness of our proposed DFD in achieving significant improvements. For instance, when applied to detectors based on ResNet50 such as RetinaNet, FasterRCNN, and RepPoints, our method enhances their mAP from 37.4%, 38.4%, 38.6% to 41.7%, 42.4%, …
[ Hall C 4-9 ]

Abstract
Backdoor defense is crucial to ensure the safety and robustness of machine learning models when under attack. However, most existing methods specialize in either the detection or removal of backdoors, but seldom both. While few works have addressed both, these methods rely on strong assumptions or entail significant overhead costs, such as the need of task-specific samples for detection and model retraining for removal. Hence, the key challenge is how to reduce overhead and relax unrealistic assumptions. In this work, we propose two Energy-Based BAckdoor defense methods, called EBBA and EBBA+, that can achieve both backdoored model detection and backdoor removal with low overhead. Our contributions are twofold: First, we offer theoretical analysis for our observation that a predefined target label is more likely to occur among the top results for various samples. Inspired by this, we develop an enhanced energy-based technique, called EBBA, to detect backdoored models without task-specific samples (i.e., samples from any tasks). Secondly, we theoretically analyze that after data corruption, the original clean label of a poisoned sample is more likely to be predicted as a top output by the model, a sharp contrast to clean samples. Accordingly, we extend EBBA to develop EBBA+, a new …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Despite their exceptional capabilities, large language models (LLMs) are prone to generating unintended text due to false or outdated knowledge. Given the resource-intensive nature of retraining LLMs, there has been a notable increase in the development of knowledge editing. However, current approaches and evaluations rarely explore the perturbation of editing on neighboring knowledge. This paper studies whether updating new knowledge to LLMs perturbs the neighboring knowledge encapsulated within them. Specifically, we seek to figure out whether appending a new answer into an answer list to a factual question leads to catastrophic forgetting of original correct answers in this list, as well as unintentional inclusion of incorrect answers. A metric of additivity is introduced and a benchmark dubbed as Perturbation Evaluation of Appending Knowledge (PEAK) is constructed to evaluate the degree of perturbation to neighboring knowledge when appending new knowledge. Besides, a plug-and-play framework termed Appending via Preservation and Prevention (APP) is proposed to mitigate the neighboring perturbation by maintaining the integrity of the answer list. Experiments demonstrate the effectiveness of APP coupling with four editing methods on three LLMs.
[ Hall C 4-9 ]
Abstract
Informally, the "linear representation hypothesis" is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity and projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of linear representation, one in the output (word) representation space, and one in the input (context) space. We then prove that these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product.
[ Hall C 4-9 ]

Abstract
In recent years many methods have been developed to understand the internal workings of neural networks, often by describing the function of individual neurons in the model. However, these methods typically only focus on explaining the very highest activations of a neuron. In this paper we show this is not sufficient, and that the highest activation range is only responsible for a very small percentage of the neuron's causal effect. In addition, inputs causing lower activations are often very different and can't be reliably predicted by only looking at high activations. We propose that neurons should instead be understood as a linear combination of concepts, and develop an efficient method for producing these linear explanations. In addition, we show how to automatically evaluate description quality using simulation, i.e. predicting neuron activations on unseen inputs in vision setting.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
AI Uncertainty Quantification (UQ) has the potential to improve human decision-making beyond AI predictions alone by providing additional probabilistic information to users. The majority of past research on AI and human decision-making has concentrated on model explainability and interpretability, with little focus on understanding the potential impact of UQ on human decision-making. We evaluated the impact on human decision-making for instance-level UQ, calibrated using a strict scoring rule, in two online behavioral experiments. In the first experiment, our results showed that UQ was beneficial for decision-making performance compared to only AI predictions. In the second experiment, we found UQ had generalizable benefits for decision-making across a variety of representations for probabilistic information. These results indicate that implementing high quality, instance-level UQ for AI may improve decision-making with real systems compared to AI predictions alone.
[ Hall C 4-9 ]

Abstract
While deep learning models often lack interpretability, concept bottleneck models (CBMs) provide inherent explanations via their concept representations. Moreover, they allow users to perform interventional interactions on these concepts by updating the concept values and thus correcting the predictive output of the model. Up to this point, these interventions were typically applied to the model just once and then discarded. To rectify this, we present concept bottleneck memory models (CB2Ms), which keep a memory of past interventions. Specifically, CB2Ms leverage a two-fold memory to generalize interventions to appropriate novel situations, enabling the model to identify errors and reapply previous interventions. This way, a CB2M learns to automatically improve model performance from a few initially obtained interventions. If no prior human interventions are available, a CB2M can detect potential mistakes of the CBM bottleneck and request targeted interventions. Our experimental evaluations on challenging scenarios like handling distribution shifts and confounded data demonstrate that CB2Ms are able to successfully generalize interventions to unseen data and can indeed identify wrongly inferred concepts. Hence, CB2Ms are a valuable tool for users to provide interactive feedback on CBMs, by guiding a user's interaction and requiring fewer interventions.
[ Hall C 4-9 ]

Abstract
In many predictive contexts (e.g., credit lending), true outcomes are only observed for samples that were positively classified in the past. These past observations, in turn, form training datasets for classifiers that make future predictions. However, such training datasets lack information about the outcomes of samples that were (incorrectly) negatively classified in the past and can lead to erroneous classifiers. We present an approach that trains a classifier using available data and comes with a family of exploration strategies to collect outcome data about subpopulations that otherwise would have been ignored. For any exploration strategy, the approach comes with guarantees that (1) all sub-populations are explored, (2) the fraction of false positives is bounded, and (3) the trained classifier converges to a "desired" classifier. The right exploration strategy is context-dependent; it can be chosen to improve learning guarantees and encode context-specific group fairness properties. Evaluation on real-world datasets shows that this approach consistently boosts the quality of collected outcome data and improves the fraction of true positives for all groups, with only a small reduction in predictive utility.
[ Hall C 4-9 ]
Abstract
When users stand to gain from certain predictive outcomes, they are prone to act strategically to obtain predictions that are favorable. Most current works consider strategic behavior that manifests as users modifying their features; instead, we study a novel setting in which users decide whether to even participate (or not), this in response to the learned classifier. Considering learning approaches of increasing strategic awareness, we investigate the effects of user self-selection on learning, and the implications of learning on the composition of the self-selected population. Building on this, we propose a differentiable framework for learning under self-selective behavior, which can be optimized effectively. We conclude with experiments on real data and simulated behavior that complement our analysis and demonstrate the utility of our approach.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Despite the remarkable capabilities, Large Language Models (LLMs) face deployment challenges due to their extensive size. Pruning methods drop a subset of weights to accelerate, but many of them require retraining, which is prohibitively expensive and computationally demanding. Recently, post-training pruning approaches introduced novel metrics, enabling the pruning of LLMs without retraining. However, these metrics require the involvement of human experts and tedious trial and error. To efficiently identify superior pruning metrics, we develop an automatic framework for searching symbolic pruning metrics using genetic programming. In particular, we devise an elaborate search space encompassing the existing pruning metrics to discover the potential symbolic pruning metric. We propose an opposing operation simplification strategy to increase the diversity of the population. In this way, Pruner-Zero allows auto-generation of symbolic pruning metrics. Based on the searched results, we explore the correlation between pruning metrics and performance after pruning and summarize some principles. Extensive experiments on LLaMA and LLaMA-2 on language modeling and zero-shot tasks demonstrate that our Pruner-Zero obtains superior performance than SOTA post-training pruning methods. Code at: https://github.com/pprp/Pruner-Zero.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Predicting the binding sites of target proteins plays a fundamental role in drug discovery. Most existing deep-learning methods consider a protein as a 3D image by spatially clustering its atoms into voxels and then feed the voxelized protein into a 3D CNN for prediction. However, the CNN-based methods encounter several critical issues: 1) defective in representing irregular protein structures; 2) sensitive to rotations; 3) insufficient to characterize the protein surface; 4) unaware of protein size shift. To address the above issues, this work proposes EquiPocket, an E(3)-equivariant Graph Neural Network (GNN) for binding site prediction, which comprises three modules: the first one to extract local geometric information for each surface atom, the second one to model both the chemical and spatial structure of protein and the last one to capture the geometry of the surface via equivariant message passing over the surface atoms. We further propose a dense attention output layer to alleviate the effect incurred by variable protein size. Extensive experiments on several representative benchmarks demonstrate the superiority of our framework to the state-of-the-art methods.
[ Hall C 4-9 ]

Abstract
The idea of representing a signal as the weights of a neural network, called Implicit Neural Representations (INRs), has led to exciting implications for compression, view synthesis and 3D volumetric data understanding. One problem in this setting pertains to the use of INRs for downstream processing tasks. Despite some conceptual results, this remains challenging because the INR for a given image/signal often exists in isolation. What does the neighborhood around a given INR correspond to? Based on this question, we offer an operator theoretic reformulation of the INR model, which we call Operator INR (or O-INR). At a high level, instead of mapping positional encodings to a signal, O-INR maps one function space to another function space. A practical form of this general casting is obtained by appealing to Integral Transforms. The resultant model does not need multi-layer perceptrons (MLPs), used in most existing INR models -- we show that convolutions are sufficient and offer benefits including numerically stable behavior. We show that O-INR can easily handle most problem settings in the literature, and offers a similar performance profile as baselines. These benefits come with minimal, if any, compromise. Our code is available at https://github.com/vsingh-group/oinr.
[ Hall C 4-9 ]
Abstract
Black-box finetuning is an emerging interface for adapting state-of-the-art language models to user needs. However, such access may also let malicious actors undermine model safety. To demonstrate the challenge of defending finetuning interfaces, we introduce covert malicious finetuning, a method to compromise model safety via finetuning while evading detection. Our method constructs a malicious dataset where every individual datapoint appears innocuous, but finetuning on the dataset teaches the model to respond to encoded harmful requests with encoded harmful responses. Applied to GPT-4, our method produces a finetuned model that acts on harmful instructions 99% of the time and avoids detection by defense mechanisms such as dataset inspection, safety evaluations, and input/output classifiers. Our findings question whether black-box finetuning access can be secured against sophisticated adversaries.
[ Hall C 4-9 ]

Abstract
Reinforcement Learning from Human Feedback (RLHF) is currently the most widely used method to align large language models (LLMs) with human preferences. Existing RLHF methods can be roughly categorized as either reward-based or reward-free. Novel applications such as ChatGPT and Claude leverage reward-based methods that first learn a reward model and apply actor-critic algorithms, such as Proximal Policy Optimization (PPO). However, in academic benchmarks, state-of-the-art results are often achieved via reward-free methods, such as Direct Preference Optimization (DPO). Is DPO truly superior to PPO? Why does PPO perform poorly on these benchmarks? In this paper, we first conduct both theoretical and empirical studies on the algorithmic properties of DPO and show that DPO may have fundamental limitations. Moreover, we also comprehensively examine PPO and reveal the key factors for the best performances of PPO in fine-tuning LLMs. Finally, we benchmark DPO and PPO across a collection of RLHF testbeds, ranging from dialogue to code generation. Experiment results demonstrate that PPO is able to surpass other alignment methods in all cases and achieve state-of-the-art results in challenging code competitions.
[ Hall C 4-9 ]

Abstract
This paper tackled the challenging Fourier phase retrieval problem, the absolute uniqueness of which does not hold. The existence of equivalent solution (a.k.a. trivial solution ambiguity) hinders the successful recovery, especially for multi-channel color image. The traditional iterative engine, such as the Relaxed Averaged Alternating Reflections (RAAR), can be applied to reconstruct the image channel-wisely. However, due to the relative uniqueness of the solution, the restoration is not automatically aligned with the accurate orientation for each channel, resulting in a reconstructed image that deviates significantly from the true solution manifold. To address this issue, by penalizing the mismatch of the image channels, a diffusion model as the strong prior of the color image is integrated into the iterative engine. The combination of the traditional iterative engine and the diffusion model provides an effective solution to the oversampled Fourier phase retrieval. The formed algorithm, DiffFPR, is validated by experiments. The code is available at https://github.com/Chilie/DiffFPR.
[ Hall C 4-9 ]
Abstract
We delve into the challenge of semi-supervised node classification on the Contextual Stochastic Block Model (CSBM) dataset. Here, nodes from the two-cluster Stochastic Block Model (SBM) are coupled with feature vectors, which are derived from a Gaussian Mixture Model (GMM) that corresponds to their respective node labels. With only a subset of the CSBM node labels accessible for training, our primary objective becomes the accurate classification of the remaining nodes. Venturing into the transductive learning landscape, we, for the first time, pinpoint the information-theoretical threshold for the exact recovery of all test nodes in CSBM. Concurrently, we design an optimal spectral estimator inspired by Principal Component Analysis (PCA) with the training labels and essential data from both the adjacency matrix and feature vectors. We also evaluate the efficacy of graph ridge regression and Graph Convolutional Networks (GCN) on this synthetic dataset. Our findings underscore that graph ridge regression and GCN possess the ability to achieve the information threshold of exact recovery in a manner akin to the optimal estimator when using the optimal weighted self-loops. This highlights the potential role of feature learning in augmenting the proficiency of GCN, especially in the realm of semi-supervised learning.
[ Hall C 4-9 ]
Abstract
We consider the problem of sampling text from an energy-based model. This arises, for example, when sampling text from a neural language model subject to soft constraints. Although the target distribution is discrete, the internal computations of the energy function (given by the language model) are differentiable, so one would like to exploit gradient information within a method such as MCMC. Alas, all previous attempts to generalize gradient-based MCMC to text sampling fail to sample correctly from the target distribution. We propose a solution, along with variants, and study its theoretical properties. Through experiments on various forms of text generation, we demonstrate that our unbiased samplers are able to generate more fluent text while better adhering to the control objectives. The same methods could be used to sample from discrete energy-based models unrelated to text.
[ Hall C 4-9 ]
Abstract
Overfitting in RL has become one of the main obstacles to applications in reinforcement learning(RL). Existing methods do not provide explicit semantic constrain for the feature extractor, hindering the agent from learning a unified cross-domain representation and resulting in performance degradation on unseen domains. Besides, abundant data from multiple domains are needed. To address these issues, in this work, we propose prompt-based visual alignment (PVA), a robust framework to mitigate the detrimental domain bias in the image for zero-shot policy transfer. Inspired that Visual-Language Model (VLM) can serve as a bridge to connect both text space and image space, we leverage the semantic information contained in a text sequence as an explicit constraint to train a visual aligner. Thus, the visual aligner can map images from multiple domains to a unified domain and achieve good generalization performance. To better depict semantic information, prompt tuning is applied to learn a sequence of learnable tokens. With explicit constraints of semantic information, PVA can learn unified cross-domain representation under limited access to cross-domain data and achieves great zero-shot generalization ability in unseen domains. We verify PVA on a vision-based autonomous driving task with CARLA simulator. Experiments show that the agent generalizes well on …
[ Hall C 4-9 ]
Abstract
In-context learning (ICL, also known as few-shot prompting) has been the standard method of adapting LLMs to downstream tasks, by learning from a few input-output examples. Nonetheless, all ICL-based approaches only learn from correct input-output pairs. In this paper, we revisit this paradigm, by learning more from the few given input-output examples. We introduce Learning Principles (LEAP): First, we intentionally induce the model to make mistakes on these few examples; then we reflect on these mistakes, and learn explicit task-specific “principles” from them, which help solve similar problems and avoid common mistakes; finally, we prompt the model to answer unseen test questions using the original few-shot examples and these learned general principles. We evaluate LEAP on a wide range of benchmarks, including multi-hop question answering (Hotpot QA), textual QA (DROP), Big-Bench Hard reasoning, and math problems (GSM8K and MATH); in all these benchmarks, LEAP improves the strongest available LLMs such as GPT-3.5-turbo, GPT-4, GPT-4-turbo and Claude-2.1. For example, LEAP improves over the standard few-shot prompting using GPT-4 by 7.5% in DROP, and by 3.3% in HotpotQA. Importantly, LEAP does not require any more input or examples than the standard few-shot prompting settings.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
While deep neural networks have demonstrated groundbreaking performance in various settings, these models often suffer from catastrophic forgetting when trained on new tasks in sequence. Several works have empirically demonstrated that increasing the width of a neural network leads to a decrease in catastrophic forgetting but have yet to characterize the exact relationship between width and continual learning. We design one of the first frameworks to analyze Continual Learning Theory and prove that width is directly related to forgetting in Feed-Forward Networks (FFN), demonstrating that the diminishing returns of increasing widths to reduce forgetting. We empirically verify our claims at widths hitherto unexplored in prior studies where the diminishing returns are clearly observed as predicted by our theory.
[ Hall C 4-9 ]
Abstract
Graph clustering is a fundamental problem in machine learning. Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers. Such limitation motivates us to pose a more challenging problem of graph clustering with unknown cluster number. We propose to address this problem from a fresh perspective of graph information theory (i.e., structural information). In the literature, structural information has not yet been introduced to deep clustering, and its classic definition falls short of discrete formulation and modeling node features. In this work, we first formulate a differentiable structural information (DSI) in the continuous realm, accompanied by several theoretical results. By minimizing DSI, we construct the optimal partitioning tree where densely connected nodes in the graph tend to have the same assignment, revealing the cluster struc- ture. DSI is also theoretically presented as a new graph clustering objective, not requiring the pre-defined cluster number. Furthermore, we design a neural LSEnet in the Lorentz model of hyperbolic space, where we integrate node features to structural information via manifold-valued graph convolution. Extensive empirical results on real graphs show the superiority of our approach.
[ Hall C 4-9 ]
Abstract
Fluid dynamics modeling has received extensive attention in the machine learning community. Although numerous graph neural network (GNN) approaches have been proposed for this problem, the problem of out-of-distribution (OOD) generalization remains underexplored. In this work, we propose a new large-scale dataset Prometheus which simulates tunnel and pool fires across various environmental conditions and builds an extensive benchmark of 12 baselines, which demonstrates that the OOD generalization performance is far from satisfactory. To tackle this, this paper introduces a new approach named Disentangled Graph ODE (DGODE), which learns disentangled representations for continuous interacting dynamics modeling. In particular, we utilize a temporal GNN and a frequency network to extract semantics from historical trajectories into node representations and environment representations respectively. To mitigate the potential distribution shift, we minimize the mutual information between invariant node representations and the discretized environment features using adversarial learning. Then, they are fed into a coupled graph ODE framework, which models the evolution using neighboring nodes and dynamical environmental context. In addition, we enhance the stability of the framework by perturbing the environment features to enhance robustness. Extensive experiments validate the effectiveness of DGODE compared with state-of-the-art approaches.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
We introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultra-low-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks.
[ Hall C 4-9 ]

Abstract
We demonstrate that large language models (LLMs) may learn indicators of document usefulness and modulate their updates accordingly. We introduce random strings ("tags") as indicators of usefulness in a synthetic fine-tuning dataset. Fine-tuning on this dataset leads to implicit meta-learning (IML): in further fine-tuning, the model updates to make more use of text that is tagged as useful. We perform a thorough empirical investigation of this phenomenon, finding (among other things) that (i) it occurs in both pretrained LLMs and those trained from scratch, as well as on a vision task, and (ii) larger models and smaller batch sizes tend to give more IML. We also use probing to examine how IML changes the way models store knowledge in their parameters. Finally, we reflect on what our results might imply about the capabilities, risks, and controllability of future AI systems.
[ Hall C 4-9 ]

Abstract
Recent advancements in data-driven approaches, such as Neural Operator (NO), have demonstrated their effectiveness in reducing the solving time of Partial Differential Equations (PDEs). However, one major challenge faced by these approaches is the requirement for a large amount of high-precision training data, which needs significant computational costs during the generation process. To address this challenge, we propose a novel PDE dataset generation algorithm, namely Differential Operator Action in Solution space (DiffOAS), which speeds up the data generation process and enhances the precision of the generated data simultaneously. Specifically, DiffOAS obtains a few basic PDE solutions and then combines them to get solutions. It applies differential operators on these solutions, a process we call 'operator action', to efficiently generate precise PDE data points. Theoretical analysis shows that the time complexity of DiffOAS method is one order lower than the existing generation method. Experimental results show that DiffOAS accelerates the generation of large-scale datasets with 10,000 instances by 300 times. Even with just 5% of the generation time, NO trained on the data generated by DiffOAS exhibits comparable performance to that using the existing generation method, which highlights the efficiency of DiffOAS.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
As large language models (LLMs) become more capable, fine-tuning techniques for aligning with human intent are increasingly important. A key consideration for aligning these models is how to most effectively use human resources, or model resources in the case where LLMs themselves are used as oracles. Reinforcement learning from Human or AI preferences (RLHF/RLAIF) is the most prominent example of such a technique, but is complex and often unstable. Direct Preference Optimization (DPO) has recently been proposed as a simpler and more stable alternative. In this work, we develop an active learning strategy for DPO to make better use of preference labels. We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model and a measure of certainty of the implicit preference model optimized by DPO. We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
[ Hall C 4-9 ]
Abstract
In contrast to the prevailing interpretation of Low-Rank Adaptation (LoRA) as a means of simulating weight changes in model adaptation, this paper introduces an alternative perspective by framing it as a control process. Specifically, we conceptualize lightweight matrices in LoRA as control modules tasked with perturbing the original, complex, yet frozen blocks on downstream tasks. Building upon this new understanding, we conduct a thorough analysis on the controllability of these modules, where we identify and establish sufficient conditions that facilitate their effective integration into downstream controls. Moreover, the control modules are redesigned by incorporating nonlinearities through a parameter-free attention mechanism. This modification allows for the intermingling of tokens within the controllers, enhancing the adaptability and performance of the system. Empirical findings substantiate that, without introducing any additional parameters, this approach surpasses the existing LoRA algorithms across all assessed datasets and rank configurations.
[ Hall C 4-9 ]

Abstract
We propose a novel algorithm that extends the methods of ball smoothing and Gaussian smoothing for noisy derivative-free optimization by accounting for the heterogeneous curvature of the objective function. The algorithm dynamically adapts the shape of the smoothing kernel to approximate the Hessian of the objective function around a local optimum. This approach significantly reduces the error in estimating the gradient from noisy evaluations through sampling. We demonstrate the efficacy of our method through numerical experiments on artificial problems. Additionally, we show improved performance when tuning NP-hard combinatorial optimization solvers compared to existing state-ofthe-art heuristic derivative-free and Bayesian optimization methods.
[ Hall C 4-9 ]

Abstract
Selective classification enables models to make predictions only when they are sufficiently confident, aiming to enhance safety and reliability, which is important in high-stakes scenarios. Previous methods mainly use deep neural networks and focus on modifying the architecture of classification layers to enable the model to estimate the confidence of its prediction. This work provides a generalization bound for selective classification, disclosing that optimizing feature layers helps improve the performance of selective classification. Inspired by this theory, we propose to explicitly improve the selective classification model at the feature level for the first time, leading to a novel Confidence-aware Contrastive Learning method for Selective Classification, CCL-SC, which similarizes the features of homogeneous instances and differentiates the features of heterogeneous instances, with the strength controlled by the model's confidence. The experimental results on typical datasets, i.e., CIFAR-10, CIFAR-100, CelebA, and ImageNet, show that CCL-SC achieves significantly lower selective risk than state-of-the-art methods, across almost all coverage degrees. Moreover, it can be combined with existing methods to bring further improvement.
[ Hall C 4-9 ]

Abstract
Bayesian Persuasion is proposed as a tool for social media platforms to combat the spread of misinformation. Since platforms can use machine learning to predict the popularity and misinformation features of to-be-shared posts, and users are largely motivated to share popular content, platforms can strategically signal this informational advantage to change user beliefs and persuade them not to share misinformation. We characterize the optimal signaling scheme with imperfect predictions as a linear program and give sufficient and necessary conditions on the classifier to ensure optimal platform utility is non-decreasing and continuous. Next, this interaction is considered under a performative model, wherein platform intervention affects the user's future behaviour. The convergence and stability of optimal signaling under this performative process are fully characterized. Lastly, we experimentally validate that our approach significantly reduces misinformation in both the single round and performative setting.
[ Hall C 4-9 ]
Abstract
Machine learning (ML) approaches have been successfully applied to accelerating exact combinatorial optimization (CO) solvers. However, many of them fail to explain what patterns they have learned that accelerate the CO algorithms due to the black-box nature of ML models like neural networks, and thus they prevent researchers from further understanding the tasks they are interested in. To tackle this problem, we propose the first graph-based algorithm discovery framework---namely, graph symbolic discovery for exact combinatorial optimization solver (GS4CO)---that learns interpretable branching policies directly from the general bipartite graph representation of CO problems. Specifically, we design a unified representation for symbolic policies with graph inputs, and then we employ a Transformer with multiple tree-structural encodings to generate symbolic trees end-to-end, which effectively reduces the cumulative error from iteratively distilling graph neural networks. Experiments show that GS4CO learned interpretable and lightweight policies outperform all the baselines on CPU machines, including both the human-designed and the learning-based. GS4CO shows an encouraging step towards general algorithm discovery on modern CO solvers.
[ Hall C 4-9 ]

Abstract
Augmenting large language models (LLMs) to understand audio – including non-speech sounds and non-verbal speech – is critically important for diverse real-world applications of LLMs. In this paper, we propose Audio Flamingo, a novel audio language model with 1) strong audio understanding abilities, 2) the ability to quickly adapt to unseen tasks via in-context learning and retrieval, and 3) strong multi-turn dialogue abilities. We introduce a series of training techniques, architecture design, and data strategies to enhance our model with these abilities. Extensive evaluations across various audio understanding tasks confirm the efficacy of our method, setting new state-of-the-art benchmarks. Our demo website is https://audioflamingo.github.io/ and the code is open-sourced at https://github.com/NVIDIA/audio-flamingo.
[ Hall C 4-9 ]
Abstract
We propose to understand Contrastive Language-Image Pretraining model (CLIP) from the Optimal Transport (OT) perspective. Specifically, we show that training of CLIP is an embodiment of inverse OT and the adopted two InfoNCE losses in CLIP correspond to a special case of bilevel optimization of modified entropic OT. We then generalize the original CLIP loss to an OT-based loss family using variants of Regularized OT (e.g. Fused Gromov OT, unbalanced OT, etc.), and demonstrate their superior performance on public datasets for both image and text downstream tasks. We also rethink the inference stage of CLIP by using the tool of OT, and propose to adopt the fused Gromov OT for (zero-shot) classification, in which the prediction is based on the graph representation whereby images and texts are nodes for graph matching. By our new technique, we show how to generalize zero-shot classification to other more flexible zero-shot tasks with competitive performance: long-tailed classification and selective classification. The former assumes the known prior distribution of labels, while in the latter case, only a subset of samples are asked to predict, yet with high prediction confidence.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
The development of large language models (LLMs) has greatly advanced the field of multimodal understanding, leading to the emergence of large multimodal models (LMMs). In order to enhance visual comprehension, recent studies have equipped LMMs with region-level understanding capabilities by representing object bounding box coordinates as a series of text sequences (pix2seq). In this paper, we introduce a novel paradigm for object location modeling called the pix2emb method, where we ask the LMM to output the location embeddings and then decode them with different decoders. This paradigm allows us to use different location formats (such as bounding boxes and masks) in multimodal conversations. Leveraging the proposed pix2emb method, we train an LMM named NExT-Chat and demonstrate its capability of handling multiple tasks like visual grounding, region captioning, and grounded reasoning. Comprehensive experiments show the effectiveness of our NExT-Chat on various tasks, e.g., NExT-Chat (87.7) vs. Shikra (86.9) on POPE-Random, NExT-Chat (71.3) vs. LISA (67.9) on referring expression segmentation task, and NExT-Chat (79.6) vs. Kosmos-2 (62.3) on region caption task.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
In-context learning (ICL) has emerged as a particularly remarkable characteristic of Large Language Models (LLM): given a pretrained LLM and an observed dataset, LLMs can make predictions for new data points from the same distribution without fine-tuning. Numerous works have postulated ICL as approximately Bayesian inference, rendering this a natural hypothesis. In this work, we analyse this hypothesis from a new angle through the martingale property, a fundamental requirement of a Bayesian learning system for exchangeable data. We show that the martingale property is a necessary condition for unambiguous predictions in such scenarios, and enables a principled, decomposed notion of uncertainty vital in trustworthy, safety-critical systems. We derive actionable checks with corresponding theory and test statistics which must hold if the martingale property is satisfied. We also examine if uncertainty in LLMs decreases as expected in Bayesian learning when more data is observed. In three experiments, we provide evidence for violations of the martingale property, and deviations from a Bayesian scaling behaviour of uncertainty, falsifying the hypothesis that ICL is Bayesian.
[ Hall C 4-9 ]

Abstract
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations. Leveraging stochastic representations and Walk-on-Spheres methods, we develop novel losses for neural networks based on the recursive solution of Poisson equations on spheres inside the domain. The resulting method is highly parallelizable and does not require spatial gradients for the loss. We provide a comprehensive comparison against competing methods based on PINNs, the Deep Ritz method, and (backward) stochastic differential equations. In several challenging, high-dimensional numerical examples, we demonstrate the superiority of NWoS in accuracy, speed, and computational costs. Compared to commonly used PINNs, our approach can reduce memory usage and errors by orders of magnitude. Furthermore, we apply NWoS to problems in PDE-constrained optimization and molecular dynamics to show its efficiency in practical applications.
[ Hall C 4-9 ]

Abstract
The advent of generative AI (GenAI) technology produces a transformative impact on the content creation landscape, offering alternative approaches to produce diverse, good-quality content across media, thereby reshaping online ecosystems but also raising concerns about market over-saturation and the potential marginalization of human creativity. Our work introduces a competition model generalized from the Tullock contest to analyze the tension between human creators and GenAI. Our theory and simulations suggest that despite challenges, a stable equilibrium between human and AI-generated content is possible. Our work contributes to understanding the competitive dynamics in the content creation industry, offering insights into the future interplay between human creativity and technological advancements in GenAI.
[ Hall C 4-9 ]
Abstract
Automated red teaming holds substantial promise for uncovering and mitigating the risks associated with the malicious use of large language models (LLMs), yet the field lacks a standardized evaluation framework to rigorously assess new methods. To address this issue, we introduce HarmBench, a standardized evaluation framework for automated red teaming. We identify several desirable properties previously unaccounted for in red teaming evaluations and systematically design HarmBench to meet these criteria. Using HarmBench, we conduct a large-scale comparison of 18 red teaming methods and 33 target LLMs and defenses, yielding novel insights. We also introduce a highly efficient adversarial training method that greatly enhances LLM robustness across a wide range of attacks, demonstrating how HarmBench enables codevelopment of attacks and defenses. We open source HarmBench at https://github.com/centerforaisafety/HarmBench.
[ Hall C 4-9 ]
Abstract
Predictor-based methods have substantially enhanced Neural Architecture Search (NAS) optimization. The efficacy of these predictors is largely influenced by the method of encoding neural network architectures. While traditional encodings used an adjacency matrix describing the graph structure of a neural network, novel encodings embrace a variety of approaches from unsupervised pretraining of latent representations to vectors of zero-cost proxies. In this paper, we categorize and investigate neural encodings from three main types: structural, learned, and score-based. Furthermore, we extend these encodings and introduce unified encodings, that extend NAS predictors to multiple search spaces. Our analysis draws from experiments conducted on over 1.5 million neural network architectures on NAS spaces such as NASBench-101 (NB101), NB201, NB301, Network Design Spaces (NDS), and TransNASBench-101. Building on our study, we present our predictor FLAN: Flow Attention for NAS. FLAN integrates critical insights on predictor design, transfer learning, and unified encodings to enable more than an order of magnitude cost reduction for training NAS accuracy predictors. Our implementation and encodings for all neural networks are open-sourced at https://github.com/abdelfattah-lab/flan_nas.
[ Hall C 4-9 ]

Abstract
Widely used alignment techniques, such as reinforcement learning from human feedback (RLHF), rely on the ability of humans to supervise model behavior---for example, to evaluate whether a model faithfully followed instructions or generated safe outputs. However, future superhuman models will behave in complex ways too difficult for humans to reliably evaluate; humans will only be able to weakly supervise superhuman models. We study an analogy to this problem: can weak model supervision elicit the full capabilities of a much stronger model? We test this using a range of pretrained language models in the GPT-4 family on natural language processing (NLP), chess, and reward modeling tasks. We find that when we naively finetune strong pretrained models on labels generated by a weak model, they consistently perform better than their weak supervisors, a phenomenon we call weak-to-strong generalization. However, we are still far from recovering the full capabilities of strong models with naive finetuning alone, suggesting that techniques like RLHF may scale poorly to superhuman models without further work. We find that simple methods can often significantly improve weak-to-strong generalization: for example, when finetuning GPT-4 with a GPT-2-level supervisor and an auxiliary confidence loss, we can recover close to GPT-3.5-level performance …
[ Hall C 4-9 ]
Abstract
We provide an improved analysis of standard differentially private gradient descent for linear regression under the squared error loss. Under modest assumptions on the input, we characterize the distribution of the iterate at each time step. Our analysis leads to new results on the algorithm's accuracy: for a proper fixed choice of hyperparameters, the sample complexity depends only linearly on the dimension of the data. This matches the dimension-dependence of the (non-private) ordinary least squares estimator as well as that of recent private algorithms that rely on sophisticated adaptive gradient-clipping schemes (Varshney et al., 2022; Liu et al., 2023). Our analysis of the iterates' distribution also allows us to construct confidence intervals for the empirical optimizer which adapt automatically to the variance of the algorithm on a particular data set. We validate our theorems through experiments on synthetic data.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Graph neural networks (GNNs) have exhibited prominent performance in learning graph-structured data. Considering node classification task, based on the i.i.d assumption among node labels, the traditional supervised learning simply sums up cross-entropy losses of the independent training nodes and applies the average loss to optimize GNNs' weights. But different from other data formats, the nodes are naturally connected. It is found that the independent distribution modeling of node labels restricts GNNs' capability to generalize over the entire graph and defend adversarial attacks. In this work, we propose a new framework, termed joint-cluster supervised learning, to model the joint distribution of each node with its corresponding cluster. We learn the joint distribution of node and cluster labels conditioned on their representations, and train GNNs with the obtained joint loss. In this way, the data-label reference signals extracted from the local cluster explicitly strengthen the discrimination ability on the target node. The extensive experiments demonstrate that our joint-cluster supervised learning can effectively bolster GNNs' node classification accuracy. Furthermore, being benefited from the reference signals which may be free from spiteful interference, our learning paradigm significantly protects the node classification from being affected by the adversarial attack.
[ Hall C 4-9 ]

Abstract
AI-based frameworks for protein engineering use self-supervised learning (SSL) to obtain representations for downstream mutation effect predictions. The most common training objective for these methods is wildtype accuracy: given a sequence or structure where a wildtype residue has been masked, predict the missing amino acid. Wildtype accuracy, however, does not align with the primary goal of protein engineering, which is to suggest a mutation rather than to identify what already appears in nature. Here we present Evolutionary Ranking (EvoRank), a training objective that incorporates evolutionary information derived from multiple sequence alignments (MSAs) to learn more diverse protein representations. EvoRank corresponds to ranking amino-acid likelihoods in the probability distribution induced by an MSA. This objective forces models to learn the underlying evolutionary dynamics of a protein. Across a variety of phenotypes and datasets, we demonstrate that EvoRank leads to dramatic improvements in zero-shot performance and can compete with models fine-tuned on experimental data. This is particularly important in protein engineering, where it is expensive to obtain data for fine-tuning.
[ Hall C 4-9 ]

Abstract
Reconstructing dynamic articulated objects from a singular monocular video is challenging, requiring joint estimation of shape, motion, and camera parameters from limited views. Current methods typically demand extensive computational resources and training time, and require additional human annotations such as predefined parametric models, camera poses, and key points, limiting their generalizability. We propose Synergistic Shape and Skeleton Optimization (S3O), a novel two-phase method that forgoes these prerequisites and efficiently learns parametric models including visible shapes and underlying skeletons. Conventional strategies typically learn all parameters simultaneously, leading to interdependencies where a single incorrect prediction can result in significant errors. In contrast, S3O adopts a phased approach: it first focuses on learning coarse parametric models, then progresses to motion learning and detail addition. This method substantially lowers computational complexity and enhances robustness in reconstruction from limited viewpoints, all without requiring additional annotations. To address the current inadequacies in 3D reconstruction from monocular video benchmarks, we collected the PlanetZoo dataset. Our experimental evaluations on standard benchmarks and the PlanetZoo dataset affirm that S3O provides more accurate 3D reconstruction, and plausible skeletons, and reduces the training time by approximately 60% compared to the state-of-the-art, thus advancing the state of the art in dynamic object …
[ Hall C 4-9 ]

Abstract
Temporal distances lie at the heart of many algorithms for planning, control, and reinforcement learning that involve reaching goals, allowing one to estimate the transit time between two states. However, prior attempts to define such temporal distances in stochastic settings have been stymied by an important limitation: these prior approaches do not satisfy the triangle inequality. This is not merely a definitional concern, but translates to an inability to generalize and find shortest paths. In this paper, we build on prior work in contrastive learning and quasimetrics to show how successor features learned by contrastive learning (after a change of variables) form a temporal distance that does satisfy the triangle inequality, even in stochastic settings. Importantly, this temporal distance is computationally efficient to estimate, even in high-dimensional and stochastic settings. Experiments in controlled settings and benchmark suites demonstrate that an RL algorithm based on these new temporal distances exhibits combinatorial generalization (i.e., "stitching") and can sometimes learn more quickly than prior methods, including those based on quasimetrics.
[ Hall C 4-9 ]

Abstract
Prompt-based learning has been demonstrated as a compelling paradigm contributing to large language models' tremendous success (LLMs). Inspired by their success in language tasks, existing research has leveraged LLMs in embodied instruction following and task planning. In this work, we tackle the problem of training a robot to understand multimodal prompts, interleaving vision signals with text descriptions. This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals. In this work, we introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts from multi-task expert trajectories. Our methods consist of a two-stage training pipeline that performs inverse dynamics pretraining and multi-task finetuning. To facilitate multimodal understanding, we design our multimodal prompt encoder by augmenting a pretrained LM with a residual connection to the visual input and model the dependencies among action dimensions. Empirically, we evaluate the efficacy of our method on the VIMA-BENCH and establish a new state-of-the-art (10% improvement in success rate). Moreover, we demonstrate that our model exhibits remarkable in-context learning ability.
[ Hall C 4-9 ]
Abstract
In this position paper, we argue that application-driven research has been systemically under-valued in the machine learning community. As applications of machine learning proliferate, innovative algorithms inspired by specific real-world challenges have become increasingly important. Such work offers the potential for significant impact not merely in domains of application but also in machine learning itself. In this paper, we describe the paradigm of application-driven research in machine learning, contrasting it with the more standard paradigm of methods-driven research. We illustrate the benefits of application-driven machine learning and how this approach can productively synergize with methods-driven work. Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation. We outline how these processes may be improved.
[ Hall C 4-9 ]
Abstract
In this paper, we conduct a comprehensive analysis of two dual-branch (Siamese architecture) self-supervised learning approaches, namely Barlow Twins and spectral contrastive learning, through the lens of matrix mutual information. We prove that the loss functions of these methods implicitly optimize both matrix mutual information and matrix joint entropy. This insight prompts us to further explore the category of single-branch algorithms, specifically MAE and U-MAE, for which mutual information and joint entropy become the entropy. Building on this intuition, we introduce the Matrix Variational Masked Auto-Encoder (M-MAE), a novel method that leverages the matrix-based estimation of entropy as a regularizer and subsumes U-MAE as a special case. The empirical evaluations underscore the effectiveness of M-MAE compared with the state-of-the-art methods, including a 3.9% improvement in linear probing ViT-Base, and a 1% improvement in fine-tuning ViT-Large, both on ImageNet.
[ Hall C 4-9 ]

Abstract
Few-shot class-incremental learning (FSCIL) is proposed to continually learn from novel classes with only a few samples after the (pre-)training on base classes with sufficient data. However, this remains a challenge. In contrast, humans can easily recognize novel classes with a few samples. Cognitive science demonstrates that an important component of such human capability is compositional learning. This involves identifying visual primitives from learned knowledge and then composing new concepts using these transferred primitives, making incremental learning both effective and interpretable. To imitate human compositional learning, we propose a cognitive-inspired method for the FSCIL task. We define and build a compositional model based on set similarities, and then equip it with a primitive composition module and a primitive reuse module. In the primitive composition module, we propose to utilize the Centered Kernel Alignment (CKA) similarity to approximate the similarity between primitive sets, allowing the training and evaluation based on primitive compositions. In the primitive reuse module, we enhance primitive reusability by classifying inputs based on primitives replaced with the closest primitives from other classes. Experiments on three datasets validate our method, showing it outperforms current state-of-the-art methods with improved interpretability. Our code is available at https://github.com/Zoilsen/Comp-FSCIL.
[ Hall C 4-9 ]
Abstract
Given a graph with positive and negative edge labels, the correlation clustering problem aims to cluster the nodes so to minimize the total number of between-cluster positive and within-cluster negative edges. This problem has many applications in data mining, particularly in unsupervised learning. Inspired by the prevalence of large graphs and constantly changing data in modern applications, we study correlation clustering in dynamic, parallel (MPC), and local computation (LCA) settings. We design an approach that improves state-of-the-art runtime complexities in all these settings. In particular, we provide the first fully dynamic algorithm that runs in an expected amortized constant time, without any dependence on the graph size. Moreover, our algorithm essentially matches the approximation guarantee of the celebrated Pivot algorithm.
[ Hall C 4-9 ]
Abstract
Large language models (LLMs) are instruction followers but the performance varies under different instructions. It is challenging to create the best instruction, especially for black-box LLMs on which backpropagation is forbidden. Instead of directly optimizing the discrete instruction, we optimize a low-dimensional soft prompt applied to an open-source LLM to generate the instruction for the black-box LLM. In each optimization step of the proposed method InstructZero, a soft prompt is converted into an instruction by the open-source LLM, which is then submitted to the black-box LLM for zero-shot evaluation, whose result is sent to Bayesian optimization to produce new soft prompts improving the zero-shot performance. We evaluate InstructZero on different combinations of open-source LLMs and APIs including Vicuna and ChatGPT. InstructZero outperforms SOTA auto-instruction methods across a variety of downstream tasks.
[ Hall C 4-9 ]

Abstract
Diffusion-based re-ranking is a common method used for retrieving instances by performing similarity propagation in a nearest neighbor graph. However, existing techniques that construct the affinity graph based on pairwise instances can lead to the propagation of misinformation from outliers and other manifolds, resulting in inaccurate results. To overcome this issue, we propose a novel Cluster-Aware Similarity (CAS) diffusion for instance retrieval. The primary concept of CAS is to conduct similarity diffusion within local clusters, which can reduce the influence from other manifolds explicitly. To obtain a symmetrical and smooth similarity matrix, our Bidirectional Similarity Diffusion strategy introduces an inverse constraint term to the optimization objective of local cluster diffusion. Additionally, we have optimized a Neighbor-guided Similarity Smoothing approach to ensure similarity consistency among the local neighbors of each instance. Evaluations in instance retrieval and object re-identification validate the effectiveness of the proposed CAS, our code is publicly available.
[ Hall C 4-9 ]

Abstract
While large language models (LLMs) surge with the rise of generative AI, algorithms to explain LLMs highly desire. Existing feature attribution methods adequate for discriminative language models like BERT often fail to deliver faithful explanations for LLMs, primarily due to two issues: (1) For every specific prediction, the LLM outputs a probability distribution over the vocabulary–a large number of tokens with unequal semantic distance; (2) As an autoregressive language model, the LLM handles input tokens while generating a sequence of probability distributions of various tokens. To address above two challenges, this work proposes GiLOT that leverages Optimal Transport to measure the distributional change of all possible generated sequences upon the absence of every input token, while taking into account the tokens’ similarity, so as to faithfully estimate feature attribution for LLMs. We have carried out extensive experiments on top of Llama families and their fine-tuned derivatives across various scales to validate the effectiveness of GiLOT for estimating the input attributions. The results show that GiLOT outperforms existing solutions on a number of faithfulness metrics under fair comparison settings. Source code is publicly available at https://github.com/holyseven/GiLOT.
[ Hall C 4-9 ]

Abstract
Graph Neural Networks (GNNs) have become a building block in graph data processing, with wide applications in critical domains. The growing needs to deploy GNNs in high-stakes applications necessitate explainability for users in the decision-making processes. A popular paradigm for the explainability of GNNs is to identify explainable subgraphs by comparing their labels with the ones of original graphs. This task is challenging due to the substantial distributional shift from the original graphs in the training set to the set of explainable subgraphs, which prevents accurate prediction of labels with the subgraphs. To address it, in this paper, we propose a novel method that generates proxy graphs for explainable subgraphs that are in the distribution of training data. We introduce a parametric method that employs graph generators to produce proxy graphs. A new training objective based on information theory is designed to ensure that proxy graphs not only adhere to the distribution of training data but also preserve explanatory factors. Such generated proxy graphs can be reliably used to approximate the predictions of the labels of explainable subgraphs. Empirical evaluations across various datasets demonstrate our method achieves more accurate explanations for GNNs.
[ Hall C 4-9 ]
Abstract
Conventional Federated Learning (FL) involves collaborative training of a global model while maintaining user data privacy. One of its branches, decentralized FL, is a serverless network that allows clients to own and optimize different local models separately, which results in saving management and communication resources. Despite the promising advancements in decentralized FL, it may reduce model generalizability due to lacking a global model. In this scenario, managing data and model heterogeneity among clients becomes a crucial problem, which poses a unique challenge that must be overcome: How can every client's local model learn generalizable representation in a decentralized manner? To address this challenge, we propose a novel Decentralized FL technique by introducing Synthetic Anchors, dubbed as DeSA. Based on the theory of domain adaptation and Knowledge Distillation (KD), we theoretically and empirically show that synthesizing global anchors based on raw data distribution facilitates mutual knowledge transfer. We further design two effective regularization terms for local training: 1) REG loss that regularizes the distribution of the client's latent embedding with the anchors and 2) KD loss that enables clients to learn from others. Through extensive experiments on diverse client data distributions, we showcase the effectiveness of DeSA in …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Training autonomous agents that can learn new tasks from only a handful of demonstrations is a long-standing problem in machine learning. Recently, transformers have been shown to learn new language or vision tasks without any weight updates from only a few examples, also referred to as in-context learning. However, the sequential decision making setting poses additional challenges having a lower tolerance for errors since the environment's stochasticity or the agent's actions can lead to unseen, and sometimes unrecoverable, states. In this paper, we use an illustrative example to show that naively applying transformers to sequential decision making problems does not enable in-context learning of new tasks. We then demonstrate how training on sequences of trajectories with certain distributional properties leads to in-context learning of new sequential decision making tasks. We investigate different design choices and find that larger model and dataset sizes, as well as more task diversity, environment stochasticity, and trajectory burstiness, all result in better in-context learning of new out-of-distribution tasks. By training on large diverse offline datasets, our model is able to learn new MiniHack and Procgen tasks without any weight updates from just a handful of demonstrations.
[ Hall C 4-9 ]

Abstract
Fluid prediction is a long-standing challenge due to the intrinsic high-dimensional non-linear dynamics. Previous methods usually utilize the non-linear modeling capability of deep models to directly estimate velocity fields for future prediction. However, skipping over inherent physical properties but directly learning superficial velocity fields will overwhelm the model from generating precise or physics-reliable results. In this paper, we propose the HelmFluid toward an accurate and interpretable predictor for fluid. Inspired by the Helmholtz theorem, we design a HelmDynamics block to learn Helmholtz dynamics, which decomposes fluid dynamics into more solvable curl-free and divergence-free parts, physically corresponding to potential and stream functions of fluid. By embedding the HelmDynamics block into a Multiscale Multihead Integral Architecture, HelmFluid can integrate learned Helmholtz dynamics along temporal dimension in multiple spatial scales to yield future fluid. Compared with previous velocity estimating methods, HelmFluid is faithfully derived from Helmholtz theorem and ravels out complex fluid dynamics with physically interpretable evidence. Experimentally, HelmFluid achieves consistent state-of-the-art in both numerical simulated and real-world observed benchmarks, even for scenarios with complex boundaries.
[ Hall C 4-9 ]

Abstract
Federated Learning (FL) is a machine learning paradigm that safeguards privacy by retaining client data on edge devices. However, optimizing FL in practice can be challenging due to the diverse and heterogeneous nature of the learning system. Though recent research has focused on improving the optimization of FL when distribution shifts occur among clients, ensuring global performance when multiple types of distribution shifts occur simultaneously among clients---such as feature distribution shift, label distribution shift, and concept shift---remain under-explored. In this paper, we identify the learning challenges posed by the simultaneous occurrence of diverse distribution shifts and propose a clustering principle to overcome these challenges. Through our research, we find that existing methods fail to address the clustering principle. Therefore, we propose a novel clustering algorithm framework, dubbed as FedRC, which adheres to our proposed clustering principle by incorporating a bi-level optimization problem and a novel objective function. Extensive experiments demonstrate that FedRC significantly outperforms other SOTA cluster-based FL methods. Our code will be publicly available.
[ Hall C 4-9 ]

Abstract
Protein language models have demonstrated significant potential in the field of protein engineering. However, current protein language models primarily operate at the residue scale, which limits their ability to provide information at the atom level. This limitation prevents us from fully exploiting the capabilities of protein language models for applications involving both proteins and small molecules. In this paper, we propose ESM-AA (ESM All-Atom), a novel approach that enables atom-scale and residue-scale unified molecular modeling. ESM-AA achieves this by pre-training on multi-scale code-switch protein sequences and utilizing a multi-scale position encoding to capture relationships among residues and atoms. Experimental results indicate that ESM-AA surpasses previous methods in protein-molecule tasks, demonstrating the full utilization of protein language models. Further investigations reveal that through unified molecular modeling, ESM-AA not only gains molecular knowledge but also retains its understanding of proteins.
[ Hall C 4-9 ]

Abstract
Diffusion models have exhibited remarkable advancements in generating high-quality data. However, a critical drawback is their computationally intensive inference process, which requires a large number of timesteps to generate a single sample. Existing methods address this challenge by decoupling the forward and reverse processes, and they rely on handcrafted rules for sampling acceleration, leading to the risk of discarding important steps. In this paper, we propose an Efficient Denoising Diffusion method via Probabilistic Masking (EDDPM) that can identify and skip the redundant steps during training. To determine whether a timestep should be skipped or not, we employ probabilistic reparameterization to continualize the binary determination mask. The mask distribution parameters are learned jointly with model weights. By incorporating a real-time sparse constraint, our method can effectively identify and eliminate unnecessary steps during the training iterations, thereby improving inference efficiency. Notably, as the model becomes fully trained, the random masks converge to a sparse and deterministic one, retaining only a small number of essential steps. Empirical results demonstrate the superiority of our proposed EDDPM over the state-of-the-art sampling acceleration methods across various domains. EDDPM can generate high-quality samples with only 20% of the steps for time series imputation and achieve 4.89 FID …
[ Hall C 4-9 ]

Abstract
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data, enabling the rapid adaptation to new unseen tasks. Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts. In this paper, we empirically and theoretically identify and analyze the model heterogeneity in DFML. We find that model heterogeneity introduces a heterogeneity-homogeneity trade-off, where homogeneous models reduce task conflicts but also increase the overfitting risk. Balancing this trade-off is crucial for learning shared representations across tasks. Based on our findings, we propose Task Groupings Regularization, a novel approach that benefits from model heterogeneity by grouping and aligning conflicting tasks. Specifically, we embed pre-trained models into a task space to compute dissimilarity, and group heterogeneous models together based on this measure. Then, we introduce implicit gradient regularization within each group to mitigate potential conflicts. By encouraging a gradient direction suitable for all tasks, the meta-model captures shared representations that generalize across tasks. Comprehensive experiments showcase the superiority of our approach in multiple benchmarks, effectively tackling the model heterogeneity in challenging multi-domain and multi-architecture scenarios.
[ Hall C 4-9 ]

Abstract
With the increasing computational costs associated with deep learning, automated hyperparameter optimization methods, strongly relying on black-box Bayesian optimization (BO), face limitations. Freeze-thaw BO offers a promising grey-box alternative, strategically allocating scarce resources incrementally to different configurations. However, the frequent surrogate model updates inherent to this approach pose challenges for existing methods, requiring retraining or fine-tuning their neural network surrogates online, introducing overhead, instability, and hyper-hyperparameters. In this work, we propose FT-PFN, a novel surrogate for Freeze-thaw style BO. FT-PFN is a prior-data fitted network (PFN) that leverages the transformers' in-context learning ability to efficiently and reliably do Bayesian learning curve extrapolation in a single forward pass. Our empirical analysis across three benchmark suites shows that the predictions made by FT-PFN are more accurate and 10-100 times faster than those of the deep Gaussian process and deep ensemble surrogates used in previous work. Furthermore, we show that, when combined with our novel acquisition mechanism (MFPI-random), the resulting in-context freeze-thaw BO method (ifBO), yields new state-of-the-art performance in the same three families of deep learning HPO benchmarks considered in prior work.
[ Hall C 4-9 ]
Abstract
Inner Interpretability is a promising emerging field tasked with uncovering the inner mechanisms of AI systems, though how to develop these mechanistic theories is still much debated. Moreover, recent critiques raise issues that question its usefulness to advance the broader goals of AI. However, it has been overlooked that these issues resemble those that have been grappled with in another field: Cognitive Neuroscience. Here we draw the relevant connections and highlight lessons that can be transferred productively between fields. Based on these, we propose a general conceptual framework and give concrete methodological strategies for building mechanistic explanations in AI inner interpretability research. With this conceptual framework, Inner Interpretability can fend off critiques and position itself on a productive path to explain AI systems.
[ Hall C 4-9 ]

Abstract
The objective of traffic prediction is to accurately forecast and analyze the dynamics of transportation patterns, considering both space and time. However, the presence of distribution shift poses a significant challenge in this field, as existing models struggle to generalize well when faced with test data that significantly differs from the training distribution. To tackle this issue, this paper introduces a simple and universal spatio-temporal prompt-tuning framework-FlashST, which adapts pre-trained models to the specific characteristics of diverse downstream datasets, improving generalization in diverse traffic prediction scenarios. Specifically, the FlashST framework employs a lightweight spatio-temporal prompt network for in-context learning, capturing spatio-temporal invariant knowledge and facilitating effective adaptation to diverse scenarios. Additionally, we incorporate a distribution mapping mechanism to align the data distributions of pre-training and downstream data, facilitating effective knowledge transfer in spatio-temporal forecasting. Empirical evaluations demonstrate the effectiveness of our FlashST across different spatio-temporal prediction tasks using diverse urban datasets. Code is available at https://github.com/HKUDS/FlashST.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
This paper introduces a novel methodology for Feature Selection for Functional Classification, FSFC, that addresses the challenge of jointly performing feature selection and classification of functional data in scenarios with categorical responses and multivariate longitudinal features. FSFC tackles a newly defined optimization problem that integrates logistic loss and functional features to identify the most crucial variables for classification. To address the minimization procedure, we employ functional principal components and develop a new adaptive version of the Dual Augmented Lagrangian algorithm. The computational efficiency of FSFC enables handling high-dimensional scenarios where the number of features may considerably exceed the number of statistical units. Simulation experiments demonstrate that FSFC outperforms other machine learning and deep learning methods in computational time and classification accuracy. Furthermore, the FSFC feature selection capability can be leveraged to significantly reduce the problem's dimensionality and enhance the performances of other classification algorithms. The efficacy of FSFC is also demonstrated through a real data application, analyzing relationships between four chronic diseases and other health and demographic factors. FSFC source code is publicly available at https://github.com/IBM/funGCN.
[ Hall C 4-9 ]

Abstract
The current state of machine learning scholarship in Timeseries Anomaly Detection (TAD) is plagued by the persistent use of flawed evaluation metrics, inconsistent benchmarking practices, and a lack of proper justification for the choices made in novel deep learning-based model designs. Our paper presents a critical analysis of the status quo in TAD, revealing the misleading track of current research and highlighting problematic methods, and evaluation practices. Our position advocates for a shift in focus from solely pursuing novel model designs to improving benchmarking practices, creating non-trivial datasets, and critically evaluating the utility of complex methods against simpler baselines. Our findings demonstrate the need for rigorous evaluation protocols, the creation of simple baselines, and the revelation that state-of-the-art deep anomaly detection models effectively learn linear mappings. These findings suggest the need for more exploration and development of simple and interpretable TAD methods. The increment of model complexity in the state-of-the-art deep-learning based models unfortunately offers very little improvement. We offer insights and suggestions for the field to move forward.
[ Hall C 4-9 ]
Abstract
We introduce MOMENT, a family of open-source foundation models for general-purpose time series analysis. Pre-training large models on time series data is challenging due to (1) the absence of a large and cohesive public time series repository, and (2) diverse time series characteristics which make multi-dataset training onerous. Additionally, (3) experimental benchmarks to evaluate these models, especially in scenarios with limited resources, time, and supervision, are still in their nascent stages. To address these challenges, we compile a large and diverse collection of public time series, called the Time series Pile, and systematically tackle time series-specific challenges to unlock large-scale multi-dataset pre-training. Finally, we build on recent work to design a benchmark to evaluate time series foundation models on diverse tasks and datasets in limited supervision settings. Experiments on this benchmark demonstrate the effectiveness of our pre-trained models with minimal data and task-specific fine-tuning. Finally, we present several interesting empirical observations about large pre-trained time series models. Pre-trained models (AutonLab/MOMENT-1-large) and Time Series Pile (AutonLab/Timeseries-PILE) are available on Huggingface.
[ Hall C 4-9 ]

Abstract
Modeling complex systems using standard neural ordinary differential equations (NODEs) often faces some essential challenges, including high computational costs and susceptibility to local optima. To address these challenges, we propose a simulation-free framework, called Fourier NODEs (FNODEs), that effectively trains NODEs by directly matching the target vector field based on Fourier analysis. Specifically, we employ the Fourier analysis to estimate temporal and potential high-order spatial gradients from noisy observational data. We then incorporate the estimated spatial gradients as additional inputs to a neural network. Furthermore, we utilize the estimated temporal gradient as the optimization objective for the output of the neural network. Later, the trained neural network generates more data points through an ODE solver without participating in the computational graph, facilitating more accurate estimations of gradients based on Fourier analysis. These two steps form a positive feedback loop, enabling accurate dynamics modeling in our framework. Consequently, our approach outperforms state-of-the-art methods in terms of training time, dynamics prediction, and robustness. Finally, we demonstrate the superior performance of our framework using a number of representative complex systems.
[ Hall C 4-9 ]

Abstract
Model-based methods have significantly contributed to distinguishing task-irrelevant distractors for visual control. However, prior research has primarily focused on heterogeneous distractors like noisy background videos, leaving homogeneous distractors that closely resemble controllable agents largely unexplored, which poses significant challenges to existing methods. To tackle this problem, we propose Implicit Action Generator (IAG) to learn the implicit actions of visual distractors, and present a new algorithm named implicit Action-informed Diverse visual Distractors Distinguisher (AD3), that leverages the action inferred by IAG to train separated world models. Implicit actions effectively capture the behavior of background distractors, aiding in distinguishing the task-irrelevant components, and the agent can optimize the policy within the task-relevant state space. Our method achieves superior performance on various visual control tasks featuring both heterogeneous and homogeneous distractors. The indispensable role of implicit actions learned by IAG is also empirically validated.
[ Hall C 4-9 ]

Abstract
Transformer-based architectures achieved breakthrough performance in natural language processing and computer vision, yet they remain inferior to simpler linear baselines in multivariate long-term forecasting. To better understand this phenomenon, we start by studying a toy linear forecasting problem for which we show that transformers are incapable of converging to their true solution despite their high expressive power. We further identify the attention of transformers as being responsible for this low generalization capacity. Building upon this insight, we propose a shallow lightweight transformer model that successfully escapes bad local minima when optimized with sharpness-aware optimization. We empirically demonstrate that this result extends to all commonly used real-world multivariate time series datasets. In particular, SAMformer surpasses current state-of-the-art methods and is on par with the biggest foundation model MOIRAI while having significantly fewer parameters. The code is available at https://github.com/romilbert/samformer.
[ Hall C 4-9 ]

Abstract
This paper introduces SparseTSF, a novel, extremely lightweight model for Long-term Time Series Forecasting (LTSF), designed to address the challenges of modeling complex temporal dependencies over extended horizons with minimal computational resources. At the heart of SparseTSF lies the Cross-Period Sparse Forecasting technique, which simplifies the forecasting task by decoupling the periodicity and trend in time series data. This technique involves downsampling the original sequences to focus on cross-period trend prediction, effectively extracting periodic features while minimizing the model's complexity and parameter count. Based on this technique, the SparseTSF model uses fewer than 1k parameters to achieve competitive or superior performance compared to state-of-the-art models. Furthermore, SparseTSF showcases remarkable generalization capabilities, making it well-suited for scenarios with limited computational resources, small samples, or low-quality data. The code is publicly available at this repository: https://github.com/lss-1138/SparseTSF.
[ Hall C 4-9 ]
Abstract
Accurately reconstructing the global ocean deoxygenation over a century is crucial for assessing and protecting marine ecosystem. Existing expert-dominated numerical simulations fail to catch up with the dynamic variation caused by global warming and human activities. Besides, due to the high-cost data collection, the historical observations are severely sparse, leading to big challenge for precise reconstruction. In this work, we propose OxyGenerator, the first deep learning based model, to reconstruct the global ocean deoxygenation from 1920 to 2023. Specifically, to address the heterogeneity across large temporal and spatial scales, we propose zoning-varying graph message-passing to capture the complex oceanographic correlations between missing values and sparse observations. Additionally, to further calibrate the uncertainty, we incorporate inductive bias from dissolved oxygen (DO) variations and chemical effects. Compared with in-situ DO observations, OxyGenerator significantly outperforms CMIP6 numerical simulations, reducing MAPE by 38.77%, demonstrating a promising potential to understand the “breathless ocean” in data-driven manner.
[ Hall C 4-9 ]
Abstract
Robotic manipulation tasks often span over long horizons and encapsulate multiple subtasks with different skills. Learning policies directly from long-horizon demonstrations is challenging without intermediate keyframes guidance and corresponding skill annotations. Existing approaches for keyframe identification often struggle to offer reliable decomposition for low accuracy and fail to provide semantic relevance between keyframes and skills. For this, we propose a unified Keyframe Identifier and Skill Anotator (KISA) that utilizes pretrained visual-language representations for precise and interpretable decomposition of unlabeled demonstrations. Specifically, we develop a simple yet effective temporal enhancement module that enriches frame-level representations with expanded receptive fields to capture semantic dynamics at the video level. We further propose coarse contrastive learning and fine-grained monotonic encouragement to enhance the alignment between visual representations from keyframes and language representations from skills. The experimental results across three benchmarks demonstrate that KISA outperforms competitive baselines in terms of accuracy and interpretability of keyframe identification. Moreover, KISA exhibits robust generalization capabilities and the flexibility to incorporate various pretrained representations.
[ Hall C 4-9 ]

Abstract
Generative modeling of complex behaviors from labeled datasets has been a longstanding problem in decision-making. Unlike language or image generation, decision-making requires modeling actions – continuous-valued vectors that are multimodal in their distribution, potentially drawn from uncurated sources, where generation errors can compound in sequential prediction. A recent class of models called Behavior Transformers (BeT) addresses this by discretizing actions using k-means clustering to capture different modes. However, k-means struggles to scale for high-dimensional action spaces or long sequences, and lacks gradient information, and thus BeT suffers in modeling long-range actions. In this work, we present Vector-Quantized Behavior Transformer (VQ-BeT), a versatile model for behavior generation that handles multimodal action prediction, conditional generation, and partial observations. VQ-BeT augments BeT by tokenizing continuous actions with a hierarchical vector quantization module. Across seven environments including simulated manipulation, autonomous driving, and robotics, VQ-BeT improves on state-of-the-art models such as BeT and Diffusion Policies. Importantly, we demonstrate VQ-BeT’s improved ability to capture behavior modes while accelerating inference speed 5× over Diffusion Policies. Videos can be found https://sjlee.cc/vq-bet/
[ Hall C 4-9 ]

Abstract
In the realm of household robotics, the Zero-Shot Object Navigation (ZSON) task empowers agents to adeptly traverse unfamiliar environments and locate objects from novel categories without prior explicit training. This paper introduces VoroNav, a novel semantic exploration framework that proposes the Reduced Voronoi Graph to extract exploratory paths and planning nodes from a semantic map constructed in real time. By harnessing topological and semantic information, VoroNav designs text-based descriptions of paths and images that are readily interpretable by a large language model (LLM). In particular, our approach presents a synergy of path and farsight descriptions to represent the environmental context, enabling LLM to apply commonsense reasoning to ascertain waypoints for navigation. Extensive evaluation on HM3D and HSSD validates VoroNav surpasses existing benchmarks in both success rate and exploration efficiency (absolute improvement: +2.8% Success and +3.7% SPL on HM3D, +2.6% Success and +3.8% SPL on HSSD). Additionally introduced metrics that evaluate obstacle avoidance proficiency and perceptual efficiency further corroborate the enhancements achieved by our method in ZSON planning. Project page: https://voro-nav.github.io
[ Hall C 4-9 ]
Abstract
We present RoboGen, a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation. RoboGen leverages the latest advancements in foundation and generative models. Instead of directly adapting these models to produce policies or low-level actions, we advocate for a generative scheme, which uses these models to automatically generate diversified tasks, scenes, and training supervisions, thereby scaling up robotic skill learning with minimal human supervision. Our approach equips a robotic agent with a self-guided propose-generate-learn cycle: the agent first proposes interesting tasks and skills to develop, and then generates simulation environments by populating pertinent assets with proper spatial configurations. Afterwards, the agent decomposes the proposed task into sub-tasks, selects the optimal learning approach (reinforcement learning, motion planning, or trajectory optimization), generates required training supervision, and then learns policies to acquire the proposed skill. Our fully generative pipeline can be queried repeatedly, producing an endless stream of skill demonstrations associated with diverse tasks and environments.
[ Hall C 4-9 ]

Abstract
Effective motion planning in high dimensional spaces is a long-standing open problem in robotics. One class of traditional motion planning algorithms corresponds to potential-based motion planning. An advantage of potential based motion planning is composability -- different motion constraints can easily combined by adding corresponding potentials. However, constructing motion paths from potentials requires solving a global optimization across configuration space potential landscape, which is often prone to local minima. We propose a new approach towards learning potential based motion planning, where we train a neural network to capture and learn an easily optimizable potentials over motion planning trajectories. We illustrate the effectiveness of such approach, significantly outperforming both classical and recent learned motion planning approaches and avoiding issues with local minima. We further illustrate its inherent composability, enabling us to generalize to a multitude of different motion constraints. Project website at https://energy-based-model.github.io/potential-motion-plan.
[ Hall C 4-9 ]

Abstract
Trajectory prediction is an important task that involves modeling the indeterminate nature of agents to forecast future trajectories given the observed trajectory sequences. The task of predicting trajectories poses significant challenges, as agents not only move individually through time but also interact spatially. The learning of complex spatio-temporal representations stands as a fundamental challenge in trajectory prediction. To this end, we propose a novel approach called SSWDP (Self-Supervised Waypoint Distortion Prediction). We propose a simple yet highly effective self-supervised task of predicting distortion present in the observed trajectories to improve the representation learning of the model. Our approach can complement existing trajectory prediction methods. The experimental results highlight a significant improvement with relative percentage differences of 22.7%/38.9%, 33.8%/36.4%, and 16.60%/23.20% in ADE/FDE for the NBA, TrajNet++, and ETH-UCY datasets, respectively, compared to the baseline methods. Our approach also demonstrates a significant improvement over baseline methods with relative percentage differences of 76.8%/82.5% and 61.0%/36.1% in ADE/FDE for TrajNet++ and NBA datasets in distorted environments, respectively.
[ Hall C 4-9 ]

Abstract
Learning-based neural-network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control. However, formal (Lyapunov) stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain, and most existing approaches rely on expensive solvers for sums-of-squares (SOS), mixed-integer programming (MIP), or satisfiability modulo theories (SMT). In this paper, we demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations. We propose a novel formulation that defines a larger verifiable region-of-attraction (ROA) than shown in the literature, and refines the conventional restrictive constraints on Lyapunov derivatives to focus only on certifiable ROAs. The Lyapunov condition is rigorously verified post-hoc using branch-and-bound with scalable linear bound propagation-based NN verification techniques. The approach is efficient and flexible, and the full training and verification procedure is accelerated on GPUs without relying on expensive solvers for SOS, MIP, nor SMT. The flexibility and efficiency of our framework allow us to demonstrate Lyapunov-stable output feedback control with synthesized NN-based controllers and NN-based observers with formal stability guarantees, for the first time in literature.
[ Hall C 4-9 ]

Abstract
Dialog systems, such as voice assistants, are expected to engage with users in complex, evolving conversations. Unfortunately, traditional automatic speech recognition (ASR) systems deployed in such applications are usually trained to recognize each turn independently and lack the ability to adapt to the conversational context or incorporate user feedback. In this work, we introduce a general framework for ASR in dialog systems that can go beyond learning from single-turn utterances and learn over time how to adapt to both explicit supervision and implicit user feedback present in multi-turn conversations. We accomplish that by leveraging advances in student-teacher learning and context-aware dialog processing, and designing contrastive self-supervision approaches with Ohm, a new online hard-negative mining approach. We show that leveraging our new framework compared to traditional training leads to relative WER reductions of close to 10% in real-world dialog systems, and up to 26% on public synthetic data.
[ Hall C 4-9 ]

Abstract
Recent research has made significant progress in designing fusion modules for audio-visual speech separation. However, they predominantly focus on multi-modal fusion at a single temporal scale of auditory and visual features without employing selective attention mechanisms, which is in sharp contrast with the brain. To address this, We propose a novel model called intra- and inter-attention network (IIANet), which leverages the attention mechanism for efficient audio-visual feature fusion. IIANet consists of two types of attention blocks: intra-attention (IntraA) and inter-attention (InterA) blocks, where the InterA blocks are distributed at the top, middle and bottom of IIANet. Heavily inspired by the way how human brain selectively focuses on relevant content at various temporal scales, these blocks maintain the ability to learn modality-specific features and enable the extraction of different semantics from audio-visual features. Comprehensive experiments on three standard audio-visual separation benchmarks (LRS2, LRS3, and VoxCeleb2) demonstrate the effectiveness of IIANet, outperforming previous state-of-the-art methods while maintaining comparable inference time. In particular, the fast version of IIANet (IIANet-fast) has only 7% of CTCNet’s MACs and is 40% faster than CTCNet on CPUs while achieving better separation quality, showing the great potential of attention mechanism for efficient and effective multimodal fusion.
[ Hall C 4-9 ]
Abstract
Language generation based on maximum likelihood estimation (MLE) has become the fundamental approach for text generation. Maximum likelihood estimation is typically performed by minimizing the log-likelihood loss, also known as the logarithmic score in statistical decision theory. The logarithmic score is strictly proper in the sense that it encourages honest forecasts, where the expected score is maximized only when the model reports true probabilities. Although many strictly proper scoring rules exist, the logarithmic score is the only local scoring rule among them that depends exclusively on the probability of the observed sample, making it capable of handling the exponentially large sample space of natural text. In this work, we propose a straightforward strategy for adapting scoring rules to language generation, allowing for language modeling with any non-local scoring rules. Leveraging this strategy, we train language generation models using two classic strictly proper scoring rules, the Brier score and the Spherical score, as alternatives to the logarithmic score. Experimental results indicate that simply substituting the loss function, without adjusting other hyperparameters, can yield substantial improvements in model's generation capabilities. Moreover, these improvements can scale up to large language models (LLMs) such as LLaMA-7B and LLaMA-13B. Source code: https://github.com/shaochenze/ScoringRulesLM.
[ Hall C 4-9 ]

Abstract
Audio editing involves the arbitrary manipulation of audio content through precise control. Although text-guided diffusion models have made significant advancements in text-to-audio generation, they still face challenges in finding a flexible and precise way to modify target events within an audio track. We present a novel approach, referred to as PPAE, which serves as a general module for diffusion models and enables precise audio editing. The editing is based on the input textual prompt only and is entirely training-free. We exploit the cross-attention maps of diffusion models to facilitate accurate local editing and employ a hierarchical local-global pipeline to ensure a smoother editing process. Experimental results highlight the effectiveness of our method in various editing tasks.
[ Hall C 4-9 ]
Abstract
Semantic identifier (ID) is an important concept in information retrieval that aims to preserve the semantics of objects such as documents and items inside their IDs. Previous studies typically adopt a two-stage pipeline to learn semantic IDs by first procuring embeddings using off-the-shelf text encoders and then deriving IDs based on the embeddings. However, each step introduces potential information loss, and there is usually an inherent mismatch between the distribution of embeddings within the latent space produced by text encoders and the anticipated distribution required for semantic indexing. It is non-trivial to design a method that can learn the document’s semantic representations and its hierarchical structure simultaneously, given that semantic IDs are discrete and sequentially structured, and the semantic supervision is deficient. In this paper, we introduce LMIndexer, a self-supervised framework to learn semantic IDs with a generative language model. We tackle the challenge of sequential discrete ID by introducing a semantic indexer capable of generating neural sequential discrete representations with progressive training and contrastive learning. In response to the semantic supervision deficiency, we propose to train the model with a self-supervised document reconstruction objective. We show the high quality of the learned IDs and demonstrate their effectiveness on three …
[ Hall C 4-9 ]

Abstract
Analysis of neurodegenerative diseases on brain connectomes is important in facilitating early diagnosis and predicting its onset. However, investigation of the progressive and irreversible dynamics of these diseases remains underexplored in cross-sectional studies as its diagnostic groups are considered independent. Also, as in many real-world graphs, brain networks exhibit intricate structures with both homophily and heterophily. To address these challenges, we propose Adaptive Graph diffusion network with Temporal regularization (AGT). AGT introduces node-wise convolution to adaptively capture low (i.e., homophily) and high-frequency (i.e., heterophily) characteristics within an optimally tailored range for each node. Moreover, AGT captures sequential variations within progressive diagnostic groups with a novel temporal regularization, considering the relative feature distance between the groups in the latent space. As a result, our proposed model yields interpretable results at both node-level and group-level. The superiority of our method is validated on two neurodegenerative disease benchmarks for graph classification: Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Parkinson’s Progression Markers Initiative (PPMI) datasets.
[ Hall C 4-9 ]

Abstract
Neuronal morphology is essential for studying brain functioning and understanding neurodegenerative disorders. As acquiring real-world morphology data is expensive, computational approaches for morphology generation have been studied. Traditional methods heavily rely on expert-set rules and parameter tuning, making it difficult to generalize across different types of morphologies. Recently, MorphVAE was introduced as the sole learning-based method, but its generated morphologies lack plausibility, i.e., they do not appear realistic enough and most of the generated samples are topologically invalid. To fill this gap, this paper proposes MorphGrower, which mimicks the neuron natural growth mechanism for generation. Specifically, MorphGrower generates morphologies layer by layer, with each subsequent layer conditioned on the previously generated structure. During each layer generation, MorphGrower utilizes a pair of sibling branches as the basic generation block and generates branch pairs synchronously. This approach ensures topological validity and allows for fine-grained generation, thereby enhancing the realism of the final generated morphologies. Results on four real-world datasets demonstrate that MorphGrower outperforms MorphVAE by a notable margin. Importantly, the electrophysiological response simulation demonstrates the plausibility of our generated samples from a neuroscience perspective. Our code is available at https://github.com/Thinklab-SJTU/MorphGrower.
[ Hall C 4-9 ]

Abstract
The emergence of deep and large-scale spiking neural networks (SNNs) exhibiting high performance across diverse complex datasets has led to a need for compressing network models due to the presence of a significant number of redundant structural units, aiming to more effectively leverage their low-power consumption and biological interpretability advantages. Currently, most model compression techniques for SNNs are based on unstructured pruning of individual connections, which requires specific hardware support. Hence, we propose a structured pruning approach based on the activity levels of convolutional kernels named Spiking Channel Activity-based (SCA) network pruning framework. Inspired by synaptic plasticity mechanisms, our method dynamically adjusts the network's structure by pruning and regenerating convolutional kernels during training, enhancing the model's adaptation to the current target task. While maintaining model performance, this approach refines the network architecture, ultimately reducing computational load and accelerating the inference process. This indicates that structured dynamic sparse learning methods can better facilitate the application of deep SNNs in low-power and high-efficiency scenarios.
[ Hall C 4-9 ]

Abstract
Ecological rationality refers to the notion that humans are rational agents adapted to their environment. However, testing this theory remains challenging due to two reasons: the difficulty in defining what tasks are ecologically valid and building rational models for these tasks. In this work, we demonstrate that large language models can generate cognitive tasks, specifically category learning tasks, that match the statistics of real-world tasks, thereby addressing the first challenge. We tackle the second challenge by deriving rational agents adapted to these tasks using the framework of meta-learning, leading to a class of models called ecologically rational meta-learned inference (ERMI). ERMI quantitatively explains human data better than seven other cognitive models in two different experiments. It additionally matches human behavior on a qualitative level: (1) it finds the same tasks difficult that humans find difficult, (2) it becomes more reliant on an exemplar-based strategy for assigning categories with learning, and (3) it generalizes to unseen stimuli in a human-like way. Furthermore, we show that ERMI's ecologically valid priors allow it to achieve state-of-the-art performance on the OpenML-CC18 classification benchmark.
[ Hall C 4-9 ]

Abstract
Studying the complex interactions between different brain regions is crucial in neuroscience. Various statistical methods have explored the latent communication across multiple brain regions. Two main categories are the Gaussian Process (GP) and Linear Dynamical System (LDS), each with unique strengths. The GP-based approach effectively discovers latent variables with frequency bands and communication directions. Conversely, the LDS-based approach is computationally efficient but lacks powerful expressiveness in latent representation. In this study, we merge both methodologies by creating an LDS mirroring a multi-output GP, termed Multi-Region Markovian Gaussian Process (MRM-GP). Our work establishes a connection between an LDS and a multi-output GP that explicitly models frequencies and phase delays within the latent space of neural recordings. Consequently, the model achieves a linear inference cost over time points and provides an interpretable low-dimensional representation, revealing communication directions across brain regions and separating oscillatory communications into different frequency bands.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
RNA properties, such as function and stability, are intricately tied to their two-dimensional conformations. This has spurred the development of computational models for predicting the RNA secondary structures, leveraging dynamic programming or machine learning (ML) techniques. These structures are governed by specific rules; for example, only Watson-Crick and Wobble pairs are allowed, and sequences must not form sharp bends. Recent efforts introduced a systematic approach to post-process the predictions made by ML algorithms, aiming to modify them to respect the constraints. However, we still observe instances violating the requirements, significantly reducing biological relevance. To address this challenge, we present a novel post-processing framework for ML-based predictions on RNA secondary structures, inspired by the assignment problem in integer linear programming. Our algorithm offers a theoretical guarantee, ensuring that the resulting predictions adhere to the fundamental constraints of RNAs. Empirical evidence supports the efficacy of our approach, demonstrating improved predictive performance with no constraint violation, while requiring less running time.
[ Hall C 4-9 ]
Abstract
We propose a framework for global-scale canopy height estimation based on satellite data. Our model leverages advanced data preprocessing techniques, resorts to a novel loss function designed to counter geolocation inaccuracies inherent in the ground-truth height measurements, and employs data from the Shuttle Radar Topography Mission to effectively filter out erroneous labels in mountainous regions, enhancing the reliability of our predictions in those areas. A comparison between predictions and ground-truth labels yields an MAE/RMSE of 2.43 / 4.73 (meters) overall and 4.45 / 6.72 (meters) for trees taller than five meters, which depicts a substantial improvement compared to existing global-scale products. The resulting height map as well as the underlying framework will facilitate and enhance ecological analyses at a global scale, including, but not limited to, large-scale forest and biomass monitoring.
[ Hall C 4-9 ]

Abstract
In order to stabilize nonlinear systems modeled by stochastic differential equations, we design a Fast Exponentially Stable and Safe Neural Controller (FESSNC) for fast learning controllers. Our framework is parameterized by neural networks, and realizing both rigorous exponential stability and safety guarantees. Concretely, we design heuristic methods to learn the exponentially stable and the safe controllers, respectively, in light of the classical theory of stochastic exponential stability and our established theorem on guaranteeing the almost-sure safety for stochastic dynamics. More significantly, to rigorously ensure the stability and the safety guarantees for the learned controllers, we develop a projection operator, projecting to the space of exponentially-stable and safe controllers. To reduce the highly computational cost for solving the projection operation, approximate projection operators are delicately proposed with closed forms that map the learned controllers to the target controller space. Furthermore, we employ Hutchinson's trace estimator for a scalable unbiased estimate of the Hessian matrix that is used in the projection operator, which thus allows for reducing computational cost and, therefore, can accelerate the training and testing processes. More importantly, our approximate projection operations are applicable to the nonparametric control methods, improving their stability and safety performance. We empirically demonstrate the superiority …
[ Hall C 4-9 ]
Abstract
Progress in designing channel codes has been driven by human ingenuity and, fittingly, has been sporadic. Polar codes, developed on the foundation of Arikan’s polarization kernel, represent the latest breakthrough in coding theory and have emerged as the state-of-the-art error-correction code for short-to-medium block length regimes. In an effort to automate the invention of good channel codes, especially in this regime, we explore a novel, non-linear generalization of Polar codes, which we call DeepPolar codes. DeepPolar codes extend the conventional Polar coding framework by utilizing a larger kernel size and parameterizing these kernels and matched decoders through neural networks. Our results demonstrate that these data-driven codes effectively leverage the benefits of a larger kernel size, resulting in enhanced reliability when compared to both existing neural codes and conventional Polar codes.
[ Hall C 4-9 ]

Abstract
A well-trained deep neural network on balanced datasets usually exhibits the Neural Collapse (NC) phenomenon, which is an informative indicator of the model achieving good performance. However, NC is usually hard to be achieved for a model trained on long-tailed datasets, leading to the deteriorated performance of test data. This work aims to induce the NC phenomenon in imbalanced learning from the perspective of distribution matching. By enforcing the distribution of last-layer representations to align the ideal distribution of the ETF structure, we develop a Distribution Alignment Optimization (DisA) loss, acting as a plug-and-play method can be combined with most of the existing long-tailed methods, we further instantiate it to the cases of fixing classifier and learning classifier. The extensive experiments show the effectiveness of DisA, providing a promising solution to the imbalanced issue. Our code is available at DisA.
[ Hall C 4-9 ]

Abstract
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective reveals a multitude of overlooked metrics, tasks, and data types, such as uncertainty, active and continual learning, and scientific data, that demand attention. Bayesian deep learning (BDL) constitutes a promising avenue, offering advantages across these diverse settings. This paper posits that BDL can elevate the capabilities of deep learning. It revisits the strengths of BDL, acknowledges existing challenges, and highlights some exciting research avenues aimed at addressing these obstacles. Looking ahead, the discussion focuses on possible ways to combine large-scale foundation models with BDL to unlock their full potential.
[ Hall C 4-9 ]

Abstract
Compositional reasoning capabilities are usually considered as fundamental skills to characterize human perception. Recent studies show that current Vision Language Models (VLMs) surprisingly lack sufficient knowledge with respect to such capabilities. To this end, we propose to thoroughly diagnose the composition representations encoded by VLMs, systematically revealing the potential cause for this weakness. Specifically, we propose evaluation methods from a novel game-theoretic view to assess the vulnerability of VLMs on different aspects of compositional understanding, e.g., relations and attributes. Extensive experimental results demonstrate and validate several insights to understand the incapabilities of VLMs on compositional reasoning, which provide useful and reliable guidance for future studies. The deliverables will be updated here.
[ Hall C 4-9 ]
Abstract
Transformers with linear attention allow for efficient parallel training but can simultaneously be formulated as an RNN with 2D (matrix-valued) hidden states, thus enjoying linear-time inference complexity. However, linear attention generally underperforms ordinary softmax attention. Moreover, current implementations of linear attention lack I/O-awareness and are thus slower than highly optimized implementations of softmax attention. This work describes a hardware-efficient algorithm for linear attention that trades off memory movement against parallelizability. The resulting implementation, dubbed FlashLinearAttention, is faster than FlashAttention-2 as a standalone layer even on short sequence lengths (e.g., 1K). We then generalize this algorithm to a more expressive variant of linear attention with data-dependent gates. When used as a replacement for the standard attention layer in Transformers, the resulting gated linear attention (GLA) Transformer is found to perform competitively against the LLaMA-architecture Transformer as well recent linear-time-inference baselines such as RetNet and Mamba on moderate-scale language modeling experiments. GLA Transformer is especially effective at length generalization, enabling a model trained on 2K to generalize to sequences longer than 20K without significant perplexity degradations. For training speed, the GLA Transformer has higher throughput than a similarly-sized Mamba model.
[ Hall C 4-9 ]
Abstract
Transformers are the dominant architecture for sequence modeling, but there is growing interest in models that use a fixed-size latent state that does not depend on the sequence length, which we refer to as ''generalized state space models'' (GSSMs). In this paper we show that while GSSMs are promising in terms of inference-time efficiency, they are limited compared to transformer models on tasks that require copying from the input context. We start with a theoretical analysis of the simple task of string copying and prove that a two layer transformer can copy strings of exponential length while GSSMs are fundamentally limited by their fixed-size latent state. Empirically, we find that transformers outperform GSSMs in terms of efficiency and generalization on synthetic tasks that require copying the context. Finally, we evaluate pretrained large language models and find that transformer models dramatically outperform state space models at copying and retrieving information from context. Taken together, these results suggest a fundamental gap between transformers and GSSMs on tasks of practical interest.
[ Hall C 4-9 ]
Abstract
Structured data, which constitutes a significant portion of existing data types, has been a long-standing research topic in the field of machine learning. Various representation learning methods for tabular data have been proposed, ranging from encoder-decoder structures to Transformers. Among these, Transformer-based methods have achieved state-of-the-art performance not only in tabular data but also in various other fields, including computer vision and natural language processing. However, recent studies have revealed that self-attention, a key component of Transformers, can lead to an oversmoothing issue. We show that Transformers for tabular data also face this problem. To tackle the problem, we suggest a novel self-attention layer for tabular data, leveraging matrix polynomials. This proposed layer serves as a replacement for the original self-attention layer, contributing to the improvement of model scalability. In our experiments with three representative table learning models equipped with our proposed layer, we illustrate that the layer effectively mitigates the oversmoothing problem and enhances the representation performance of the existing methods, outperforming the state-of-the-art table representation methods.
[ Hall C 4-9 ]

Abstract
Transformer models have been gaining substantial interest in the field of computer vision tasks nowadays. Although a vision transformer contains two important components which are self-attention module and feedforward network (FFN) module, the majority of research tends to concentrate on modifying the former while leaving the latter in its original form. In this paper, we focus on improving the FFN module within the vision transformer. Through theoretical analysis, we demonstrate that the effect of the FFN module primarily lies in providing non-linearity, whose degree corresponds to the hidden dimensions. Thus, the computational cost of the FFN module can be reduced by enhancing the degree of non-linearity in the nonlinear function. Leveraging this insight, we propose an improved FFN (IFFN) module for vision transformers which involves the usage of the arbitrary GeLU (AGeLU) function and integrating multiple instances of it to augment non-linearity so that the number of hidden dimensions can be effectively reduced. Besides, a spatial enhancement part is involved to further enrich the non-linearity in the proposed IFFN module. Experimental results show that we can apply our method to a wide range of state-of-the-art vision transformer models irrespective of how they modify their self-attention part and the overall architecture, …
[ Hall C 4-9 ]

Abstract
In our study, we present bifurcated attention, a method developed for language model inference in single-context batch sampling contexts. This approach aims to reduce redundant memory IO costs, a significant factor in latency for high batch sizes and long context lengths. Bifurcated attention achieves this by dividing the attention mechanism during incremental decoding into two distinct GEMM operations, focusing on the KV cache from prefill and the decoding process. This method ensures precise computation and maintains the usual computational load (FLOPs) of standard attention mechanisms, but with reduced memory IO. Bifurcated attention is also compatible with multi-query attention mechanism known for reduced memory IO for KV cache, further enabling higher batch size and context length. The resulting efficiency leads to lower latency, improving suitability for real-time applications, e.g., enabling massively-parallel answer generation without substantially increasing latency, enhancing performance when integrated with post-processing techniques such as reranking.
[ Hall C 4-9 ]

Abstract
Knowledge graph reasoning plays a vital role in various applications and has garnered considerable attention. Recently, path-based methods have achieved impressive performance. However, they may face limitations stemming from constraints in message-passing neural networks, such as missing paths and information over-squashing. In this paper, we revisit the application of transformers for knowledge graph reasoning to address the constraints faced by path-based methods and propose a novel method KnowFormer. KnowFormer utilizes a transformer architecture to perform reasoning on knowledge graphs from the message-passing perspective, rather than reasoning by textual information like previous pretrained language model based methods. Specifically, we define the attention computation based on the query prototype of knowledge graph reasoning, facilitating convenient construction and efficient optimization. To incorporate structural information into the self-attention mechanism, we introduce structure-aware modules to calculate query, key, and value respectively. Additionally, we present an efficient attention computation method for better scalability. Experimental results demonstrate the superior performance of KnowFormer compared to prominent baseline methods on both transductive and inductive benchmarks.
[ Hall C 4-9 ]
Abstract
Considering generating samples with high rewards, we focus on optimizing deep neural networks parameterized stochastic differential equations (SDEs), the advanced generative models with high expressiveness, with policy gradient, the leading algorithm in reinforcement learning. Nevertheless, when applying policy gradients to SDEs, since the policy gradient is estimated on a finite set of trajectories, it can be ill-defined, and the policy behavior in data-scarce regions may be uncontrolled. This challenge compromises the stability of policy gradients and negatively impacts sample complexity. To address these issues, we propose constraining the SDE to be consistent with its associated perturbation process. Since the perturbation process covers the entire space and is easy to sample, we can mitigate the aforementioned problems. Our framework offers a general approach allowing for a versatile selection of policy gradient methods to effectively and efficiently train SDEs. We evaluate our algorithm on the task of structure-based drug design and optimize the binding affinity of generated ligand molecules. Our method achieves the best Vina score (-9.07) on the CrossDocked2020 dataset.
[ Hall C 4-9 ]

Abstract
In previous literature, backward error analysis was used to find ordinary differential equations (ODEs) approximating the gradient descent trajectory. It was found that finite step sizes implicitly regularize solutions because terms appearing in the ODEs penalize the two-norm of the loss gradients. We prove that the existence of similar implicit regularization in RMSProp and Adam depends on their hyperparameters and the training stage, but with a different "norm" involved: the corresponding ODE terms either penalize the (perturbed) one-norm of the loss gradients or, conversely, impede its reduction (the latter case being typical). We also conduct numerical experiments and discuss how the proven facts can influence generalization.
[ Hall C 4-9 ]

Abstract
Comparing spherical probability distributions is of great interest in various fields, including geology, medical domains, computer vision, and deep representation learning. The utility of optimal transport-based distances, such as the Wasserstein distance, for comparing probability measures has spurred active research in developing computationally efficient variations of these distances for spherical probability measures. This paper introduces a high-speed and highly parallelizable distance for comparing spherical measures using the stereographic projection and the generalized Radon transform, which we refer to as the Stereographic Spherical Sliced Wasserstein (S3W) distance. We carefully address the distance distortion caused by the stereographic projection and provide an extensive theoretical analysis of our proposed metric and its rotationally invariant variation. Finally, we evaluate the performance of the proposed metrics and compare them with recent baselines in terms of both speed and accuracy through a wide range of numerical studies, including gradient flows and self-supervised learning. Our code is available at https://github.com/mint-vu/s3wd.
[ Hall C 4-9 ]

Abstract
Recent research has focused on weight sparsity in deep neural network training to reduce FLOPs, aiming for improved efficiency (test accuracy w.r.t training FLOPs). However, sparse weight training often compromises accuracy, requiring extended training schedules to attain the accuracy of dense models. In contrast, our approach, Sparse Iso-FLOP Transformations (Sparse-IFT), uses sparsity to improve accuracy while maintaining dense model FLOPs. Using a single hyperparameter (i.e., the sparsity level), Sparse-IFTs efficiently replace dense layers, expanding the search space for optimal sparse masks. In addition, dynamic sparse training (DST) with Sparse-IFT models effectively navigate this larger sparse mask-weight space, which is evidenced by a spectral analysis using Ramanujan graph properties. Our study reveals a robust correlation among mask topology, weights, and final performance. Notably, without adjusting any training hyperparameters, replacing dense layers with Sparse-IFT yields significant improvements, such as a +3.5% boost for ResNet-18 on ImageNet and +0.9% for GPT-3 Small on the Open LLM leaderboard. To the best of our knowledge, this is the first work to demonstrate the use of sparsity for improving the accuracy of dense models through a set of simple-to-use sparse transformations. Code is available at: https://github.com/CerebrasResearch/Sparse-IFT.
[ Hall C 4-9 ]
Abstract
As the pre-training objectives (e.g., next token prediction) of language models (LMs) are inherently not aligned with task scores, optimizing LMs to achieve higher downstream task scores is essential. One of the promising approaches is to fine-tune LMs through reinforcement learning (RL). However, conventional RL methods based on PPO and a penalty of KL divergence are vulnerable to text degeneration where LMs do not generate natural texts anymore after RL fine-tuning. To address this problem, we provide Degeneration-free Policy Optimization (DfPO) that can fine-tune LMs to generate texts that achieve improved downstream task scores, while preserving the ability to generate natural texts. To achieve this, we introduce KL-masking which masks out the actions that potentially cause deviation from the reference policy when its likelihood is increased or decreased. Then, we devise truncated advantage functions for separately performing likelihood maximization and minimization to improve the task performance. In the experiments, we provide the results of DfPO and baseline algorithms on various generative NLP tasks including text continuation, text detoxification, and commonsense generation. Our experiments demonstrate that DfPO successfully improves the downstream task scores while preserving the ability to generate natural texts, without requiring additional hyperparameter search.
[ Hall C 4-9 ]

Abstract
The unsupervised outlier detection (UOD) problem refers to a task to identify inliers given training data which contain outliers as well as inliers, without any labeled information about inliers and outliers. It has been widely recognized that using fully-trained likelihood-based deep generative models (DGMs) often results in poor performance in distinguishing inliers from outliers. In this study, we claim that the likelihood itself could serve as powerful evidence for identifying inliers in UOD tasks, provided that DGMs are carefully under-fitted. Our approach begins with a novel observation called the inlier-memorization (IM) effect--when training a deep generative model with data including outliers, the model initially memorizes inliers before outliers. Based on this finding, we develop a new method called the outlier detection via the IM effect (ODIM). Remarkably, the ODIM requires only a few updates, making it computationally efficient--at least tens of times faster than other deep-learning-based algorithms. Also, the ODIM filters out outliers excellently, regardless of the data type, including tabular, image, and text data. To validate the superiority and efficiency of our method, we provide extensive empirical analyses on close to 60 datasets.
[ Hall C 4-9 ]
Abstract
Multimodal learning methods with targeted unimodal learning objectives have exhibited their superior efficacy in alleviating the imbalanced multimodal learning problem. However, in this paper, we identify the previously ignored gradient conflict between multimodal and unimodal learning objectives, potentially misleading the unimodal encoder optimization. To well diminish these conflicts, we observe the discrepancy between multimodal loss and unimodal loss, where both gradient magnitude and covariance of the easier-to-learn multimodal loss are smaller than the unimodal one. With this property, we analyze Pareto integration under our multimodal scenario and propose MMPareto algorithm, which could ensure a final gradient with direction that is common to all learning objectives and enhanced magnitude to improve generalization, providing innocent unimodal assistance. Finally, experiments across multiple types of modalities and frameworks with dense cross-modal interaction indicate our superior and extendable method performance. Our method is also expected to facilitate multi-task cases with a clear discrepancy in task difficulty, demonstrating its ideal scalability. The source code and dataset are available at https://github.com/GeWu-Lab/MMPareto_ICML2024.
[ Hall C 4-9 ]
Abstract
Contrastive Language-Image Pretraining (CLIP) has achieved remarkable success, leading to rapid advancements in multimodal studies. However, CLIP faces a notable challenge in terms of inefficient data utilization. It relies on a single contrastive supervision for each image-text pair during representation learning, disregarding a substantial amount of valuable information that could offer richer supervision. Additionally, the retention of non-informative tokens leads to increased computational demands and time costs, particularly in CLIP's ViT image encoder. To address these issues, we propose Multi-Perspective Language-Image Pretraining (MLIP). In MLIP, we leverage the frequency transform's sensitivity to both high and low-frequency variations, which complements the spatial domain's sensitivity limited to low-frequency variations only. By incorporating frequency transforms and token-level alignment, we expand CILP's single supervision into multi-domain and multi-level supervision, enabling a more thorough exploration of informative image features. Additionally, we introduce a token merging method guided by comprehensive semantics from the frequency and spatial domains. This allows us to merge tokens to multi-granularity tokens with a controllable compression rate to accelerate CLIP. Extensive experiments validate the effectiveness of our design.
[ Hall C 4-9 ]

Abstract
Data subset selection aims to find a smaller yet informative subset of a large dataset that can approximate the full-dataset training, addressing challenges associated with training neural networks on large-scale datasets. However, existing methods tend to specialize in either high or low selection ratio regimes, lacking a universal approach that consistently achieves competitive performance across a broad range of selection ratios. We introduce a universal and efficient data subset selection method, Best Window Selection (BWS), by proposing a method to choose the best window subset from samples ordered based on their difficulty scores. This approach offers flexibility by allowing the choice of window intervals that span from easy to difficult samples. Furthermore, we provide an efficient mechanism for selecting the best window subset by evaluating its quality using kernel ridge regression. Our experimental results demonstrate the superior performance of BWS compared to other baselines across a broad range of selection ratios over datasets, including CIFAR-10/100 and ImageNet, and the scenarios involving training from random initialization or fine-tuning of pre-trained models.
[ Hall C 4-9 ]

Abstract
Permutation symmetries of deep networks make basic operations like model merging and similarity estimation challenging. In many cases, aligning the weights of the networks, i.e., finding optimal permutations between their weights, is necessary. Unfortunately, weight alignment is an NP-hard problem. Prior research has mainly focused on solving relaxed versions of the alignment problem, leading to either time-consuming methods or sub-optimal solutions. To accelerate the alignment process and improve its quality, we propose a novel framework aimed at learning to solve the weight alignment problem, which we name Deep-Align. To that end, we first prove that weight alignment adheres to two fundamental symmetries and then, propose a deep architecture that respects these symmetries. Notably, our framework does not require any labeled data. We provide a theoretical analysis of our approach and evaluate Deep-Align on several types of network architectures and learning setups. Our experimental results indicate that a feed-forward pass with Deep-Align produces better or equivalent alignments compared to those produced by current optimization algorithms. Additionally, our alignments can be used as an effective initialization for other methods, leading to improved solutions with a significant speedup in convergence.
[ Hall C 4-9 ]

Abstract
In-memory computing (IMC) has emerged as a promising solution to address both computation and data-movement challenges, by performing computation on data in-place directly in the memory array. IMC typically relies on analog operation, which makes analog-to-digital converters (ADCs) necessary, for converting results back to the digital domain. However, ADCs maintain computational efficiency by having limited precision, leading to substantial quantization errors in compute outputs. This work proposes RAOQ (Reshape and Adapt for Output Quantization) to overcome this issue, which comprises two classes of mechanisms including: 1) mitigating ADC quantization error by adjusting the statistics of activations and weights, through an activation-shifting approach (A-shift) and a weight reshaping technique (W-reshape); 2) adapting AI models to better tolerate ADC quantization through a bit augmentation method (BitAug), complemented by the introduction of ADC-LoRA, a low-rank approximation technique, to reduce the training overhead. RAOQ demonstrates consistently high performance across different scales and domains of neural network models for computer vision and natural language processing (NLP) tasks at various bit precisions, achieving state-of-the-art results with practical IMC implementations.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Denoising Diffusion Probabilistic Models (DDPMs) exhibit remarkable capabilities in image generation, with studies suggesting that they can generalize by composing latent factors learned from the training data. In this work, we go further and study DDPMs trained on strictly separate subsets of the data distribution with large gaps on the support of the latent factors. We show that such a model can effectively generate images in the unexplored, intermediate regions of the distribution. For instance, when trained on clearly smiling and non-smiling faces, we demonstrate a sampling procedure which can generate slightly smiling faces without reference images (zero-shot interpolation). We replicate these findings for other attributes as well as other datasets. Our code is available on GitHub.
[ Hall C 4-9 ]

Abstract
Continuous-time generative models, such as Flow Matching (FM), construct probability paths to transport between one distribution and another through the simulation-free learning of the neural ordinary differential equations (ODEs). During inference, however, the learned model often requires multiple neural network evaluations to accurately integrate the flow, resulting in a slow sampling speed. We attribute the reason to the inherent (joint) heterogeneity of source and/or target distributions, namely the singularity problem, which poses challenges for training the neural ODEs effectively. To address this issue, we propose a more general framework, termed Switched FM (SFM), that eliminates singularities via switching ODEs, as opposed to using a uniform ODE in FM. Importantly, we theoretically show that FM cannot transport between two simple distributions due to the existence and uniqueness of initial value problems of ODEs, while these limitations can be well tackled by SFM. From an orthogonal perspective, our framework can seamlessly integrate with the existing advanced techniques, such as minibatch optimal transport, to further enhance the straightness of the flow, yielding a more efficient sampling process with reduced costs. We demonstrate the effectiveness of the newly proposed SFM through several numerical examples.
[ Hall C 4-9 ]

Abstract
Diffusion models have made significant contributions to computer vision, sparking a growing interest in the community recently regarding the application of it to graph generation. The existing discrete graph diffusion models exhibit heightened computational complexity and diminished training efficiency. A preferable and natural way is to directly diffuse the graph within the latent space. However, due to the non-Euclidean structure of graphs is not isotropic in the latent space, the existing latent diffusion models effectively make it difficult to capture and preserve the topological information of graphs. To address the above challenges, we propose a novel geometrically latent diffusion framework HypDiff. Specifically, we first establish a geometrically latent space with interpretability measures based on hyperbolic geometry, to define anisotropic latent diffusion processes for graphs. Then, we propose a geometrically latent diffusion process that is constrained by both radial and angular geometric properties, thereby ensuring the preservation of the original topological properties in the generative graphs. Extensive experimental results demonstrate the superior effectiveness of HypDiff for graph generation with various topologies.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Music generation schemes using language modeling rely on a vocabulary of audio tokens, generally provided as codes in a discrete latent space learnt by an auto-encoder. Multi-stage quantizers are often employed to produce these tokens, therefore the decoding strategy used for token prediction must be adapted to account for multiple codebooks: either it should model the joint distribution over all codebooks, or fit the product of the codebook marginal distributions. Modelling the joint distribution requires a costly increase in the number of auto-regressive steps, while fitting the product of the marginals yields an inexact model unless the codebooks are mutually independent. In this work, we introduce an independence-promoting loss to regularize the auto-encoder used as the tokenizer in language models for music generation. The proposed loss is a proxy for mutual information based on the maximum mean discrepancy principle, applied in reproducible kernel Hilbert spaces. Our criterion is simple to implement and train, and it is generalizable to other multi-stream codecs. We show that it reduces the statistical dependence between codebooks during auto-encoding. This leads to an increase in the generated music quality when modelling the product of the marginal distributions, while generating audio much faster than the joint distribution …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
We present VideoPoet, a language model capable of synthesizing high-quality video from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting the ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/
[ Hall C 4-9 ]

Abstract
We propose a Bayesian framework for fine-tuning large diffusion models with a novel network structure called Bayesian Power Steering (BPS). We clarify the meaning behind adaptation from a large probability space to a small probability space and explore the task of fine-tuning pre-trained models using learnable modules from a Bayesian perspective. BPS extracts task-specific knowledge from a pre-trained model’s learned prior distribution. It efficiently leverages large diffusion models, differentially intervening different hidden features with a head-heavy and foot-light configuration. Experiments highlight the superiority of BPS over contemporary methods across a range of tasks even with limited amount of data. Notably, BPS attains an FID score of 10.49 under the sketch condition on the COCO17 dataset.
[ Hall C 4-9 ]

Abstract
Continuous normalizing flows (CNFs) learn an ordinary differential equation to transform prior samples into data. Flow matching (FM) has recently emerged as a simulation-free approach for training CNFs by regressing a velocity model towards the conditional velocity field. However, on constrained domains, the learned velocity model may lead to undesirable flows that result in highly unnatural samples, e.g., oversaturated images, due to both flow matching error and simulation error. To address this, we add a boundary constraint term to CNFs, which leads to reflected CNFs that keep trajectories within the constrained domains. We propose reflected flow matching (RFM) to train the velocity model in reflected CNFs by matching the conditional velocity fields in a simulation-free manner, similar to the vanilla FM. Moreover, the analytical form of conditional velocity fields in RFM avoids potentially biased approximations, making it superior to existing score-based generative models on constrained domains. We demonstrate that RFM achieves comparable or better results on standard image benchmarks and produces high-quality class-conditioned samples under high guidance weight.
[ Hall C 4-9 ]

Abstract
Our study addresses the challenge of distinguishing human-written text from Large Language Model (LLM) outputs. We provide evidence that this differentiation is consistently feasible, except when human and machine text distributions are indistinguishable across their entire support. Employing information theory, we show that while detecting machine-generated text becomes harder as it nears human quality, it remains possible with adequate text data. We introduce guidelines on the required text data quantity, either through sample size or sequence length, for reliable AI text detection, through derivations of sample complexity bounds. This research paves the way for advanced detection methods. Our comprehensive empirical tests, conducted across various datasets (Xsum, Squad, IMDb, and Kaggle FakeNews) and with several state-of-the-art text generators (GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HF), assess the viability of enhanced detection methods against detectors like RoBERTa-Large/Base-Detector and GPTZero, with increasing sample sizes and sequence lengths. Our findings align with OpenAI's empirical data related to sequence length, marking the first theoretical substantiation for these observations.
[ Hall C 4-9 ]

Abstract
Neural Architecture Search (NAS) aims to automate deep neural network design across various applications, while a good search space design is core to NAS performance. A too-narrow search space may fail to cover diverse task requirements, whereas a too-broad one can escalate computational expenses and reduce efficiency. %We propose automatically generating the search space to tailor it to specific task conditions, optimizing search costs and producing viable architectures. In this work, we aim to address this challenge by leaning on the recent advances in generative modelling -- we propose a novel method that can navigate through an extremely large, general-purpose initial search space efficiently by training a two-level generative model hierarchy. The first level uses Conditional Continuous Normalizing Flow (CCNF) for micro-cell design, while the second employs a transformer-based sequence generator to craft macro architectures aligned with task needs and architectural constraints. To ensure computational feasibility, we pretrain the generative models in a task-agnostic manner using a metric space of graph and zero-cost (ZC) similarities between architectures. We show our approach can achieve state-of-the-art performance among other low-cost NAS methods across different tasks on CIFAR-10/100, ImageNet and NAS-Bench-360.
[ Hall C 4-9 ]

Abstract
A fundamental problem in learning 3D shapes generative models is that when the generative model is simply fitted to the training data, the resulting synthetic 3D models can present various artifacts. Many of these artifacts are topological in nature, e.g., broken legs, unrealistic thin structures, and small holes. In this paper, we introduce a principled approach that utilizes topological regularization losses on an implicit shape generator to rectify topological artifacts. The objectives are two-fold. The first is to align the persistent diagram (PD) distribution of the training shapes with that of synthetic shapes. The second ensures that the PDs are smooth among adjacent synthetic shapes. We show how to achieve these two objectives using two simple but effective formulations. Specifically, distribution alignment is achieved to learn a generative model of PDs and align this generator with PDs of synthetic shapes. We show how to handle discrete and continuous variabilities of PDs by using a shape-regularization term when performing PD alignment. Moreover, we enforce the smoothness of the PDs using a smoothness loss on the PD generator, which further improves the behavior of PD distribution alignment. Experimental results on ShapeNet show that our approach leads to much better generalization behavior than …
[ Hall C 4-9 ]
Abstract
We introduce Genie, the first generative interactive environment trained in an unsupervised manner from unlabelled Internet videos. The model can be prompted to generate an endless variety of action-controllable virtual worlds described through text, synthetic images, photographs, and even sketches. At 11B parameters, Genie can be considered a foundation world model. It is comprised of a spatiotemporal video tokenizer, an autoregressive dynamics model, and a simple and scalable latent action model. Genie enables users to act in the generated environments on a frame-by-frame basis despite training without any ground-truth action labels or other domain specific requirements typically found in the world model literature. Further the resulting learned latent action space facilitates training agents to imitate behaviors from unseen videos, opening the path for training generalist agents of the future.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Class-Incremental Learning (CIL) seeks to learn new concepts without forgetting previously learned knowledge. To achieve this, rehearsal-based methods keep a replay memory consisting of a small number of trained samples from previous tasks. However, recent studies show that rehearsal-based methods are prone to overfitting on rehearsal samples, resulting in poor generalization on previous tasks. Since the generalization error is bounded by the margin on the training dataset, in this paper, we study the generalization by all-layer margin on deep neural networks to alleviate catastrophic forgetting. Specifically, we show that the average margin of the rehearsal samples are smaller during incremental learning. To acquire larger margin thus better generalization on rehearsal samples, we propose Multi-layer Rehearsal Feature Augmentation (MRFA) in rehearsal training to optimize the all-layer margin on rehearsal samples. The proposed method augments the features of rehearsal samples at each layer by gradient ascent step of the current model with respect to the feature. With such augmentations on layer features, the margin on rehearsal samples are larger, rehearsal samples are able to provide more information for refining the decision boundary during incremental learning, thus alleviating catastrophic forgetting. Extensive experiments show the effectiveness of MRFA on various CIL scenarios.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Positional and structural encodings (PSE) enable better identifiability of nodes within a graph, rendering them essential tools for empowering modern GNNs, and in particular graph Transformers. However, designing PSEs that work optimally for all graph prediction tasks is a challenging and unsolved problem. Here, we present the Graph Positional and Structural Encoder (GPSE), the first-ever graph encoder designed to capture rich PSE representations for augmenting any GNN. GPSE learns an efficient common latent representation for multiple PSEs, and is highly transferable: The encoder trained on a particular graph dataset can be used effectively on datasets drawn from markedly different distributions and modalities. We show that across a wide range of benchmarks, GPSE-enhanced models can significantly outperform those that employ explicitly computed PSEs, and at least match their performance in others. Our results pave the way for the development of foundational pre-trained graph encoders for extracting positional and structural information, and highlight their potential as a more powerful and efficient alternative to explicitly computed PSEs and existing self-supervised pre-training approaches. Our framework and pre-trained models are publicly available at https://github.com/G-Taxonomy-Workgroup/GPSE. For convenience, GPSE has also been integrated into the PyG library to facilitate downstream applications.
[ Hall C 4-9 ]
Abstract
Graph Neural Network (GNN) resembles the diffusion process, leading to the over-smoothing of learned representations when stacking many layers. Hence, the reverse process of message passing can produce the distinguishable node representations by inverting the forward message propagation. The distinguishable representations can help us to better classify neighboring nodes with different labels, such as in heterophilic graphs. In this work, we apply the design principle of the reverse process to the three variants of the GNNs. Through the experiments on heterophilic graph data, where adjacent nodes need to have different representations for successful classification, we show that the reverse process significantly improves the prediction performance in many cases. Additional analysis reveals that the reverse mechanism can mitigate the over-smoothing over hundreds of layers. Our code is available at https://github.com/ml-postech/reverse-gnn.
[ Hall C 4-9 ]

Abstract
Climate change exacerbates riverine floods, which occur with higher frequency and intensity than ever. The much-needed forecasting systems typically rely on accurate river discharge predictions. To this end, the SOTA data-driven approaches treat forecasting at spatially distributed gauge stations as isolated problems, even within the same river network. However, incorporating the known topology of the river network into the prediction model has the potential to leverage the adjacency relationship between gauges. Thus, we model river discharge for a network of gauging stations with GNNs and compare the forecasting performance achieved by different adjacency definitions. Our results show that the model fails to benefit from the river network topology information, both on the entire network and small subgraphs. The learned edge weights correlate with neither of the static definitions and exhibit no regular pattern. Furthermore, the GNNs struggle to predict sudden, narrow discharge spikes. Our work hints at a more general underlying phenomenon of neural prediction not always benefitting from graphical structure and may inspire a systematic study of the conditions under which this happens.
[ Hall C 4-9 ]

Abstract
In this paper, we study semi-supervised graph classification, which aims at accurately predicting the categories of graphs in scenarios with limited labeled graphs and abundant unlabeled graphs. Despite the promising capability of graph neural networks (GNNs), they typically require a large number of costly labeled graphs, while a wealth of unlabeled graphs fail to be effectively utilized. Moreover, GNNs are inherently limited to encoding local neighborhood information using message-passing mechanisms, thus lacking the ability to model higher-order dependencies among nodes. To tackle these challenges, we propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification, which captures graph semantics from the perspective of the hypergraph and the line graph, respectively. Specifically, to better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies beyond pairwise relations. Meanwhile, based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges, thereby better mining the underlying semantic structures. Finally, we develop a relational consistency learning to facilitate knowledge transfer between the two branches and provide better mutual guidance. Extensive experiments on real-world graph datasets verify the effectiveness of the proposed method against existing state-of-the-art methods.
[ Hall C 4-9 ]

Abstract
The existing definitions of graph convolution, either from spatial or spectral perspectives, are inflexible and not unified. Defining a general convolution operator in the graph domain is challenging due to the lack of canonical coordinates, the presence of irregular structures, and the properties of graph symmetries. In this work, we propose a novel and general graph convolution framework by parameterizing the kernels as continuous functions of pseudo-coordinates derived via graph positional encoding. We name this Continuous Kernel Graph Convolution (CKGConv). Theoretically, we demonstrate that CKGConv is flexible and expressive. CKGConv encompasses many existing graph convolutions, and exhibits a stronger expressiveness, as powerful as graph transformers in terms of distinguishing non-isomorphic graphs. Empirically, we show that CKGConv-based Networks outperform existing graph convolutional networks and perform comparably to the best graph transformers across a variety of graph datasets. The code and models are publicly available at https://github.com/networkslab/CKGConv.
[ Hall C 4-9 ]

Abstract
This paper introduces a min-max optimization formulation for the Graph Signal Denoising (GSD) problem. In this formulation, we first maximize the second term of GSD by introducing perturbations to the graph structure based on Laplacian distance and then minimize the overall loss of the GSD. By solving the min-max optimization problem, we derive a new variant of the Graph Diffusion Convolution (GDC) architecture, called Graph Adversarial Diffusion Convolution (GADC). GADC differs from GDC by incorporating an additional term that enhances robustness against adversarial attacks on the graph structure and noise in node features. Moreover, GADC improves the performance of GDC on heterophilic graphs. Extensive experiments demonstrate the effectiveness of GADC across various datasets. Code is available at https://github.com/SongtaoLiu0823/GADC.
[ Hall C 4-9 ]

Abstract
Understanding and explaining the predictions of Graph Neural Networks (GNNs), is crucial for enhancing their safety and trustworthiness. Subgraph-level explanations are gaining attention for their intuitive appeal. However, most existing subgraph-level explainers face efficiency challenges in explaining GNNs due to complex search processes. The key challenge is to find a balance between intuitiveness and efficiency while ensuring transparency. Additionally, these explainers usually induce subgraphs by nodes, which may introduce less-intuitive disconnected nodes in the subgraph-level explanations or omit many important subgraph structures. In this paper, we reveal that inducing subgraph explanations by edges is more comprehensive than other subgraph inducing techniques. We also emphasize the need of determining the subgraph explanation size for each data instance, as different data instances may involve different important substructures. Building upon these considerations, we introduce a training-free approach, named EiG-Search. We employ an efficient linear-time search algorithm over the edge-induced subgraphs, where the edges are ranked by an enhanced gradient-based importance. We conduct extensive experiments on a total of seven datasets, demonstrating its superior performance and efficiency both quantitatively and qualitatively over the leading baselines.
[ Hall C 4-9 ]

Abstract
The increasing amount of graph data places requirements on the efficient training of graph neural networks (GNNs). The emerging graph distillation (GD) tackles this challenge by distilling a small synthetic graph to replace the real large graph, ensuring GNNs trained on real and synthetic graphs exhibit comparable performance. However, existing methods rely on GNN-related information as supervision, including gradients, representations, and trajectories, which have two limitations. First, GNNs can affect the spectrum (i.e., eigenvalues) of the real graph, causing spectrum bias in the synthetic graph. Second, the variety of GNN architectures leads to the creation of different synthetic graphs, requiring traversal to obtain optimal performance. To tackle these issues, we propose Graph Distillation with Eigenbasis Matching (GDEM), which aligns the eigenbasis and node features of real and synthetic graphs. Meanwhile, it directly replicates the spectrum of the real graph and thus prevents the influence of GNNs. Moreover, we design a discrimination constraint to balance the effectiveness and generalization of GDEM. Theoretically, the synthetic graphs distilled by GDEM are restricted spectral approximations of the real graphs. Extensive experiments demonstrate that GDEM outperforms state-of-the-art GD methods with powerful cross-architecture generalization ability and significant distillation efficiency. Our code is available at …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Graph neural networks (GNNs) have exhibited superb power in many graph related tasks. Existing GNNs can be categorized into spatial GNNs and spectral GNNs. The spatial GNNs primarily capture the local information around each node, while the spectral GNNs are able to operate on the frequency signals of the entire graph. However, most, if not all, existing spectral GNNs are faced with two limitations: (1) the polynomial limitation that for most spectral GNNs, the expressive power in the spectral domain is limited to polynomial filters; and (2) the transductive limitation that most spectral GNNs can only be applied to the transductive setting on relatively small-scale graphs. In this paper, we propose a novel spectral graph neural network named SLOG to solve the above two limitations. For the polynomial limitation, SLOG proposes a novel real-valued filter with geometric interpretability, mathematical feasibility and adaptive filtering ability to go beyond polynomial. For the transductive limitation, SLOG combines the subgraph sampling technique in spatial GNNs and the signal processing technique in spectral GNNs together to make itself tailored to the inductive setting on large-scale graphs. Extensive experimental results on 16 datasets demonstrate the superiority of SLOG in inductive homophilic and heterophilic node classification task.
[ Hall C 4-9 ]

Abstract
Although most graph neural networks (GNNs) can operate on graphs of any size, their classification performance often declines on graphs larger than those encountered during training. Existing methods insufficiently address the removal of size information from graph representations, resulting in sub-optimal performance and reliance on backbone models. In response, we propose DISGEN, a novel and model-agnostic framework designed to disentangle size factors from graph representations. DISGEN employs size- and task-invariant augmentations and introduces a decoupling loss that minimizes shared information in hidden representations, with theoretical guarantees for its effectiveness. Our empirical results show that DISGEN outperforms the state-of-the-art models by up to 6% on real-world datasets, underscoring its effectiveness in enhancing the size generalizability of GNNs. Our codes are available at: https://github.com/GraphmindDartmouth/DISGEN.
[ Hall C 4-9 ]
Abstract
Diffusion models have shown remarkable performance on many generative tasks. Despite recent success, most diffusion models are restricted in that they only allow linear transformation of the data distribution. In contrast, broader family of transformations can help train generative distributions more efficiently, simplifying the reverse process and closing the gap between the true negative log-likelihood and the variational approximation. In this paper, we present Neural Diffusion Models (NDMs), a generalization of conventional diffusion models that enables defining and learning time-dependent non-linear transformations of data. We show how to optimise NDMs using a variational bound in a simulation-free setting. Moreover, we derive a time-continuous formulation of NDMs, which allows fast and reliable inference using off-the-shelf numerical ODE and SDE solvers. Finally, we demonstrate the utility of NDMs through experiments on many image generation benchmarks, including MNIST, CIFAR-10, downsampled versions of ImageNet and CelebA-HQ. NDMs outperform conventional diffusion models in terms of likelihood, achieving state-of-the-art results on ImageNet and CelebA-HQ, and produces high-quality samples.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Learning representations of well-trained neural network models holds the promise to provide an understanding of the inner workings of those models. However, previous work has either faced limitations when processing larger networks or was task-specific to either discriminative or generative tasks. This paper introduces the SANE approach to weight-space learning. SANE overcomes previous limitations by learning task-agnostic representations of neural networks that are scalable to larger models of varying architectures and that show capabilities beyond a single task. Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights, thus allowing one to embed larger neural networks as a set of tokens into the learned representation space. SANE reveals global model information from layer-wise embeddings, and it can sequentially generate unseen neural network models, which was unattainable with previous hyper-representation learning methods. Extensive empirical evaluation demonstrates that SANE matches or exceeds state-of-the-art performance on several weight representation learning benchmarks, particularly in initialization for new tasks and larger ResNet architectures.
[ Hall C 4-9 ]

Abstract
The latent space of diffusion model mostly still remains unexplored, despite its great success and potential in the field of generative modeling. In fact, the latent space of existing diffusion models are entangled, with a distorted mapping from its latent space to image space. To tackle this problem, we present Isometric Diffusion, equipping a diffusion model with a geometric regularizer to guide the model to learn a geometrically sound latent space of the training data manifold. This approach allows diffusion models to learn a more disentangled latent space, which enables smoother interpolation, more accurate inversion, and more precise control over attributes directly in the latent space. Our extensive experiments consisting of image interpolations, image inversions, and linear editing show the effectiveness of our method.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Diffusion models (DMs) have established themselves as the state-of-the-art generative modeling approach in the visual domain and beyond. A crucial drawback of DMs is their slow sampling speed, relying on many sequential function evaluations through large neural networks. Sampling from DMs can be seen as solving a differential equation through a discretized set of noise levels known as the sampling schedule. While past works primarily focused on deriving efficient solvers, little attention has been given to finding optimal sampling schedules, and the entire literature relies on hand-crafted heuristics. In this work, for the first time, we propose a general and principled approach to optimizing the sampling schedules of DMs for high-quality outputs, called Align Your Steps. We leverage methods from stochastic calculus and find optimal schedules specific to different solvers, trained DMs and datasets. We evaluate our novel approach on several image, video as well as 2D toy data synthesis benchmarks, using a variety of different samplers, and observe that our optimized schedules outperform previous hand-crafted schedules in almost all experiments. Our method demonstrates the untapped potential of sampling schedule optimization, especially in the few-step synthesis regime.
[ Hall C 4-9 ]

Abstract
Graph Neural Networks (GNNs) have gained significant attention as a powerful modeling and inference method, especially for homophilic graph-structured data. To empower GNNs in heterophilic graphs, where adjacent nodes exhibit dissimilar labels or features, Signed Message Passing (SMP) has been widely adopted. However, there is a lack of theoretical and empirical analysis regarding the limitations of SMP. In this work, we unveil the potential pitfalls of SMP and their remedies. We first identify two limitations of SMP: undesirable representation update for multi-hop neighbors and vulnerability against oversmoothing issues. To overcome these challenges, we propose a novel message-passing function called Multiset to Multiset GNN (M2M-GNN). Our theoretical analyses and extensive experiments demonstrate that M2M-GNN effectively alleviates the limitations of SMP, yielding superior performance in comparison.
[ Hall C 4-9 ]
Abstract
Vector fields are widely used to represent and model flows for many science and engineering applications. This paper introduces a novel neural network architecture for learning tangent vector fields that are intrinsically defined on manifold surfaces embedded in 3D. Previous approaches to learning vector fields on surfaces treat vectors as multi-dimensional scalar fields, using traditional scalar-valued architectures to process channels individually, thus fail to preserve fundamental intrinsic properties of the vector field. The core idea of this work is to introduce a trainable vector heat diffusion module to spatially propagate vector-valued feature data across the surface, which we incorporate into our proposed architecture that consists of vector-valued neurons. Our architecture is invariant to rigid motion of the input, isometric deformation, and choice of local tangent bases, and is robust to discretizations of the surface. We evaluate our Vector Heat Network on triangle meshes, and empirically validate its invariant properties. We also demonstrate the effectiveness of our method on the useful industrial application of quadrilateral mesh generation.
[ Hall C 4-9 ]

Abstract
We posit that to achieve superhuman agents, future models require superhuman feedback in order to provide an adequate training signal. Current approaches commonly train reward models from human preferences, which may then be bottlenecked by human performance level, and secondly these reward models require additional human preferences data to further improve.In this work, we study Self-Rewarding Language Models, where the language model itself is used via LLM-as-a-Judge prompting to provide its own rewards during training. We show that during Iterative DPO training, not only does instruction following ability improve, but also the ability to provide high-quality rewards to itself. Fine-tuning Llama 2 70B on three iterations of our approach yields a model that outperforms many existing systems on the AlpacaEval 2.0 leaderboard, including Claude 2, Gemini Pro, and GPT-4 0613. While there is much left still to explore, this work opens the door to the possibility of models that can continually improve in both axes.
[ Hall C 4-9 ]

Abstract
Autoregressive decoding makes the inference of Large Language Models (LLMs) time-consuming. In this paper, we reconsider speculative sampling and derive two key observations. Firstly, autoregression at the feature (second-to-top-layer) level is more straightforward than at the token level. Secondly, the inherent uncertainty in feature (second-to-top-layer) level autoregression constrains its performance. Based on these insights, we introduce EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency), a simple yet highly efficient speculative sampling framework. By incorporating a token sequence advanced by one time step, EAGLE effectively resolves the uncertainty, enabling precise second-to-top-layer feature prediction with minimal overhead. We conducted comprehensive evaluations of EAGLE, including all models from the Vicuna and LLaMA2-Chat series, the MoE model Mixtral 8x7B Instruct, and tasks in dialogue, code generation, mathematical reasoning, and instruction following. For LLaMA2-Chat 70B, EAGLE achieved a latency speedup ratio of 2.7x-3.5x, doubled throughput, while maintaining the distribution of the generated text.
[ Hall C 4-9 ]
Abstract
Many recent prompting strategies for large language models (LLMs) query the model multiple times sequentially -- first to produce intermediate results and then the final answer. However, using these methods, both decoder and model are unaware of potential follow-up prompts, leading to disconnected and undesirably wordy intermediate responses. In this work, we address this issue by proposing prompt sketching, a new prompting paradigm in which an LLM does not only respond by completing a prompt, but by predicting values for multiple variables in a template. This way, sketching grants users more control over the generation process, e.g., by providing a reasoning framework via intermediate instructions, leading to better overall results. The key idea enabling sketching with existing, autoregressive models is to adapt the decoding procedure to also score follow-up instructions during text generation, thus optimizing overall template likelihood in inference. Our experiments show that in a zero-shot setting, prompt sketching outperforms existing, sequential prompting schemes such as direct asking or chain-of-thought on 7 out of 8 LLM benchmarking tasks, including state tracking, arithmetic reasoning, and general question answering. To facilitate future use, we release a number of generic, yet effective sketches applicable to many tasks, and an open source library …
[ Hall C 4-9 ]
Abstract
The coverage and composition of the pretraining data significantly impacts the generalization ability of Large Language Models (LLMs). Despite its importance, recent LLMs still rely on heuristics and trial and error to increase or reduce the influence of data-domains. We propose DOmain reweighting with Generalization Estimation (DoGE), which optimizes the probability of sampling from each domain (domain weights) in a principled way. Our approach is a two stage process consisting (i) training a proxy model to obtain domain weights using a bi-level optimization algorithm; (ii) training a larger base model by sampling training domains according to the learnt domain weights. In our experiments, we extensively show how DoGE improves the generalization of the base model to any target data mixture. On the SlimPajama dataset, our base model gets a better perplexity and few-shot reasoning accuracies across 6 tasks compared to baseline methods. Moreover, aiming to generalize to out-of-domain target tasks, which is unseen in the pretraining corpus (OOD domain), DoGE can effectively identify inter-domain dependencies, consistently achieves better test perplexity on the target domain.
[ Hall C 4-9 ]
Abstract
Stepwise inference protocols, such as scratchpads and chain-of-thought, help language models solve complex problems by decomposing them into a sequence of simpler subproblems. To unravel the underlying mechanisms of stepwise inference we propose to study autoregressive Transformer models on a synthetic task that embodies the multi-step nature of problems where stepwise inference is generally most useful. Specifically, we define a graph navigation problem wherein a model is tasked with traversing a path from a start to a goal node on the graph. We find we can empirically reproduce and analyze several phenomena observed at scale: (i) the stepwise inference reasoning gap, the cause of which we find in the structure of the training data; (ii) a diversity-accuracy trade-off in model generations as sampling temperature varies; (iii) a simplicity bias in the model’s output; and (iv) compositional generalization and a primacy bias with in-context exemplars. Overall, our work introduces a grounded, synthetic framework for studying stepwise inference and offers mechanistic hypotheses that can lay the foundation for a deeper understanding of this phenomenon.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Recent vision-language models have achieved tremendous advances. However, their computational costs are also escalating dramatically, making model acceleration exceedingly critical. To pursue more efficient vision-language Transformers, this paper introduces Cross-Guided Ensemble of Tokens (CrossGET), a general acceleration framework for vision-language Transformers. This framework adaptively combines tokens in real-time during inference, significantly reducing computational costs while maintaining high performance. CrossGET features two primary innovations: 1) Cross-Guided Matching and Ensemble. CrossGET leverages cross-modal guided token matching and ensemble to effectively utilize cross-modal information, achieving wider applicability across both modality-independent models, e.g., CLIP, and modality-dependent ones, e.g., BLIP2. 2) Complete-Graph Soft Matching. CrossGET introduces an algorithm for the token-matching mechanism, ensuring reliable matching results while facilitating parallelizability and high efficiency. Extensive experiments have been conducted on various vision-language tasks, such as image-text retrieval, visual reasoning, image captioning, and visual question answering. The performance on both classic multimodal architectures and emerging multimodal LLMs demonstrates the framework's effectiveness and versatility. The code is available at https://github.com/sdc17/CrossGET.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Nowadays, Large Language Models (LLMs) mostly possess billions of parameters, bringing significant challenges to hardware platforms. Although quantization is an efficient approach to reduce computation and memory overhead for inference optimization, we stress the challenge that mainstream low-bit quantization approaches still suffer from either various data distribution outliers or a lack of hardware efficiency. We also find that low-bit data format has further potential expressiveness to cover the atypical language data distribution. In this paper, we propose a novel numerical representation, Bi-Exponent Block Floating Point (BiE), and a new quantization flow. BiE quantization shows accuracy superiority and hardware friendliness on various models and benchmarks.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Although pre-trained models such as Contrastive Language-Image Pre-Training (CLIP) show impressive generalization results, their robustness is still limited under Out-of-Distribution (OOD) scenarios. Instead of undesirably leveraging human annotation as commonly done, it is possible to leverage the visual understanding power of Multi-modal Large Language Models (MLLMs). However, MLLMs struggle with vision problems due to task incompatibility, thus hindering their effectiveness. In this paper, we propose to effectively leverage MLLMs via Machine Vision Therapy which aims to rectify erroneous predictions of specific vision models. By supervising vision models using MLLM predictions, visual robustness can be boosted in a nearly unsupervised manner. Moreover, we propose a Denoising In-Context Learning (DICL) strategy to solve the incompatibility issue. Concretely, by examining the noise probability of each example through a transition matrix, we construct an instruction containing a correct exemplar and a probable erroneous one, which enables MLLMs to detect and rectify the incorrect predictions of vision models. Under mild assumptions, we theoretically show that our DICL method is guaranteed to find the ground truth. Through extensive experiments on various OOD datasets, our method demonstrates powerful capabilities for enhancing visual robustness under many OOD scenarios.
[ Hall C 4-9 ]

Abstract
Previous efforts using frozen Large Language Models (LLMs) for visual understanding, via image captioning or image-text retrieval tasks, face challenges when dealing with complex multimodal scenarios. In order to enhance the capabilities of Multimodal Large Language Models (MLLM) in comprehending the context of vision and language, we introduce Multimodal Composition Learning (MCL) for the purpose of mapping or aligning the vision and language input. In particular, we introduce two tasks: Multimodal-Context Captioning (MC-Cap) and Multimodal-Context Retrieval (MC-Ret) to guide a frozen LLM in comprehending the vision and language context. These specialized tasks are crafted to improve the LLM’s capacity for efficient processing and utilization of multimodal inputs, thereby enhancing its proficiency in generating more accurate text or visual representations. Extensive experiments on both retrieval tasks (i.e., zero-shot composed image retrieval, visual storytelling image retrieval and visual dialog image retrieval) and text generation tasks (i.e., visual question answering) demonstrate the effectiveness of the proposed method. The code is available at: https://github.com/dhg-wei/MCL.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In light of recent advances in multimodal Large Language Models (LLMs), there is increasing attention to scaling them from image-text data to more informative real-world videos. Compared to static images, video poses unique challenges for effective large-scale pre-training due to the modeling of its spatiotemporal dynamics. In this paper, we address such limitations in video-language pre-training with an efficient video decomposition that represents each video as keyframes and temporal motions. These are then adapted to an LLM using well-designed tokenizers that discretize visual and temporal information as a few tokens, thus enabling unified generative pre-training of videos, images, and text. At inference, the generated tokens from the LLM are carefully recovered to the original continuous pixel space to create various video content. Our proposed framework is both capable of comprehending and generating image and video content, as demonstrated by its competitive performance across 13 multimodal benchmarks in image and video understanding and generation. Our code and models are available at https://video-lavit.github.io.
[ Hall C 4-9 ]

Abstract
Large Language Models (LLMs) and Large Multi-modality Models (LMMs) have demonstrated remarkable decision masking capabilities on a variety of tasks. However, they inherently operate planning within the language space, lacking the vision and spatial imagination ability. In contrast, humans utilize both left and right hemispheres of the brain for language and visual planning during the thinking process. Therefore, we introduce a novel vision-language planning framework in this work to perform concurrent visual and language planning for tasks with inputs of any form. Our framework incorporates visual planning to capture intricate environmental details, while language planning enhances the logical coherence of the overall system. We evaluate the effectiveness of our framework across vision-language tasks, vision-only tasks, and language-only tasks. The results demonstrate the superior performance of our approach, indicating that the integration of visual and language planning yields better contextually aware task execution.
[ Hall C 4-9 ]
Abstract
We consider the issue of calibration in large language models (LLM). Recent studies have found that common interventions such as instruction tuning often result in poorly calibrated LLMs. Although calibration is well-explored in traditional applications, calibrating LLMs is uniquely challenging. These challenges stem as much from the severe computational requirements of LLMs as from their versatility, which allows them to be applied to diverse tasks. Addressing these challenges, we propose THERMOMETER, a calibration approach tailored to LLMs. THERMOMETER learns an auxiliary model, given data from multiple tasks, for calibrating a LLM. It is computationally efficient, preserves the accuracy of the LLM, and produces better-calibrated responses for new tasks. Extensive empirical evaluations across various benchmarks demonstrate the effectiveness of the proposed method.
[ Hall C 4-9 ]

Abstract
In this work, we leverage the intrinsic segmentation of language sequences and design a new positional encoding method called Bilevel Positional Encoding (BiPE). For each position, our BiPE blends an intra-segment encoding and an inter-segment encoding. The intra-segment encoding identifies the locations within a segment and helps the model capture the semantic information therein via absolute positional encoding. The inter-segment encoding specifies the segment index, models the relationships between segments, and aims to improve extrapolation capabilities via relative positional encoding. Theoretical analysis shows this disentanglement of positional information makes learning more effective. The empirical results also show that our BiPE has superior length extrapolation capabilities across a wide range of tasks in diverse text modalities.
[ Hall C 4-9 ]

Abstract
Common methods for aligning large language models (LLMs) with desired behaviour heavily rely on human-labelled data. However, as models grow increasingly sophisticated, they will surpass human expertise, and the role of human evaluation will evolve into non-experts overseeing experts. In anticipation of this, we ask: can weaker models assess the correctness of stronger models? We investigate this question in an analogous setting, where stronger models (experts) possess the necessary information to answer questions and weaker models (non-experts) lack this information. The method we evaluate is debate, where two LLM experts each argue for a different answer, and a non-expert selects the answer. We find that debate consistently helps both non-expert models and humans answer questions, achieving 76% and 88% accuracy respectively (naive baselines obtain 48% and 60%). Furthermore, optimising expert debaters for persuasiveness in an unsupervised manner improves non-expert ability to identify the truth in debates. Our results provide encouraging empirical evidence for the viability of aligning models with debate in the absence of ground truth.
[ Hall C 4-9 ]

Abstract
The increasing size of large language models (LLMs) traditionally requires low-precision integer formats to meet strict latency and power demands. Yet recently, alternative formats such as Normal Float (NF4) have increased model accuracy at the cost of increased chip area. In this work, we first conduct a large-scale analysis of LLM weights and activations across 30 networks and conclude that most distributions follow a Student's t-distribution. We then derive a new theoretically optimal format, Student Float (SF4), that improves over NF4 across modern LLMs, for example increasing the average accuracy on LLaMA2-7B by 0.76% across tasks. Using this format as a high-accuracy reference, we then propose augmenting E2M1 with two variants of supernormal support for higher model accuracy. Finally, we explore the quality and efficiency frontier across 11 datatypes by evaluating their model accuracy and hardware complexity. We discover a Pareto curve composed of INT4, E2M1, and E2M1 with supernormal support, which offers a continuous tradeoff between model accuracy and chip area. For example, E2M1 with supernormal support increases the accuracy of Phi-2 by up to 2.19% with 1.22% area overhead, enabling more LLM-based applications to be run at four bits. The supporting code is hosted at https://github.com/cornell-zhang/llm-datatypes.
[ Hall C 4-9 ]

Abstract
Offline preference optimization allows fine-tuning large models directly from offline data, and has proved effective in recent alignment practices. We propose generalized preference optimization (GPO), a family of offline losses parameterized by a general class of convex functions. GPO enables a unified view over preference optimization, encompassing existing algorithms such as DPO, IPO and SLiC as special cases, while naturally introducing new variants. The GPO framework also sheds light on how offline algorithms enforce regularization, through the design of the convex function that defines the loss. Our analysis and experiments reveal the connections and subtle differences between the offline regularization and the KL divergence regularization intended by the canonical RLHF formulation. In a controlled setting akin to Gao et al 2023, we also show that different GPO variants achieve similar trade-offs between regularization and performance, though the optimal values of hyper-parameter might differ as predicted by theory. In all, our results present new algorithmic toolkits and empirical insights to alignment practitioners.
[ Hall C 4-9 ]

Abstract
AI assistants powered by Large Language Models (LLMs) have demonstrated impressive performance in various tasks. However, LLMs still make factual errors in knowledge-intensive tasks such as open-domain question answering. These untruthful responses from AI assistants can pose significant risks in practical applications. Therefore, in this paper, we ask the question Can AI assistants know what they don't know and express this awareness through natural language? To investigate this, we construct a model-specific "I don't know" (Idk) dataset. This dataset includes Supervised Fine-tuning data and preference data, categorizing questions based on whether the assistant knows or does not know the answers. Then, we align the assistant with its corresponding Idk dataset using different alignment methods, including Supervised Fine-tuning and preference optimization. Experimental results show that, after alignment with the Idk dataset, the assistant is more capable of declining to answer questions outside its knowledge scope. The assistant aligned with the Idk dataset shows significantly higher truthfulness than the original assistant.
[ Hall C 4-9 ]

Abstract
Existing research of video understanding still struggles to achieve in-depth comprehension and reasoning in complex videos, primarily due to the under-exploration of two key bottlenecks: fine-grained spatial-temporal perceptive understanding and cognitive-level video scene comprehension. This paper bridges the gap by presenting a novel solution. We first introduce a novel video Multimodal Large Language Model (MLLM), MotionEpic, which achieves fine-grained pixel-level spatial-temporal video grounding by integrating video spatial-temporal scene graph (STSG) representation. Building upon MotionEpic, we then develop a Video-of-Thought (VoT) reasoning framework. VoT inherits the Chain-of-Thought (CoT) core, breaking down a complex task into simpler and manageable sub-problems, and addressing them step-by-step from a low-level pixel perception to high-level cognitive interpretation. Extensive experiments across various complex video QA benchmarks demonstrate that our overall framework strikingly boosts existing state-of-the-art. To our knowledge, this is the first attempt at successfully implementing the CoT technique for achieving human-level video reasoning, where we show great potential in extending it to a wider range of video understanding scenarios. Systems and codes will be open later.
[ Hall C 4-9 ]

Abstract
Reinforcement Learning from Human Feedback (RLHF) has been credited as the key advance that has allowed Large Language Models (LLMs) to effectively follow instructions and produce useful assistance. Classically, this involves generating completions from the LLM in response to a query before using a separate reward model to assign a score to the full completion. As an auto-regressive process, the LLM has to take many “actions” (selecting individual tokens) and only receives a single, sparse reward at the end of an episode, a setup that is known to be difficult to optimise in traditional reinforcement learning. In this work we leverage the fact that the reward model contains more information than just its scalar output, in particular, it calculates an attention map over tokens as part of the transformer architecture. We use these attention weights to redistribute the reward along the whole completion, effectively densifying the signal and highlighting the most important tokens, all without incurring extra computational cost or requiring any additional modelling. We demonstrate that, theoretically, this approach is equivalent to potential-based reward shaping, ensuring that the optimal policy remains unchanged. Empirically, we show that it stabilises training, accelerates the rate of learning, and, in practical cases, may …
[ Hall C 4-9 ]
Abstract
Large Language Models (LLMs) exhibit strong generalization capabilities to novel tasks when prompted with language instructions and in-context demos. Since this ability sensitively depends on the quality of prompts, various methods have been explored to automate the instruction design. While these methods demonstrated promising results, they also restricted the searched prompt to one instruction. Such simplification significantly limits their capacity, as a single demo-free instruction might not be able to cover the entire complex problem space of the targeted task. To alleviate this issue, we adopt the Mixture-of-Expert paradigm and divide the problem space into a set of sub-regions; Each sub-region is governed by a specialized expert, equipped with both an instruction and a set of demos. A two-phase process is developed to construct the specialized expert for each region: (1) demo assignment: Inspired by the theoretical connection between in-context learning and kernel regression, we group demos into experts based on their semantic similarity; (2) instruction assignment: A region-based joint search of an instruction per expert complements the demos assigned to it, yielding a synergistic effect. The resulting method, codenamed Mixture-of-Prompts (MoP), achieves an average win rate of 81% against prior arts across several major benchmarks.
[ Hall C 4-9 ]

Abstract
While alignment algorithms are commonly used to tune pre-trained language models towards user preferences, we lack explanations for the underlying mechanisms in which models become ``aligned'', thus making it difficult to explain phenomena like jailbreaks. In this work we study a popular algorithm, direct preference optimization (DPO), and the mechanisms by which it reduces toxicity. Namely, we first study how toxicity is represented and elicited in pre-trained language models (GPT2-medium, Llama2-7b). We then apply DPO with a carefully crafted pairwise dataset to reduce toxicity. We examine how the resulting models avert toxic outputs, and find that capabilities learned from pre-training are not removed, but rather bypassed. We use this insight to demonstrate a simple method to un-align the models, reverting them back to their toxic behavior.
[ Hall C 4-9 ]
Abstract
In this work, we study the impact of QA fine-tuning data on downstream factuality. We show that fine-tuning on lesser-known facts that are poorly stored during pretraining yields significantly worse factuality than fine-tuning on well-known facts, even when all facts are seen during pretraining. We prove this phenomenon theoretically, showing that training on lesser-known facts can lead the model to ignore subject entity names and instead output a generic plausible response even when the relevant factual knowledge is encoded in the model. On three question answering benchmarks (PopQA, Entity Questions, and MMLU) and two language models (Llama-2-7B and Mistral-7B), we find that (i) finetuning on a completely factual but lesser-known subset of the data deteriorates downstream factuality (5-10%) and (ii) finetuning on a subset of better-known examples matches or outperforms finetuning on the entire dataset. Ultimately, our results shed light on the interaction between pretrained knowledge and finetuning data and demonstrate the importance of taking into account how facts are stored in the pretrained model when fine-tuning for knowledge-intensive tasks.
[ Hall C 4-9 ]
Abstract
Learning from preference labels plays a crucial role in fine-tuning large language models --- this is done via supervised learning, on-policy reinforcement learning (RL), or contrastive learning. Different methods come with different implementation tradeoffs, and existing empirical findings present different conclusions, for instance, some results show that online RL is quite important to attain good fine-tuning results, while others find offline methods sufficient. This raises a question: what kind of approaches are important for fine-tuning with preference data and why? In this paper, we answer this question by performing a rigorous analysis of a number of fine-tuning techniques on didactic and full-scale LLM problems. Our main finding is that approaches that use on-policy sampling and attempt to push down the likelihood on certain responses (i.e., employ a ''negative gradient'') outperform offline and maximum likelihood objectives. We conceptualize our insights and unify methods that use on-policy sampling or negative gradient under a notion of mode-seeking objectives for categorical distributions. Mode-seeking objectives are able to alter probability mass on specific bins of a categorical distribution at a fast rate compared to maximum likelihood, allowing them to relocate masses across bins more effectively. Our analysis prescribes actionable insights for preference fine-tuning of LLMs …
[ Hall C 4-9 ]
Abstract
To evaluate code large language models (LLMs), research has relied on a few small manually curated benchmarks, such as HumanEval and MBPP, which represent a narrow part of the real-world software domains. In this work, we introduce round-trip correctness (RTC) as an alternative evaluation method. RTC allows Code LLM evaluation on a broader spectrum of real-world software domains without the need for costly human curation. RTC rests on the idea that we can ask a model to make a prediction (e.g., describe some code using natural language), feed that prediction back (e.g., synthesize code from the predicted description), and check if this round-trip leads to code that is semantically equivalent to the original input. We show how to employ RTC to evaluate code synthesis and editing. We find that RTC strongly correlates with model performance on existing narrow-domain code synthesis benchmarks while allowing us to expand to a much broader set of domains and tasks which was not previously possible without costly human annotations.
[ Hall C 4-9 ]

Abstract
This paper presents an in-depth examination of the evolution and interplay of cognitive and expressive capabilities in large language models (LLMs), with a specific focus on Baichuan-7B and Baichuan-33B, an advanced bilingual (Chinese and English) LLM series. We define and explore the model's cognitive and expressive capabilities through linear representations across three critical phases: Pretraining, Supervised Fine-Tuning (SFT), and Reinforcement Learning from Human Feedback (RLHF). Cognitive capability is defined as the quantity and quality of information conveyed by the neuron output vectors within the network, similar to the neural signal processing in human cognition. Expressive capability is defined as the model’s capability to produce word-level output. Our findings unveil a sequential development pattern, where cognitive abilities are largely established during Pretraining, whereas expressive abilities predominantly advance during SFT and RLHF. Statistical analyses confirm a significant correlation between the two capabilities, suggesting that cognitive capacity may limit expressive potential. The paper also explores the theoretical underpinnings of these divergent developmental trajectories and their connection to the LLMs' architectural design. Moreover, we evaluate various optimization-independent strategies, such as few-shot learning and repeated sampling, which bridge the gap between cognitive and expressive capabilities. This research reveals the potential connection between the hidden space …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In-Context Learning (ICL) is the ability of Large Language Models (LLMs) to perform new tasks when conditioned on prompts comprising a few task examples. However, ICL performance can be critically sensitive to the choice of examples. To dynamically select the best examples for every test input, we propose Example Gisting, a novel approach for training example encoders through supervised finetuning with an attention bottleneck between the inputs and outputs. These gist models form the basis for GistScore, a novel metric for scoring and selecting informative examples. Further, we experiment with two variations: (1) finetuning gist models for each dataset and (2) multi-task training a single model on a large collection of datasets. The latter can be used for new tasks out-of-the-box, enabling a training-free ICL pipeline. Evaluations with 21 datasets spanning 9 tasks and 8 diverse LLMs show that our fine-tuned models get state-of-the-art ICL performance with over 20% absolute gain over off-the-shelf retrievers and 5% over the best prior methods. Further, our multi-task model generalizes well to new tasks, datasets, and prompt templates. Selection using this model matches or outperforms prior methods while being three orders of magnitude faster than the strongest training-free baseline.
[ Hall C 4-9 ]
Abstract
We study the probabilistic modeling performed by Autoregressive Large Language Models (LLMs) through the angle of time directionality, addressing a question first raised in (Shannon, 1951). For large enough models, we empirically find a time asymmetry in their ability to learn natural language: a difference in the average log-perplexity when trying to predict the next token versus when trying to predict the previous one. This difference is at the same time subtle and very consistent across various modalities (language, model size, training time, ...). Theoretically, this is surprising: from an information-theoretic point of view, there should be no such difference. We provide a theoretical framework to explain how such an asymmetry can appear from sparsity and computational complexity considerations, and outline a number of perspectives opened by our results.
Poster Session 2 Tue 23 Jul 01:30 p.m.
[ Hall C 4-9 ]
Abstract
Selective labels occur when label observations are subject to a decision-making process; e.g., diagnoses that depend on the administration of laboratory tests. We study a clinically-inspired selective label problem called disparate censorship, where labeling biases vary across subgroups and unlabeled individuals are imputed as “negative” (i.e., no diagnostic test = no illness). Machine learning models naively trained on such labels could amplify labeling bias. Inspired by causal models of selective labels, we propose Disparate Censorship Expectation-Maximization (DCEM), an algorithm for learning in the presence of disparate censorship. We theoretically analyze how DCEM mitigates the effects of disparate censorship on model performance. We validate DCEM on synthetic data, showing that it improves bias mitigation (area between ROC curves) without sacrificing discriminative performance (AUC) compared to baselines. We achieve similar results in a sepsis classification task using clinical data.
[ Hall C 4-9 ]

Abstract
In this paper, we study the feature learning ability of two-layer neural networks in the mean-field regime through the lens of kernel methods. To focus on the dynamics of the kernel induced by the first layer, we utilize a two-timescale limit, where the second layer moves much faster than the first layer. In this limit, the learning problem is reduced to the minimization problem over the intrinsic kernel. Then, we show the global convergence of the mean-field Langevin dynamics and derive time and particle discretization error. We also demonstrate that two-layer neural networks can learn a union of multiple reproducing kernel Hilbert spaces more efficiently than any kernel methods, and neural networks aquire data-dependent kernel which aligns with the target function. In addition, we develop a label noise procedure, which converges to the global optimum and show that the degrees of freedom appears as an implicit reguralization.
[ Hall C 4-9 ]
Abstract
Deep neural networks (DNNs) have become pivotal in machine learning, but the impact of weight precision, such as in networks with rectified linear units (ReLU), remains underexplored. We analytically investigate the interplay of three key factors: the precision of ReLU network weights, the number of neurons, and the time of the preprocessing algorithm that generates the network description. Our study, which, to the best of our knowledge, is the first formal work on weight precision, yields three main results. (1) We present an exponential time preprocessing algorithm that showcases the possibility of trading ReLU nodes for weight precision. Specifically, our method achieves an exponential reduction in neuron count when computing any function of high complexity with boolean input encoding. What is the implication of the above result in theoretical and practical works? (2) In theory of computing, in general, there is no free lunch. In our case, if you significantly reduce the number of neurons then you should pay the cost in weight precision. To address this, we introduce a notion of network size that considers weight precision in addition to the network's number of neurons. We establish that under this redefined notion of network size, it is generally impossible …
[ Hall C 4-9 ]

Abstract
Grokking, or delayed generalization, is a phenomenon where generalization in a deep neural network (DNN) occurs long after achieving near zero training error. Previous studies have reported the occurrence of grokking in specific controlled settings, such as DNNs initialized with large-norm parameters or transformers trained on algorithmic datasets. We demonstrate that grokking is actually much more widespread and materializes in a wide range of practical settings, such as training of a convolutional neural network (CNN) on CIFAR10 or a Resnet on Imagenette. We introduce the new concept of delayed robustness, whereby a DNN groks adversarial examples and becomes robust, long after interpolation and/or generalization. We develop an analytical explanation for the emergence of both delayed generalization and delayed robustness based on the local complexity of a DNN's input-output mapping. Our local complexity measures the density of so-called ``linear regions’’ (aka, spline partition regions) that tile the DNN input space and serves as a utile progress measure for training. We provide the first evidence that, for classification problems, the linear regions undergo a phase transition during training whereafter they migrate away from the training samples (making the DNN mapping smoother there) and towards the decision boundary (making the DNN mapping less …
[ Hall C 4-9 ]

Abstract
Learning dynamics from dissipative chaotic systems is notoriously difficult due to their inherent instability, as formalized by their positive Lyapunov exponents, which exponentially amplify errors in the learned dynamics. However, many of these systems exhibit ergodicity and an attractor: a compact and highly complex manifold, to which trajectories converge in finite-time, that supports an invariant measure, i.e., a probability distribution that is invariant under the action of the dynamics, which dictates the long-term statistical behavior of the system. In this work, we leverage this structure to propose a new framework that targets learning the invariant measure as well as the dynamics, in contrast with typical methods that only target the misfit between trajectories, which often leads to divergence as the trajectories' length increases. We use our framework to propose a tractable and sample efficient objective that can be used with any existing learning objectives. Our Dynamics Stable Learning by Invariant Measure (DySLIM) objective enables model training that achieves better point-wise tracking and long-term statistical accuracy relative to other learning objectives. By targeting the distribution with a scalable regularization term, we hope that this approach can be extended to more complex systems exhibiting slowly-variant distributions, such …
[ Hall C 4-9 ]
Abstract
Several applications in time series forecasting require predicting multiple steps ahead. Despite the vast amount of literature in the topic, both classical and recent deep learning based approaches have mostly focused on minimising performance averaged over the predicted window. We observe that this can lead to disparate distributions of errors across forecasting steps, especially for recent transformer architectures trained on popular forecasting benchmarks. That is, optimising performance on average can lead to undesirably large errors at specific time-steps. In this work, we present a Constrained Learning approach for long-term time series forecasting that aims to find the best model in terms of average performance that respects a user-defined upper bound on the loss at each time-step. We call our approach loss shaping constraints because it imposes constraints on the loss at each time step, and leverage recent duality results to show that despite its non-convexity, the resulting problem has a bounded duality gap. We propose a practical primal-dual algorithm to tackle it, and demonstrate that the proposed approach exhibits competitive average performance in time series forecasting benchmarks, while shaping the distribution of errors across the predicted window.
[ Hall C 4-9 ]

Abstract
In the rapidly evolving field of online test-time adaptation (OTTA), effectively managing distribution shifts is a pivotal concern. State-of-the-art OTTA methodologies often face limitations such as an inadequate target domain information integration, leading to significant issues like catastrophic forgetting and a lack of adaptability in dynamically changing environments. In this paper, we introduce a stationary latent weight inference (SLWI) framework, a novel approach to overcome these challenges. The proposed SLWI uniquely incorporates Bayesian filtering to continually track and update the target model weights along with the source model weight in online settings, thereby ensuring that the adapted model remains responsive to ongoing changes in the target domain. The proposed framework has the peculiar property to identify and backtrack nonlinear weights that exhibit local non-stationarity, thereby mitigating error propagation, a common pitfall of previous approaches. By integrating and refining information from both source and target domains, SLWI presents a robust solution to the persistent issue of domain adaptation in OTTA, significantly improving existing methodologies. The efficacy of SLWI is demonstrated through various experimental setups, showcasing its superior performance in diverse distribution shift scenarios.
[ Hall C 4-9 ]
Abstract
In this paper, we investigate the long-term memory learning capabilities of state-space models (SSMs) from the perspective of parameterization. We prove that state-space models without any reparameterization exhibit a memory limitation similar to that of traditional RNNs: the target relationships that can be stably approximated by state-space models must have an exponential decaying memory. Our analysis identifies this ``curse of memory'' as a result of the recurrent weights converging to a stability boundary, suggesting that a reparameterization technique can be effective. To this end, we introduce a class of reparameterization techniques for SSMs that effectively lift its memory limitations. Besides improving approximation capabilities, we further illustrate that a principled choice of reparameterization scheme can also enhance optimization stability. We validate our findings using synthetic datasets, language models and image classifications.
[ Hall C 4-9 ]

Abstract
In recent years, the state-of-the-art in deep learning has been dominated by very large models that have been pre-trained on vast amounts of data. The paradigm is very simple: investing more computational resources (optimally) leads to better performance, and even predictably so; neural scaling laws have been derived that accurately forecast the performance of a network for a desired level of compute. This leads to the notion of a 'compute-optimal' model, i.e. a model that allocates a given level of compute during training optimally to maximize performance. In this work, we extend the concept of optimality by allowing for an 'adaptive' model, i.e. a model that can change its shape during training. By doing so, we can design adaptive models that optimally traverse between the underlying scaling laws and outpace their `static' counterparts, leading to a significant reduction in the required compute to reach a given target performance. We show that our approach generalizes across modalities and different shape parameters.
[ Hall C 4-9 ]

Abstract
Pruning has emerged as a promising approach for compressing large-scale models, yet its effectiveness in recovering the sparsest of models has not yet been explored. We conducted an extensive series of 485,838 experiments, applying a range of state-of-the-art pruning algorithms to a synthetic dataset we created, named the Cubist Spiral. Our findings reveal a significant gap in performance compared to ideal sparse networks, which we identified through a novel combinatorial search algorithm. We attribute this performance gap to current pruning algorithms' poor behaviour under overparameterization, their tendency to induce disconnected paths throughout the network, and their propensity to get stuck at suboptimal solutions, even when given the optimal width and initialization. This gap is concerning, given the simplicity of the network architectures and datasets used in our study. We hope that our research encourages further investigation into new pruning techniques that strive for true network sparsity.
[ Hall C 4-9 ]

Abstract
Feature selection is a crucial tool in machine learning and is widely applied across various scientific disciplines. Traditional supervised methods generally identify a universal set of informative features for the entire population. However, feature relevance often varies with context, while the context itself may not directly affect the outcome variable. Here, we propose a novel architecture for contextual feature selection where the subset of selected features is conditioned on the value of context variables. Our new approach, Conditional Stochastic Gates (c-STG), models the importance of features using conditional Bernoulli variables whose parameters are predicted based on contextual variables. We introduce a hypernetwork that maps context variables to feature selection parameters to learn the context-dependent gates along with a prediction model. We further present a theoretical analysis of our model, indicating that it can improve performance and flexibility over population-level methods in complex feature selection settings. Finally, we conduct an extensive benchmark using simulated and real-world datasets across multiple domains demonstrating that c-STG can lead to improved feature selection capabilities while enhancing prediction accuracy and interpretability.
[ Hall C 4-9 ]
Abstract
Cancer, a leading cause of death globally, occurs due to genomic changes and manifests heterogeneously across patients. To advance research on personalized treatment strategies, the effectiveness of various drugs on cells derived from cancers ('cell lines') is experimentally determined in laboratory settings. Nevertheless, variations in the distribution of genomic data and drug responses between cell lines and humans arise due to biological and environmental differences. Moreover, while genomic profiles of many cancer patients are readily available, the scarcity of corresponding drug response data limits the ability to train machine learning models that can predict drug response in patients effectively. Recent cancer drug response prediction methods have largely followed the paradigm of unsupervised domain-invariant representation learning followed by a downstream drug response classification step. Introducing supervision in both stages is challenging due to heterogeneous patient response to drugs and limited drug response data. This paper addresses these challenges through a novel representation learning method in the first phase and weak supervision in the second. Experimental results on real patient data demonstrate the efficacy of our method WISER (Weak supervISion and supErvised Representation learning) over state-of-the-art alternatives on predicting personalized drug response. Our implementation is available at https://github.com/kyrs/WISER
[ Hall C 4-9 ]
Abstract
When selecting data for training large-scale models, standard practice is to filter for examples that match human notions of data quality. Such filtering yields qualitatively clean datapoints that intuitively should improve model behavior. However, in practice the opposite can often happen: we find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data. To develop better methods for selecting data, we start by framing dataset selection as an optimization problem that we can directly solve for: given target tasks, a learning algorithm, and candidate data, select the subset that maximizes model performance. This framework thus avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks. Our resulting method greatly improves language model (LM) performance on both pre-specified tasks and previously unseen tasks. Specifically, choosing target tasks representative of standard LM problems and evaluating on diverse held-out benchmarks, our selected datasets provide a 2x compute multiplier over baseline methods.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Neural Ordinary Differential Equations (ODEs) have shown promise in learning continuous dynamics. However, their slow training and inference speed hinder wider applications. In this paper, we propose to optimize Neural ODEs from a spatial and temporal perspective, drawing inspiration from control theory. We aim to find a reasonable depth of the network, accelerating both training and inference while maintaining network performance. Two approaches are proposed. One reformulates training as a minimum-time optimal control problem directly in a single stage to search for the terminal time and network weights. The second approach uses pre-training coupled with a Lyapunov method in an initial stage, and then at a secondary stage introduces a safe terminal time updating mechanism in the forward direction. Experimental results demonstrate the effectiveness of speeding up Neural ODEs.
[ Hall C 4-9 ]

Abstract
Group Equivariant CNNs (G-CNNs) have shown promising efficacy in various tasks, owing to their ability to capture hierarchical features in an equivariant manner. However, their equivariance is fixed to the symmetry of the whole group, limiting adaptability to diverse partial symmetries in real-world datasets, such as limited rotation symmetry of handwritten digit images and limited color-shift symmetry of flower images. Recent efforts address this limitation, one example being Partial G-CNN which restricts the output group space of convolution layers to break full equivariance. However, such an approach still fails to adjust equivariance levels across data. In this paper, we propose a novel approach, Variational Partial G-CNN (VP G-CNN), to capture varying levels of partial equivariance specific to each data instance. VP G-CNN redesigns the distribution of the output group elements to be conditioned on input data, leveraging variational inference to avoid overfitting. This enables the model to adjust its equivariance levels according to the needs of individual data points. Additionally, we address training instability inherent in discrete group equivariance models by redesigning the reparametrizable distribution. We demonstrate the effectiveness of VP G-CNN on both toy and real-world datasets, including MNIST67-180, CIFAR10, ColorMNIST, and Flowers102. Our results show robust performance, even …
[ Hall C 4-9 ]

Abstract
Dataset distillation has emerged as a strategy to overcome the hurdles associated with large datasets by learning a compact set of synthetic data that retains essential information from the original dataset. While distilled data can be used to train high performing models, little is understood about how the information is stored. In this study, we posit and answer three questions about the behavior, representativeness, and point-wise information content of distilled data. We reveal distilled data cannot serve as a substitute for real data during training outside the standard evaluation setting for dataset distillation. Additionally, the distillation process retains high task performance by compressing information related to the early training dynamics of real models. Finally, we provide an framework for interpreting distilled data and reveal that individual distilled data points contain meaningful semantic information. This investigation sheds light on the intricate nature of distilled data, providing a better understanding on how they can be effectively utilized.
[ Hall C 4-9 ]
Abstract
In supervised learning, understanding an input’s proximity to the training data can help a model decide whether it has sufficient evidence for reaching a reliable prediction. While powerful probabilistic models such as Gaussian Processes naturally have this property, deep neural networks often lack it. In this paper, we introduce Distance Aware Bottleneck (DAB), i.e., a new method for enriching deep neural networks with this property. Building on prior information bottleneck approaches, our method learns a codebook that stores a compressed representation of all inputs seen during training. The distance of a new example from this codebook can serve as an uncertainty estimate for the example. The resulting model is simple to train and provides deterministic uncertainty estimates by a single forward pass. Finally, our method achieves better out-of-distribution (OOD) detection and misclassification prediction than prior methods, including expensive ensemble methods, deep kernel Gaussian Processes, and approaches based on the standard information bottleneck.
[ Hall C 4-9 ]

Abstract
With the breakthrough of large models, Segment Anything Model (SAM) and its extensions have been attempted to apply in diverse tasks of computer vision. Underwater salient instance segmentation is a foundational and vital step for various underwater vision tasks, which often suffer from low segmentation accuracy due to the complex underwater circumstances and the adaptive ability of models. Moreover, the lack of large-scale datasets with pixel-level salient instance annotations has impeded the development of machine learning techniques in this field. To address these issues, we construct the first large-scale underwater salient instance segmentation dataset (USIS10K), which contains 10,632 underwater images with pixel-level annotations in 7 categories from various underwater scenes. Then, we propose an Underwater Salient Instance Segmentation architecture based on Segment Anything Model (USIS-SAM) specifically for the underwater domain. We devise an Underwater Adaptive Visual Transformer (UA-ViT) encoder to incorporate underwater domain visual prompts into the segmentation network. We further design an out-of-the-box underwater Salient Feature Prompter Generator (SFPG) to automatically generate salient prompters instead of explicitly providing foreground points or boxes as prompts in SAM. Comprehensive experimental results show that our USIS-SAM method can achieve superior performance on USIS10K datasets compared to the state-of-the-art methods. Datasets and codes …
[ Hall C 4-9 ]

Abstract
Traditional studies emphasize the significance of context information in improving matting performance. Consequently, deep learning-based matting methods delve into designing pooling or affinity-based context aggregation modules to achieve superior results. However, these modules cannot well handle the context scale shift caused by the difference in image size during training and inference, resulting in matting performance degradation. In this paper, we revisit the context aggregation mechanisms of matting networks and find that a basic encoder-decoder network without any context aggregation modules can actually learn more universal context aggregation, thereby achieving higher matting performance compared to existing methods. Building on this insight, we present AEMatter, a matting network that is straightforward yet very effective. AEMatter adopts a Hybrid-Transformer backbone with appearance-enhanced axis-wise learning (AEAL) blocks to build a basic network with strong context aggregation learning capability. Furthermore, AEMatter leverages a large image training strategy to assist the network in learning context aggregation from data. Extensive experiments on five popular matting datasets demonstrate that the proposed AEMatter outperforms state-of-the-art matting methods by a large margin. The source code is available at https://github.com/aipixel/AEMatter.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Video encompasses both visual and auditory data, creating a perceptually rich experience where these two modalities complement each other. As such, videos are a valuable type of media for the investigation of the interplay between audio and visual elements. Previous studies of audio-visual modalities primarily focused on either audio-visual representation learning or generative modeling of a modality conditioned on the other, creating a disconnect between these two branches. A unified framework that learns representation and generates modalities has not been developed yet. In this work, we introduce a novel framework called Vision to Audio and Beyond (VAB) to bridge the gap between audio-visual representation learning and vision-to-audio generation. The key approach of VAB is that rather than working with raw video frames and audio data, VAB performs representation learning and generative modeling within latent spaces. In particular, VAB uses a pre-trained audio tokenizer and an image encoder to obtain audio tokens and visual features, respectively. It then performs the pre-training task of visual-conditioned masked audio token prediction. This training strategy enables the model to engage in contextual learning and simultaneous video-to-audio generation. After the pre-training phase, VAB employs the iterative-decoding approach to rapidly generate audio tokens conditioned on visual features. …
[ Hall C 4-9 ]
Abstract
In contrast to close-set scenarios that restore images from a predefined set of degradations, open-set image restoration aims to handle the unknown degradations that were unforeseen during the pretraining phase, which is less-touched as far as we know. This work study this challenging problem and reveal its essence as unidentified distribution shifts between the test and training data. Recently, test-time adaptation has emerged as a fundamental method to address this inherent disparities. Inspired by it, we propose a test-time degradation adaptation framework for open-set image restoration, which consists of three components, i.e., i) a pre-trained and degradation-agnostic diffusion model for generating clean images, ii) a test-time degradation adapter adapts the unknown degradations based on the input image during the testing phase, and iii) the adapter-guided image restoration guides the model through the adapter to produce the corresponding clean image. Through experiments on multiple degradations, we show that our method achieves comparable even better performance than those task-specific methods. The code is available at https://github.com/XLearning-SCU/2024-ICML-TAO.
[ Hall C 4-9 ]
Abstract
Implicit Neural Representations have gained prominence as a powerful framework for capturing complex data modalities, encompassing a wide range from 3D shapes to images and audio. Within the realm of 3D shape representation, Neural Signed Distance Functions (SDF) have demonstrated remarkable potential in faithfully encoding intricate shape geometry. However, learning SDFs from sparse 3D point clouds in the absence of ground truth supervision remains a very challenging task. While recent methods rely on smoothness priors to regularize the learning, our method introduces a regularization term that leverages adversarial samples around the shape to improve the learned SDFs. Through extensive experiments and evaluations, we illustrate the efficacy of our proposed method, highlighting its capacity to improve SDF learning with respect to baselines and the state-of-the-art using synthetic and real data.
[ Hall C 4-9 ]

Abstract
Vision Transformer (ViT) architectures represent images as collections of high-dimensional vectorized tokens, each corresponding to a rectangular non-overlapping patch. This representation trades spatial granularity for embedding dimensionality, and results in semantically rich but spatially coarsely quantized feature maps. In order to retrieve spatial details beneficial to fine-grained inference tasks we propose a training-free method inspired by "stochastic resonance." Specifically, we perform sub-token spatial transformations to the input data, and aggregate the resulting ViT features after applying the inverse transformation. The resulting "Stochastic Resonance Transformer" (SRT) retains the rich semantic information of the original representation, but grounds it on a finer-scale spatial domain, partly mitigating the coarse effect of spatial tokenization. SRT is applicable across any layer of any ViT architecture, consistently boosting performance on several tasks including segmentation, classification, depth estimation, and others by up to 14.9% without the need for any fine-tuning. Code: https://github.com/donglao/srt.
[ Hall C 4-9 ]

Abstract
Vision language models (VLMs) have shown impressive capabilities across a variety of tasks, from logical reasoning to visual understanding. This opens the door to richer interaction with the world, for example robotic control. However, VLMs produce only textual outputs, while robotic control and other spatial tasks require outputting continuous coordinates, actions, or trajectories. How can we enable VLMs to handle such settings without fine-tuning on task-specific data? In this paper, we propose a novel visual prompting approach for VLMs that we call Prompting with Iterative Visual Optimization (PIVOT), which casts tasks as iterative visual question answering. In each iteration, the image is annotated with a visual representation of proposals that the VLM can refer to (e.g., candidate robot actions, localizations, or trajectories). The VLM then selects the best ones for the task. These proposals are iteratively refined, allowing the VLM to eventually zero in on the best available answer. We investigate PIVOT on real-world robotic navigation, real-world manipulation from images, instruction following in simulation, and additional spatial inference tasks such as localization. We find, perhaps surprisingly, that our approach enables zero-shot control of robotic systems without any robot training data, navigation in a variety of environments, and other capabilities. Although …
[ Hall C 4-9 ]

Abstract
3D molecular representation learning has gained tremendous interest and achieved promising performance in various downstream tasks. A series of recent approaches follow a prevalent framework: an encoder-only model coupled with a coordinate denoising objective. However, through a series of analytical experiments, we prove that the encoder-only model with coordinate denoising objective exhibits inconsistency between pre-training and downstream objectives, as well as issues with disrupted atomic identifiers. To address these two issues, we propose Mol-AE for molecular representation learning, an auto-encoder model using positional encoding as atomic identifiers. We also propose a new training objective named 3D Cloze Test to make the model learn better atom spatial relationships from real molecular substructures. Empirical results demonstrate that Mol-AE achieves a large margin performance gain compared to the current state-of-the-art 3D molecular modeling approach.
[ Hall C 4-9 ]

Abstract
We study the problem of obtaining optimal and realistic prescriptions when using ReLU networks for data-driven decision-making. In this setting, the network is used to predict a quantity of interest and then is optimized to retrieve the decisions that maximize the quantity (e.g. find the best prices that maximize revenue). However, optimizing over-parameterized models often produces unrealistic prescriptions, far from the data manifold. This phenomenon is known as the Optimizer's Curse. To tackle this problem, we model the requirement for the resulting decisions to align with the data manifold as a tractable optimization constraint. This is achieved by reformulating the highly nonlinear Local Outlier Factor (LOF) metric as a single linear or quadratic constraint. To solve the problem efficiently for large networks, we propose an adaptive sampling algorithm that reduces the initial hard-to-solve optimization problem into a small number of significantly easier-to-solve problems by restricting the decision space to realistic polytopes, i.e. polytopes of the decision space that contain at least one realistic data point. Experiments on publicly available networks demonstrate the efficacy and scalability of our approach.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
The abundance of data has led to the emergence of a variety of optimization techniques that attempt to leverage available side information to provide more anticipative decisions. The wide range of methods and contexts of application have motivated the design of a universal unitless measure of performance known as the coefficient of prescriptiveness. This coefficient was designed to quantify both the quality of contextual decisions compared to a reference one and the prescriptive power of side information. To identify policies that maximize the former in a data-driven context, this paper introduces a distributionally robust contextual optimization model where the coefficient of prescriptiveness substitutes for the classical empirical risk minimization objective. We present a bisection algorithm to solve this model, which relies on solving a series of linear programs when the distributional ambiguity set has an appropriate nested form and polyhedral structure. Studying a contextual shortest path problem, we evaluate the robustness of the resulting policies against alternative methods when the out-of-sample dataset is subject to varying amounts of distribution shift.
[ Hall C 4-9 ]
Abstract
Modern machine learning applications have witnessed the remarkable success of optimization algorithms that are designed to find flat minima. Motivated by this design choice, we undertake a formal study that (i) formulates the notion of flat minima, and (ii) studies the complexity of finding them. Specifically, we adopt the trace of the Hessian of the cost function as a measure of flatness, and use it to formally define the notion of approximate flat minima. Under this notion, we then analyze algorithms that find approximate flat minima efficiently. For general cost functions, we discuss a gradient-based algorithm that finds an approximate flat local minimum efficiently. The main component of the algorithm is to use gradients computed from randomly perturbed iterates to estimate a direction that leads to flatter minima. For the setting where the cost function is an empirical risk over training data, we present a faster algorithm that is inspired by a recently proposed practical algorithm called sharpness-aware minimization, supporting its success in practice.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
In this work, we analyze two of the most fundamental algorithms in geodesically convex optimization: Riemannian gradient descent and (possibly inexact) Riemannian proximal point. We quantify their rates of convergence and produce different variants with several trade-offs. Crucially, we show the iterates naturally stay in a ball around an optimizer, of radius depending on the initial distance and, in some cases, on the curvature. Previous works simply assumed bounded iterates, resulting in rates that were not fully quantified. We also provide an implementable inexact proximal point algorithm and prove several new useful properties of Riemannian proximal methods: they work when positive curvature is present, the proximal operator does not move points away from any optimizer, and we quantify the smoothness of its induced Moreau envelope. Further, we explore beyond our theory with empirical tests.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Many processes in biology and drug discovery involve various 3D interactions between molecules, such as protein and protein, protein and small molecule, etc. Given that different molecules are usually represented in different granularity, existing methods usually encode each type of molecules independently with different models, leaving it defective to learn the various underlying interaction physics. In this paper, we first propose to universally represent an arbitrary 3D complex as a geometric graph of sets, shedding light on encoding all types of molecules with one model. We then propose a Generalist Equivariant Transformer (GET) to effectively capture both domain-specific hierarchies and domain-agnostic interaction physics. To be specific, GET consists of a bilevel attention module, a feed-forward module and a layer normalization module, where each module is E(3) equivariant and specialized for handling sets of variable sizes. Notably, in contrast to conventional pooling-based hierarchical models, our GET is able to retain fine-grained information of all levels. Extensive experiments on the interactions between proteins, small molecules and RNA/DNAs verify the effectiveness and generalization capability of our proposed method across different domains.
[ Hall C 4-9 ]

Abstract
Regression trees are a human-comprehensible machine-learning model that can represent complex relationships. They are typically trained using greedy heuristics because computing optimal regression trees is NP-hard. Contrary to this standard practice, we consider optimal methods and improve the scalability of optimal methods by developing three new dynamic programming approaches. First, we improve the performance of a piecewise constant regression tree method using a special algorithm for trees of depth two. Second, we provide the first optimal dynamic programming method for piecewise multiple linear regression. Third, we develop the first optimal method for piecewise simple linear regression, for which we also provide a special algorithm for trees of depth two. The experimental results show that our methods improve scalability by one or more orders of magnitude over the state-of-the-art optimal methods while performing similarly or better in out-of-sample performance.
[ Hall C 4-9 ]
Abstract
In this paper, we consider a model called Online Capacitated Coverage Maximization, characterized by two features: (1) the dynamic arrival of online agents following a known identical and independent distribution, and (2) each offline agent is associated with a specific coverage valuation over the groundset of online agents. Additionally, both offline and online agents are assigned integer capacities, reflecting finite budgets and operational constraints. We introduce and analyze two matching policies. The first, a non-adaptive policy, utilizes offline statistics derived from solving a benchmark linear program. The second is an enhanced version equipped with real-time boostings and attenuations. We conduct a comprehensive competitive analysis and characterize the competitive ratio for both policies as functions of two crucial parameters: a lower bound on the matching capacity among offline agents and an upper bound on the number of online agents covering any specific feature for offline agents.
[ Hall C 4-9 ]
Abstract
The Frank-Wolfe (FW) method is a popular approach for solving optimization problems with structured constraints that arise in machine learning applications. In recent years, stochastic versions of FW have gained popularity, motivated by large datasets for which the computation of the full gradient is prohibitively expensive. In this paper, we present two new variants of the FW algorithms for stochastic finite-sum minimization. Our algorithms have the best convergence guarantees of existing stochastic FW approaches for both convex and non-convex objective functions. Our methods do not have the issue of permanently collecting large batches, which is common to many stochastic projection-free approaches. Moreover, our second approach does not require either large batches or full deterministic gradients, which is a typical weakness of many techniques for finite-sum problems. The faster theoretical rates of our approaches are confirmed experimentally.
[ Hall C 4-9 ]
Abstract
Block coordinate descent is a powerful algorithmic template suitable for big data optimization. This template admits a lot of variants including block gradient descent (BGD), which performs gradient descent on a selected block of variables, while keeping other variables fixed. For a very long time, the stepsize for each block has tacitly been set to one divided by the block-wise Lipschitz smoothness constant, imitating the vanilla stepsize rule for gradient descent (GD). However, such a choice for BGD has not yet been able to theoretically justify its empirical superiority over GD, as existing convergence rates for BGD have worse constants than GD in the deterministic cases. To discover such theoretical justification, we set up a simple environment where we consider BGD applied to least-squares with two blocks of variables. Assuming the data matrix corresponding to each block is orthogonal, we find optimal stepsizes of BGD in closed form, which provably lead to asymptotic convergence rates twice as fast as GD with Polyak's momentum; this means, under that orthogonality assumption, one can accelerate BGD by just tuning stepsizes and without adding any momentum. An application that satisfies this assumption is generalized alternating projection between two subspaces, and applying our stepsizes to …
[ Hall C 4-9 ]

Abstract
Despite attaining high empirical generalization, the sharpness of models trained with sharpness-aware minimization (SAM) do not always correlate with generalization error. Instead of viewing SAM as minimizing sharpness to improve generalization, our paper considers a new perspective based on SAM's training dynamics. We propose that perturbations in SAM perform perturbed forgetting, where they discard undesirable model biases to exhibit learning signals that generalize better. We relate our notion of forgetting to the information bottleneck principle, use it to explain observations like the better generalization of smaller perturbation batches, and show that perturbed forgetting can exhibit a stronger correlation with generalization than flatness. While standard SAM targets model biases exposed by the steepest ascent directions, we propose a new perturbation that targets biases exposed through the model's outputs. Our output bias forgetting perturbations outperform standard SAM, GSAM, and ASAM on ImageNet, robustness benchmarks, and transfer to CIFAR-10,100, while sometimes converging to sharper regions. Our results suggest that the benefits of SAM can be explained by alternative mechanistic principles that do not require flatness of the loss surface.
[ Hall C 4-9 ]

Abstract
Model-Agnostic Meta-Learning (MAML) and its variants have shown remarkable performance in scenarios characterized by a scarcity of labeled data during the training phase of machine learning models. Despite these successes, MAMLbased approaches encounter significant challenges when there is a substantial discrepancy in the distribution of training and testing tasks, resulting in inefficient learning and limited generalization across domains. Inspired by classical proportional-integral-derivative (PID) control theory, this study introduces a Layer-Adaptive PID (LA-PID) Optimizer, a MAML-based optimizer that employs efficient parameter optimization methods to dynamically adjust task-specific PID control gains at each layer of the network, conducting a first-principles analysis of optimal convergence conditions. A series of experiments conducted on four standard benchmark datasets demonstrate the efficacy of the LA-PID optimizer, indicating that LA-PID achieves state-oftheart performance in few-shot classification and cross-domain tasks, accomplishing these objectives with fewer training steps. Code is available on https://github.com/yuguopin/LA-PID.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Constrained optimization offers a powerful framework to prescribe desired behaviors in neural network models. Typically, constrained problems are solved via their min-max Lagrangian formulations, which exhibit unstable oscillatory dynamics when optimized using gradient descent-ascent. The adoption of constrained optimization techniques in the machine learning community is currently limited by the lack of reliable, general-purpose update schemes for the Lagrange multipliers. This paper proposes the νPI algorithm and contributes an optimization perspective on Lagrange multiplier updates based on PI controllers, extending the work of Stooke, Achiam and Abbeel (2020). We provide theoretical and empirical insights explaining the inability of momentum methods to address the shortcomings of gradient descent-ascent, and contrast this with the empirical success of our proposed νPI controller. Moreover, we prove that νPI generalizes popular momentum methods for single-objective minimization. Our experiments demonstrate that νPI reliably stabilizes the multiplier dynamics and its hyperparameters enjoy robust and predictable behavior.
[ Hall C 4-9 ]
Abstract
How can we design proteins with desired functions? We are motivated by a chemical intuition that both geometric structure and biochemical properties are critical to a protein's function. In this paper, we propose SurfPro, a new method to generate functional proteins given a desired surface and its associated biochemical properties. SurfPro comprises a hierarchical encoder that progressively models the geometric shape and biochemical features of a protein surface, and an autoregressive decoder to produce an amino acid sequence. We evaluate SurfPro on a standard inverse folding benchmark CATH 4.2 and two functional protein design tasks: protein binder design and enzyme design. Our SurfPro consistently surpasses previous state-of-the-art inverse folding methods, achieving a recovery rate of 57.78% on CATH 4.2 and higher success rates in terms of protein-protein binding and enzyme-substrate interaction scores
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Therapeutic peptides have proven to have great pharmaceutical value and potential in recent decades. However, methods of AI-assisted peptide drug discovery are not fully explored. To fill the gap, we propose a target-aware peptide design method called PPFlow, based on conditional flow matching on torus manifolds, to model the internal geometries of torsion angles for the peptide structure design. Besides, we establish a protein-peptide binding dataset named PPBench2024 to fill the void of massive data for the task of structure-based peptide drug design and to allow the training of deep learning methods. Extensive experiments show that PPFlow reaches state-of-the-art performance in tasks of peptide drug generation and optimization in comparison with baseline models, and can be generalized to other tasks including docking and side-chain packing.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Proteins are complex molecules responsible for different functions in nature. Enhancing the functionality of proteins and cellular fitness can significantly impact various industries. However, protein optimization using computational methods remains challenging, especially when starting from low-fitness sequences. We propose LatProtRL, an optimization method to efficiently traverse a latent space learned by an encoder-decoder leveraging a large protein language model. To escape local optima, our optimization is modeled as a Markov decision process using reinforcement learning acting directly in latent space. We evaluate our approach on two important fitness optimization tasks, demonstrating its ability to achieve comparable or superior fitness over baseline methods. Our findings and in vitro evaluation show that the generated sequences can reach high-fitness regions, suggesting a substantial potential of LatProtRL in lab-in-the-loop scenarios.
[ Hall C 4-9 ]
Abstract
Neural audio synthesis methods now allow specifying ideas in natural language. However, these methods produce results that cannot be easily tweaked, as they are based on large latent spaces and up to billions of uninterpretable parameters. We propose a text-to-audio generation method that leverages a virtual modular sound synthesizer with only 78 parameters. Synthesizers have long been used by skilled sound designers for media like music and film due to their flexibility and intuitive controls. Our method, CTAG, iteratively updates a synthesizer's parameters to produce high-quality audio renderings of text prompts that can be easily inspected and tweaked. Sounds produced this way are also more abstract, capturing essential conceptual features over fine-grained acoustic details, akin to how simple sketches can vividly convey visual concepts. Our results show how CTAG produces sounds that are distinctive, perceived as artistic, and yet similarly identifiable to recent neural audio synthesis models, positioning it as a valuable and complementary tool.
[ Hall C 4-9 ]
Abstract
The stochastic proximal gradient method is a powerful generalization of the widely used stochastic gradient descent (SGD) method and has found numerous applications in Machine Learning. However, it is notoriously known that this method fails to converge in non-convex settings where the stochastic noise is significant (i.e. when only small or bounded batch sizes are used). In this paper, we focus on the stochastic proximal gradient method with Polyak momentum. We prove this method attains an optimal convergence rate for non-convex composite optimization problems, regardless of batch size. Additionally, we rigorously analyze the variance reduction effect of the Polyak momentum in the composite optimization setting and we show the method also converges when the proximal step can only be solved inexactly. Finally, we provide numerical experiments to validate our theoretical results.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Federated compositional optimization has been actively studied in the past few years. However, existing methods mainly focus on the two-level compositional optimization problem, which cannot be directly applied to the multi-level counterparts. Moreover, the convergence rate of existing federated two-level compositional optimization learning algorithms fails to achieve linear speedup with respect to the number of workers under heterogeneous settings. After identifying the reason for this failure, we developed a novel federated stochastic multi-level compositional optimization algorithm by introducing a novel Jacobian-vector product estimator. This innovation mitigates both the heterogeneity issue and the communication efficiency issue simultaneously. We then theoretically proved that our algorithm can achieve the level-independent and linear speedup convergence rate for nonconvex problems. To our knowledge, this is the first time that a federated learning algorithm can achieve such a favorable convergence rate for multi-level compositional problems. Moreover, experimental results confirm the efficacy of our algorithm.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Federated representation learning (FRL) is a popular personalized federated learning (FL) framework where clients work together to train a common representation while retaining their personalized heads. Existing studies, however, largely focus on the over-parameterized regime. In this paper, we make the initial efforts to investigate FRL in the under-parameterized regime, where the FL model is insufficient to express the variations in all ground-truth models. We propose a novel FRL algorithm FLUTE, and theoretically characterize its sample complexity and convergence rate for linear models in the under-parameterized regime. To the best of our knowledge, this is the first FRL algorithm with provable performance guarantees in this regime. FLUTE features a data-independent random initialization and a carefully designed objective function that aids the distillation of subspace spanned by the global optimal representation from the misaligned local representations. On the technical side, we bridge low-rank matrix approximation techniques with the FL analysis, which may be of broad interest. We also extend FLUTE beyond linear representations. Experimental results demonstrate that FLUTE outperforms state-of-the-art FRL solutions in both synthetic and real-world tasks.
[ Hall C 4-9 ]
Abstract
This paper studies decentralized optimization problem, where the local objective on each node is an average of a finite set of convex functions and the global function is strongly convex. We propose an efficient stochastic variance reduced first-order method that allows the different nodes to establish their stochastic local gradient estimator with different mini-batch sizes per iteration. We prove the upper bound on the computation time of the proposed method contains the dependence on the global condition number, which is sharper than the previous results that only depend on the local condition numbers. Compared with the state-of-the-art methods, we also show that our method requires less local incremental first-order oracle calls and comparable communication cost. We further perform numerical experiments to validate the advantage of our method.
[ Hall C 4-9 ]

Abstract
Modern advancements in large-scale machine learning would be impossible without the paradigm of data-parallel distributed computing. Since distributed computing with large-scale models imparts excessive pressure on communication channels, significant recent research has been directed toward co-designing communication compression strategies and training algorithms with the goal of reducing communication costs. While pure data parallelism allows better data scaling, it suffers from poor model scaling properties. Indeed, compute nodes are severely limited by memory constraints, preventing further increases in model size. For this reason, the latest achievements in training giant neural network models also rely on some form of model parallelism. In this work, we take a closer theoretical look at Independent Subnetwork Training (IST), which is a recently proposed and highly effective technique for solving the aforementioned problems. We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication, and provide a precise analysis of its optimization performance on a quadratic model.
[ Hall C 4-9 ]
Abstract
While semidefinite programming (SDP) has traditionally been limited to moderate-sized problems, recent algorithms augmented with matrix sketching techniques have enabled solving larger SDPs. However, these methods achieve scalability at the cost of an increase in the number of necessary iterations, resulting in slower convergence as the problem size grows. Furthermore, they require iteration-dependent parameter schedules that prohibit effective utilization of warm-start initializations important in practical applications with incrementally-arriving data or mixed-integer programming. We present Unified Spectral Bundling with Sketching (USBS), a provably correct, fast and scalable algorithm for solving massive SDPs that can leverage a warm-start initialization to further accelerate convergence. Our proposed algorithm is a spectral bundle method for solving general SDPs containing both equality and inequality constraints. Moveover, when augmented with an optional matrix sketching technique, our algorithm achieves the dramatically improved scalability of previous work while sustaining convergence speed. We empirically demonstrate the effectiveness of our method across multiple applications, with and without warm-starting. For example, USBS provides a 500x speed-up over the state-of-the-art scalable SDP solver on an instance with over 2 billion decision variables. We make our implementation in pure JAX publicly available.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In federated learning (FL), data heterogeneity is the main reason that existing theoretical analyses are pessimistic about the convergence rate. In particular, for many FL algorithms, the convergence rate grows dramatically when the number of local updates becomes large, especially when the product of the gradient divergence and local Lipschitz constant is large. However, empirical studies can show that more local updates can improve the convergence rate even when these two parameters are large, which is inconsistent with the theoretical findings. This paper aims to bridge this gap between theoretical understanding and practical performance by providing a theoretical analysis from a new perspective on data heterogeneity. In particular, we propose a new and weaker assumption compared to the local Lipschitz gradient assumption, named the heterogeneity-driven pseudo-Lipschitz assumption. We show that this and the gradient divergence assumptions can jointly characterize the effect of data heterogeneity. By deriving a convergence upper bound for FedAvg and its extensions, we show that, compared to the existing works, local Lipschitz constant is replaced by the much smaller heterogeneity-driven pseudo-Lipschitz constant and the corresponding convergence upper bound can be significantly reduced for the same number of local updates, although its order stays the same. In addition, …
[ Hall C 4-9 ]

Abstract
Research into optimisation for deep learning is characterised by a tension between the computational efficiency of first-order, gradient-based methods (such as SGD and Adam) and the theoretical efficiency of second-order, curvature-based methods (such as quasi-Newton methods and K-FAC). Noting that second-order methods often only function effectively with the addition of stabilising heuristics (such as Levenberg-Marquardt damping), we ask how much these (as opposed to the second-order curvature model) contribute to second-order algorithms' performance. We thus study AdamQLR: an optimiser combining damping and learning rate selection techniques from K-FAC (Martens & Grosse, 2015) with the update directions proposed by Adam, inspired by considering Adam through a second-order lens. We evaluate AdamQLR on a range of regression and classification tasks at various scales and hyperparameter tuning methodologies, concluding K-FAC's adaptive heuristics are of variable standalone general effectiveness, and finding an untuned AdamQLR setting can achieve comparable performance vs runtime to tuned benchmarks.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
In classic Reinforcement Learning (RL), the agent maximizes an additive objective of the visited states, e.g., a value function. Unfortunately, objectives of this type cannot model many real-world applications such as experiment design, exploration, imitation learning, and risk-averse RL to name a few. This is due to the fact that additive objectives disregard interactions between states that are crucial for certain tasks. To tackle this problem, we introduce Global RL (GRL), where rewards are globally defined over trajectories instead of locally over states. Global rewards can capture negative interactions among states, e.g., in exploration, via submodularity, positive interactions, e.g., synergetic effects, via supermodularity, while mixed interactions via combinations of them. By exploiting ideas from submodular optimization, we propose a novel algorithmic scheme that converts any GRL problem to a sequence of classic RL problems and solves it efficiently with curvature-dependent approximation guarantees. We also provide hardness of approximation results and empirically demonstrate the effectiveness of our method on several GRL instances.
[ Hall C 4-9 ]

Abstract
It is vital to learn effective policies that can be transferred to different domains with dynamics discrepancies in reinforcement learning (RL). In this paper, we consider dynamics adaptation settings where there exists dynamics mismatch between the source domain and the target domain, and one can get access to sufficient source domain data, while can only have limited interactions with the target domain. Existing methods address this problem by learning domain classifiers, performing data filtering from a value discrepancy perspective, etc. Instead, we tackle this challenge from a decoupled representation learning perspective. We perform representation learning only in the target domain and measure the representation deviations on the transitions from the source domain, which we show can be a signal of dynamics mismatch. We also show that representation deviation upper bounds performance difference of a given policy in the source domain and target domain, which motivates us to adopt representation deviation as a reward penalty. The produced representations are not involved in either policy or value function, but only serve as a reward penalizer. We conduct extensive experiments on environments with kinematic and morphology mismatch, and the results show that our method exhibits strong performance on many tasks. Our code is …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Recent studies on online reinforcement learning (RL) have demonstrated the advantages of learning multiple behaviors from a single task, as in the case of few-shot adaptation to a new environment. Although this approach is expected to yield similar benefits in offline RL, appropriate methods for learning multiple solutions have not been fully investigated in previous studies. In this study, we therefore addressed the problem of finding multiple solutions from a single task in offline RL. We propose algorithms that can learn multiple solutions in offline RL, and empirically investigate their performance. Our experimental results show that the proposed algorithm learns multiple qualitatively and quantitatively distinctive solutions in offline RL.
[ Hall C 4-9 ]
Abstract
Can we pre-train a generalist agent from a large amount of unlabeled offline trajectories such that it can be immediately adapted to any new downstream tasks in a zero-shot manner? In this work, we present a functional reward encoding (FRE) as a general, scalable solution to this zero-shot RL problem. Our main idea is to learn functional representations of any arbitrary tasks by encoding their state-reward samples using a transformer-based variational auto-encoder. This functional encoding not only enables the pre-training of an agent from a wide diversity of general unsupervised reward functions, but also provides a way to solve any new downstream tasks in a zero-shot manner, given a small number of reward-annotated samples. We empirically show that FRE agents trained on diverse random unsupervised reward functions can generalize to solve novel tasks in a range of simulated robotic benchmarks, often outperforming previous zero-shot RL and offline RL methods.
[ Hall C 4-9 ]

Abstract
Robust Reinforcement Learning (RRL) is a promising Reinforcement Learning (RL) paradigm aimed at training robust to uncertainty or disturbances models, making them more efficient for real-world applications. Following this paradigm, uncertainty or disturbances are interpreted as actions of a second adversarial agent, and thus, the problem is reduced to seeking the agents' policies robust to any opponent's actions. This paper is the first to propose considering the RRL problems within the positional differential game theory, which helps us to obtain theoretically justified intuition to develop a centralized Q-learning approach. Namely, we prove that under Isaacs's condition (sufficiently general for real-world dynamical systems), the same Q-function can be utilized as an approximate solution of both minimax and maximin Bellman equations. Based on these results, we present the Isaacs Deep Q-Network algorithms and demonstrate their superiority compared to other baseline RRL and Multi-Agent RL algorithms in various environments.
[ Hall C 4-9 ]

Abstract
Motivated by the success of Transformers when applied to sequences of discrete symbols, token-based world models (TBWMs) were recently proposed as sample-efficient methods. In TBWMs, the world model consumes agent experience as a language-like sequence of tokens, where each observation constitutes a sub-sequence. However, during imagination, the sequential token-by-token generation of next observations results in a severe bottleneck, leading to long training times, poor GPU utilization, and limited representations. To resolve this bottleneck, we devise a novel Parallel Observation Prediction (POP) mechanism. POP augments a Retentive Network (RetNet) with a novel forward mode tailored to our reinforcement learning setting. We incorporate POP in a novel TBWM agent named REM (Retentive Environment Model), showcasing a 15.4x faster imagination compared to prior TBWMs. REM attains superhuman performance on 12 out of 26 games of the Atari 100K benchmark, while training in less than 12 hours. Our code is available at https://github.com/leor-c/REM
[ Hall C 4-9 ]

Abstract
We present Premier-TACO, a multitask feature representation learning approach designed to improve few-shot policy learning efficiency in sequential decision-making tasks. Premier-TACO leverages a subset of multitask offline datasets for pretraining a general feature representation, which captures critical environmental dynamics and is fine-tuned using minimal expert demonstrations. It advances the temporal action contrastive learning (TACO) objective, known for state-of-the-art results in visual control tasks, by incorporating a novel negative example sampling strategy. This strategy is crucial in significantly boosting TACO’s computational efficiency, making large-scale multitask offline pretraining feasible. Our extensive empirical evaluation in a diverse set of continuous control benchmarks including Deepmind Control Suite, MetaWorld, and LIBERO demonstrate Premier-TACO’s effective- ness in pretraining visual representations, significantly enhancing few-shot imitation learning of novel tasks.
[ Hall C 4-9 ]

Abstract
Preference-based Reinforcement Learning (PbRL) circumvents the need for reward engineering by harnessing human preferences as the reward signal. However, current PbRL methods excessively depend on high-quality feedback from domain experts, which results in a lack of robustness. In this paper, we present RIME, a robust PbRL algorithm for effective reward learning from noisy preferences. Our method utilizes a sample selection-based discriminator to dynamically filter out noise and ensure robust training. To counteract the cumulative error stemming from incorrect selection, we suggest a warm start for the reward model, which additionally bridges the performance gap during the transition from pre-training to online training in PbRL. Our experiments on robotic manipulation and locomotion tasks demonstrate that RIME significantly enhances the robustness of the state-of-the-art PbRL method. Code is available at https://github.com/CJReinforce/RIME_ICML2024.
[ Hall C 4-9 ]
Abstract
We study how to make decisions that minimize Bayesian regret in offline linear bandits. Prior work suggests that one must take actions with maximum lower confidence bound (LCB) on their reward. We argue that reliance on LCB is inherently flawed in this setting and propose a new algorithm that directly minimizes upper-bounds on the Bayesian regret using efficient conic optimization solvers. Our bounds build heavily on new connections to monetary risk measures. Proving a matching lower-bound, we show that our upper-bounds are tight, and by minimizing them we are guaranteed to outperform the LCB approach. Our numerical results on synthetic domains confirm that our approach is superior to maximizing LCB.
[ Hall C 4-9 ]

Abstract
In recent years, Reinforcement Learning (RL) has shown great promise in session-based recommendation. Sequential models that use RL have reached state-of-the-art performance for the Next-item Prediction (NIP) task. This result is intriguing, as the NIP task only evaluates how well the system can correctly recommend the next item to the user, while the goal of RL is to find a policy that optimizes rewards in the long term -- sometimes at the expense of suboptimal short-term performance. Then, how can RL improve the system's performance on short-term metrics? This article investigates this question by exploring proxy learning objectives, which we identify as goals RL models might be following, and thus could explain the performance boost. We found that RL -- when used as an auxiliary loss -- promotes the learning of embeddings that capture information about the user's previously interacted items. Subsequently, we replaced the RL objective with a straightforward auxiliary loss designed to predict the number of items the user interacted with. This substitution results in performance gains comparable to RL. These findings pave the way to improve performance and understanding of RL methods for recommender systems.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In Reinforcement Learning (RL), designing precise reward functions remains to be a challenge, particularly when aligning with human intent. Preference-based RL (PbRL) was introduced to address this problem by learning reward models from human feedback. However, existing PbRL methods have limitations as they often overlook the second-order preference that indicates the relative strength of preference. In this paper, we propose Listwise Reward Estimation (LiRE), a novel approach for offline PbRL that leverages second-order preference information by constructing a Ranked List of Trajectories (RLT), which can be efficiently built by using the same ternary feedback type as traditional methods. To validate the effectiveness of LiRE, we propose a new offline PbRL dataset that objectively reflects the effect of the estimated rewards. Our extensive experiments on the dataset demonstrate the superiority of LiRE, i.e., outperforming state-of-the-art baselines even with modest feedback budgets and enjoying robustness with respect to the number of feedbacks and feedback noise. Our code is available at https://github.com/chwoong/LiRE
[ Hall C 4-9 ]

Abstract
Decision making demands intricate interplay between perception, memory, and reasoning to discern optimal policies. Conventional approaches to decision making face challenges related to low sample efficiency and poor generalization. In contrast, foundation models in language and vision have showcased rapid adaptation to diverse new tasks. Therefore, we advocate for the construction of foundation agents as a transformative shift in the learning paradigm of agents. This proposal is underpinned by the formulation of foundation agents with their fundamental characteristics and challenges motivated by the success of large language models (LLMs). Moreover, we specify the roadmap of foundation agents from large interactive data collection or generation, to self-supervised pretraining and adaptation, and knowledge and value alignment with LLMs. Lastly, we pinpoint critical research questions derived from the formulation and delineate trends for foundation agents supported by real-world use cases, addressing both technical and theoretical aspects to propel the field towards a more comprehensive and impactful future.
[ Hall C 4-9 ]
Abstract
We consider the hybrid reinforcement learning setting where the agent has access to both offline data and online interactive access. While RL research typically assumes offline data contains complete action, reward and transition information, datasets with only state information (also known as observation-only datasets) are more general, abundant and practical. This motivates our study of the hybrid RL with observation-only offline dataset framework. While the task of competing with the best policy ``covered'' by the offline data can be solved if a reset model of the environment is provided (i.e., one that can be reset to any state), we show evidence of hardness of competing when only given the weaker trace model (i.e., one can only reset to the initial states and must produce full traces through the environment), without further assumption of admissibility of the offline data. Under the admissibility assumptions-- that the offline data could actually be produced by the policy class we consider-- we propose the first algorithm in the trace model setting that provably matches the performance of algorithms that leverage a reset model. We also perform proof-of-concept experiments that suggest the effectiveness of our algorithm in practice.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Since the objective functions of reinforcement learning problems are typically highly nonconvex, it is desirable that policy gradient, the most popular algorithm, escapes saddle points and arrives at second-order stationary points. Existing results only consider vanilla policy gradient algorithms with unbiased gradient estimators, but practical implementations under the infinite-horizon discounted reward setting are biased due to finite-horizon sampling. Moreover, actor-critic methods, whose second-order convergence has not yet been established, are also biased due to the critic approximation of the value function. We provide a novel second-order analysis of biased policy gradient methods, including the vanilla gradient estimator computed from Monte-Carlo sampling of trajectories as well as the double-loop actor-critic algorithm, where in the inner loop the critic improves the approximation of the value function via TD(0) learning. Separately, we also establish the convergence of TD(0) on Markov chains irrespective of initial state distribution.
[ Hall C 4-9 ]
Abstract
Imitation learning addresses the challenge of learning by observing an expert’s demonstrations without access to reward signals from environments. Most existing imitation learning methods that do not require interacting with environments either model the expert distribution as the conditional probability p(a|s) (e.g., behavioral cloning, BC) or the joint probability p(s, a). Despite the simplicity of modeling the conditional probability with BC, it usually struggles with generalization. While modeling the joint probability can improve generalization performance, the inference procedure is often time-consuming, and the model can suffer from manifold overfitting. This work proposes an imitation learning framework that benefits from modeling both the conditional and joint probability of the expert distribution. Our proposed Diffusion Model-Augmented Behavioral Cloning (DBC) employs a diffusion model trained to model expert behaviors and learns a policy to optimize both the BC loss (conditional) and our proposed diffusion model loss (joint). DBC outperforms baselines in various continuous control tasks in navigation, robot arm manipulation, dexterous manipulation, and locomotion. We design additional experiments to verify the limitations of modeling either the conditional probability or the joint probability of the expert distribution, as well as compare different generative models. Ablation studies justify the effectiveness of our design choices.
[ Hall C 4-9 ]
Abstract
Bayesian reinforcement learning (RL) offers a principled and elegant approach for sequential decision making under uncertainty. Most notably, Bayesian agents do not face an exploration/exploitation dilemma, a major pathology of frequentist methods. However theoretical understanding of model-free approaches is lacking. In this paper, we introduce a novel Bayesian model-free formulation and the first analysis showing that model-free approaches can yield Bayes-optimal policies. We show all existing model-free approaches make approximations that yield policies that can be arbitrarily Bayes-suboptimal. As a first step towards model-free Bayes optimality, we introduce the Bayesian exploration network (BEN) which uses normalising flows to model both the aleatoric uncertainty (via density estimation) and epistemic uncertainty (via variational inference) in the Bellman operator. In the limit of complete optimisation, BEN learns true Bayes-optimal policies, but like in variational expectation-maximisation, partial optimisation renders our approach tractable. Empirical results demonstrate that BEN can learn true Bayes-optimal policies in tasks where existing model-free approaches fail.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Training reinforcement learning (RL) agents directly from high-dimensional image observations continues to be a challenging problem. Recent line of work on behavioral distances proposes to learn representations that encode behavioral similarities quantified by the bisimulation metric. By learning an isometric mapping to a lower dimensional space that preserves this metric, such methods attempt to learn representations that group together functionally similar states. However, such an isometric mapping may not exist, making the learning objective ill-defined. We propose an alternative objective that allows distortions in long-range distances, while preserving local metric structure -- inducing representations that highlight natural clusters in the state space. This leads to new representations, which we term Behavioral Eigenmaps (BeigeMaps), corresponding to the eigenfunctions of similarity kernels induced by behavioral distances. We empirically demonstrate that when added as a drop-in modification, BeigeMaps improve the policy performance of prior behavioral distance based RL algorithms.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Inverse reinforcement learning (IRL) aims to recover the reward function of an expert agent from demonstrations of behavior. It is well-known that the IRL problem is fundamentally ill-posed, i.e., many reward functions can explain the demonstrations. For this reason, IRL has been recently reframed in terms of estimating the feasible reward set (Metelli et al., 2021), thus, postponing the selection of a single reward. However, so far, the available formulations and algorithmic solutions have been proposed and analyzed mainly for the online setting, where the learner can interact with the environment and query the expert at will. This is clearly unrealistic in most practical applications, where the availability of an offline dataset is a much more common scenario. In this paper, we introduce a novel notion of feasible reward set capturing the opportunities and limitations of the offline setting and we analyze the complexity of its estimation. This requires the introduction an original learning framework that copes with the intrinsic difficulty of the setting, for which data coverage is not under control. Then, we propose two computationally and statistically efficient algorithms, IRLO and PIRLO, for addressing the problem. In particular, the latter adopts a specific form of pessimism to enforce …
[ Hall C 4-9 ]

Abstract
Relative overgeneralization (RO) occurs in cooperative multi-agent learning tasks when agents converge towards a suboptimal joint policy due to overfitting to suboptimal behaviors of other agents. No methods have been proposed for addressing RO in multi-agent policy gradient (MAPG) methods although these methods produce state-of-the-art results. To address this gap, we propose a general, yet simple, framework to enable optimistic updates in MAPG methods that alleviate the RO problem. Our approach involves clipping the advantage to eliminate negative values, thereby facilitating optimistic updates in MAPG. The optimism prevents individual agents from quickly converging to a local optimum. Additionally, we provide a formal analysis to show that the proposed method retains optimality at a fixed point. In extensive evaluations on a diverse set of tasks including the Multi-agent MuJoCo and Overcooked benchmarks, our method outperforms strong baselines on 13 out of 19 tested tasks and matches the performance on the rest.
[ Hall C 4-9 ]
Abstract
A recent theory shows that a multi-player decentralized partially observable Markov decision process can be transformed into an equivalent single-player game, enabling the application of Bellman's principle of optimality to solve the single-player game by breaking it down into single-stage subgames. However, this approach entangles the decision variables of all players at each single-stage subgame, resulting in backups with a double-exponential complexity. This paper demonstrates how to disentangle these decision variables while maintaining optimality under hierarchical information sharing, a prominent management style in our society. To achieve this, we apply the principle of optimality to solve any single-stage subgame by breaking it down further into smaller subgames, enabling us to make single-player decisions at a time. Our approach reveals that extensive-form games always exist with solutions to a single-stage subgame, significantly reducing time complexity. Our experimental results show that the algorithms leveraging these findings can scale up to much larger multi-player games without compromising optimality.
[ Hall C 4-9 ]

Abstract
Unsupervised Reinforcement Learning (RL) provides a promising paradigm for learning useful behaviors via reward-free per-training. Existing methods for unsupervised RL mainly conduct empowerment-driven skill discovery or entropy-based exploration. However, empowerment often leads to static skills, and pure exploration only maximizes the state coverage rather than learning useful behaviors. In this paper, we propose a novel unsupervised RL framework via an ensemble of skills, where each skill performs partition exploration based on the state prototypes. Thus, each skill can explore the clustered area locally, and the ensemble skills maximize the overall state coverage. We adopt state-distribution constraints for the skill occupancy and the desired cluster for learning distinguishable skills. Theoretical analysis is provided for the state entropy and the resulting skill distributions. Based on extensive experiments on several challenging tasks, we find our method learns well-explored ensemble skills and achieves superior performance in various downstream tasks compared to previous methods.
[ Hall C 4-9 ]

Abstract
Monte Carlo tree search (MCTS) has been successful in a variety of domains, but faces challenges with long-horizon exploration when compared to sampling-based motion planning algorithms like Rapidly-Exploring Random Trees. To address these limitations of MCTS, we derive a tree search algorithm based on policy optimization with state-occupancy measure regularization, which we call Volume-MCTS. We show that count-based exploration and sampling-based motion planning can be derived as approximate solutions to this state-occupancy measure regularized objective. We test our method on several robot navigation problems, and find that Volume-MCTS outperforms AlphaZero and displays significantly better long-horizon exploration properties.
[ Hall C 4-9 ]

Abstract
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems. They learn stochastic parametric (hyper)policies by either exploring in the space of actions or in the space of parameters. Stochastic controllers, however, are often undesirable from a practical perspective because of their lack of robustness, safety, and traceability. In common practice, stochastic (hyper)policies are learned only to deploy their deterministic version. In this paper, we make a step towards the theoretical understanding of this practice. After introducing a novel framework for modeling this scenario, we study the global convergence to the best deterministic policy, under (weak) gradient domination assumptions. Then, we illustrate how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy. Finally, we quantitatively compare action-based and parameter-based exploration, giving a formal guise to intuitive results.
[ Hall C 4-9 ]
Abstract
Existing studies on constrained reinforcement learning (RL) may obtain a well-performing policy in the training environment. However, when deployed in a real environment, it may easily violate constraints that were originally satisfied during training because there might be model mismatch between the training and real environments. To address this challenge, we formulate the problem as constrained RL under model uncertainty, where the goal is to learn a policy that optimizes the reward and at the same time satisfies the constraint under model mismatch. We develop a Robust Constrained Policy Optimization (RCPO) algorithm, which is the first algorithm that applies to large/continuous state space and has theoretical guarantees on worst-case reward improvement and constraint violation at each iteration during the training. We show the effectiveness of our algorithm on a set of RL tasks with constraints.
[ Hall C 4-9 ]

Abstract
We propose a new Q-learning variant, called 2RA Q-learning, that addresses some weaknesses of existing Q-learning methods in a principled manner. One such weakness is an underlying estimation bias which cannot be controlled and often results in poor performance. We propose a distributionally robust estimator for the maximum expected value term, which allows us to precisely control the level of estimation bias introduced. The distributionally robust estimator admits a closed-form solution such that the proposed algorithm has a computational cost per iteration comparable to Watkins' Q-learning. For the tabular case, we show that 2RA Q-learning converges to the optimal policy and analyze its asymptotic mean-squared error. Lastly, we conduct numerical experiments for various settings, which corroborate our theoretical findings and indicate that 2RA Q-learning often performs better than existing methods.
[ Hall C 4-9 ]
Abstract
Statistical model discovery is a challenging search over a vast space of models subject to domain-specific constraints. Efficiently searching over this space requires expertise in modeling and the problem domain. Motivated by the domain knowledge and programming capabilities of large language models (LMs), we introduce a method for language model driven automated statistical model discovery. We cast our automated procedure within the principled framework of Box’s Loop: the LM iterates between proposing statistical models represented as probabilistic programs, acting as a modeler, and critiquing those models, acting as a domain expert. By leveraging LMs, we do not have to define a domain-specific language of models or design a handcrafted search procedure, which are key restrictions of previous systems. We evaluate our method in three settings in probabilistic modeling: searching within a restricted space of models, searching over an open-ended space, and improving expert models under natural language constraints (e.g., this model should be interpretable to an ecologist). Our method identifies models on par with human expert designed models and extends classic models in interpretable ways. Our results highlight the promise of LM-driven model discovery.
[ Hall C 4-9 ]

Abstract
Maximum likelihood estimation (MLE) of latent variable models is often recast as the minimization of a free energy functional over an extended space of parameters and probability distributions. This perspective was recently combined with insights from optimal transport to obtain novel particle-based algorithms for fitting latent variable models to data. Drawing inspiration from prior works which interpret `momentum-enriched' optimization algorithms as discretizations of ordinary differential equations, we propose an analogous dynamical-systems-inspired approach to minimizing the free energy functional. The result is a dynamical system that blends elements of Nesterov's Accelerated Gradient method, the underdamped Langevin diffusion, and particle methods. Under suitable assumptions, we prove that the continuous-time system minimizes the functional. By discretizing the system, we obtain a practical algorithm for MLE in latent variable models. The algorithm outperforms existing particle methods in numerical experiments and compares favourably with other MLE algorithms.
[ Hall C 4-9 ]

Abstract
Neural additive models (NAMs) enhance the transparency of deep neural networks by handling input features in separate additive sub-networks. However, they lack inherent mechanisms that provide calibrated uncertainties and enable selection of relevant features and interactions. Approaching NAMs from a Bayesian perspective, we augment them in three primary ways, namely by a) providing credible intervals for the individual additive sub-networks; b) estimating the marginal likelihood to perform an implicit selection of features via an empirical Bayes procedure; and c) facilitating the ranking of feature pairs as candidates for second-order interaction in fine-tuned models. In particular, we develop Laplace-approximated NAMs (LA-NAMs), which show improved empirical performance on tabular datasets and challenging real-world medical tasks.
[ Hall C 4-9 ]
Abstract
Bayesian Neural Networks(BNNs) with high-dimensional parameters pose a challenge for posterior inference due to the multi-modality of the posterior distributions. Stochastic Gradient Markov Chain Monte Carlo(SGMCMC) with cyclical learning rate scheduling is a promising solution, but it requires a large number of sampling steps to explore high-dimensional multi-modal posteriors, making it computationally expensive. In this paper, we propose a meta-learning strategy to build SGMCMC which can efficiently explore the multi-modal target distributions. Our algorithm allows the learned SGMCMC to quickly explore the high-density region of the posterior landscape. Also, we show that this exploration property is transferrable to various tasks, even for the ones unseen during a meta-training stage. Using popular image classification benchmarks and a variety of downstream tasks, we demonstrate that our method significantly improves the sampling efficiency, achieving better performance than vanilla SGMCMC without incurring significant computational overhead.
[ Hall C 4-9 ]
Abstract
We propose a new procedure named PASOA, for Bayesian experimental design, that performs sequential design optimization by simultaneously providing accurate estimates of successive posterior distributions for parameter inference. The sequential design process is carried out via a contrastive estimation principle, using stochastic optimization and Sequential Monte Carlo (SMC) samplers to maximise the Expected Information Gain (EIG). As larger information gains are obtained for larger distances between successive posterior distributions, this EIG objective may worsen classical SMC performance. To handle this issue, tempering is proposed to have both a large information gain and an accurate SMC sampling, that we show is crucial for performance. This novel combination of stochastic optimization and tempered SMC allows to jointly handle design optimization and parameter inference. We provide a proof that the obtained optimal design estimators benefit from some consistency property. Numerical experiments confirm the potential of the approach, which outperforms other recent existing procedures.
[ Hall C 4-9 ]
Abstract
We present Neural Quantile Estimation (NQE), a novel Simulation-Based Inference (SBI) method based on conditional quantile regression. NQE autoregressively learns individual one dimensional quantiles for each posterior dimension, conditioned on the data and previous posterior dimensions. Posterior samples are obtained by interpolating the predicted quantiles using monotonic cubic Hermite spline, with specific treatment for the tail behavior and multi-modal distributions. We introduce an alternative definition for the Bayesian credible region using the local Cumulative Density Function (CDF), offering substantially faster evaluation than the traditional Highest Posterior Density Region (HPDR). In case of limited simulation budget and/or known model misspecification, a post-processing calibration step can be integrated into NQE to ensure the unbiasedness of the posterior estimation with negligible additional computational cost. We demonstrate that NQE achieves state-of-the-art performance on a variety of benchmark problems.
[ Hall C 4-9 ]

Abstract
In this paper, we discuss feature engineering for single-pass uncertainty estimation. For accurate uncertainty estimates, neural networks must extract differences in the feature space that quantify uncertainty. This could be achieved by current single-pass approaches that maintain feature distances between data points as they traverse the network. While initial results are promising, maintaining feature distances within the network representations frequently inhibits information compression and opposes the learning objective. We study this effect theoretically and empirically to arrive at a simple conclusion: preserving feature distances in the output is beneficial when the preserved features contribute to learning the label distribution and act in opposition otherwise. We then propose Transitional Uncertainty with Layered Intermediate Predictions (TULIP) as a simple approach to address the shortcomings of current single-pass estimators. Specifically, we implement feature preservation by extracting features from intermediate representations before information is collapsed by subsequent layers. We refer to the underlying preservation mechanism as transitional feature preservation. We show that TULIP matches or outperforms current single-pass methods on standard benchmarks and in practical settings where these methods are less reliable (imbalances, complex architectures, medical modalities).
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Semi-implicit variational inference (SIVI) extends traditional variational families with semi-implicit distributions defined in a hierarchical manner. Due to the intractable densities of semi-implicit distributions, classical SIVI often resorts to surrogates of evidence lower bound (ELBO) that would introduce biases for training. A recent advancement in SIVI, named SIVI-SM, utilizes an alternative score matching objective made tractable via a minimax formulation, albeit requiring an additional lower-level optimization. In this paper, we propose kernel SIVI (KSIVI), a variant of SIVI-SM that eliminates the need for the lower-level optimization through kernel tricks. Specifically, we show that when optimizing over a reproducing kernel Hilbert space (RKHS), the lower-level problem has an explicit solution. This way, the upper-level objective becomes the kernel Stein discrepancy (KSD), which is readily computable for stochastic gradient descent due to the hierarchical structure of semi-implicit variational distributions. An upper bound for the variance of the Monte Carlo gradient estimators of the KSD objective is derived, which allows us to establish novel convergence guarantees of KSIVI. We demonstrate the effectiveness and efficiency of KSIVI on both synthetic distributions and a variety of real data Bayesian inference tasks.
[ Hall C 4-9 ]
Abstract
Mixture variational distributions in black box variational inference (BBVI) have demonstrated impressive results in challenging density estimation tasks. However, currently scaling the number of mixture components can lead to a linear increase in the number of learnable parameters and a quadratic increase in inference time due to the evaluation of the evidence lower bound (ELBO). Our two key contributions address these limitations. First, we introduce the novel Multiple Importance Sampling Variational Autoencoder (MISVAE), which amortizes the mapping from input to mixture-parameter space using one-hot encodings. Fortunately, with MISVAE, each additional mixture component incurs a negligible increase in network parameters. Second, we construct two new estimators of the ELBO for mixtures in BBVI, enabling a tremendous reduction in inference time with marginal or even improved impact on performance. Collectively, our contributions enable scalability to hundreds of mixture components and provide superior estimation performance in shorter time, with fewer network parameters compared to previous Mixture VAEs. Experimenting with MISVAE, we achieve astonishing, SOTA results on MNIST. Furthermore, we empirically validate our estimators in other BBVI settings, including Bayesian phylogenetic inference, where we improve inference times for the SOTA mixture model on eight data sets.
[ Hall C 4-9 ]

Abstract
The partially observable generalized linear model (POGLM) is a powerful tool for understanding neural connectivities under the assumption of existing hidden neurons. With spike trains only recorded from visible neurons, existing works use variational inference to learn POGLM meanwhile presenting the difficulty of learning this latent variable model. There are two main issues: (1) the sampled Poisson hidden spike count hinders the use of the pathwise gradient estimator in VI; and (2) the existing design of the variational model is neither expressive nor time-efficient, which further affects the performance. For (1), we propose a new differentiable POGLM, which enables the pathwise gradient estimator, better than the score function gradient estimator used in existing works. For (2), we propose the forward-backward message-passing sampling scheme for the variational model. Comprehensive experiments show that our differentiable POGLMs with our forward-backward message passing produce a better performance on one synthetic and two real-world datasets. Furthermore, our new method yields more interpretable parameters, underscoring its significance in neuroscience.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Two models are introduced to study the problem of matching two correlated graphs when some of the nodes are corrupt. In the weak model, a random subset of nodes in one or both graphs can interact randomly with their network. For this model, it is shown that no estimator can correctly recover a positive fraction of the corrupt nodes. Necessary conditions for any estimator to correctly identify and match all the uncorrupt nodes are derived, and it is shown that these conditions are also sufficient for the k-core estimator. In the strong model, an adversarially selected subset of nodes in one or both graphs can interact arbitrarily with their network. For this model, detection of corrupt nodes is impossible. Even so, we show that if only one of the networks is compromised, then under appropriate conditions, the maximum overlap estimator can correctly match a positive fraction of nodes albeit without explicitly identifying them.
[ Hall C 4-9 ]

Abstract
Human motion taxonomies serve as high-level hierarchical abstractions that classify how humans move and interact with their environment. They have proven useful to analyse grasps, manipulation skills, and whole-body support poses. Despite substantial efforts devoted to design their hierarchy and underlying categories, their use remains limited. This may be attributed to the lack of computational models that fill the gap between the discrete hierarchical structure of the taxonomy and the high-dimensional heterogeneous data associated to its categories. To overcome this problem, we propose to model taxonomy data via hyperbolic embeddings that capture the associated hierarchical structure. We achieve this by formulating a novel Gaussian process hyperbolic latent variable model that incorporates the taxonomy structure through graph-based priors on the latent space and distance-preserving back constraints. We validate our model on three different human motion taxonomies to learn hyperbolic embeddings that faithfully preserve the original graph structure. We show that our model properly encodes unseen data from existing or new taxonomy categories, and outperforms its Euclidean and VAE-based counterparts. Finally, through proof-of-concept experiments, we show that our model may be used to generate realistic trajectories between the learned embeddings.
[ Hall C 4-9 ]
Abstract
In recent years, there has been considerable interest in developing machine learning models on graphs to account for topological inductive biases. In particular, recent attention has been given to Gaussian processes on such structures since they can additionally account for uncertainty. However, graphs are limited to modelling relations between two vertices. In this paper, we go beyond this dyadic setting and consider polyadic relations that include interactions between vertices, edges and one of their generalisations, known as cells. Specifically, we propose Gaussian processes on cellular complexes, a generalisation of graphs that captures interactions between these higher-order cells. One of our key contributions is the derivation of two novel kernels, one that generalises the graph Matérn kernel and one that additionally mixes information of different cell types.
[ Hall C 4-9 ]

Abstract
Bayesian few-shot classification has been a focal point in the field of few-shot learning. This paper seamlessly integrates mirror descent-based variational inference into Gaussian process-based few-shot classification, addressing the challenge of non-conjugate inference. By leveraging non-Euclidean geometry, mirror descent achieves accelerated convergence by providing the steepest descent direction along the corresponding manifold. It also exhibits the parameterization invariance property concerning the variational distribution. Experimental results demonstrate competitive classification accuracy, improved uncertainty quantification, and faster convergence compared to baseline models. Additionally, we investigate the impact of hyperparameters and components. Code is publicly available at https://github.com/keanson/MD-BSFC.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Large language models based on the Transformer architecture have demonstrated impressive capabilities to learn in context. However, existing theoretical studies on how this phenomenon arises are limited to the dynamics of a single layer of attention trained on linear regression tasks. In this paper, we study the optimization of a Transformer consisting of a fully connected layer followed by a linear attention layer. The MLP acts as a common nonlinear representation or feature map, greatly enhancing the power of in-context learning. We prove in the mean-field and two-timescale limit that the infinite-dimensional loss landscape for the distribution of parameters, while highly nonconvex, becomes quite benign. We also analyze the second-order stability of mean-field dynamics and show that Wasserstein gradient flow almost always avoids saddle points. Furthermore, we establish novel methods for obtaining concrete improvement rates both away from and near critical points. This represents the first saddle point analysis of mean-field dynamics in general and the techniques are of independent interest.
[ Hall C 4-9 ]

Abstract
Deep learning has revolutionized the field of computer vision by introducing large scale neural networks with millions of parameters. Training these networks requires massive datasets and leads to intransparent models that can fail to generalize. At the other extreme, models designed from partial differential equations (PDEs) embed specialized domain knowledge into mathematical equations and usually rely on few manually chosen hyperparameters. This makes them transparent by construction and if designed and calibrated carefully, they can generalize well to unseen scenarios. In this paper, we show how to bring model- and data-driven approaches together by combining the explicit PDE-based approaches with convolutional neural networks to obtain the best of both worlds. We illustrate a joint architecture for the task of inpainting optical flow fields and show that the combination of model- and data-driven modeling leads to an effective architecture. Our model outperforms both fully explicit and fully data-driven baselines in terms of reconstruction quality, robustness and amount of required training data. Averaging the endpoint error across different mask densities, our method outperforms the explicit baselines by 11-27%, the GAN baseline by 47% and the Probabilisitic Diffusion baseline by 42%. With that, our method sets a new state of the art for …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Detecting data points deviating from the training distribution is pivotal for ensuring reliable machine learning. Extensive research has been dedicated to the challenge, spanning classical anomaly detection techniques to contemporary out-of-distribution (OOD) detection approaches. While OOD detection commonly relies on supervised learning from a labeled in-distribution (ID) dataset, anomaly detection may treat the entire ID data as a single class and disregard ID labels. This fundamental distinction raises a significant question that has yet to be rigorously explored: when and how does ID label help OOD detection? This paper bridges this gap by offering a formal understanding to theoretically delineate the impact of ID labels on OOD detection. We employ a graph-theoretic approach, rigorously analyzing the separability of ID data from OOD data in a closed-form manner. Key to our approach is the characterization of data representations through spectral decomposition on the graph. Leveraging these representations, we establish a provable error bound that compares the OOD detection performance with and without ID labels, unveiling conditions for achieving enhanced OOD detection. Lastly, we present empirical results on both simulated and real datasets, validating theoretical guarantees and reinforcing our insights.
[ Hall C 4-9 ]

Abstract
In this paper, we propose a probabilistic framework for analyzing a multi-class majority vote classifier in the case where training data is partially labeled. First, we derive a multi-class transductive bound over the risk of the majority vote classifier, which is based on the classifier's vote distribution over each class. Then, we introduce a mislabeling error model to analyze the error of the majority vote classifier in the case of the pseudo-labeled training data. We derive a generalization bound over the majority vote error when imperfect labels are given, taking into account the mean and the variance of the prediction margin. Finally, we demonstrate an application of the derived transductive bound for self-training to find automatically the confidence threshold used to determine unlabeled examples for pseudo-labeling. Empirical results on different data sets show the effectiveness of our framework compared to several state-of-the-art semi-supervised approaches.
[ Hall C 4-9 ]

Abstract
We introduce a new framework for studying meta-learning methods using PAC-Bayesian theory. Its main advantage over previous work is that it allows for more flexibility in how the transfer of knowledge between tasks is realized. For previous approaches, this could only happen indirectly, by means of learning prior distributions over models. In contrast, the new generalization bounds that we prove express the process of meta-learning much more directly as learning the learning algorithm that should be used for future tasks. The flexibility of our framework makes it suitable to analyze a wide range of meta-learning mechanisms and even design new mechanisms. Other than our theoretical contributions we also show empirically that our framework improves the prediction quality in practical meta-learning mechanisms.
[ Hall C 4-9 ]
Abstract
Many works recently have focused on computing optimal solutions for the ex ante coordination of a team for solving sequential adversarial team games, where a team of players coordinate against an opponent (or a team of players) in a zero-sum extensive-form game. However, it is challenging to directly compute such an optimal solution because the team’s coordinated strategy space is exponential in the size of the game tree due to the asymmetric information of team members. Column Generation (CG) algorithms have been proposed to overcome this challenge by iteratively expanding the team’s coordinated strategy space via a Best Response Oracle (BRO). More recently, more compact representations (particularly, the Team Belief Directed Acyclic Graph (TB-DAG)) of the team’s coordinated strategy space have been proposed, but the TB-DAG-based algorithms only outperform the CG-based algorithms in games with a small TB-DAG. Unfortunately, it is inefficient to directly apply CG to the TB-DAG because the size of the TB-DAG is still exponential in the size of the game tree and then makes the BRO unscalable. To this end, we develop our novel TB-DAG CG (DCG) algorithm framework by computing a coordinated best response in the original game first and then transforming this strategy into …
[ Hall C 4-9 ]

Abstract
We study zero-sum differential games with state constraints and one-sided information, where the informed player (Player 1) has a categorical payoff type unknown to the uninformed player (Player 2). The goal of Player 1 is to minimize his payoff without violating the constraints, while that of Player 2 is to violate the state constraints if possible, or to maximize the payoff otherwise. One example of the game is a man-to-man matchup in football. Without state constraints, Cardaliaguet (2007) showed that the value of such a game exists and is convex to the common belief of players. Our theoretical contribution is an extension of this result to games with state constraints and the derivation of the primal and dual subdynamic principles necessary for computing behavioral strategies. Different from existing works that are concerned about the scalability of no-regret learning in games with discrete dynamics, our study reveals the underlying structure of strategies for belief manipulation resulting from information asymmetry and state constraints. This structure will be necessary for scalable learning on games with continuous actions and long time windows. We use a simplified football game to demonstrate the utility of this work, where we reveal player positions and belief states in …
[ Hall C 4-9 ]
Abstract
We propose a generalization of the classical G-optimal design concept to non-linear function classes. The criterion, termed F -design, coincides with G-design in the linear case. We compute the value of the optimal design, termed the F-condition number, for several non-linear function classes. We further provide algorithms to construct designs with a bounded F -condition number. Finally, we employ the F-design in a variety of interactive machine learning tasks, where the design is naturally useful for data collection or exploration. We show that in four diverse settings of confidence band construction, contextual bandits, model-free reinforcement learning, and active learning, F-design can be combined with existing approaches in a black-box manner to yield state-of-the-art results in known problem settings as well as to generalize to novel ones.
[ Hall C 4-9 ]

Abstract
Kernel-based statistical learning on distributional inputs appears in many relevant applications, from medical diagnostics to causal inference, and poses intriguing theoretical questions. While this learning scenario received considerable attention from the machine learning community recently, many gaps in the theory remain. In particular, most works consider only the distributional regression setting, and focus on the regularized least-squares algorithm for this problem. In this work, we start to fill these gaps. We prove two oracle inequalities for kernel machines in general distributional learning scenarios, as well as a generalization result based on algorithmic stability. Our main results are formulated in great generality, utilizing general Hilbertian embeddings, which makes them applicable to a wide array of approaches to distributional learning. Additionally, we specialize our results to the cases of kernel mean embeddings and of the recently introduced Hilbertian embeddings based on sliced Wasserstein distances, providing concrete instances of the general setup. Our results considerably enlarge the scope of theoretically grounded distributional learning, and provide many interesting avenues for future work.
[ Hall C 4-9 ]

Abstract
The random feature (RF) approach is a well-established and efficient tool for scalable kernel methods, but existing literature has primarily focused on kernel ridge regression with random features (KRR-RF), which has limitations in handling heterogeneous data with heavy-tailed noises. This paper presents a generalization study of kernel quantile regression with random features (KQR-RF), which accounts for the non-smoothness of the check loss in KQR-RF by introducing a refined error decomposition and establishing a novel connection between KQR-RF and KRR-RF. Our study establishes the capacity-dependent learning rates for KQR-RF under mild conditions on the number of RFs, which are minimax optimal up to some logarithmic factors. Importantly, our theoretical results, utilizing a data-dependent sampling strategy, can be extended to cover the agnostic setting where the target quantile function may not precisely align with the assumed kernel space. By slightly modifying our assumptions, the capacity-dependent error analysis can also be applied to cases with Lipschitz continuous losses, enabling broader applications in the machine learning community. To validate our theoretical findings, simulated experiments and a real data application are conducted.
[ Hall C 4-9 ]

Abstract
Concentration inequalities play an essential role in the study of machine learning and high dimensional statistics. In this paper, we obtain unbounded analogues of the popular bounded difference inequality for functions of independent random variables with heavy-tailed distributions. The main results provide a general framework applicable to all heavy-tailed distributions with finite variance. To illustrate the strength of our results, we present applications to sub-exponential tails, sub-Weibull tails, and heavier polynomially decaying tails. Applied to some standard problems in statistical learning theory (vector valued concentration, Rademacher complexity, and algorithmic stability), we show that these inequalities allow an extension of existing results to heavy-tailed distributions up to finite variance.
[ Hall C 4-9 ]

Abstract
Recently, multimodal machine learning has enjoyed huge empirical success (e.g. GPT-4). Motivated to develop theoretical justification for this empirical success, Lu (NeurIPS '23, ALT '24) introduces a theory of multimodal learning, and considers possible separations between theoretical models of multimodal and unimodal learning. In particular, Lu (ALT '24) shows a computational separation, which is relevant to worst-case instances of the learning task. In this paper, we give a stronger average-case computational separation, where for "typical" instances of the learning task, unimodal learning is computationally hard, but multimodal learning is easy. We then question how "natural" the average-case separation is. Would it be encountered in practice? To this end, we prove that under basic conditions, any given computational separation between average-case unimodal and multimodal learning tasks implies a corresponding cryptographic key agreement protocol. We suggest to interpret this as evidence that very strong computational advantages of multimodal learning may arise infrequently in practice, since they exist only for the "pathological" case of inherently cryptographic distributions. However, this does not apply to possible (super-polynomial) statistical advantages.
[ Hall C 4-9 ]
Abstract
Neural tangent kernels (NTKs) provide a theoretical regime to analyze the learning and generalization behavior of over-parametrized neural networks. For a supervised learning task, the association between the eigenvectors of the NTK and given data (a concept referred to as alignment in this paper) can govern the rate of convergence of gradient descent, as well as generalization to unseen data. Building upon this concept and leveraging the structure of NTKs for graph neural networks (GNNs), we theoretically investigate NTKs and alignment, where our analysis reveals that optimizing the alignment translates to optimizing the graph representation or the graph shift operator (GSO) in a GNN. Our results further establish theoretical guarantees on the optimality of the alignment for a two-layer GNN and these guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data. The theoretical insights drawn from the analysis of NTKs are validated by our experiments focused on a multi-variate time series prediction task for a publicly available dataset. Specifically, they demonstrate that GNN-based learning models that operate on the cross-covariance matrix indeed outperform those that operate on the covariance matrix estimated from only the input data.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
The Shapley value (SV) is a prevalent approach of allocating credit to machine learning (ML) entities to understand black box ML models. Enriching such interpretations with higher-order interactions is inevitable for complex systems, where the Shapley Interaction Index (SII) is a direct axiomatic extension of the SV. While it is well-known that the SV yields an optimal approximation of any game via a weighted least square (WLS) objective, an extension of this result to SII has been a long-standing open problem, which even led to the proposal of an alternative index. In this work, we characterize higher-order SII as a solution to a WLS problem, which constructs an optimal approximation via SII and k-Shapley values (k-SII). We prove this representation for the SV and pairwise SII and give empirically validated conjectures for higher orders. As a result, we propose KernelSHAP-IQ, a direct extension of KernelSHAP for SII, and demonstrate state-of-the-art performance for feature interactions.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
We study the behavior of optimal ridge regularization and optimal ridge risk for out-of-distribution prediction, where the test distribution deviates arbitrarily from the train distribution. We establish general conditions that determine the sign of the optimal regularization level under covariate and regression shifts. These conditions capture the alignment between the covariance and signal structures in the train and test data and reveal stark differences compared to the in-distribution setting. For example, a negative regularization level can be optimal under covariate shift or regression shift, even when the training features are isotropic or the design is underparameterized. Furthermore, we prove that the optimally tuned risk is monotonic in the data aspect ratio, even in the out-of-distribution setting and when optimizing over negative regularization levels. In general, our results do not make any modeling assumptions for the train or the test distributions, except for moment bounds, and allow for arbitrary shifts and the widest possible range of (negative) regularization levels.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
A confidence sequence (CS) is a sequence of confidence sets that contains a target parameter of an underlying stochastic process at any time step with high probability. This paper proposes a new approach to constructing CSs for means of bounded multivariate stochastic processes using a general gambling framework, extending the recently established coin toss framework for bounded random processes. The proposed gambling framework provides a general recipe for constructing CSs for categorical and probability-vector-valued observations, as well as for general bounded multidimensional observations through a simple reduction. This paper specifically explores the use of the mixture portfolio, akin to Cover's universal portfolio, in the proposed framework and investigates the properties of the resulting CSs. Simulations demonstrate the tightness of these confidence sequences compared to existing methods. When applied to the sampling without-replacement setting for finite categorical data, it is shown that the resulting CS based on a universal gambling strategy is provably tighter than that of the posterior-prior ratio martingale proposed by Waudby-Smith and Ramdas.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
We propose a novel algorithm for online resource allocation with non-stationary customer arrivals and unknown click-through rates. We assume multiple types of customers arriving in a nonstationary stochastic fashion, with unknown arrival rates in each period. Additionally, customers' click-through rates are assumed to be unknown and only learnable online. By leveraging results from the stochastic contextual bandit with knapsack and online matching with adversarial arrivals, we develop an online scheme to allocate the resources to nonstationary customers. We prove that under mild conditions, our scheme achieves a ``best-of-both-world'' result: the scheme has a sublinear regret when the customer arrivals are near-stationary, and enjoys an optimal competitive ratio under general (non-stationary) customer arrival distributions. Finally, we conduct extensive numerical experiments to show our approach generates near-optimal revenues for all different customer scenarios.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
This work presents orthogonal attention for constructing neural operators to serve as surrogates to model the solutions of a family of Partial Differential Equations (PDEs). The motivation is that the kernel integral operator, which is usually at the core of neural operators, can be reformulated with orthonormal eigenfunctions. Inspired by the success of the neural approximation of eigenfunctions (Deng et al., 2022), we opt to directly parameterize the involved eigenfunctions with flexible neural networks (NNs), based on which the input function is then transformed by the rule of kernel integral. Surprisingly, the resulting NN module bears a striking resemblance to regular attention mechanisms, albeit without softmax. Instead, it incorporates an orthogonalization operation that provides regularization during model training and helps mitigate overfitting, particularly in scenarios with limited data availability. In practice, the orthogonalization operation can be implemented with minimal additional overheads. Experiments on six standard neural operator benchmark datasets comprising both regular and irregular geometries show that our method can outperform competing baselines with decent margins.
[ Hall C 4-9 ]

Abstract
In unsupervised environment design, reinforcement learning agents are trained on environment configurations (levels) generated by an adversary that maximises some objective. Regret is a commonly used objective that theoretically results in a minimax regret (MMR) policy with desirable robustness guarantees; in particular, the agent's maximum regret is bounded. However, once the agent reaches this regret bound on all levels, the adversary will only sample levels where regret cannot be further reduced. Although there may be possible performance improvements to be made outside of these regret-maximising levels, learning stagnates. In this work, we introduce Bayesian level-perfect MMR (BLP), a refinement of the minimax regret objective that overcomes this limitation. We formally show that solving for this objective results in a subset of MMR policies, and that BLP policies act consistently with a Perfect Bayesian policy over all levels. We further introduce an algorithm, ReMiDi, that results in a BLP policy at convergence. We empirically demonstrate that training on levels from a minimax regret adversary causes learning to prematurely stagnate, but that ReMiDi continues learning.
[ Hall C 4-9 ]

Abstract
This paper studies the transfer reinforcement learning (RL) problem where multiple RL problems have different reward functions but share the same underlying transition dynamics. In this setting, the Q-function of each RL problem (task) can be decomposed into a successor feature (SF) and a reward mapping: the former characterizes the transition dynamics, and the latter characterizes the task-specific reward function. This Q-function decomposition, coupled with a policy improvement operator known as generalized policy improvement (GPI), reduces the sample complexity of finding the optimal Q-function, and thus the SF & GPI framework exhibits promising empirical performance compared to traditional RL methods like Q-learning. However, its theoretical foundations remain largely unestablished, especially when learning the successor features using deep neural networks (SF-DQN). This paper studies the provable knowledge transfer using SFs-DQN in transfer RL problems. We establish the first convergence analysis with provable generalization guarantees for SF-DQN with GPI. The theory reveals that SF-DQN with GPI outperforms conventional RL approaches, such as deep Q-network, in terms of both faster convergence rate and better generalization. Numerical experiments on real and synthetic RL tasks support the superior performance of SF-DQN & GPI, aligning with our theoretical findings.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Budget pacing is a popular service that has been offered by major internet advertising platforms since their inception. In the past few years, autobidding products that provide real-time bidding as a service to advertisers have seen a prominent rise in adoption. A popular autobidding stategy is value maximization subject to return-on-spend (ROS) constraints. For historical or business reasons, the systems that govern these two services, namely budget pacing and ROS pacing, are not necessarily always a single unified and coordinated entity that optimizes a global objective subject to both constraints. The purpose of this work is to theoretically and empirically compare algorithms with different degrees of coordination between these two pacing systems. In particular, we compare (a) a fully-decoupled sequential algorithm; (b) a minimally-coupled min-pacing algorithm; (c) a fully-coupled dual-based algorithm. Our main contribution is to theoretically analyze the min-pacing algorithm and show that it attains similar guarantees to the fully-coupled canonical dual-based algorithm. On the other hand, we show that the sequential algorithm, even though appealing by virtue of being fully decoupled, could badly violate the constraints. We validate our theoretical findings empirically by showing that the min-pacing algorithm performs almost as well as the canonical dual-based algorithm on …
[ Hall C 4-9 ]

Abstract
For the first time, this position paper introduces a fundamental link between tensor networks (TNs) and Green AI, highlighting their synergistic potential to enhance both the inclusivity and sustainability of AI research. We argue that TNs are valuable for Green AI due to their strong mathematical backbone and inherent logarithmic compression potential. We undertake a comprehensive review of the ongoing discussions on Green AI, emphasizing the importance of sustainability and inclusivity in AI research to demonstrate the significance of establishing the link between Green AI and TNs. To support our position, we first provide a comprehensive overview of efficiency metrics proposed in Green AI literature and then evaluate examples of TNs in the fields of kernel machines and deep learning using the proposed efficiency metrics. This position paper aims to incentivize meaningful, constructive discussions by bridging fundamental principles of Green AI and TNs. We advocate for researchers to seriously evaluate the integration of TNs into their research projects, and in alignment with the link established in this paper, we support prior calls encouraging researchers to treat Green AI principles as a research priority.
[ Hall C 4-9 ]
Abstract
The study of machine learning under limited resources has gathered increasing attention, considering improving the learning efficiency and effectiveness with budgeted resources. However, previous efforts mainly focus on single learning task, and a common resource-limited scenario is less explored: to handle multiple time-constrained learning tasks concurrently with budgeted computational resources. In this paper, we point out that this is a very challenging task because it demands the learner to be concerned about not only the progress of the learning tasks but also the coordinative allocation of computational resources. We present the Learning with Adaptive Resource Allocation (LARA) approach, which comprises an efficient online estimator for learning progress prediction, an adaptive search method for computational resource allocation, and a balancing strategy for alleviating prediction-allocation compounding errors. Empirical studies validate the effectiveness of our proposed approach.
[ Hall C 4-9 ]

Abstract
Score-based methods have demonstrated their effectiveness in discovering causal relationships by scoring different causal structures based on their goodness of fit to the data. Recently, Huang et al. proposed a generalized score function that can handle general data distributions and causal relationships by modeling the relations in reproducing kernel Hilbert space (RKHS). The selection of an appropriate kernel within this score function is crucial for accurately characterizing causal relationships and ensuring precise causal discovery. However, the current method involves manual heuristic selection of kernel parameters, making the process tedious and less likely to ensure optimality. In this paper, we propose a kernel selection method within the generalized score function that automatically selects the optimal kernel that best fits the data. Specifically, we model the generative process of the variables involved in each step of the causal graph search procedure as a mixture of independent noise variables. Based on this model, we derive an automatic kernel selection method by maximizing the marginal likelihood of the variables involved in each search step. We conduct experiments on both synthetic data and real-world benchmarks, and the results demonstrate that our proposed method outperforms heuristic kernel selection methods.
[ Hall C 4-9 ]
Abstract
We propose a novel formalism for describing Structural Causal Models (SCMs) as fixed-point problems on causally ordered variables, eliminating the need for Directed Acyclic Graphs (DAGs), and establish the weakest known conditions for their unique recovery given the topological ordering (TO). Based on this, we design a two-stage causal generative model that first infers in a zero-shot manner a valid TO from observations, and then learns the generative SCM on the ordered variables. To infer TOs, we propose to amortize the learning of TOs on synthetically generated datasets by sequentially predicting the leaves of graphs seen during training. To learn SCMs, we design a transformer-based architecture that exploits a new attention mechanism enabling the modeling of causal structures, and show that this parameterization is consistent with our formalism. Finally, we conduct an extensive evaluation of each method individually, and show that when combined, our model outperforms various baselines on generated out-of-distribution problems.
[ Hall C 4-9 ]
Abstract
Maximal ancestral graph (MAG) is a prevalent graphical model to characterize causal relations in the presence of latent variables including latent confounders and selection variables. Given observational data, only a Markov equivalence class (MEC) of MAGs is identifiable if without some additional assumptions. Due to this fact, MAG listing, listing all the MAGs in the MEC, is usually demanded in many downstream tasks. To the best of our knowledge, there are no relevant methods for MAG listing other than brute force in the literature. In this paper, we propose the first brute-force-free MAG listing method, by determining the local structures of each vertex recursively. We provide the graphical characterization for each valid local transformation of a vertex, and present sound and complete rules to incorporate the valid local transformation in the presence of latent confounders and selection variables. Based on these components, our method can efficiently output all the MAGs in the MEC with no redundance, that is, every intermediate graph in the recursive process is necessary for the MAG listing task. The empirical analysis demonstrates the superiority of our proposed method on efficiency and effectiveness.
[ Hall C 4-9 ]

Abstract
Smoothed particle hydrodynamics (SPH) is omnipresent in modern engineering and scientific disciplines. SPH is a class of Lagrangian schemes that discretize fluid dynamics via finite material points that are tracked through the evolving velocity field. Due to the particle-like nature of the simulation, graph neural networks (GNNs) have emerged as appealing and successful surrogates. However, the practical utility of such GNN-based simulators relies on their ability to faithfully model physics, providing accurate and stable predictions over long time horizons - which is a notoriously hard problem. In this work, we identify particle clustering originating from tensile instabilities as one of the primary pitfalls. Based on these insights, we enhance both training and rollout inference of state-of-the-art GNN-based simulators with varying components from standard SPH solvers, including pressure, viscous, and external force components. All Neural SPH-enhanced simulators achieve better performance than the baseline GNNs, often by orders of magnitude in terms of rollout error, allowing for significantly longer rollouts and significantly better physics modeling. Code available under https://github.com/tumaer/neuralsph.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
This paper addresses the scarcity of large-scale datasets for accurate object-in-hand pose estimation, which is crucial for robotic in-hand manipulation within the "Perception-Planning-Control" paradigm. Specifically, we introduce VinT-6D, the first extensive multi-modal dataset integrating vision, touch, and proprioception, to enhance robotic manipulation. VinT-6D comprises 2 million VinT-Sim and 0.1 million VinT-Real entries, collected via simulations in Mujoco and Blender and a custom-designed real-world platform. This dataset is tailored for robotic hands, offering models with whole-hand tactile perception and high-quality, well-aligned data. To the best of our knowledge, the VinT-Real is the largest considering the collection difficulties in the real-world environment so it can bridge the gap of simulation to real compared to the previous works. Built upon VinT-6D, we present a benchmark method that shows significant improvements in performance by fusing multi-modal information. The project is available at https://VinT-6D.github.io/.
[ Hall C 4-9 ]

Abstract
Vision Transformers (ViT), when paired with large-scale pretraining, have shown remarkable performance across various computer vision tasks, primarily due to their weak inductive bias. However, while such weak inductive bias aids in pretraining scalability, this may hinder the effective adaptation of ViTs for visuo-motor control tasks as a result of the absence of control-centric inductive biases. Such absent inductive biases include spatial locality and translation equivariance bias which convolutions naturally offer. To this end, we introduce Convolution Injector (CoIn), an add-on module that injects convolutions which are rich in locality and equivariance biases into a pretrained ViT for effective adaptation in visuo-motor control. We evaluate CoIn with three distinct types of pretrained ViTs (CLIP, MVP, VC-1) across 12 varied control tasks within three separate domains (Adroit, MetaWorld, DMC), and demonstrate that CoIn consistently enhances control task performance across all experimented environments and models, validating the effectiveness of providing pretrained ViTs with control-centric biases.
[ Hall C 4-9 ]

Abstract
The ability to accurately comprehend natural language instructions and navigate to the target location is essential for an embodied agent. Such agents are typically required to execute user instructions in an online manner, leading us to explore the use of unlabeled test samples for effective online model adaptation. However, for online Vision-and-Language Navigation (VLN), due to the intrinsic nature of inter-sample online instruction execution and intra-sample multi-step action decision, frequent updates can result in drastic changes in model parameters, while occasional updates can make the model ill-equipped to handle dynamically changing environments. Therefore, we propose a Fast-Slow Test-Time Adaptation (FSTTA) approach for online VLN by performing joint decomposition-accumulation analysis for both gradients and parameters in a unified framework. Extensive experiments show that our method obtains impressive performance gains on four popular benchmarks. Code is available at https://github.com/Feliciaxyao/ICML2024-FSTTA.
[ Hall C 4-9 ]
Abstract
We introduce MoNet, a novel functionally modular network for self-supervised and interpretable end-to-end learning. By leveraging its functional modularity with a latent-guided contrastive loss function, MoNet efficiently learns task-specific decision-making processes in latent space without requiring task-level supervision. Moreover, our method incorporates an online, post-hoc explainability approach that enhances the interpretability of end-to-end inferences without compromising sensorimotor control performance. In real-world indoor environments, MoNet demonstrates effective visual autonomous navigation, outperforming baseline models by 7% to 28% in task specificity analysis. We further explore the interpretability of our network through post-hoc analysis of perceptual saliency maps and latent decision vectors. This provides valuable insights into the incorporation of explainable artificial intelligence into robotic learning, encompassing both perceptual and behavioral perspectives. Supplementary materials are available at https://sites.google.com/view/monet-lgc.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
In real-world scenarios such as traffic and energy management, we frequently encounter large volumes of time-series data characterized by missing values, noise, and irregular sampling patterns. While numerous imputation methods have been proposed, the majority tend to operate within a local horizon, which involves dividing long sequences into batches of fixed-length segments for model training. This local horizon often leads to the overlooking of global trends and periodic patterns. More importantly, most methods assume the observations are sampled at regular timestamps, and fail to handle complex irregular sampled time series in various applications. Additionally, most existing methods are learned in an offline manner. Thus, it is not suitable for applications with rapidly arriving streaming data. To address these challenges, we propose BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition. Our method conceptualizes multivariate time series as the weighted combination of groups of low-rank temporal factors with different patterns. We employ a suite of Gaussian Processes (GPs),each with a unique kernel, as functional priors to model these factors. For computational efficiency, we further convert the GPs into a state-space prior by constructing an equivalent stochastic differential equation (SDE), and developing a scalable algorithm for online inference. The proposed method …
[ Hall C 4-9 ]

Abstract
We study deep neural networks for the multi-label classification (MLab) task through the lens of neural collapse (NC). Previous works have been restricted to the multi-class classification setting and discovered a prevalent NC phenomenon comprising of the following properties for the last-layer features: (i) the variability of features within every class collapses to zero, (ii) the set of feature means form an equi-angular tight frame (ETF), and (iii) the last layer classifiers collapse to the feature mean upon some scaling. We generalize the study to multi-label learning, and prove for the first time that a generalized NC phenomenon holds with the "pick-all-label'' formulation, which we term as MLab NC. While the ETF geometry remains consistent for features with a single label, multi-label scenarios introduce a unique combinatorial aspect we term the "tag-wise average" property, where the means of features with multiple labels are the scaled averages of means for single-label instances. Theoretically, under proper assumptions on the features, we establish that the only global optimizer of the pick-all-label cross-entropy loss satisfy the multi-label NC. In practice, we demonstrate that our findings can lead to better test performance with more efficient training techniques for MLab learning.
[ Hall C 4-9 ]

Abstract
Conditional neural processes (CNPs) are a flexible and efficient family of models that learn to learn a stochastic process from data. They have seen particular application in contextual image completion - observing pixel values at some locations to predict a distribution over values at other unobserved locations. However, the choice of pixels in learning CNPs is typically either random or derived from a simple statistical measure (e.g. pixel variance). Here, we turn the problem on its head and ask: which pixels would a CNP like to observe - do they facilitate fitting better CNPs, and do such pixels tell us something meaningful about the underlying image? To this end we develop the Partial Pixel Space Variational Autoencoder (PPS-VAE), an amortised variational framework that casts CNP context as latent variables learnt simultaneously with the CNP. We evaluate PPS-VAE over a number of tasks across different visual data, and find that not only can it facilitate better-fit CNPs, but also that the spatial arrangement and values meaningfully characterise image information - evaluated through the lens of classification on both within and out-of-data distributions. Our model additionally allows for dynamic adaption of context-set size and the ability to scale-up to larger images, providing …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Approximate nearest neighbor search (ANNS) in high-dimensional spaces is a pivotal challenge in the field of machine learning. In recent years graph-based methods have emerged as the superior approach to ANNS, establishing a new state of the art. Although various optimizations for graph-based ANNS have been introduced, they predominantly rely on heuristic methods that lack formal theoretical backing. This paper aims to enhance routing within graph-based ANNS by introducing a method that offers a probabilistic guarantee when exploring a node’s neighbors in the graph. We formulate the problem as probabilistic routing and develop two baseline strategies by incorporating locality-sensitive techniques. Subsequently, we introduce PEOs, a novel approach that efficiently identifies which neighbors in the graph should be considered for exact distance computation, thus significantly improving efficiency in practice. Our experiments demonstrate that equipping PEOs can increase throughput on a commonly utilized graph index (HNSW) by a factor of 1.6 to 2.5, and its efficiency consistently outperforms the leading-edge routing technique by 1.1 to 1.4 times. The code and datasets used for our evaluations are publicly accessible at https//github.com/ICML2024-code/PEOs .
[ Hall C 4-9 ]

Abstract
We develop novel methodology for active feature acquisition (AFA), the study of sequentially acquiring a dynamic subset of features that minimizes acquisition costs whilst still yielding accurate inference. The AFA framework can be useful in a myriad of domains, including health care applications where the cost of acquiring additional features for a patient (in terms of time, money, risk, etc.) can be weighed against the expected improvement to diagnostic performance. Previous approaches for AFA have employed either: deep learning RL techniques, which have difficulty training policies due to a complicated state and action space; deep learning surrogate generative models, which require modeling complicated multidimensional conditional distributions; or greedy policies, which cannot account for jointly informative feature acquisitions. We show that we can bypass many of these challenges with a novel, nonparametric oracle based approach, which we coin the acquisition conditioned oracle (ACO). Extensive experiments show the superiority of the ACO to state-of-the-art AFA methods when acquiring features for both predictions and general decision-making.
[ Hall C 4-9 ]

Abstract
Discrimination and calibration represent two important properties of survival analysis, with the former assessing the model's ability to accurately rank subjects and the latter evaluating the alignment of predicted outcomes with actual events. With their distinct nature, it is hard for survival models to simultaneously optimize both of them especially as many previous results found improving calibration tends to diminish discrimination performance. This paper introduces a novel approach utilizing conformal regression that can improve a model's calibration without degrading discrimination. We provide theoretical guarantees for the above claim, and rigorously validate the efficiency of our approach across 11 real-world datasets, showcasing its practical applicability and robustness in diverse scenarios.
[ Hall C 4-9 ]

Abstract
By leveraging a hierarchical structure of known classes, Hierarchical Novelty Detection (HND) offers fine-grained detection results that pair detected novel samples with their closest (known) parent class in the hierarchy. Prior knowledge on the parent class provides valuable insights to better understand these novel samples. However, traditional novelty detection methods try to separate novel samples from all known classes using uncertainty or distance based metrics so they are incapable of locating the closest known parent class. Since the novel class is also part of the hierarchy, the model can more easily get confused between samples from known classes and those from novel ones. To achieve effective HND, we propose to augment the known (leaf-level) classes with a set of novel classes, each of which is associated with one parent (i.e., non-leaf) class in the original hierarchy. Such a structure allows us to perform novel fine-grained evidence allocation to differentiate known and novel classes guided by a uniquely designed loss function. Our thorough theoretical analysis shows that fine-grained evidence allocation creates an evidence margin to more precisely separate known and novel classes. Extensive experiments conducted on real-world hierarchical datasets demonstrate the proposed model outperforms the strongest baselines and achieves the best …
[ Hall C 4-9 ]
Abstract
The problem of nearest neighbor condensing has enjoyed a long history of study, both in its theoretical and practical aspects. In this paper, we introduce the problem of weighted distance nearest neighbor condensing, where one assigns weights to each point of the condensed set, and then new points are labeled based on their weighted distance nearest neighbor in the condensed set. We study the theoretical properties of this new model, and show that it can produce dramatically better condensing than the standard nearest neighbor rule, yet is characterized by generalization bounds almost identical to the latter. We then suggest a condensing heuristic for our new problem. We demonstrate Bayes consistency for this heuristic, and also show promising empirical results.
[ Hall C 4-9 ]
Abstract
The renowned difference-in-differences (DiD) estimator relies on the assumption of 'parallel trends,' which may not hold in many practical applications. To address this issue, economists are increasingly considering the triple difference estimator as a more credible alternative. Both DiD and triple difference are limited to assessing average effects exclusively. An alternative avenue is offered by the changes-in-changes (CiC) estimator, which provides an estimate of the entire counterfactual distribution by relying on assumptions imposed on the distribution of potential outcomes. In this work, we extend the triple difference estimator to accommodate the CiC framework, presenting the `triple changes estimator' and its identification assumptions, thereby expanding the scope of the CiC paradigm. Subsequently, we empirically evaluate the proposed framework and apply it to a study examining the impact of Medicaid expansion on children's preventive care.
[ Hall C 4-9 ]

Abstract
Identifying the underlying time-delayed latent causal processes in sequential data is vital for grasping temporal dynamics and making downstream reasoning. While some recent methods can robustly identify these latent causal variables, they rely on strict assumptions about the invertible generation process from latent variables to observed data. However, these assumptions are often hard to satisfy in real-world applications containing information loss. For instance, the visual perception process translates a 3D space into 2D images, or the phenomenon of persistence of vision incorporates historical data into current perceptions. To address this challenge, we establish an identifiability theory that allows for the recovery of independent latent components even when they come from a nonlinear and non-invertible mix. Using this theory as a foundation, we propose a principled approach, CaRiNG, to learn the Causal Representation of Non-invertible Generative temporal data with identifiability guarantees. Specifically, we utilize temporal context to recover lost latent information and apply the conditions in our theory to guide the training process. Through experiments conducted on synthetic datasets, we validate that our CaRiNG method reliably identifies the causal process, even when the generation process is non-invertible. Moreover, we demonstrate that our approach considerably improves temporal understanding and reasoning in practical …
[ Hall C 4-9 ]
Abstract
Cell identity encompasses various semantic aspects of a cell, including cell type, pathway information, disease information, and more, which are essential for biologists to gain insights into its biological characteristics. Understanding cell identity from the transcriptomic data, such as annotating cell types, has become an important task in bioinformatics. As these semantic aspects are determined by human experts, it is impossible for AI models to effectively carry out cell identity understanding tasks without the supervision signals provided by single-cell and label pairs. The single-cell pre-trained language models (PLMs) currently used for this task are trained only on a single modality, transcriptomics data, lack an understanding of cell identity knowledge. As a result, they have to be fine-tuned for downstream tasks and struggle when lacking labeled data with the desired semantic labels. To address this issue, we propose an innovative solution by constructing a unified representation of single-cell data and natural language during the pre-training phase, allowing the model to directly incorporate insights related to cell identity. More specifically, we introduce LangCell, the first Language-Cell pre-training framework. LangCell utilizes texts enriched with cell identity information to gain a profound comprehension of cross-modal knowledge. Results from experiments conducted on …
[ Hall C 4-9 ]

Abstract
Comparing two samples of data, we observe a change in the distribution of an outcome variable. In the presence of multiple explanatory variables, how much of the change can be explained by each possible cause? We develop a new estimation strategy that, given a causal model, combines regression and re-weighting methods to quantify the contribution of each causal mechanism. Our proposed methodology is multiply robust, meaning that it still recovers the target parameter under partial misspecification. We prove that our estimator is consistent and asymptotically normal. Moreover, it can be incorporated into existing frameworks for causal attribution, such as Shapley values, which will inherit the consistency and large-sample distribution properties. Our method demonstrates excellent performance in Monte Carlo simulations, and we show its usefulness in an empirical application. Our method is implemented as part of the Python library DoWhy
(Sharma & Kiciman, 2020; Blöbaum et al., 2022).
[ Hall C 4-9 ]

Abstract
Causal dynamics learning has recently emerged as a promising approach to enhancing robustness in reinforcement learning (RL). Typically, the goal is to build a dynamics model that makes predictions based on the causal relationships among the entities. Despite the fact that causal connections often manifest only under certain contexts, existing approaches overlook such fine-grained relationships and lack a detailed understanding of the dynamics. In this work, we propose a novel dynamics model that infers fine-grained causal structures and employs them for prediction, leading to improved robustness in RL. The key idea is to jointly learn the dynamics model with a discrete latent variable that quantizes the state-action space into subgroups. This leads to recognizing meaningful context that displays sparse dependencies, where causal structures are learned for each subgroup throughout the training. Experimental results demonstrate the robustness of our method to unseen states and locally spurious correlations in downstream tasks where fine-grained causal reasoning is crucial. We further illustrate the effectiveness of our subgroup-based approach with quantization in discovering fine-grained causal relationships compared to prior methods.
[ Hall C 4-9 ]

Abstract
In many real-world causal inference applications, the primary outcomes (labels) are often partially missing, especially if they are expensive or difficult to collect. If the missingness depends on covariates (i.e., missingness is not completely at random), analyses based on fully observed samples alone may be biased. Incorporating surrogates, which are fully observed post-treatment variables related to the primary outcome, can improve estimation in this case. In this paper, we study the role of surrogates in estimating continuous treatment effects and propose a doubly robust method to efficiently incorporate surrogates in the analysis, which uses both labeled and unlabeled data and does not suffer from the above selection bias problem. Importantly, we establish the asymptotic normality of the proposed estimator and show possible improvements on the variance compared with methods that solely use labeled data. Extensive simulations show our methods enjoy appealing empirical performance.
[ Hall C 4-9 ]

Abstract
We consider the effect of temporal aggregation on instantaneous (non-temporal) causal discovery in general setting. This is motivated by the observation that the true causal time lag is often considerably shorter than the observational interval. This discrepancy leads to high aggregation, causing time-delay causality to vanish and instantaneous dependence to manifest. Although we expect such instantaneous dependence has consistency with the true causal relation in certain sense to make the discovery results meaningful, it remains unclear what type of consistency we need and when will such consistency be satisfied. We proposed functional consistency and conditional independence consistency in formal way correspond functional causal model-based methods and conditional independence-based methods respectively and provide the conditions under which these consistencies will hold. We show theoretically and experimentally that causal discovery results may be seriously distorted by aggregation especially in complete nonlinear case and we also find causal relationship still recoverable from aggregated data if we have partial linearity or appropriate prior. Our findings suggest community should take a cautious and meticulous approach when interpreting causal discovery results from such data and show why and when aggregation will distort the performance of causal discovery methods.
[ Hall C 4-9 ]
Abstract
We consider the task of identifying and estimating a parameter of interest in settings where data is missing not at random (MNAR). In general, such parameters are not identified without strong assumptions on the missing data model. In this paper, we take an alternative approach and introduce a method inspired by data fusion, where information in the MNAR dataset is augmented by information in an auxiliary dataset subject to missingness at random (MAR). We show that even if the parameter of interest cannot be identified given either dataset alone, it can be identified given pooled data, under two complementary sets of assumptions. We derive inverse probability weighted (IPW) estimators for identified parameters under both sets of assumptions, and evaluate the performance of our estimation strategies via simulation studies, and a data application.
[ Hall C 4-9 ]

Abstract
Latent confounding bias and collider bias are two key challenges of causal inference in observational studies. Latent confounding bias occurs when failing to control the unmeasured covariates that are common causes of treatments and outcomes, which can be addressed by using the Instrumental Variable (IV) approach. Collider bias comes from non-random sample selection caused by both treatments and outcomes, which can be addressed by using a different type of instruments, i.e., shadow variables. However, in most scenarios, these two biases simultaneously exist in observational data, and the previous methods focusing on either one are inadequate. To the best of our knowledge, no approach has been developed for causal inference when both biases exist. In this paper, we propose a novel IV approach, Two-Stage Shadow Inclusion (2SSI), which can simultaneously address latent confounding bias and collider bias by utilizing the residual of the treatment as a shadow variable. Extensive experimental results on benchmark synthetic datasets and a real-world dataset show that 2SSI achieves noticeable performance improvement when both biases exist compared to existing methods.
[ Hall C 4-9 ]

Abstract
Recently, interest has grown in the use of proxy variables of unobserved confounding for inferring the causal effect in the presence of unmeasured confounders from observational data. One difficulty inhibiting the practical use is finding valid proxy variables of unobserved confounding to a target causal effect of interest. These proxy variables are typically justified by background knowledge. In this paper, we investigate the estimation of causal effects among multiple treatments and a single outcome, all of which are affected by unmeasured confounders, within a linear causal model, without prior knowledge of the validity of proxy variables. To be more specific, we first extend the existing proxy variable estimator, originally addressing a single unmeasured confounder, to accommodate scenarios where multiple unmeasured confounders exist between the treatments and the outcome. Subsequently, we present two different sets of precise identifiability conditions for selecting valid proxy variables of unmeasured confounders, based on the second-order statistics and higher-order statistics of the data, respectively. Moreover, we propose two data-driven methods for the selection of proxy variables and for the unbiased estimation of causal effects. Theoretical analysis demonstrates the correctness of our proposed algorithms. Experimental results on both synthetic and real-world data show the effectiveness of the …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Expanding the language coverage of speech technology has the potential to improve access to information for many more people. However, current speech technology is restricted to about one hundred languages which is a small fraction of the over 7,000 languages spoken around the world. The Massively Multilingual Speech (MMS) project increases the number of supported languages by 10-40x, depending on the task while providing improved accuracy compared to prior work. The main ingredients are a new dataset based on readings of publicly available religious texts and effectively leveraging self-supervised learning. We built pre-trained wav2vec 2.0 models covering 1,406 languages, a single multilingual automatic speech recognition model for 1,107 languages, speech synthesis models for the same number of languages, as well as a language identification model for 4,017 languages. Experiments show that our multilingual speech recognition model more than halves the word error rate of Whisper on 54 languages of the FLEURS benchmark while being trained on a small fraction of the labeled data.
[ Hall C 4-9 ]

Abstract
This paper introduces the retrieval-augmented large language model with Definite Finite Automaton (DFA-RAG), a novel framework designed to enhance the capabilities of conversational agents using large language models (LLMs). Traditional LLMs face challenges in generating regulated and compliant responses in special scenarios with predetermined response guidelines, like emotional support and customer service. Our framework addresses these challenges by embedding a Definite Finite Automaton (DFA), learned from training dialogues, within the LLM. This structured approach acts as a semantic router which enables the LLM to adhere to a deterministic response pathway. The routing is achieved by the retrieval-augmentation generation (RAG) strategy, which carefully selects dialogue examples aligned with the current conversational context. The advantages of DFA-RAG include an interpretable structure through human-readable DFA, context-aware retrieval for responses in conversations, and plug-and-play compatibility with existing LLMs. Extensive benchmarks validate DFA-RAG's effectiveness, indicating its potential as a valuable contribution to the conversational agent.
[ Hall C 4-9 ]

Abstract
Spontaneous neural activity, crucial in memory, learning, and spatial navigation, often manifests itself as repetitive spatiotemporal patterns. Despite their importance, analyzing these patterns in large neural recordings remains challenging due to a lack of efficient and scalable detection methods. Addressing this gap, we introduce convSeq, an unsupervised method that employs backpropagation for optimizing spatiotemporal filters that effectively identify these neural patterns. Our method’s performance is validated on various synthetic data and real neural recordings, revealing spike sequences with unprecedented scalability and efficiency. Significantly surpassing existing methods in speed, convSeq sets a new standard for analyzing spontaneous neural activity, potentially advancing our understanding of information processing in neural circuits.
[ Hall C 4-9 ]

Abstract
Spiking Neural Networks (SNNs) have attracted great attention for their energy-efficient operations and biologically inspired structures, offering potential advantages over Artificial Neural Networks (ANNs) in terms of energy efficiency and interpretability. Nonetheless, similar to ANNs, the robustness of SNNs remains a challenge, especially when facing adversarial attacks. Existing techniques, whether adapted from ANNs or specifically designed for SNNs, exhibit limitations in training SNNs or defending against strong attacks. In this paper, we propose a novel approach to enhance the robustness of SNNs through gradient sparsity regularization. We observe that SNNs exhibit greater resilience to random perturbations compared to adversarial perturbations, even at larger scales. Motivated by this, we aim to narrow the gap between SNNs under adversarial and random perturbations, thereby improving their overall robustness. To achieve this, we theoretically prove that this performance gap is upper bounded by the gradient sparsity of the probability associated with the true label concerning the input image, laying the groundwork for a practical strategy to train robust SNNs by regularizing the gradient sparsity. We validate the effectiveness of our approach through extensive experiments on both image-based and event-based datasets. The results demonstrate notable improvements in the robustness of SNNs. Our work highlights the …
[ Hall C 4-9 ]

Abstract
Time series data across scientific domains are often collected under distinct states (e.g., tasks), wherein latent processes (e.g., biological factors) create complex inter- and intra-state variability. A key approach to capture this complexity is to uncover fundamental interpretable units within the data, Building Blocks (BBs), which modulate their activity and adjust their structure across observations. Existing methods for identifying BBs in multi-way data often overlook inter- vs. intra-state variability, produce uninterpretable components, or do not align with properties of real-world data, such as missing samples and sessions of different duration. Here, we present a framework for Similarity-driven Building Block Inference using Graphs across States (SiBBlInGS). SiBBlInGS offers a graph-based dictionary learning approach for discovering sparse BBs along with their temporal traces, based on co-activity patterns and inter- vs. intra-state relationships. Moreover, SiBBlInGS captures per-trial temporal variability and controlled cross-state structural BB adaptations, identifies state-specific vs. state-invariant components, and accommodates variability in the number and duration of observed sessions across states. We demonstrate SiBBlInGS's ability to reveal insights into complex phenomena as well as its robustness to noise and missing samples through several synthetic and real-world examples, including web search and neural data.
[ Hall C 4-9 ]

Abstract
Constructing states from sequences of observations is an important component of reinforcement learning agents. One solution for state construction is to use recurrent neural networks. Back-propagation through time (BPTT), and real-time recurrent learning (RTRL) are two popular gradient-based methods for recurrent learning. BPTT requires complete trajectories of observations before it can compute the gradients and is unsuitable for online updates. RTRL can do online updates but scales poorly to large networks. In this paper, we propose two constraints that make RTRL scalable. We show that by either decomposing the network into independent modules or learning the network in stages, we can make RTRL scale linearly with the number of parameters. Unlike prior scalable gradient estimation algorithms, such as UORO and Truncated-BPTT, our algorithms do not add noise or bias to the gradient estimate. Instead, they trade off the functional capacity of the network for computationally efficient learning. We demonstrate the effectiveness of our approach over Truncated-BPTT on a prediction benchmark inspired by animal learning and by doing policy evaluation of pre-trained policies for Atari 2600 games.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Label noise is a pervasive problem in deep learning that often compromises the generalization performance of trained models. Recently, leveraging privileged information (PI) -- information available only during training but not at test time -- has emerged as an effective approach to mitigate this issue. Yet, existing PI-based methods have failed to consistently outperform their no-PI counterparts in terms of preventing overfitting to label noise. To address this deficiency, we introduce Pi-DUAL, an architecture designed to harness PI to distinguish clean from wrong labels. Pi-DUAL decomposes the output logits into a prediction term, based on conventional input features, and a noise-fitting term influenced solely by PI. A gating mechanism steered by PI adaptively shifts focus between these terms, allowing the model to implicitly separate the learning paths of clean and wrong labels. Empirically, Pi-DUAL achieves significant performance improvements on key PI benchmarks (e.g., +6.8% on ImageNet-PI), establishing a new state-of-the-art test set accuracy. Additionally, Pi-DUAL is a potent method for identifying noisy samples post-training, outperforming other strong methods at this task. Overall, Pi-DUAL is a simple, scalable and practical approach for mitigating the effects of label noise in a variety of real-world scenarios with PI.
[ Hall C 4-9 ]
Abstract
Long-tail learning primarily focuses on mitigating the label distribution shift between long-tailed training data and uniformly distributed test data. However, in real-world applications, we often encounter a more intricate challenge where the test label distribution is agnostic. To address this problem, we first theoretically establish the substantial potential for reducing the generalization error if we can precisely estimate the test label distribution. Motivated by the theoretical insight, we introduce a simple yet effective solution called label shift correction (LSC). LSC estimates the test label distribution within the proposed framework of generalized black box shift estimation, and adjusts the predictions from a pre-trained model to align with the test distribution. Theoretical analyses confirm that accurate estimation of test label distribution can effectively reduce the generalization error. Extensive experimental results demonstrate that our method significantly outperforms previous state-of-the-art approaches, especially when confronted with non-uniform test label distribution. Notably, the proposed method is general and complements existing long-tail learning approaches, consistently improving their performance. The source code is available at https://github.com/Stomach-ache/label-shift-correction
[ Hall C 4-9 ]

Abstract
In this paper, we focus on distributed estimation and support recovery for high-dimensional linear quantile regression. Quantile regression is a popular alternative tool to the least squares regression for robustness against outliers and data heterogeneity. However, the non-smoothness of the check loss function poses big challenges to both computation and theory in the distributed setting. To tackle these problems, we transform the original quantile regression into the least-squares optimization. By applying a double-smoothing approach, we extend a previous Newton-type distributed approach without the restrictive independent assumption between the error term and covariates. An efficient algorithm is developed, which enjoys high computation and communication efficiency. Theoretically, the proposed distributed estimator achieves a near-oracle convergence rate and high support recovery accuracy after a constant number of iterations. Extensive experiments on synthetic examples and a real data application further demonstrate the effectiveness of the proposed method.
[ Hall C 4-9 ]

Abstract
Many existing anomaly detection methods assume the availability of a large-scale normal dataset. But for many applications, limited by resources, removing all anomalous samples from a large un-labeled dataset is unrealistic, resulting in contaminated datasets. To detect anomalies accurately under such scenarios, from the probabilistic perspective, the key question becomes how to learn the normal-data distribution from a contaminated dataset. To this end, we propose to collect two additional small datasets that are comprised of partially-observed normal and anomaly samples, and then use them to help learn the distribution under an adversarial learning scheme. We prove that under some mild conditions, the proposed method is able to learn the correct normal-data distribution. Then, we consider the overfitting issue caused by the small size of the two additional datasets, and a correctness-guaranteed flipping mechanism is further developed to alleviate it. Theoretical results under incomplete observed anomaly types are also presented. Extensive experimental results demonstrate that our method outperforms representative baselines when detecting anomalies under contaminated datasets.
[ Hall C 4-9 ]

Abstract
Finding and describing sub-populations that are exceptional in terms of a target property has important applications in many scientific disciplines, from identifying disadvantaged demographic groups in census data to finding conductive molecules within gold nanoparticles. Current approaches to finding such subgroups require pre-discretized predictive variables, do not permit non-trivial target distributions, do not scale to large datasets, and struggle to find diverse results. To address these limitations, we propose SYFLOW, an end-to-end optimizable approach in which we leverage normalizing flows to model arbitrary target distributions and introduce a novel neural layer that results in easily interpretable subgroup descriptions. We demonstrate on synthetic data, real-world data, and via a case study, that SYFLOW reliably finds highly exceptional subgroups accompanied by insightful descriptions.
[ Hall C 4-9 ]

Abstract
Recent advancements in semi-supervised learning have focused on a more realistic yet challenging task: addressing imbalances in labeled data while the class distribution of unlabeled data remains both unknown and potentially mismatched. Current approaches in this sphere often presuppose rigid assumptions regarding the class distribution of unlabeled data, thereby limiting the adaptability of models to only certain distribution ranges. In this study, we propose a novel approach, introducing a highly adaptable framework, designated as SimPro, which does not rely on any predefined assumptions about the distribution of unlabeled data. Our framework, grounded in a probabilistic model, innovatively refines the expectation-maximization (EM) method by separating the modeling of conditional and marginal class distributions. This separation facilitates a closed-form solution for class distribution estimation during the maximization phase, leading to the formulation of a Bayes classifier. The Bayes classifier, in turn, enhances the quality of pseudo-labels in the expectation phase. Remarkably, the SimPro framework is not only straightforward to implement but also comes with theoretical guarantees. Moreover, we introduce two novel class distributions broadening the scope of the evaluation. Our method showcases consistent state-of-the-art performance across diverse benchmarks and data distribution scenarios. benchmarks and data distribution scenarios. Our code is available …
[ Hall C 4-9 ]
Abstract
Foundation vision-language models have enabled remarkable zero-shot transferability of the pre-trained representations to a wide range of downstream tasks. However, to solve a new task, zero-shot transfer still necessitates human guidance to define visual categories that appear in the data. Here, we show that fully unsupervised transfer emerges when searching for the labeling of a dataset that induces maximal margin classifiers in representation spaces of different foundation models. We present TURTLE, a fully unsupervised method that effectively employs this guiding principle to uncover the underlying labeling of a downstream dataset without any supervision and task-specific representation learning. We evaluate TURTLE on a diverse benchmark suite of 26 datasets and show that it achieves new state-of-the-art unsupervised performance. Furthermore, TURTLE, although being fully unsupervised, outperforms zero-shot transfer baselines on a wide range of datasets. In particular, TURTLE matches the average performance of CLIP zero-shot on 26 datasets by employing the same representation space, spanning a wide range of architectures and model sizes. By guiding the search for the underlying labeling using the representation spaces of two foundation models, TURTLE surpasses zero-shot transfer and unsupervised prompt tuning baselines, demonstrating the surprising power and effectiveness of unsupervised transfer.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Semi-supervised learning (SSL) seeks to enhance task performance by training on both labeled and unlabeled data. Mainstream SSL image classification methods mostly optimize a loss that additively combines a supervised classification objective with a regularization term derived solely from unlabeled data. This formulation often neglects the potential for interaction between labeled and unlabeled images. In this paper, we introduce InterLUDE, a new approach to enhance SSL made of two parts that each benefit from labeled-unlabeled interaction. The first part, embedding fusion, interpolates between labeled and unlabeled embeddings to improve representation learning. The second part is a new loss, grounded in the principle of consistency regularization, that aims to minimize discrepancies in the model's predictions between labeled versus unlabeled inputs. Experiments on standard closed-set SSL benchmarks and a medical SSL task with an uncurated unlabeled set show clear benefits to our approach. On the STL-10 dataset with only 40 labels, InterLUDE achieves 3.2% error rate, while the best previous method reports 6.3%.
[ Hall C 4-9 ]

Abstract
Complementary-label learning is a weakly supervised learning problem in which each training example is associated with one or multiple complementary labels indicating the classes to which it does not belong. Existing consistent approaches have relied on the uniform distribution assumption to model the generation of complementary labels, or on an ordinary-label training set to estimate the transition matrix in non-uniform cases. However, either condition may not be satisfied in real-world scenarios. In this paper, we propose a novel consistent approach that does not rely on these conditions. Inspired by the positive-unlabeled (PU) learning literature, we propose an unbiased risk estimator based on the Selected-Completely-at-Random assumption for complementary-label learning. We then introduce a risk-correction approach to address overfitting problems. Furthermore, we find that complementary-label learning can be expressed as a set of negative-unlabeled binary classification problems when using the one-versus-rest strategy. Extensive experimental results on both synthetic and real-world benchmark datasets validate the superiority of our proposed approach over state-of-the-art methods.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
In dynamical systems reconstruction (DSR) we seek to infer from time series measurements a generative model of the underlying dynamical process. This is a prime objective in any scientific discipline, where we are particularly interested in parsimonious models with a low parameter load. A common strategy here is parameter pruning, removing all parameters with small weights. However, here we find this strategy does not work for DSR, where even low magnitude parameters can contribute considerably to the system dynamics. On the other hand, it is well known that many natural systems which generate complex dynamics, like the brain or ecological networks, have a sparse topology with comparatively few links. Inspired by this, we show that geometric pruning, where in contrast to magnitude-based pruning weights with a low contribution to an attractor's geometrical structure are removed, indeed manages to reduce parameter load substantially without significantly hampering DSR quality. We further find that the networks resulting from geometric pruning have a specific type of topology, and that this topology, and not the magnitude of weights, is what is most crucial to performance. We provide an algorithm that automatically generates such topologies which can be used as priors for generative modeling of …
[ Hall C 4-9 ]

Abstract
Performance prediction has been a key part of the neural architecture search (NAS) process, allowing to speed up NAS algorithms by avoiding resource-consuming network training. Although many performance predictors correlate well with ground truth performance, they require training data in the form of trained networks. Recently, zero-cost proxies have been proposed as an efficient method to estimate network performance without any training. However, they are still poorly understood, exhibit biases with network properties, and their performance is limited. Inspired by the drawbacks of zero-cost proxies, we propose neural graph features (GRAF), simple to compute properties of architectural graphs. GRAF offers fast and interpretable performance prediction while outperforming zero-cost proxies and other common encodings. In combination with other zero-cost proxies, GRAF outperforms most existing performance predictors at a fraction of the cost.
[ Hall C 4-9 ]
Abstract
Multi-task learning (MTL) considers learning a joint model for multiple tasks by optimizing a convex combination of all task losses. To solve the optimization problem, existing methods use an adaptive weight updating scheme, where task weights are dynamically adjusted based on their respective losses to prioritize difficult tasks. However, these algorithms face a great challenge whenever label noise is present, in which case excessive weights tend to be assigned to noisy tasks that have relatively large Bayes optimal errors, thereby overshadowing other tasks and causing performance to drop across the board. To overcome this limitation, we propose Multi-Task Learning with Excess Risks (ExcessMTL), an excess risk-based task balancing method that updates the task weights by their distances to convergence instead. Intuitively, ExcessMTL assigns higher weights to worse-trained tasks that are further from convergence. To estimate the excess risks, we develop an efficient and accurate method with Taylor approximation. Theoretically, we show that our proposed algorithm achieves convergence guarantees and Pareto stationarity. Empirically, we evaluate our algorithm on various MTL benchmarks and demonstrate its superior performance over existing methods in the presence of label noise. Our code is available at https://github.com/yifei-he/ExcessMTL.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In privacy-preserving machine learning (PPML), homomorphic encryption (HE) has emerged as a significant primitive, allowing the use of machine learning (ML) models while protecting the confidentiality of input data. Although extensive research has been conducted on implementing PPML with HE by developing the efficient construction of private counterparts to ML models, the efficient HE implementation of embedding layers for token inputs such as words remains inadequately addressed. Thus, our study proposes an efficient algorithm for privacy-preserving embedding via look-up table evaluation with HE(HELUT) by developing an encrypted indicator function (EIF) that assures high precision with the use of the approximate HE scheme(CKKS). Based on the proposed EIF, we propose the CodedHELUT algorithm to facilitate an encrypted embedding layer for the first time. CodedHELUT leverages coded inputs to improve overall efficiency and optimize memory usage. Our comprehensive empirical analysis encompasses both synthetic tables and real-world largescale word embedding models. CodedHELUT algorithm achieves amortized evaluation time of 0.018-0.242s for GloVe6B50d, 0.104-01.298s for GloVe42300d, 0.262-3.283s for GPT-2 and BERT embedding layers while maintaining high precision (16 bits)
[ Hall C 4-9 ]

Abstract
The widespread practice of fine-tuning large language models (LLMs) on domain-specific data faces two major challenges in memory and privacy. First, as the size of LLMs continues to grow, the memory demands of gradient-based training methods via backpropagation become prohibitively high. Second, given the tendency of LLMs to memorize training data, it is important to protect potentially sensitive information in the fine-tuning data from being regurgitated. Zeroth-order methods, which rely solely on forward passes, substantially reduce memory consumption during training. However, directly combining them with standard differentially private gradient descent suffers more as model size grows. To bridge this gap, we introduce DPZero, a novel private zeroth-order algorithm with nearly dimension-independent rates. The memory efficiency of DPZero is demonstrated in privately fine-tuning RoBERTa and OPT on several downstream tasks. Our code is available at https://github.com/Liang137/DPZero.
[ Hall C 4-9 ]

Abstract
Questions of fair use of copyright-protected content to train Large Language Models (LLMs) are being actively debated. Document-level inference has been proposed as a new task: inferring from black-box access to the trained model whether a piece of content has been seen during training. SOTA methods however rely on naturally occurring memorization of (part of) the content. While very effective against models that memorize significantly, we hypothesize - and later confirm - that they will not work against models that do not naturally memorize, e.g. medium-size 1B models. We here propose to use copyright traps, the inclusion of fictitious entries in original content, to detect the use of copyrighted materials in LLMs with a focus on models where memorization does not naturally occur. We carefully design a randomized controlled experimental setup, inserting traps into original content (books) and train a 1.3B LLM from scratch. We first validate that the use of content in our target model would be undetectable using existing methods. We then show, contrary to intuition, that even medium-length trap sentences repeated a significant number of times (100) are not detectable using existing methods. However, we show that longer sequences repeated a large number of times can be …
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Albeit the success of federated learning (FL) in decentralized training, bolstering the generalization of models by overcoming heterogeneity across clients still remains a huge challenge. To aim at improved generalization of FL, a group of recent works pursues flatter minima of models by employing sharpness-aware minimization in the local training at the client side. However, we observe that the global model, i.e., the aggregated model, does not lie on flat minima of the global objective, even with the effort of flatness searching in local training, which we define as flatness discrepancy. By rethinking and theoretically analyzing flatness searching in FL through the lens of the discrepancy problem, we propose a method called Federated Learning for Global Flatness (FedGF) that explicitly pursues the flatter minima of the global models, leading to the relieved flatness discrepancy and remarkable performance gains in the heterogeneous FL benchmarks.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
In practice, training using federated learning can be orders of magnitude slower than standard centralized training. This severely limits the amount of experimentation and tuning that can be done, making it challenging to obtain good performance on a given task. Server-side proxy data can be used to run training simulations, for instance for hyperparameter tuning. This can greatly speed up the training pipeline by reducing the number of tuning runs to be performed overall on the true clients. However, it is challenging to ensure that these simulations accurately reflect the dynamics of the real federated training. In particular, the proxy data used for simulations often comes as a single centralized dataset without a partition into distinct clients, and partitioning this data in a naive way can lead to simulations that poorly reflect real federated training. In this paper we address the challenge of how to partition centralized data in a way that reflects the statistical heterogeneity of the true federated clients. We propose a fully federated, theoretically justified, algorithm that efficiently learns the distribution of the true clients and observe improved server-side simulations when using the inferred distribution to create simulated clients from the centralized data.
[ Hall C 4-9 ]

Abstract
With the rise of large language models (LLMs) and concerns about potential misuse, watermarks for generative LLMs have recently attracted much attention. An important aspect of such watermarks is the trade-off between their identifiability and their impact on the quality of the generated text. This paper introduces a systematic approach to this trade-off in terms of a multi-objective optimization problem. For a large class of robust, efficient watermarks, the associated Pareto optimal solutions are identified and shown to outperform existing robust, efficient watermarks.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
In light of recent advancements in AI capabilities and the increasingly widespread integration of AI systems into society, governments worldwide are actively seeking to mitigate the potential harms and risks associated with these technologies through regulation and other governance tools. However, there exist significant gaps between governance aspirations and the current state of the technical tooling necessary for their realisation. In this position paper, we survey policy documents published by public-sector institutions in the EU, US, and China to highlight specific areas of disconnect between the technical requirements necessary for enacting proposed policy actions, and the current technical state of the art. Our analysis motivates a call for tighter integration of the AI/ML research community within AI governance in order to i) catalyse technical research aimed at bridging the gap between current and supposed technical underpinnings of regulatory action, as well as ii) increase the level of technical expertise within governing institutions so as to inform and guide effective governance of AI.
[ Hall C 4-9 ]

Abstract
The Vision Transformer (ViT) demonstrates exceptional performance in various computer vision tasks. Attention is crucial for ViT to capture complex wide-ranging relationships among image patches, allowing the model to weigh the importance of image patches and aiding our understanding of the decision-making process. However, when utilizing the attention of ViT as evidence in high-stakes decision-making tasks such as medical diagnostics, a challenge arises due to the potential of attention mechanisms erroneously focusing on irrelevant regions. In this study, we propose a statistical test for ViT's attentions, enabling us to use the attentions as reliable quantitative evidence indicators for ViT's decision-making with a rigorously controlled error rate. Using the framework called selective inference, we quantify the statistical significance of attentions in the form of p-values, which enables the theoretically grounded quantification of the false positive detection probability of attentions. We demonstrate the validity and the effectiveness of the proposed method through numerical experiments and applications to brain image diagnoses.
[ Hall C 4-9 ]
Abstract
Foundation models are powerful technologies: how they are released publicly directly shapes their societal impact. In this position paper, we focus on open foundation models, defined here as those with broadly available model weights (e.g., Llama 3, Stable Diffusion XL). We identify five distinctive properties (e.g., greater customizability, poor monitoring) that mediate their benefits and risks. Open foundation models present significant benefits, with some caveats, that span innovation, competition, the distribution of decision-making power, and transparency. To understand their risks of misuse, we design a risk assessment framework for analyzing their marginal risk. Across several misuse vectors (e.g., cyberattacks, bioweapons), we find that current research is insufficient to effectively characterize the marginal risk of open foundation models relative to pre-existing technologies. The framework helps explain why the marginal risk is low in some cases, clarifies disagreements about misuse risks by revealing that past work has focused on different subsets of the framework with different assumptions, and articulates a way forward for more constructive debate. Overall, our work helps support a more grounded assessment of the societal impact of open foundation models by outlining what research is needed to empirically validate their theoretical benefits and risks.
[ Hall C 4-9 ]

Abstract
We propose Embodied AI (E-AI) as the next fundamental step in the pursuit of Artificial General Intelligence (AGI), juxtaposing it against current AI advancements, particularly Large Language Models (LLMs). We traverse the evolution of the embodiment concept across diverse fields (philosophy, psychology, neuroscience, and robotics) to highlight how E-AI distinguishes itself from the classical paradigm of static learning. By broadening the scope of E-AI, we introduce a theoretical framework based on cognitive architectures, emphasizing perception, action, memory, and learning as essential components of an embodied agent. This framework is aligned with Friston’s active inference principle, offering a comprehensive approach to E-AI development. Despite the progress made in the field of AI, substantial challenges, such as the formulation of a novel AI learning theory and the innovation of advanced hardware, persist. Our discussion lays down a foundational guideline for future E-AI research. Highlighting the importance of creating E-AI agents capable of seamless communication, collaboration, and coexistence with humans and other intelligent entities within real-world environments, we aim to steer the AI community towards addressing the multifaceted challenges and seizing the opportunities that lie ahead in the quest for AGI.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Multi-task learning, which optimizes performance across multiple tasks, is inherently a multi-objective optimization problem. Various algorithms are developed to provide discrete trade-off solutions on the Pareto front. Recently, continuous Pareto front approximations using a linear combination of base networks have emerged as a compelling strategy. However, it suffers from scalability issues when the number of tasks is large. To address this issue, we propose a novel approach that integrates a main network with several low-rank matrices to efficiently learn the Pareto manifold. It significantly reduces the number of parameters and facilitates the extraction of shared features. We also introduce orthogonal regularization to further bolster performance. Extensive experimental results demonstrate that the proposed approach outperforms state-of-the-art baselines, especially on datasets with a large number of tasks.
[ Hall C 4-9 ]

Abstract
Multi-task learning (MTL) compresses the information from multiple tasks into a unified backbone to improve computational efficiency and generalization. Recent work directly merges multiple independently trained models to perform MTL instead of collecting their raw data for joint training, greatly expanding the application scenarios of MTL. However, by visualizing the representation distribution of existing model merging schemes, we find that the merged model often suffers from the dilemma of representation bias. That is, there is a significant discrepancy in the representation distribution between the merged and individual models, resulting in poor performance of merged MTL. In this paper, we propose a representation surgery solution called ``Surgery" to reduce representation bias in the merged model. Specifically, Surgery is a lightweight task-specific plugin that takes the representation of the merged model as input and attempts to output the biases contained in the representation from the merged model. We then designed an unsupervised optimization objective that updates the Surgery plugin by minimizing the distance between the merged model's representation and the individual model's representation. Extensive experiments demonstrate significant MTL performance improvements when our Surgery plugin is applied to state-of-the-art (SOTA) model merging schemes.
[ Hall C 4-9 ]

Abstract
We demonstrate a substantial gap between the privacy guarantees of the Adaptive Batch Linear Queries (ABLQ) mechanism under different types of batch sampling: (i) Shuffling, and (ii) Poisson subsampling; the typical analysis of Differentially Private Stochastic Gradient Descent (DP-SGD) follows by interpreting it as a post-processing of ABLQ. While shuffling-based DP-SGD is more commonly used in practical implementations, it has not been amenable to easy privacy analysis, either analytically or even numerically. On the other hand, Poisson subsampling-based DP-SGD is challenging to scalably implement, but has a well-understood privacy analysis, with multiple open-source numerically tight privacy accountants available. This has led to a common practice of using shuffling-based DP-SGD in practice, but using the privacy analysis for the corresponding Poisson subsampling version. Our result shows that there can be a substantial gap between the privacy analysis when using the two types of batch sampling, and thus advises caution in reporting privacy parameters for DP-SGD.
[ Hall C 4-9 ]
Abstract
We design differentially private regret-minimizing algorithms in the online convex optimization (OCO) framework. Unlike recent results, our algorithms and analyses do not require smoothness, thus yielding the first private regret bounds with an optimal leading-order term for non-smooth loss functions. Additionally, even for smooth losses, the resulting regret guarantees improve upon previous results in terms their dependence of dimension. Our results provide the best known rates for DP-OCO in all practical regimes of the privacy parameter, barring when it is exceptionally small. The principal innovation in our algorithm design is the use of sampling from strongly log-concave densities which satisfy the Log-Sobolev Inequality. The resulting concentration of measure allows us to obtain a better trade-off for the dimension factors than prior work, leading to improved results. Following previous works on DP-OCO, the proposed algorithm explicitly limits the number of switches via rejection sampling. Thus, independently of privacy constraints, the algorithm also provides improved results for online convex optimization with a switching budget.
[ Hall C 4-9 ]

Abstract
Federated Learning is widely employed to tackle distributed sensitive data. Existing methods primarily focus on addressing in-federation data heterogeneity. However, we observed that they suffer from significant performance degradation when applied to unseen clients for out-of-federation (OOF) generalization. The recent attempts to address generalization to unseen clients generally struggle to scale up to large-scale distributed settings due to high communication or computation costs. Moreover, methods that scale well often demonstrate poor generalization capability. To achieve OOF-resiliency in a scalable manner, we propose Topology-aware Federated Learning (TFL) that leverages client topology - a graph representing client relationships - to effectively train robust models against OOF data. We formulate a novel optimization problem for TFL, consisting of two key modules: Client Topology Learning, which infers the client relationships in a privacy-preserving manner, and Learning on Client Topology, which leverages the learned topology to identify influential clients and harness this information into the FL optimization process to efficiently build robust models. Empirical evaluation on a variety of real-world datasets verifies TFL's superior OOF robustness and scalability.
[ Hall C 4-9 ]

Abstract
The dominant paradigm in generative modeling consists of two steps: i) pre-training on a large-scale but unsafe dataset, ii) aligning the pre-trained model with human values via fine-tuning. This practice is considered safe, as no current method can recover the unsafe, pre-fine-tuning model weights. In this paper, we demonstrate that this assumption is often false. Concretely, we present Spectral DeTuning, a method that can recover the weights of the pre-fine-tuning model using a few low-rank (LoRA) fine-tuned models. In contrast to previous attacks that attempt to recover pre-fine-tuning capabilities, our method aims to recover the exact pre-fine-tuning weights. Our approach exploits this new vulnerability against large-scale models such as a personalized Stable Diffusion and an aligned Mistral. The code is available at https://vision.huji.ac.il/spectral_detuning/.
[ Hall C 4-9 ]
Abstract
Growing concerns over negligent or malicious uses of AI have increased the appetite for tools that help manage the risks of the technology. In 2018, licenses with behaviorial-use clauses (commonly referred to as Responsible AI Licenses) were proposed to give developers a framework for releasing AI assets while specifying their users to mitigate negative applications. As of the end of 2023, on the order of 40,000 software and model repositories have adopted responsible AI licenses licenses. Notable models licensed with behavioral use clauses include BLOOM (language) and LLaMA2 (language), Stable Diffusion (image), and GRID (robotics). This paper explores why and how these licenses have been adopted, and why and how they have been adapted to fit particular use cases. We use a mixed-methods methodology of qualitative interviews, clustering of license clauses, and quantitative analysis of license adoption. Based on this evidence we take the position that responsible AI licenses need standardization to avoid confusing users or diluting their impact. At the same time, customization of behavioral restrictions is also appropriate in some contexts (e.g., medical domains). We advocate for “standardized customization” that can meet users’ needs and can be supported via tooling.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Deep reinforcement learning policies, which are integral to modern control systems, represent valuable intellectual property. The development of these policies demands considerable resources, such as domain expertise, simulation fidelity, and real-world validation. These policies are potentially vulnerable to model stealing attacks, which aim to replicate their functionality using only black-box access. In this paper, we propose Stealthy Imitation, the first attack designed to steal policies without access to the environment or knowledge of the input range. This setup has not been considered by previous model stealing methods. Lacking access to the victim's input states distribution, Stealthy Imitation fits a reward model that allows to approximate it. We show that the victim policy is harder to imitate when the distribution of the attack queries matches that of the victim. We evaluate our approach across diverse, high-dimensional control tasks and consistently outperform prior data-free approaches adapted for policy stealing. Lastly, we propose a countermeasure that significantly diminishes the effectiveness of the attack.
[ Hall C 4-9 ]
Abstract
The development of Large Language Models (LLMs) has notably transformed numerous sectors, offering impressive text generation capabilities. Yet, the reliability and truthfulness of these models remain pressing concerns. To this end, we investigate iterative prompting, a strategy hypothesized to refine LLM responses, assessing its impact on LLM truthfulness, an area which has not been thoroughly explored. Our extensive experiments explore the intricacies of iterative prompting variants, examining their influence on the accuracy and calibration of model responses. Our findings reveal that naive prompting methods significantly undermine truthfulness, leading to exacerbated calibration errors. In response to these challenges, we introduce several prompting variants designed to address the identified issues. These variants demonstrate marked improvements over existing baselines, signaling a promising direction for future research. Our work provides a nuanced understanding of iterative prompting and introduces novel approaches to enhance the truthfulness of LLMs, thereby contributing to the development of more accurate and trustworthy AI systems
[ Hall C 4-9 ]
Abstract
Large language models (LLMs) have achieved impressive performance on various natural language generation tasks. Nonetheless, they suffer from generating negative and harmful contents that are biased against certain demographic groups (e.g., female), raising severe fairness concerns. As remedies, prior works intervened the generation by removing attitude or demographic information, inevitably degrading the generation quality and resulting in notable fairness-fluency trade-offs. However, it is still under-explored to what extent the fluency has to be affected in order to achieve a desired level of fairness. In this work, we conduct the first formal study from an information-theoretic perspective. We show that previous approaches are excessive for debiasing and propose LIDAO, a general framework to debias a (L)LM at a better fluency provably. We further robustify LIDAO in adversarial scenarios, where a carefully-crafted prompt may stimulate LLMs exhibiting instruction-following abilities to generate texts with fairness issue appears only when the prompt is also taken into account. Experiments on three LMs ranging from 0.7B to 7B parameters demonstrate the superiority of our method.
[ Hall C 4-9 ]
Abstract
Counterfactual estimation from observations represents a critical endeavor in numerous application fields, such as healthcare and finance, with the primary challenge being the mitigation of treatment bias. The balancing strategy aimed at reducing covariate disparities between different treatment groups serves as a universal solution. However, when it comes to the time series data, the effectiveness of balancing strategies remains an open question, with a thorough analysis of the robustness and applicability of balancing strategies still lacking. This paper revisits counterfactual estimation in the temporal setting and provides a brief overview of recent advancements in balancing strategies. More importantly, we conduct a critical empirical examination for the effectiveness of the balancing strategies within the realm of temporal counterfactual estimation in various settings on multiple datasets. Our findings could be of significant interest to researchers and practitioners and call for a reexamination of the balancing strategy in time series settings.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Echoing recent calls to counter reliability and robustness concerns in machine learning via multiverse analysis, we present PRESTO, a principled framework for mapping the multiverse of machine-learning models that rely on latent representations. Although such models enjoy widespread adoption, the variability in their embeddings remains poorly understood, resulting in unnecessary complexity and untrustworthy representations. Our framework uses persistent homology to characterize the latent spaces arising from different combinations of diverse machine-learning methods, (hyper)parameter configurations, and datasets, allowing us to measure their pairwise (dis)similarity and statistically reason about their distributions. As we demonstrate both theoretically and empirically, our pipeline preserves desirable properties of collections of latent representations, and it can be leveraged to perform sensitivity analysis, detect anomalous embeddings, or efficiently and effectively navigate hyperparameter search spaces.
[ Hall C 4-9 ]

Abstract
Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.
[ Hall C 4-9 ]

Abstract
Deep neural networks (DNNs) are vulnerable to backdoor attacks, where adversaries can maliciously trigger model misclassifications by implanting a hidden backdoor during model training. This paper proposes a simple yet effective input-level backdoor detection (dubbed IBD-PSC) as a `firewall' to filter out malicious testing images. Our method is motivated by an intriguing phenomenon, i.e., parameter-oriented scaling consistency (PSC), where the prediction confidences of poisoned samples are significantly more consistent than those of benign ones when amplifying model parameters. In particular, we provide theoretical analysis to safeguard the foundations of the PSC phenomenon. We also design an adaptive method to select BN layers to scale up for effective detection. Extensive experiments are conducted on benchmark datasets, verifying the effectiveness and efficiency of our IBD-PSC method and its resistance to adaptive attacks. Codes are available at https://github.com/THUYimingLi/BackdoorBox.
[ Hall C 4-9 ]
Abstract
Neuron-level interpretations aim to explain network behaviors and properties by investigating neurons responsive to specific perceptual or structural input patterns. Although there is emerging work in the vision and language domains, none is explored for acoustic models. To bridge the gap, we introduce AND, the first Audio Network Dissection framework that automatically establishes natural language explanations of acoustic neurons based on highly responsive audio. AND features the use of LLMs to summarize mutual acoustic features and identities among audio. Extensive experiments are conducted to verify AND's precise and informative descriptions. In addition, we highlight two acoustic model behaviors with analysis by AND. First, models discriminate audio with a combination of basic acoustic features rather than high-level abstract concepts. Second, training strategies affect neuron behaviors. Supervised training guides neurons to gradually narrow their attention, while self-supervised learning encourages neurons to be polysemantic for exploring high-level features. Finally, we demonstrate a potential use of AND in audio model unlearning by conducting concept-specific pruning based on the descriptions.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Robust and effective scaling of models from small to large width typically requires the precise adjustment of many algorithmic and architectural details, such as parameterization and optimizer choices. In this work, we propose a new perspective on parameterization by investigating a key assumption in prior work about the alignment between parameters and data and derive new theoretical results under weaker assumptions and a broader set of optimizers. Our extensive empirical investigation includes tens of thousands of models trained with all combinations of three optimizers, four parameterizations, several alignment assumptions, more than a dozen learning rates, and fourteen model sizes up to 27B parameters. We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work. Our results show that all parameterizations, not just maximal update parameterization (muP), can achieve hyperparameter transfer; moreover, our novel per-layer learning rate prescription for standard parameterization outperforms muP. Finally, we demonstrate that an overlooked aspect of parameterization, the epsilon parameter in Adam, must be scaled correctly to avoid gradient underflow and propose Adam-atan2, a new numerically stable, scale-invariant version of Adam that eliminates the epsilon hyperparameter entirely.
[ Hall C 4-9 ]

Abstract
While momentum-based accelerated variants of stochastic gradient descent (SGD) are widely used when training machine learning models, there is little theoretical understanding on the generalization error of such methods. In this work, we first show that there exists a convex loss function for which the stability gap for multiple epochs of SGD with standard heavy-ball momentum (SGDM) becomes unbounded. Then, for smooth Lipschitz loss functions, we analyze a modified momentum-based update rule, i.e., SGD with early momentum (SGDEM) under a broad range of step-sizes, and show that it can train machine learning models for multiple epochs with a guarantee for generalization. Finally, for the special case of strongly convex loss functions, we find a range of momentum such that multiple epochs of standard SGDM, as a special form of SGDEM, also generalizes. Extending our results on generalization, we also develop an upper bound on the expected true risk, in terms of the number of training steps, sample size, and momentum. Our experimental evaluations verify the consistency between the numerical results and our theoretical bounds. SGDEM improves the generalization error of SGDM when training ResNet-18 on ImageNet in practical distributed settings.
[ Hall C 4-9 ]

Abstract
The recent embrace of machine learning (ML) in the development of autonomous weapons systems (AWS) creates serious risks to geopolitical stability and the free exchange of ideas in AI research. This topic has received comparatively little attention of late compared to risks stemming from superintelligent artificial general intelligence (AGI), but requires fewer assumptions about the course of technological development and is thus a nearer-future issue. ML is already enabling the substitution of AWS for human soldiers in many battlefield roles, reducing the upfront human cost, and thus political cost, of waging offensive war. In the case of peer adversaries, this increases the likelihood of "low intensity" conflicts which risk escalation to broader warfare. In the case of non-peer adversaries, it reduces the domestic blowback to wars of aggression. This effect can occur regardless of other ethical issues around the use of military AI such as the risk of civilian casualties, and does not require any superhuman AI capabilities. Further, the military value of AWS raises the specter of an AI-powered arms race and the misguided imposition of national security restrictions on AI research. Our goal in this paper is to raise awareness among the public and ML researchers on the …
[ Hall C 4-9 ]
Abstract
Recent works have shown that machine learning models improve at a predictable rate with the amount of training data, leading to scaling laws that describe the relationship between error and dataset size. These scaling laws can help determine a model's training dataset, but they take an aggregate view of the data by only considering the dataset's size. We consider a new perspective by investigating scaling behavior for the value of individual data points: we find that a data point's contribution to model's performance shrinks predictably with the size of the dataset in a log-linear manner. Interestingly, there is significant variability in the scaling exponent among different data points, indicating that certain points are more valuable in small datasets and other points are relatively more useful as a part of large datasets. We provide learning theory support for our scaling laws and we observe empirically that it holds across several model classes. We further propose a maximum likelihood estimator and an amortized estimator to efficiently learn the individualized scaling behaviors from a small number of noisy observations per data point. Using our efficient estimators, we provide insights into factors that influence the scaling behavior of different data points. Finally we demonstrate …
[ Hall C 4-9 ]

Abstract
The Rashomon Effect, coined by Leo Breiman, describes the phenomenon that there exist many equally good predictive models for the same dataset. This phenomenon happens for many real datasets and when it does, it sparks both magic and consternation, but mostly magic. In light of the Rashomon Effect, this perspective piece proposes reshaping the way we think about machine learning, particularly for tabular data problems in the nondeterministic (noisy) setting. We address how the Rashomon Effect impacts (1) the existence of simple-yet-accurate models, (2) flexibility to address user preferences, such as fairness and monotonicity, without losing performance, (3) uncertainty in predictions, fairness, and explanations, (4) reliable variable importance, (5) algorithm choice, specifically, providing advanced knowledge of which algorithms might be suitable for a given problem, and (6) public policy. We also discuss a theory of when the Rashomon Effect occurs and why. Our goal is to illustrate how the Rashomon Effect can have a massive impact on the use of machine learning for complex problems in society.
[ Hall C 4-9 ]

Abstract
Despite the impressive performance of deep learning models across diverse tasks, their complexity poses challenges for interpretation. This challenge is particularly evident for audio signals, where conveying interpretations becomes inherently difficult. To address this issue, we introduce Listenable Maps for Audio Classifiers (L-MAC), a posthoc interpretation method that generates faithful and listenable interpretations. L-MAC utilizes a decoder on top of a pretrained classifier to generate binary masks that highlight relevant portions of the input audio. We train the decoder with a loss function that maximizes the confidence of the classifier decision on the masked-in portion of the audio while minimizing the probability of model output for the masked-out portion. Quantitative evaluations on both in-domain and out-of-domain data demonstrate that L-MAC consistently produces more faithful interpretations than several gradient and masking-based methodologies. Furthermore, a user study confirms that, on average, users prefer the interpretations generated by the proposed technique.
[ Hall C 4-9 ]
Abstract
In recent years, work has gone into developing deep interpretable methods for image classification that clearly attributes a model's output to specific features of the data. One such of these methods is the Prototypical Part Network (ProtoPNet), which attempts to classify images based on meaningful parts of the input. While this architecture is able to produce visually interpretable classifications, it often learns to classify based on parts of the image that are not semantically meaningful. To address this problem, we propose the Reward Reweighing, Reselecting, and Retraining (R3) post-processing framework, which performs three additional corrective updates to a pretrained ProtoPNet in an offline and efficient manner. The first two steps involve learning a reward model based on collected human feedback and then aligning the prototypes with human preferences. The final step is retraining, which realigns the base features and the classifier layer of the original model with the updated prototypes. We find that our R3 framework consistently improves both the interpretability and the predictive accuracy of ProtoPNet and its variants.
[ Hall C 4-9 ]
Abstract
Unsupervised representation learning has become an important ingredient of today's deep learning systems. However, only a few methods exist that explain a learned vector embedding in the sense of providing information about which parts of an input are the most important for its representation. These methods generate the explanation for a given input after the model has been evaluated and tend to produce either inaccurate explanations or are slow, which limits their practical use. To address these limitations, we introduce the Neural Explanation Masks (NEM) framework, which turns a fixed representation model into a self-explaining model by augmenting it with a masking network. This network provides occlusion-based explanations in parallel to computing the representations during inference. We present an instance of this framework, the NEM-U (NEM using U-net structure) architecture, which leverages similarities between segmentation and occlusion-based masks. Our experiments show that NEM-U generates explanations faster and with lower complexity compared to the current state-of-the-art while maintaining high accuracy as measured by locality.
[ Hall C 4-9 ]
Abstract
There is an increasing conflict between business incentives to hide models and data as trade secrets, and the societal need for algorithmic transparency. For example, a rightsholder who currently wishes to know whether their copyrighted works have been used during training must convince the model provider to allow a third party to audit the model and data. Finding a mutually agreeable third party is difficult, and the associated costs often make this approach impractical. In this work, we show that it is possible to simultaneously allow model providers to keep their models and data secret while allowing other parties to trustlessly audit properties of the model and data. We do this by designing a protocol called ZkAudit in which model providers publish cryptographic commitments of datasets and model weights, alongside a zero-knowledge proof (ZKP) certifying that published commitments are derived from training the model. Model providers can then respond to audit requests by privately computing any function F of the dataset (or model) and releasing the output of F alongside another ZKP certifying the correct execution of F. To enable ZkAudit, we develop new methods of computing ZKPs for SGD on modern neural nets for recommender systems and image classification …
[ Hall C 4-9 ]
Abstract
Deep neural networks (DNNs) have achieved state-of-the-art performance across various applications. However, ensuring the reliability and trustworthiness of DNNs requires enhanced interpretability of model inputs and outputs. As an effective means of Explainable Artificial Intelligence (XAI) research, the interpretability of existing attribution algorithms varies depending on the choice of reference point, the quality of adversarial samples, or the applicability of gradient constraints in specific tasks. To thoroughly explore the attribution integration paths, in this paper, inspired by the iterative generation of high-quality samples in the diffusion model, we propose an Iterative Search Attribution (ISA) method. To enhance attribution accuracy, ISA distinguishes the importance of samples during gradient ascent and descent, while clipping the relatively unimportant features in the model. Specifically, we introduce a scale parameter during the iterative process to ensure the features in next iteration are always more significant than those in current iteration. Comprehensive experimental results show that our method has superior interpretability in image recognition tasks compared with state-of-the-art baselines. Our code is available at: https://github.com/LMBTough/ISA
[ Hall C 4-9 ]
Abstract
New capabilities in foundation models are owed in large part to massive, widely-sourced, and under-documented training data collections. Existing practices in data collection have led to challenges in tracing authenticity, verifying consent, preserving privacy, addressing representation and bias, respecting copyright, and overall developing ethical and trustworthy foundation models. In response, regulation is emphasizing the need for training data transparency to understand foundation models’ limitations. Based on a large-scale analysis of the foundation model training data landscape and existing solutions, we identify the missing infrastructure to facilitate responsible foundation model development practices. We examine the current shortcomings of common tools for tracing data authenticity, consent, and documentation, and outline how policymakers, developers, and data creators can facilitate responsible foundation model development by adopting universal data provenance standards.
[ Hall C 4-9 ]
Abstract
A large branch of explainable machine learning is grounded in cooperative game theory. However, research indicates that game-theoretic explanations may mislead or be hard to interpret. We argue that often there is a critical mismatch between what one wishes to explain (e.g. the output of a classifier) and what current methods such as SHAP explain (e.g. the scalar probability of a class). This paper addresses such gap for probabilistic models by generalising cooperative games and value operators. We introduce the distributional values, random variables that track changes in the model output (e.g. flipping of the predicted class) and derive their analytic expressions for games with Gaussian, Bernoulli and Categorical payoffs. We further establish several characterising properties, and show that our framework provides fine-grained and insightful explanations with case studies on vision and language models.
[ Hall C 4-9 ]

Abstract
Detecting out-of-distribution (OOD) samples is essential when deploying machine learning models in open-world scenarios. Zero-shot OOD detection, requiring no training on in-distribution (ID) data, has been possible with the advent of vision-language models like CLIP. Existing methods build a text-based classifier with only closed-set labels. However, this largely restricts the inherent capability of CLIP to recognize samples from large and open label space. In this paper, we propose to tackle this constraint by leveraging the expert knowledge and reasoning capability of large language models (LLM) to Envision potential Outlier Exposure, termed EOE, without access to any actual OOD data. Owing to better adaptation to open-world scenarios, EOE can be generalized to different tasks, including far, near, and fine-grained OOD detection. Technically, we design (1) LLM prompts based on visual similarity to generate potential outlier class labels specialized for OOD detection, as well as (2) a new score function based on potential outlier penalty to distinguish hard OOD samples effectively. Empirically, EOE achieves state-of-the-art performance across different OOD tasks and can be effectively scaled to the ImageNet-1K dataset. The code is publicly available at: https://github.com/tmlr-group/EOE.
[ Hall C 4-9 ]
Abstract
How does the internal computation of a machine learning model transform inputs into predictions? To tackle this question, we introduce a framework called component modeling for decomposing a model prediction in terms of its components---architectural "building blocks" such as convolution filters or attention heads. We focus on a special case of this framework, component attribution, where the goal is to estimate the counterfactual impact of individual components on a given prediction. We then present COAR, a scalable algorithm for estimating component attributions, and demonstrate its effectiveness across models, datasets and modalities. Finally, we show that COAR directly enables effective model editing. Our code is available at github.com/MadryLab/modelcomponents.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Large Language Models are prone to biased predictions and hallucinations, underlining the paramount importance of understanding their model-internal reasoning process. However, achieving faithful attributions for the entirety of a black-box transformer model and maintaining computational efficiency is an unsolved challenge. By extending the Layer-wise Relevance Propagation attribution method to handle attention layers, we address these challenges effectively. While partial solutions exist, our method is the first to faithfully and holistically attribute not only input but also latent representations of transformer models with the computational efficiency similar to a single backward pass. Through extensive evaluations against existing methods on LLaMa 2, Mixtral 8x7b, Flan-T5 and vision transformer architectures, we demonstrate that our proposed approach surpasses alternative methods in terms of faithfulness and enables the understanding of latent representations, opening up the door for concept-based explanations. We provide an LRP library at https://github.com/rachtibat/LRP-eXplains-Transformers.
[ Hall C 4-9 ]

Abstract
Although deep neural networks have achieved remarkable success, they often exhibit a significant deficiency in reliable uncertainty calibration. This paper focus on model calibratability, which assesses how amenable a model is to be well recalibrated post-hoc. We find that the widely used weight decay regularizer detrimentally affects model calibratability, subsequently leading to a decline in final calibration performance after post-hoc calibration. To identify the underlying causes leading to poor calibratability, we delve into the calibratability of intermediate features across the hidden layers. We observe a U-shaped trend in the calibratability of intermediate features from the bottom to the top layers, which indicates that over-compression of the top representation layers significantly hinders model calibratability. Based on the observations, this paper introduces a weak classifier hypothesis, i.e., given a weak classification head that has not been over-trained, the representation module can be better learned to produce more calibratable features. Consequently, we propose a progressively layer-peeled training (PLP) method to exploit this hypothesis, thereby enhancing model calibratability. Our comparative experiments show the effectiveness of our method, which improves model calibration and also yields competitive predictive performance.
[ Hall C 4-9 ]
Abstract
Watermarking generative models consists of planting a statistical signal (watermark) in a model's output so that it can be later verified that the output was generated by the given model. A strong watermarking scheme satisfies the property that a computationally bounded attacker cannot erase the watermark without causing significant quality degradation. In this paper, we study the (im)possibility of strong watermarking schemes. We prove that, under well-specified and natural assumptions, strong watermarking is impossible to achieve. This holds even in the private detection algorithm setting, where the watermark insertion and detection algorithms share a secret key, unknown to the attacker. To prove this result, we introduce a generic efficient watermark attack; the attacker is not required to know the private key of the scheme or even which scheme is used. Our attack is based on two assumptions: (1) The attacker has access to a "quality oracle" that can evaluate whether a candidate output is a high-quality response to a prompt, and (2) The attacker has access to a "perturbation oracle" which can modify an output with a nontrivial probability of maintaining quality, and which induces an efficiently mixing random walk on high-quality outputs. We argue that both assumptions can be …
[ Hall C 4-9 ]
Abstract
In an effort to reduce the computational load of Transformers, research on linear attention has gained significant momentum. However, the improvement strategies for attention mechanisms typically necessitate extensive retraining, which is impractical for large language models with a vast array of parameters. In this paper, we present DiJiang, a novel Frequency Domain Kernelization approach that enables the transformation of a pre-trained vanilla Transformer into a linear complexity model with little training costs. By employing a weighted Quasi-Monte Carlo method for sampling, the proposed approach theoretically offers superior approximation efficiency. To further reduce the training computational complexity, our kernelization is based on Discrete Cosine Transform (DCT) operations. Extensive experiments demonstrate that the proposed method achieves comparable performance to the original Transformer, but with significantly reduced training costs and much faster inference speeds. Our DiJiang-7B achieves comparable performance with LLaMA2-7B on various benchmark while requires only about 1/50 training cost. Code is available at https://github.com/YuchuanTian/DiJiang.
[ Hall C 4-9 ]

Abstract
Soft pseudo-labels, generated by the softmax predictions of the trained networks, offer a probabilistic rather than binary form, and have been shown to improve the performance of deep neural networks in supervised learning. Most previous methods adopt classification loss to train a classifier as the soft-pseudo-label generator and fail to fully exploit their potential due to the misalignment with the target of soft-pseudo-label generation, aimed at capturing the knowledge in the data rather than making definitive classifications. Nevertheless, manually designing an effective objective function for a soft-pseudo-label generator is challenging, primarily because datasets typically lack ground-truth soft labels, complicating the evaluation of the soft pseudo-label accuracy. To deal with this problem, we propose a novel framework that alternately trains the predictive model and the soft-pseudo-label generator guided by a meta-network-parameterized objective function. The parameters of the objective function are optimized based on the feedback from both the performance of the predictive model and the soft-pseudo-label generator in the learning task. Additionally, the framework offers versatility across different learning tasks by allowing direct modifications to the task loss. Experiments on the benchmark datasets validate the effectiveness of the proposed framework.
[ Hall C 4-9 ]
Abstract
Due to the high cost of training DNN models, how to protect the intellectual property of DNN models, especially when the models are deployed to users' devices, is becoming an important topic. One practical solution is to use Trusted Execution Environments (TEEs) and researchers have proposed various model obfuscation solutions to make full use of the high-security guarantee of TEEs and the high performance of collocated GPUs. In this paper, we first identify a common vulnerability, namely the fragility of randomness, that is shared by existing TEE-based model obfuscation solutions. This vulnerability benefits model-stealing attacks and allows the adversary to recover about 97% of the secret model. To improve the security of TEE-shielded DNN models, we further propose a new model obfuscation approach GroupCover, which uses sufficient randomization and mutual covering obfuscation to protect model weights. Experimental results demonstrate that GroupCover can achieve a comparable security level as the upper-bound (black-box protection), which is remarkably over 3x compared with existing solutions. Besides, GroupCover introduces 19% overhead and negligible accuracy loss compared to model unprotected scheme.
[ Hall C 4-9 ]

Abstract
Deep learning has advanced through the combination of large datasets and computational power, leading to the development of extensive pre-trained models like Vision Transformers (ViTs). However, these models often assume a one-size-fits-all utility, lacking the ability to initialize models with elastic scales tailored to the resource constraints of specific downstream tasks. To address these issues, we propose Probabilistic Expansion from LearnGene (PEG) for mixture sampling and elastic initialization of Vision Transformers. Specifically, PEG utilizes a probabilistic mixture approach to sample Multi-Head Self-Attention layers and Feed-Forward Networks from a large ancestry model into a more compact part termed as learngene. Theoretically, we demonstrate that these learngene can approximate the parameter distribution of the original ancestry model, thereby preserving its significant knowledge. Next, PEG expands the sampled learngene through non-linear mapping, enabling the initialization of descendant models with elastic scales to suit various resource constraints. Our extensive experiments demonstrate the effectiveness of PEG and outperforming traditional initialization strategies.
[ Hall C 4-9 ]
Abstract
Gradient regularization (GR), which aims to penalize the gradient norm atop the loss function, has shown promising results in training modern over-parameterized deep neural networks. However, can we trust this powerful technique? This paper reveals that GR can cause performance degeneration in adaptive optimization scenarios, particularly with learning rate warmup. Our empirical and theoretical analyses suggest this is due to GR inducing instability and divergence in gradient statistics of adaptive optimizers at the initial training stage. Inspired by the warmup heuristic, we propose three GR warmup strategies, each relaxing the regularization effect to a certain extent during the warmup course to ensure the accurate and stable accumulation of gradients. With experiments on Vision Transformer family, we confirm the three GR warmup strategies can effectively circumvent these issues, thereby largely improving the model performance. Meanwhile, we note that scalable models tend to rely more on the GR warmup, where the performance can be improved by up to 3% on Cifar10 compared to baseline GR. Code is available at https://github.com/zhaoyang-0204/gnp.
[ Hall C 4-9 ]

Abstract
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs), which serves as a crucial step in building trust between humans and LLMs. Although several approaches based on entropy or verbalized uncertainty have been proposed to calibrate model predictions, these methods are often intractable, sensitive to hyperparameters, and less reliable when applied in generative tasks with LLMs. In this paper, we suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations. Through experiments on four question answering (QA) datasets, we demonstrate the effectiveness of our proposed method. Additionally, we study intrinsic dimensions in LLMs and their relations with model layers, autoregressive language modeling, and the training of LLMs, revealing that intrinsic dimensions can be a powerful approach to understanding LLMs.
[ Hall C 4-9 ]

Abstract
Recent advancements in open-domain text generation, driven by the power of large pre-trained language models (LLMs), have demonstrated remarkable performance. However, assessing these models' generation quality remains a challenge. In this paper, we introduce a novel method for evaluating open-domain text generation called Contrastive Distribution Methods (CDM). Leveraging the connection between increasing model parameters and enhanced LLM performance, CDM creates a mapping from the contrast of two probabilistic distributions -- one known to be superior to the other -- to quality measures. We investigate CDM for open-domain text generation evaluation under two paradigms: 1) Generative CDM, which harnesses the contrast of two language models' distributions to generate synthetic examples for training discriminator-based metrics; 2) Discriminative CDM, which directly uses distribution disparities between two language models for evaluation. Our experiments on coherence evaluation for multi-turn dialogue and commonsense evaluation for controllable generation demonstrate CDM's superior correlate with human judgment than existing automatic evaluation metrics, highlighting the strong performance and generalizability of our approach.
[ Hall C 4-9 ]
Abstract
An effective approach for learning both safety constraints and control policies is Inverse Constrained Reinforcement Learning (ICRL). Previous ICRL algorithms commonly employ an online learning framework that permits unlimited sampling from an interactive environment. This setting, however, is infeasible in many realistic applications where data collection is dangerous and expensive. To address this challenge, we propose Inverse Constrained Superior Distribution Correction Estimation (ICSDICE) as an offline ICRL solver. ICSDICE extracts feasible constraints from superior distributions, thereby highlighting policies with expert-exceeding rewards maximization ability. To estimate these distributions, ICSDICE solves a regularized dual optimization problem for safe control by exploiting the observed reward signals and expert preferences. Striving for transferable constraints and unbiased estimations, ICSDICE actively encourages sparsity and incorporates a discounting effect within the learned and observed distributions. Empirical studies show that ICSDICE outperforms other baselines by accurately recovering the constraints and adapting to high-dimensional environments. The code is available at https://github.com/quangr/ICSDICE.
[ Hall C 4-9 ]
Abstract
The ever-growing ecosystem of LLMs has posed a challenge in selecting the most appropriate pre-trained model to fine-tune amidst a sea of options. Given constrained resources, fine-tuning all models and making selections afterward is unrealistic. In this work, we formulate this resource-constrained selection task into predicting fine-tuning performance and illustrate its natural connection with Scaling Law. Unlike pre-training, we find that the fine-tuning scaling curve includes not just the well-known "power phase" but also the previously unobserved "pre-power phase". We also explain why existing Scaling Law fails to capture this phase transition phenomenon both theoretically and empirically. To address this, we introduce the concept of "pre-learned data size" into our Rectified Scaling Law, which overcomes theoretical limitations and fits experimental results much better. By leveraging our law, we propose a novel LLM selection algorithm that selects the near-optimal model with hundreds of times less resource consumption, while other methods may provide negatively correlated selection. The project page is available at rectified-scaling-law.github.io.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Evaluation of large language models (LLMs) has raised great concerns in the community due to the issue of data contamination. Existing work designed evaluation protocols using well-defined algorithms for specific tasks, which cannot be easily extended to diverse scenarios. Moreover, current evaluation benchmarks can only provide the overall benchmark results and cannot support a fine-grained and multifaceted analysis of LLMs' abilities. In this paper, we propose meta probing agents (MPA), a general dynamic evaluation protocol inspired by psychometrics to evaluate LLMs. MPA designs the probing and judging agents to automatically transform an original evaluation problem into a new one following psychometric theory on three basic cognitive abilities: language understanding, problem solving, and domain knowledge. These basic abilities are also dynamically configurable, allowing multifaceted analysis. We conducted extensive evaluations using MPA and found that most LLMs achieve poorer performance, indicating room for improvement. Our multifaceted analysis demonstrated the strong correlation between the basic abilities and an implicit Mattew effect on model size, i.e., larger models possess stronger correlations of the abilities. MPA can also be used as a data augmentation approach to enhance LLMs. Code is available at: https://github.com/microsoft/promptbench.
[ Hall C 4-9 ]
Abstract
Both text and video data are abundant on the internet and support large-scale self-supervised learning through next token or frame prediction. However, they have not been equally leveraged: language models have had significant real-world impact, whereas video generation has remained largely limited to media entertainment. Yet video data captures important information about the physical world that is difficult to express in language. To address this gap, we discuss an under-appreciated opportunity to extend video generation to solve tasks in the real world. We observe how, akin to language, video can serve as a unified interface that can absorb internet knowledge and represent diverse tasks. Moreover, we demonstrate how, like language models, video generation can serve as planners, agents, compute engines, and environment simulators through techniques such as in-context learning, planning and reinforcement learning. We identify major impact opportunities in domains such as robotics, self-driving, and science, supported by recent work that demonstrates how such advanced capabilities in video generation are plausibly within reach. Lastly, we identify key challenges in video generation that mitigate progress. Addressing these challenges will enable video generation models to demonstrate unique value alongside language models in a wider array of AI applications.
[ Hall C 4-9 ]
Abstract
The development of deep learning architectures is a resource-demanding process, due to a vast design space, long prototyping times, and high compute costs associated with at-scale model training and evaluation. We set out to simplify this process by grounding it in an end-to-end mechanistic architecture design (MAD) pipeline, encompassing small-scale capability unit tests predictive of scaling laws. Through a suite of synthetic token manipulation tasks such as compression and recall, designed to probe capabilities, we identify and test new hybrid architectures constructed from a variety of computational primitives. We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis, training over 500 language models between 70M to 7B parameters. Surprisingly, we find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures via isolated proxy tasks. The new architectures found via MAD, based on simple ideas such as hybridization and sparsity, outperform state-of-the-art Transformer, convolutional, and recurrent architectures (Transformer++, Hyena, Mamba) in scaling, both at compute-optimal budgets and in overtrained regimes. Overall, these results provide evidence that performance on curated synthetic tasks can be predictive of scaling laws, and that an optimal architecture should leverage specialized layers via a hybrid topology.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Sharpness-Aware Minimization (SAM), which performs gradient descent on adversarially perturbed weights, can improve generalization by identifying flatter minima. However, recent studies have shown that SAM may suffer from convergence instability and oscillate around saddle points, resulting in slow convergence and inferior performance. To address this problem, we propose the use of a lookahead mechanism to gather more information about the landscape by looking further ahead, and thus find a better trajectory to converge. By examining the nature of SAM, we simplify the extrapolation procedure, resulting in a more efficient algorithm. Theoretical results show that the proposed method converges to a stationary point and is less prone to saddle points. Experiments on standard benchmark datasets also verify that the proposed method outperforms the SOTAs, and converge more effectively to flat minima.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Recent text and image foundation models are incredibly impressive, and these models are attracting an ever-increasing portion of research resources. In this position piece we aim to shift the ML research community's priorities ever so slightly to a different modality: tabular data. Tabular data is the dominant modality in many fields, yet it is given hardly any research attention and significantly lags behind in terms of scale and power. We believe the time is now to start developing tabular foundation models, or what we coin a Large Tabular Model (LTM). LTMs could revolutionise the way science and ML use tabular data: not as single datasets that are analyzed in a vacuum, but contextualized with respect to related datasets. The potential impact is far-reaching: from few-shot tabular models to automating data science; from out-of-distribution synthetic data to empowering multidisciplinary scientific discovery. We intend to excite reflections on the modalities we study, and convince some researchers to study Large Tabular Models.
[ Hall C 4-9 ]

Abstract
Graph Neural Networks (GNNs) have demonstrated remarkable performance in graph classification tasks. However, ensuring the explainability of their predictions remains a challenge. To address this, graph rationalization methods have been introduced to generate concise subsets of the original graph, known as rationales, which serve to explain the predictions made by GNNs. Existing rationalizations often rely on shortcuts in data for prediction and rationale composition. In response, de-shortcut rationalization methods have been proposed, which commonly leverage counterfactual augmentation to enhance data diversity for mitigating the shortcut problem. Nevertheless, these methods have predominantly focused on centralized datasets and have not been extensively explored in the Federated Learning (FL) scenarios. To this end, in this paper, we propose a Federated Graph Rationalization (FedGR) with anti-shortcut augmentations to achieve self-explaining GNNs, which involves two data augmenters. These augmenters are employed to produce client-specific shortcut conflicted samples at each client, which contributes to mitigating the shortcut problem under the FL scenarios. Experiments on real-world benchmarks and synthetic datasets validate the effectiveness of FedGR under the FL scenarios.
[ Hall C 4-9 ]

Abstract
We study the game modification problem, where a benevolent game designer or a malevolent adversary modifies the reward function of a zero-sum Markov game so that a target deterministic or stochastic policy profile becomes the unique Markov perfect Nash equilibrium and has a value within a target range, in a way that minimizes the modification cost. We characterize the set of policy profiles that can be installed as the unique equilibrium of a game and establish sufficient and necessary conditions for successful installation. We propose an efficient algorithm that solves a convex optimization problem with linear constraints and then performs random perturbation to obtain a modification plan with a near-optimal cost.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Many methods for estimating conditional average treatment effects (CATEs) can be expressed as weighted pseudo-outcome regressions (PORs). Previous comparisons of POR techniques have paid careful attention to the choice of pseudo-outcome transformation. However, we argue that the dominant driver of performance is actually the choice of weights. For example, we point out that R-Learning implicitly performs a POR with inverse-variance weights (IVWs). In the CATE setting, IVWs mitigate the instability associated with inverse-propensity weights, and lead to convenient simplifications of bias terms. We demonstrate the superior performance of IVWs in simulations, and derive convergence rates for IVWs that are, to our knowledge, the fastest yet shown without assuming knowledge of the covariate distribution.
[ Hall C 4-9 ]
Abstract
In this work, we address two main shortcomings of transformer architectures: input corruption and rank collapse in their output representation. We unveil self-attention as an autonomous state-space model that inherently promotes smoothness in its solutions, leading to lower-rank outputs and diminished representation capacity. Moreover, the steady-state solution of the model is sensitive to input perturbations. We incorporate a Proportional-Integral-Derivative (PID) closed-loop feedback control system with a reference point into the model to improve robustness and representation capacity. This integration aims to preserve high-frequency details while bolstering model stability, rendering it more noise-resilient. The resulting controlled state-space model is theoretically proven robust and adept at addressing the rank collapse. Motivated by this control framework, we derive a novel class of transformers, PID-controlled Transformer (PIDformer), aimed at improving robustness and mitigating the rank-collapse issue inherent in softmax transformers. We empirically evaluate the model for advantages and robustness against baseline transformers across various practical tasks, including object classification, image segmentation, and language modeling.
[ Hall C 4-9 ]

Abstract
Decentralized bilevel optimization based machine learning techniques are achieving remarkable success in a wide variety of domains. However, the intensive exchange of information (involving nested-loops of consensus or communication iterations) in existing decentralized bilevel optimization algorithms leads to a great challenge to ensure rigorous differential privacy, which, however, is necessary to bring the benefits of machine learning to domains where involved data are sensitive. By proposing a new decentralized stochastic bilevel-optimization algorithm which avoids nested-loops of information-exchange iterations, we achieve, for the first time, both differential privacy and accurate convergence in decentralized bilevel optimization. This is significant since even for single-level decentralized optimization and learning, existing differential-privacy solutions have to sacrifice convergence accuracy for privacy. Besides characterizing the convergence rate under nonconvex/convex/strongly convex conditions, we also rigorously quantify the price of differential privacy in the convergence rate. Experimental results on machine learning models confirm the efficacy of our algorithm.
[ Hall C 4-9 ]

Abstract
Lightweight image super-resolution (SR) methods have obtained promising results with moderate model complexity. These approaches primarily focus on a lightweight architecture design, but neglect to further reduce network redundancy. While some model compression techniques try to achieve more lightweight SR models with neural architecture search, knowledge distillation, or channel pruning, they typically require considerable extra computational resources or neglect to prune weights. To address these issues, we propose a flexible meta pruning (FMP) for lightweight image SR, where the network channels and weights are pruned simultaneously. Specifically, we control the network sparsity via channel vectors and weight indicators. We feed them into a hypernetwork, whose parameters act as meta-data for the parameters of the SR backbone. Consequently, for each network layer, we conduct structured pruning with channel vectors, which control the output and input channels. Besides, we conduct unstructured pruning with weight indicators to influence the sparsity of kernel weights, resulting in flexible pruning. During pruning, the sparsity of both channel vectors and weight indicators are regularized. We optimize the channel vectors and weight indicators with proximal gradient and SGD. We conduct extensive experiments to investigate critical factors in the flexible channel and weight pruning for image SR, demonstrating the …
[ Hall C 4-9 ]
Abstract
Recent advancements in Large Language Models (LLMs) have showcased remarkable capabilities across various tasks in different domains. However, the emergence of biases and the potential for generating harmful content in LLMs, particularly under malicious inputs, pose significant challenges. Current mitigation strategies, while effective, are not resilient under adversarial attacks. This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently and effectively moderate harmful and unsafe inputs and outputs for LLMs. By employing a multi-faceted approach that includes energy-based training data augmentation through Langevin dynamics, optimizing a safe suffix for inputs via minimax optimization, and integrating a fusion-based model combining robust KNN with LLMs based on our data augmentation, RigorLLM offers a robust solution to harmful content moderation. Our experimental evaluations demonstrate that RigorLLM not only outperforms existing baselines like OpenAI API and Perspective API in detecting harmful content but also exhibits unparalleled resilience to jailbreaking attacks. The innovative use of constrained optimization and a fusion-based guardrail approach represents a significant step forward in developing more secure and reliable LLMs, setting a new standard for content moderation frameworks in the face of evolving digital threats.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]
Abstract
Machine learning algorithms minimizing average risk are susceptible to distributional shifts. Distributionally Robust Optimization (DRO) addresses this issue by optimizing the worst-case risk within an uncertainty set. However, DRO suffers from over-pessimism, leading to low-confidence predictions, poor parameter estimations as well as poor generalization. In this work, we conduct a theoretical analysis of a probable root cause of over-pessimism: excessive focus on noisy samples. To alleviate the impact of noise, we incorporate data geometry into calibration terms in DRO, resulting in our novel Geometry-Calibrated DRO (GCDRO) for regression. We establish the connection between our risk objective and the Helmholtz free energy in statistical physics, and this free-energy-based risk can extend to standard DRO methods. Leveraging gradient flow in Wasserstein space, we develop an approximate minimax optimization algorithm with a bounded error ratio and elucidate how our approach mitigates noisy sample effects. Comprehensive experiments confirm GCDRO's superiority over conventional DRO methods.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Multiplier design---which aims to explore a large combinatorial design space to simultaneously optimize multiple conflicting objectives---is a fundamental problem in the integrated circuits industry. Although traditional approaches tackle the multi-objective multiplier optimization problem by manually designed heuristics, reinforcement learning (RL) offers a promising approach to discover high-speed and area-efficient multipliers. However, the existing RL-based methods struggle to find Pareto-optimal circuit designs for all possible preferences, i.e., weights over objectives, in a sample-efficient manner. To address this challenge, we propose a novel hierarchical adaptive (HAVE) multi-task reinforcement learning framework. The hierarchical framework consists of a meta-agent to generate diverse multiplier preferences, and an adaptive multi-task agent to collaboratively optimize multipliers conditioned on the dynamic preferences given by the meta-agent. To the best of our knowledge, HAVE is the first to well approximate Pareto-optimal circuit designs for the entire preference space with high sample efficiency. Experiments on multipliers across a wide range of input widths demonstrate that HAVE significantly Pareto-dominates state-of-the-art approaches, achieving up to 28% larger hypervolume. Moreover, experiments demonstrate that multipliers designed by HAVE can well generalize to large-scale computation-intensive circuits.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
We study the problem of symbolic music generation (e.g., generating piano rolls), with a technical focus on non-differentiable rule guidance. Musical rules are often expressed in symbolic form on note characteristics, such as note density or chord progression, many of which are non-differentiable which pose a challenge when using them for guided diffusion. We propose Stochastic Control Guidance (SCG), a novel guidance method that only requires forward evaluation of rule functions that can work with pre-trained diffusion models in a plug-and-play way, thus achieving training-free guidance for non-differentiable rules for the first time. Additionally, we introduce a latent diffusion architecture for symbolic music generation with high time resolution, which can be composed with SCG in a plug-and-play fashion. Compared to standard strong baselines in symbolic music generation, this framework demonstrates marked advancements in music quality and rule-based controllability, outperforming current state-of-the-art generators in a variety of settings. For detailed demonstrations, code and model checkpoints, please visit our project website.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Conformal prediction is a valuable tool for quantifying predictive uncertainty of machine learning models. However, its applicability relies on the assumption of data exchangeability, a condition which is often not met in real-world scenarios. In this paper, we consider the problem of adaptive conformal inference without any assumptions about the data generating process. Existing approaches for adaptive conformal inference are based on optimizing the pinball loss using variants of online gradient descent. A notable shortcoming of such approaches is in their explicit dependence on and sensitivity to the choice of the learning rates. In this paper, we propose a different approach for adaptive conformal inference that leverages parameter-free online convex optimization techniques. We prove that our method controls long-term miscoverage frequency at a nominal level and demonstrate its convincing empirical performance without any need of performing cumbersome parameter tuning.
[ Hall C 4-9 ]
Abstract
This paper enhances image-GPT (iGPT), one of the pioneering works that introduce autoregressive pretraining to predict the next pixels for visual representation learning. Two simple yet essential changes are made. First, we shift the prediction target from raw pixels to semantic tokens, enabling a higher-level understanding of visual content. Second, we supplement the autoregressive modeling by instructing the model to predict not only the next tokens but also the visible tokens. This pipeline is particularly effective when semantic tokens are encoded by discriminatively trained models, such as CLIP. We introduce this novel approach as D-iGPT. Extensive experiments showcase that D-iGPT excels as a strong learner of visual representations: A notable achievement is its compelling performance on the ImageNet-1K dataset --- by training on publicly available datasets, D-iGPT unprecedentedly achieves 90.0% top-1 accuracy with a vanilla ViT-H. Additionally, D-iGPT shows strong generalization on the downstream task. Code is available at https://github.com/OliverRensu/D-iGPT.
[ Hall C 4-9 ]
Abstract
Catastrophic forgetting remains a core challenge in continual learning (CL), where the models struggle to retain previous knowledge when learning new tasks. While existing replay-based CL methods have been proposed to tackle this challenge by utilizing a memory buffer to store data from previous tasks, they generally overlook the interdependence between previously learned tasks and fail to encapsulate the optimally integrated knowledge in previous tasks, leading to sub-optimal performance of the previous tasks. Against this issue, we first reformulate replay-based CL methods as a unified hierarchical gradient aggregation framework. We then incorporate the Pareto optimization to capture the interrelationship among previously learned tasks and design a Pareto-Optimized CL algorithm (POCL), which effectively enhances the overall performance of past tasks while ensuring the performance of the current task. Comprehensive empirical results demonstrate that the proposed POCL outperforms current state-of-the-art CL methods across multiple datasets and different settings.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Cross-Domain Recommendation (CDR) have become increasingly appealing by leveraging useful information to tackle the data sparsity problem across domains. Most of latest CDR models assume that domain-shareable user-item information (e.g., rating and review on overlapped users or items) are accessible across domains. However, these assumptions become impractical due to the strict data privacy protection policy. In this paper, we propose Reducing Item Discrepancy (RidCDR) model on solving Privacy-Preserving Cross-Domain Recommendation (PPCDR) problem. Specifically, we aim to enhance the model performance on both source and target domains without overlapped users and items while protecting the data privacy. We innovatively propose private-robust embedding alignment module in RidCDR for knowledge sharing across domains while avoiding negative transfer privately. Our empirical study on Amazon and Douban datasets demonstrates that RidCDR significantly outperforms the state-of-the-art models under the PPCDR without overlapped users and items.
[ Hall C 4-9 ]
Abstract
Data-parallel SGD is the de facto algorithm for distributed optimization, especially for large scale machine learning. Despite its merits, communication bottleneck is one of its persistent issues. Most compression schemes to alleviate this either assume noiseless communication links, or fail to achieve good performance on practical tasks. In this paper, we close this gap and introduce LASER: LineAr CompreSsion in WirEless DistRibuted Optimization. LASER capitalizes on the inherent low-rank structure of gradients and transmits them efficiently over the noisy channels. Whilst enjoying theoretical guarantees similar to those of the classical SGD, LASER shows consistent gains over baselines on a variety of practical benchmarks. In particular, it outperforms the state-of-the-art compression schemes on challenging computer vision and GPT language modeling tasks. On the latter, we obtain 50-64% improvement in perplexity over our baselines for noisy channels.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
As a more challenging domain adaptation setting, universal domain adaptation (UniDA) introduces category shift on top of domain shift, which needs to identify unknown category in the target domain and avoid misclassifying target samples into source private categories. To this end, we propose a novel UniDA approach named Batch Singular value Polarization and Weighted Semantic Augmentation (BSP-WSA). Specifically, we adopt an adversarial classifier to identify the target unknown category and align feature distributions between the two domains. Then, we propose to perform SVD on the classifier's outputs to maximize larger singular values while minimizing those smaller ones, which could prevent target samples from being wrongly assigned to source private classes. To better bridge the domain gap, we propose a weighted semantic augmentation approach for UniDA to generate data on common categories between the two domains. Extensive experiments on three benchmarks demonstrate that BSP-WSA could outperform existing state-of-the-art UniDA approaches.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Masked face recognition is important for social good but challenged by diverse occlusions that cause insufficient or inaccurate representations. In this work, we propose a unified deep network to learn generative-to-discriminative representations for facilitating masked face recognition. To this end, we split the network into three modules and learn them on synthetic masked faces in a greedy module-wise pretraining manner. First, we leverage a generative encoder pretrained for face inpainting and finetune it to represent masked faces into category-aware descriptors. Attribute to the generative encoder's ability in recovering context information, the resulting descriptors can provide occlusion-robust representations for masked faces, mitigating the effect of diverse masks. Then, we incorporate a multi-layer convolutional network as a discriminative reformer and learn it to convert the category-aware descriptors into identity-aware vectors, where the learning is effectively supervised by distilling relation knowledge from off-the-shelf face recognition model. In this way, the discriminative reformer together with the generative encoder serves as the pretrained backbone, providing general and discriminative representations towards masked faces. Finally, we cascade one fully-connected layer following by one softmax layer into a feature classifier and finetune it to identify the reformed identity-aware vectors. Extensive experiments on synthetic and realistic datasets demonstrate the …
[ Hall C 4-9 ]
Abstract
Recently, the question of adversarially robust streaming, where the stream is allowed to depend on the randomness of the streaming algorithm, has gained a lot of attention. In this work, we consider a strong white-box adversarial model (Ajtai et al. PODS 2022), in which the adversary has access to all past random coins and the parameters used by the streaming algorithm. We focus on the sparse recovery problem and extend our result to other tasks such as distinct element estimation and low-rank approximation of matrices and tensors. The main drawback of previous work is that it requires a random oracle, which is especially problematic in the streaming model since the amount of randomness is counted in the space complexity of a streaming algorithm. Also, the previous work suffers from large update time. We construct a near-optimal solution for the sparse recovery problem in white-box adversarial streams, based on the subexponentially secure Learning with Errors assumption. Importantly, our solution does not require a random oracle and has a polylogarithmic per item processing time. We also give results in a related white-box adversarially robust distributed model. Our constructions are based on homomorphic encryption schemes satisfying very mild structural properties that are …
[ Hall C 4-9 ]
Abstract
Agents built with large language models (LLMs) have shown great potential across a wide range of domains. However, in complex decision-making tasks, pure LLM-based agents tend to exhibit intrinsic bias in their choice of actions, which is inherited from the model's training data and results in suboptimal performance. To develop strategic language agents, i.e., agents that generate flexible language actions and possess strong decision-making abilities, we propose a novel framework that powers LLM-based agents with reinforcement learning (RL). We consider Werewolf, a popular social deduction game, as a challenging testbed that emphasizes versatile communication and strategic gameplay. To mitigate the intrinsic bias in language actions, our agents use an LLM to perform deductive reasoning and generate a diverse set of action candidates. Then an RL policy trained to optimize the decision-making ability chooses an action from the candidates to play in the game. Extensive experiments show that our agents overcome the intrinsic bias and outperform existing LLM-based agents in the Werewolf game. We also conduct human-agent experiments and find that our agents achieve human-level performance and demonstrate strong strategic play.
[ Hall C 4-9 ]
Abstract
In this work, we study the issue of reward hacking on the response length, a challenge emerging in Reinforcement Learning from Human Feedback (RLHF) on LLMs. A well-formatted, verbose but less helpful response from the LLMs can often deceive LLMs or even human evaluators and achieve high scores. The same issue also holds for some reward models in RL. To address the challenges in both training and evaluation, we establish a more reliable evaluation protocol for comparing different training configurations, which inspects the trade-off between LLM evaluation score and response length obtained by varying training hyperparameters. Based on this evaluation, we conduct large-scale studies, where the results shed insights into the efficacy of hyperparameters and tricks used in RL on mitigating length bias. We further propose to improve the reward model by jointly training two linear heads to predict the preference, one trained to correlate with length and the other trained to decorrelate with length and therefore focusing more on the actual content. We then discard the length head in RL to ignore the spurious length reward. Experiments demonstrate that our approach eliminates the reward correlation with length, and improves the obtained policy by a significant margin.
[ Hall C 4-9 ]
Abstract
Multimodal fusion is crucial in joint decision-making systems for rendering holistic judgments. Since multimodal data changes in open environments, dynamic fusion has emerged and achieved remarkable progress in numerous applications. However, most existing dynamic multimodal fusion methods lack theoretical guarantees and easily fall into suboptimal problems, yielding unreliability and instability. To address this issue, we propose a Predictive Dynamic Fusion (PDF) framework for multimodal learning. We proceed to reveal the multimodal fusion from a generalization perspective and theoretically derive the predictable Collaborative Belief (Co-Belief) with Mono- and Holo-Confidence, which provably reduces the upper bound of generalization error. Accordingly, we further propose a relative calibration strategy to calibrate the predicted Co-Belief for potential uncertainty. Extensive experiments on multiple benchmarks confirm our superiority. Our code is available at https://github.com/Yinan-Xia/PDF.
[ Hall C 4-9 ]

Abstract
Diffusion models have achieved remarkable success in generating high-quality images. Recently, the open-source models represented by Stable Diffusion (SD) are thriving and are accessible for customization, giving rise to a vibrant community of creators and enthusiasts. However, the widespread availability of customized SD models has led to copyright concerns, like unauthorized model distribution and unconsented commercial use. To address it, recent works aim to let SD models output watermarked content for post-hoc forensics. Unfortunately, none of them can achieve the challenging white-box protection, wherein the malicious user can easily remove or replace the watermarking module to fail the subsequent verification. For this, we propose AquaLoRA as the first implementation under this scenario. Briefly, we merge watermark information into the U-Net of Stable Diffusion Models via a watermark LowRank Adaptation (LoRA) module in a two-stage manner. For watermark LoRA module, we devise a scaling matrix to achieve flexible message updates without retraining. To guarantee fidelity, we design Prior Preserving Fine-Tuning (PPFT) to ensure watermark learning with minimal impacts on model distribution, validated by proofs. Finally, we conduct extensive experiments and ablation studies to verify our design. Our code is available at github.com/Georgefwt/AquaLoRA.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Jamming requires coordination, anticipation, and collaborative creativity between musicians. Current generative models of music produce expressive output but are not able to generate in an online manner, meaning simultaneously with other musicians (human or otherwise). We propose ReaLchords, an online generative model for improvising chord accompaniment to user melody. We start with an online model pretrained by maximum likelihood, and use reinforcement learning to finetune the model for online use. The finetuning objective leverages both a novel reward model that provides feedback on both harmonic and temporal coherency between melody and chord, and a divergence term that implements a novel type of distillation from a teacher model that can see the future melody. Through quantitative experiments and listening tests, we demonstrate that the resulting model adapts well to unfamiliar input and produce fitting accompaniment. ReaLchords opens the door to live jamming, as well as simultaneous co-creation in other modalities.
[ Hall C 4-9 ]

Abstract
Directed evolution, a cornerstone of protein optimization, is to harness natural mutational processes to enhance protein functionality. Existing Machine Learning-assisted Directed Evolution (MLDE) methodologies typically rely on data-driven strategies and often overlook the profound domain knowledge in biochemical fields. In this paper, we introduce a novel Knowledge-aware Reinforced Language Model (KnowRLM) for MLDE. An Amino Acid Knowledge Graph (AAKG) is constructed to represent the intricate biochemical relationships among amino acids. We further propose a Protein Language Model (PLM)-based policy network that iteratively samples mutants through preferential random walks on the AAKG using a dynamic sliding window mechanism. The novel mutants are actively sampled to fine-tune a fitness predictor as the reward model, providing feedback to the knowledge-aware policy. Finally, we optimize the whole system in an active learning approach that mimics biological settings in practice.KnowRLM stands out for its ability to utilize contextual amino acid information from knowledge graphs, thus attaining advantages from both statistical patterns of protein sequences and biochemical properties of amino acids.Extensive experiments demonstrate the superior performance of KnowRLM in more efficiently identifying high-fitness mutants compared to existing methods.
[ Hall C 4-9 ]
Abstract
In the context of proxy modeling for process systems, traditional data-driven deep learning approaches frequently encounter significant challenges, such as substantial training costs induced by large amounts of data, and limited generalization capabilities. As a promising alternative, physics-aware models incorporate partial physics knowledge to ameliorate these challenges. Although demonstrating efficacy, they fall short in terms of exploration depth and universality. To address these shortcomings, we introduce a physics-aware proxy model (PAPM) that fully incorporates partial prior physics of process systems, which includes multiple input conditions and the general form of conservation relations, resulting in better out-of-sample generalization. Additionally, PAPM contains a holistic temporal-spatial stepping module for flexible adaptation across various process systems. Through systematic comparisons with state-of-the-art pure data-driven and physics-aware models across five two-dimensional benchmarks in nine generalization tasks, PAPM notably achieves an average performance improvement of 6.7%, while requiring fewer FLOPs, and just 1% of the parameters compared to the prior leading method.
[ Hall C 4-9 ]
Abstract
The core of clustering lies in incorporating prior knowledge to construct supervision signals. From classic k-means based on data compactness to recent contrastive clustering guided by self-supervision, the evolution of clustering methods intrinsically corresponds to the progression of supervision signals. At present, substantial efforts have been devoted to mining internal supervision signals from data. Nevertheless, the abundant external knowledge such as semantic descriptions, which naturally conduces to clustering, is regrettably overlooked. In this work, we propose leveraging external knowledge as a new supervision signal to guide clustering. To implement and validate our idea, we design an externally guided clustering method (Text-Aided Clustering, TAC), which leverages the textual semantics of WordNet to facilitate image clustering. Specifically, TAC first selects and retrieves WordNet nouns that best distinguish images to enhance the feature discriminability. Then, TAC collaborates text and image modalities by mutually distilling cross-modal neighborhood information. Experiments demonstrate that TAC achieves state-of-the-art performance on five widely used and three more challenging image clustering benchmarks, including the full ImageNet-1K dataset. The code can be accessed at https://github.com/XLearning-SCU/2024-ICML-TAC.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Machine learning models are susceptible to membership inference attacks (MIAs), which aim to infer whether a sample is in the training set. Existing work utilizes gradient ascent to enlarge the loss variance of training data, alleviating the privacy risk. However, optimizing toward a reverse direction may cause the model parameters to oscillate near local minima, leading to instability and suboptimal performance. In this work, we propose a novel method -- Convex Concave Loss (CCL), which enables a high variance of training loss distribution by gradient descent. Our method is motivated by the theoretical analysis that convex losses tend to decrease the loss variance during training. Thus, our key idea behind CCL is to reduce the convexity of loss functions with a concave term. Trained with CCL, neural networks produce losses with high variance for training data, reinforcing the defense against MIAs. Extensive experiments demonstrate the superiority of CCL, achieving a state-of-the-art balance in the privacy-utility trade-off.
[ Hall C 4-9 ]

Abstract
Equivariant Graph Neural Networks (GNNs) have made remarkable success in a variety of scientific applications. However, existing equivariant GNNs encounter the efficiency issue for large geometric graphs and perform poorly if the input is reduced to sparse local graph for speed acceleration. In this paper, we propose FastEGNN, an enhanced model of equivariant GNNs on large geometric graphs. The central idea is leveraging a small ordered set of virtual nodes to approximate the large unordered graph of real nodes. In particular, we distinguish the message passing and aggregation for different virtual node to encourage the mutual distinctiveness, and minimize the Maximum Mean Discrepancy (MMD) between virtual and real coordinates to realize the global distributedness. FastEGNN meets all necessary E(3) symmetries, with certain universal expressivity assurance as well. Our experiments on N-body systems (100 nodes), proteins (800 nodes) and water-3D (8000 nodes), demonstrate that FastEGNN achieves a promising balance between accuracy and efficiency, and outperforms EGNN in accuracy even after dropping all edges in real systems like proteins and water-3D.
[ Hall C 4-9 ]
Abstract
GEneral Matrix Multiply (GEMM) is a central operation in deep learning and corresponds to a large chunk of the compute footprint. Therefore, improving its efficiency is an active topic of research. A popular strategy is the use of low bit-width integers to approximate the original matrix entries. This allows efficiency gains, but often requires sophisticated techniques to control the rounding error. In this work, we first verify that when the low bit-width restriction is removed, for a variety of Transformer-based models, integers are, in fact, sufficient for all GEMMs need -- for both training and inference stages, and achieve parity (with floating point). No sophisticated techniques are needed. We find that while a large majority of entries in matrices (encountered in such models) can be easily represented by low bit-width integers, the existence of a few heavy hitter entries make it difficult to achieve efficiency gains via the exclusive use of low bit-width GEMMs alone. To address this issue, we develop a simple algorithm, Integer Matrix Unpacking (IM-Unpack), to unpack a matrix with large integer entries into a larger matrix whose entries all lie within the representable range of arbitrarily low bit-width integers. This allows equivalence with the original GEMM, …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
We introduce iterative reasoning through energy diffusion (IRED), a novel framework for learning to reason for a variety of tasks by formulating reasoning and decision-making problems with energy-based optimization. IRED learns energy functions to represent the constraints between input conditions and desired outputs. After training, IRED adapts the number of optimization steps during inference based on problem difficulty, enabling it to solve problems outside its training distribution --- such as more complex Sudoku puzzles, matrix completion with large value magnitudes, and path finding in larger graphs. Key to our method’s success is two novel techniques: learning a sequence of annealed energy landscapes for easier inference and a combination of score function and energy landscape supervision for faster and more stable training. Our experiments show that IRED outperforms existing methods in continuous-space reasoning, discrete-space reasoning, and planning tasks, particularly in more challenging scenarios.
[ Hall C 4-9 ]

Abstract
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks. Prior methods are mainly based on pre-training techniques well-acknowledged in vision or language, such as masked modeling and contrastive learning. However, randomly masking time series or calculating series-wise similarity will distort or neglect inherent temporal correlations crucial in time series data. To emphasize temporal correlation modeling, this paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks. Concretely, TimeSiam pre-trains Siamese encoders to capture intrinsic temporal correlations between randomly sampled past and current subseries. With a simple data augmentation method (e.g. masking), TimeSiam can benefit from diverse augmented subseries and learn internal time-dependent representations through a past-to-current reconstruction. Moreover, learnable lineage embeddings are also introduced to distinguish temporal distance between sampled series and further foster the learning of diverse temporal correlations. TimeSiam consistently outperforms extensive advanced pre-training baselines, demonstrating superior forecasting and classification capabilities across 13 standard benchmarks in both intra- and cross-domain scenarios.
[ Hall C 4-9 ]

Abstract
Recent works show that reducing the number of layers in a convolutional neural network can enhance efficiency while maintaining the performance of the network. Existing depth compression methods remove redundant non-linear activation functions and merge the consecutive convolution layers into a single layer. However, these methods suffer from a critical drawback; the kernel size of the merged layers becomes larger, significantly undermining the latency reduction gained from reducing the depth of the network. We show that this problem can be addressed by jointly pruning convolution layers and activation functions. To this end, we propose LayerMerge, a novel depth compression method that selects which activation layers and convolution layers to remove, to achieve a desired inference speed-up while minimizing performance loss. Since the corresponding selection problem involves an exponential search space, we formulate a novel surrogate optimization problem and efficiently solve it via dynamic programming. Empirical results demonstrate that our method consistently outperforms existing depth compression and layer pruning methods on various network architectures, both on image classification and generation tasks. We release the code at https://github.com/snu-mllab/LayerMerge.
[ Hall C 4-9 ]

Abstract
Multimodal alignment between language and vision is the fundamental topic in current vision-language model research. Contrastive Captioners (CoCa), as a representative method, integrates Contrastive Language-Image Pretraining (CLIP) and Image Caption (IC) into a unified framework, resulting in impressive results. CLIP imposes a bidirectional constraints on global representations of entire images and sentences. Although IC conducts an unidirectional image-to-text generation on local representation, it lacks any constraint on local text-to-image reconstruction, which limits the ability to understand images at a fine-grained level when aligned with texts. To achieve multimodal alignment from both global and local perspectives, this paper proposes Symmetrizing Contrastive Captioners (SyCoCa), which introduces bidirectional interactions on images and texts across the global and local representation levels. Specifically, we expand a Text-Guided Masked Image Modeling (TG-MIM) head based on ITC and IC heads. The improved SyCoCa further leverages textual cues to reconstruct contextual images and visual cues to predict textual contents. When implementing bidirectional local interactions, the local contents of images tend to be cluttered or unrelated to their textual descriptions. Thus, we employ an attentive masking strategy to select effective image patches for interaction. Extensive experiments on five vision-language tasks, including image-text retrieval, image-captioning, visual question answering, and zero-shot/finetuned …
[ Hall C 4-9 ]

Abstract
Topological deep learning (TDL) is a rapidly evolving field that uses topological features to understand and design deep learning models. This paper posits that TDL is the new frontier for relational learning. TDL may complement graph representation learning and geometric deep learning by incorporating topological concepts, and can thus provide a natural choice for various machine learning settings. To this end, this paper discusses open problems in TDL, ranging from practical benefits to theoretical foundations. For each problem, it outlines potential solutions and future research opportunities. At the same time, this paper serves as an invitation to the scientific community to actively participate in TDL research to unlock the potential of this emerging field.
[ Hall C 4-9 ]
Abstract
We argue that representations in AI models, particularly deep networks, are converging. First, we survey many examples of convergence in the literature: over time and across multiple domains, the ways by which different neural networks represent data are becoming more aligned. Next, we demonstrate convergence across data modalities: as vision models and language models get larger, they measure distance between datapoints in a more and more alike way. We hypothesize that this convergence is driving toward a shared statistical model of reality, akin to Plato's concept of an ideal reality. We term such a representation the platonic representation and discuss several possible selective pressures toward it. Finally, we discuss the implications of these trends, their limitations, and counterexamples to our analysis.
[ Hall C 4-9 ]
Abstract
Recently, there has been a surge in interest in developing optimization algorithms for overparameterized models as achieving generalization is believed to require algorithms with suitable biases. This interest centers on minimizing sharpness of the original loss function; the Sharpness-Aware Minimization (SAM) algorithm has proven effective. However, most literature only considers a few sharpness measures, such as the maximum eigenvalue or trace of the training loss Hessian, which may not yield meaningful insights for non-convex optimization scenarios like neural networks. Additionally, many sharpness measures are sensitive to parameter invariances in neural networks, magnifying significantly under rescaling parameters. Motivated by these challenges, we introduce a new class of sharpness measures in this paper, leading to new sharpness-aware objective functions. We prove that these measures are universally expressive, allowing any function of the training loss Hessian matrix to be represented by appropriate hyperparameters. Furthermore, we show that the proposed objective functions explicitly bias towards minimizing their corresponding sharpness measures, and how they allow meaningful applications to models with parameter invariances (such as scale-invariances). Finally, as instances of our proposed general framework, we present Frob-SAM and Det-SAM, which are specifically designed to minimize the Frobenius norm and the determinant of the Hessian …
[ Hall C 4-9 ]
Abstract
Zero-shot quantization aims to learn a quantized model from a pre-trained full-precision model with no access to original real training data. The common idea in zero-shot quantization approaches is to generate synthetic data for quantizing the full-precision model. While it is well-known that deep neural networks with low sharpness have better generalization ability, none of the previous zero-shot quantization works considers the sharpness of the quantized model as a criterion for generating training data. This paper introduces a novel methodology that takes into account quantized model sharpness in synthetic data generation to enhance generalization. Specifically, we first demonstrate that sharpness minimization can be attained by maximizing gradient matching between the reconstruction loss gradients computed on synthetic and real validation data, under certain assumptions. We then circumvent the problem of the gradient matching without real validation set by approximating it with the gradient matching between each generated sample and its neighbors. Experimental evaluations on CIFAR-100 and ImageNet datasets demonstrate the superiority of the proposed method over the state-of-the-art techniques in low-bit quantization settings.
[ Hall C 4-9 ]

Abstract
Deep Neural Networks (DNNs) have been a large driver for AI breakthroughs in recent years, ranging from self-driving cars to intelligent assistants. However, these models have been getting increasingly large as they become more accurate and safe. This means that their training becomes increasingly costly and time-consuming, and typically yields a single model to fit all targets. To mitigate this, various techniques have been proposed in the literature, including pruning, sparsification or quantization of the model weights and updates. While achieving high compression rates, they often incur significant computational overheads at training or lead to non-negligible accuracy penalty. Alternatively, factorization methods have been leveraged for low-rank compression of DNNs. Similarly, such techniques (e.g., SVD) frequently rely on heavy iterative decompositions of layers and are potentially sub-optimal for non-linear models, such as DNNs. We take a further step in designing efficient low-rank models and propose Maestro, a framework for trainable low-rank layers. Instead of iteratively applying a priori decompositions, the low-rank structure is baked into the training process through LoD, a low-rank ordered decomposition. Not only is this the first time importance ordering via sampling is applied on the decomposed DNN structure, but it also allows selecting ranks at a layer …
[ Hall C 4-9 ]

Abstract
Nonsmooth sparsity constrained optimization encompasses a broad spectrum of applications in machine learning. This problem is generally non-convex and NP-hard. Existing solutions to this problem exhibit several notable limitations, including their inability to address general nonsmooth problems, tendency to yield weaker optimality conditions, and lack of comprehensive convergence analysis. This paper considers Smoothing Proximal Gradient Methods (SPGM) as solutions to nonsmooth sparsity constrained optimization problems. Two specific variants of SPGM are explored: one based on Iterative Hard Thresholding (SPGM-IHT) and the other on Block Coordinate Decomposition (SPGM-BCD). It is shown that the SPGM-BCD algorithm finds stronger stationary points compared to previous methods. Additionally, novel theories for analyzing the convergence rates to approximate global optimal solutions of both the SPGM-IHT and SPGM-BCD algorithms are developed. Our theoretical bounds, capitalizing on the intrinsic sparsity of the optimization problem, are on par with the best-known error bounds available to date. Finally, numerical experiments reveal that SPGM-IHT performs comparably to current IHT-style methods, while SPGM-BCD consistently surpasses them.
[ Hall C 4-9 ]

Abstract
Learning in deep weight spaces (DWS), where neural networks process the weights of other neural networks, is an emerging research direction, with applications to 2D and 3D neural fields (INRs, NeRFs), as well as making inferences about other types of neural networks. Unfortunately, weight space models tend to suffer from substantial overfitting. We empirically analyze the reasons for this overfitting and find that a key reason is the lack of diversity in DWS datasets. While a given object can be represented by many different weight configurations, typical INR training sets fail to capture variability across INRs that represent the same object. To address this, we explore strategies for data augmentation in weight spaces and propose a MixUp method adapted for weight spaces. We demonstrate the effectiveness of these methods in two setups. In classification, they improve performance similarly to having up to 10 times more data. In self-supervised contrastive learning, they yield substantial 5-10% gains in downstream classification.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Gaussian process factor analysis (GPFA) is a latent variable modeling technique commonly used to identify smooth, low-dimensional latent trajectories underlying high-dimensional neural recordings. Specifically, researchers model spiking rates as Gaussian observations, resulting in tractable inference. Recently, GPFA has been extended to model spike count data. However, due to the non-conjugacy of the likelihood, the inference becomes intractable. Prior works rely on either black-box inference techniques, numerical integration or polynomial approximations of the likelihood to handle intractability. To overcome this challenge, we propose a conditionally-conjugate Gaussian process factor analysis (ccGPFA) resulting in both analytically and computationally tractable inference for modeling neural activity from spike count data. In particular, we develop a novel data augmentation based method that renders the model conditionally conjugate. Consequently, our model enjoys the advantage of simple closed-form updates using a variational EM algorithm. Furthermore, due to its conditional conjugacy, we show our model can be readily scaled using sparse Gaussian Processes and accelerated inference via natural gradients. To validate our method, we empirically demonstrate its efficacy through experiments.
[ Hall C 4-9 ]
Abstract
The usage of Rational Speech Acts (RSA) framework has been successful in building pragmatic program synthesizers that return programs which, in addition to being logically consistent with user-generated examples, account for the fact that a user chooses their examples informatively. We present a general method of amortizing the slow, exact RSA synthesizer. Our method first compiles a communication dataset of partially ranked programs by querying the exact RSA synthesizer. It then distills a global ranking -- a single, total ordering of all programs, to approximate the partial rankings from this dataset. This global ranking is then used at inference time to rank multiple logically consistent candidate programs generated from a fast, non-pragmatic synthesizer. Experiments on two program synthesis domains using our ranking method resulted in orders of magnitudes of speed ups compared to the exact RSA synthesizer, while being more accurate than a non-pragmatic synthesizer. Finally, we prove that in the special case of synthesis from a single example, this approximation is exact.
[ Hall C 4-9 ]

Abstract
Animals can swiftly adapt to novel tasks, while maintaining proficiency on previously trained tasks. This contrasts starkly with machine learning models, which struggle on these capabilities. We first propose a new task, the sequential Morris Water Maze (sWM), which extends a widely used task in the psychology and neuroscience fields and requires both rapid and continual learning. It has frequently been hypothesized that inductive biases from brains could help build better ML systems, but the addition of constraints typically hurts rather than helping ML performance. We draw inspiration from biology to show that combining 1) a content-addressable heteroassociative memory based on the entorhinal-hippocampal circuit with grid cells that retain shared across-environment structural representations and hippocampal cells that acquire environment-specific information; 2) a spatially invariant convolutional network architecture for rapid adaptation across unfamiliar environments; and 3) the ability to perform remapping, which orthogonalizes internal representations; leads to good generalization, rapid learning, and continual learning without forgetting, respectively. Our model outperforms ANN baselines from continual learning contexts applied to the task. It retains knowledge of past environments while rapidly acquiring the skills to navigate new ones, thereby addressing the seemingly opposing challenges of quick knowledge transfer and sustaining proficiency in previously learned …
[ Hall C 4-9 ]
Abstract
The decoder-only Transformer architecture with causal masking and relative position encoding (RPE) has become the de facto choice in language modeling. Despite its exceptional performance across various tasks, we have identified two limitations: First, it prevents all attended tokens from having zero weights during the softmax stage, even if the current embedding has sufficient self-contained information. This compels the model to assign disproportional excessive attention to specific tokens. Second, RPE-based Transformers are not universal approximators due to their limited capacity at encoding absolute positional information, which limits their application in position-critical tasks. In this work, we propose StableMask: a parameter-free method to address both limitations by refining the causal mask. It introduces pseudo-attention values to balance attention distributions and encodes absolute positional information via a progressively decreasing mask ratio. StableMask's effectiveness is validated both theoretically and empirically, showing significant enhancements in language models with parameter sizes ranging from 71M to 1.4B across diverse datasets and encoding methods. We further show that it supports integration with existing optimization techniques, making it easily usable in practical applications.
[ Hall C 4-9 ]

Abstract
State-space models (SSMs), such as Mamba (Gu & Dao, 2023), have been proposed as alternatives to Transformer networks in language modeling, incorporating gating, convolutions, and input-dependent token selection to mitigate the quadratic cost of multi-head attention. Although SSMs exhibit competitive performance, their in-context learning (ICL) capabilities, a remarkable emergent property of modern language models that enables task execution without parameter optimization, remain less explored compared to Transformers. In this study, we evaluate the ICL performance of SSMs, focusing on Mamba, against Transformer models across various tasks. Our results show that SSMs perform comparably to Transformers in standard regression ICL tasks, while outperforming them in tasks like sparse parity learning. However, SSMs fall short in tasks involving non-standard retrieval functionality. To address these limitations, we introduce a hybrid model, MambaFormer, that combines Mamba with attention blocks, surpassing individual models in tasks where they struggle independently. Our findings suggest that hybrid architectures offer promising avenues for enhancing ICL in language models.
[ Hall C 4-9 ]
Abstract
Deep learning methods, including deep multiple instance learning methods, have been criticized for their limited ability to incorporate domain knowledge. A reason that knowledge incorporation is challenging in deep learning is that the models usually lack a mapping between their model components and the entities of the domain, making it a non-trivial task to incorporate probabilistic prior information. In this work, we show that such a mapping between domain entities and model components can be defined for a multiple instance learning setting and propose a framework DeeMILIP that encompasses multiple strategies to exploit this mapping for prior knowledge incorporation. We motivate and formalize these strategies from a probabilistic perspective. Experiments on an immune-based diagnostics case show that our proposed strategies allow to learn generalizable models even in settings with weak signals, limited dataset size, and limited compute.
[ Hall C 4-9 ]

Abstract
Transformer-based large language models have displayed impressive in-context learning capabilities, where a pre-trained model can handle new tasks without fine-tuning by simply augmenting the query with some input-output examples from that task. Despite the empirical success, the mechanics of how to train a Transformer to achieve ICL and the corresponding ICL capacity is mostly elusive due to the technical challenges of analyzing the nonconvex training problems resulting from the nonlinear self-attention and nonlinear activation in Transformers. To the best of our knowledge, this paper provides the first theoretical analysis of the training dynamics of Transformers with nonlinear self-attention and nonlinear MLP, together with the ICL generalization capability of the resulting model. Focusing on a group of binary classification tasks, we train Transformers using data from a subset of these tasks and quantify the impact of various factors on the ICL generalization performance on the remaining unseen tasks with and without data distribution shifts. We also analyze how different components in the learned Transformers contribute to the ICL performance. Furthermore, we provide the first theoretical analysis of how model pruning affects ICL performance and prove that proper magnitude-based pruning can have a minimal impact on ICL while reducing inference costs. These …
[ Hall C 4-9 ]

Abstract
Multi-Head Attention (MHA) is a key component of Transformer. In MHA, attention heads work independently, causing problems such as low-rank bottleneck of attention score matrices and head redundancy. We propose Dynamically Composable Multi-Head Attention (DCMHA), a parameter and computation efficient attention architecture that tackles the shortcomings of MHA and increases the expressive power of the model by dynamically composing attention heads. At the core of DCMHA is a Compose function that transforms the attention score and weight matrices in an input-dependent way. DCMHA can be used as a drop-in replacement of MHA in any transformer architecture to obtain the corresponding DCFormer. DCFormer significantly outperforms Transformer on different architectures and model scales in language modeling, matching the performance of models with 1.7x-2.0x compute. For example, DCPythia-6.9B outperforms open source Pythia-12B on both pretraining perplexity and downstream task evaluation.
[ Hall C 4-9 ]

Abstract
We introduce an Outlier-Efficient Modern Hopfield Model (termed OutEffHop
) and use it to address the outlier inefficiency problem of training gigantic transformer-based models. Our main contribution is a novel associative memory model facilitating outlier-efficient associative memory retrievals. Interestingly, this memory model manifests a model-based interpretation of an outlier-efficient attention mechanism (Softmax_1
): it is an approximation of the memory retrieval process of OutEffHop
. Methodologically, this allows us to introduce novel outlier-efficient Hopfield layers as powerful alternatives to traditional attention mechanisms, with superior post-quantization performance. Theoretically, the Outlier-Efficient Modern Hopfield Model retains and improves the desirable properties of standard modern Hopfield models, including fixed point convergence and exponential storage capacity. Empirically, we demonstrate the efficacy of the proposed model across large-scale transformer-based and Hopfield-based models (including BERT, OPT, ViT, and STanHop-Net), benchmarking against state-of-the-art methods like Clipped_Softmax
and Gated_Attention
. Notably, OutEffHop
achieves an average reduction of 22+% in average kurtosis and 26+% in the maximum infinity norm of model outputs across four models. Code is available at GitHub; future updates are on arXiv.
[ Hall C 4-9 ]

Abstract
Textural Inversion, a prompt learning method, learns a singular text embedding for a new "word" to represent image style and appearance, allowing it to be integrated into natural language sentences to generate novel synthesised images. However, identifying multiple unknown object-level concepts within one scene remains a complex challenge. While recent methods have resorted to cropping or masking individual images to learn multiple concepts, these techniques often require prior knowledge of new concepts and are labour-intensive. To address this challenge, we introduce Multi-Concept Prompt Learning (MCPL), where multiple unknown "words" are simultaneously learned from a single sentence-image pair, without any imagery annotations. To enhance the accuracy of word-concept correlation and refine attention mask boundaries, we propose three regularisation techniques: Attention Masking, Prompts Contrastive Loss, and Bind Adjective. Extensive quantitative comparisons with both real-world categories and biomedical images demonstrate that our method can learn new semantically disentangled concepts. Our approach emphasises learning solely from textual embeddings, using less than 10% of the storage space compared to others. The project page, code, and data are available at https://astrazeneca.github.io/mcpl.github.io.
[ Hall C 4-9 ]

Abstract
Learning conditional distributions is challenging because the desired outcome is not a single distribution but multiple distributions that correspond to multiple instances of the covariates. We introduce a novel neural entropic optimal transport method designed to effectively learn generative models of conditional distributions, particularly in scenarios characterized by limited sample sizes. Our method relies on the minimax training of two neural networks: a generative network parametrizing the inverse cumulative distribution functions of the conditional distributions and another network parametrizing the conditional Kantorovich potential. To prevent overfitting, we regularize the objective function by penalizing the Lipschitz constant of the network output. Our experiments on real-world datasets show the effectiveness of our algorithm compared to state-of-the-art conditional distribution learning techniques. Our implementation can be found at https://github.com/nguyenngocbaocmt02/GENTLE.
[ Hall C 4-9 ]

Abstract
When the training dataset comprises a 1:1 proportion of dogs to cats, a generative model that produces 1:1 dogs and cats better resembles the training species distribution than another model with 3:1 dogs and cats. Can we capture this phenomenon using existing metrics? Unfortunately, we cannot, because these metrics do not provide any interpretability beyond “diversity". In this context, we propose a new evaluation protocol that measures the divergence of a set of generated images from the training set regarding the distribution of attribute strengths as follows. Singleattribute Divergence (SaD) reveals the attributes that are generated excessively or insufficiently by measuring the divergence of PDFs of individual attributes. Paired-attribute Divergence (PaD) reveals such pairs of attributes by measuring the divergence of joint PDFs of pairs of attributes. For measuring the attribute strengths of an image, we propose Heterogeneous CLIPScore (HCS) which measures the cosine similarity between image and text vectors with heterogeneous initial points. With SaD and PaD, we reveal the following about existing generative models. ProjectedGAN generates implausible attribute relationships such as baby with beard even though it has competitive scores of existing metrics. Diffusion models struggle to capture diverse colors in the datasets. The larger sampling timesteps of …
[ Hall C 4-9 ]
Abstract
Diffusion models have recently been increasingly applied to temporal data such as video, fluid mechanics simulations, or climate data. These methods generally treat subsequent frames equally regarding the amount of noise in the diffusion process. This paper explores Rolling Diffusion: a new approach that uses a sliding window denoising process. It ensures that the diffusion process progressively corrupts through time by assigning more noise to frames that appear later in a sequence, reflecting greater uncertainty about the future as the generation process unfolds. Empirically, we show that when the temporal dynamics are complex, Rolling Diffusion is superior to standard diffusion. In particular, this result is demonstrated in a video prediction task using the Kinetics-600 video dataset and in a chaotic fluid dynamics forecasting experiment.
[ Hall C 4-9 ]

Abstract
Existing text-to-image models struggle to follow complex text prompts, raising the need for extra grounding inputs for better controllability. In this work, we propose to decompose a scene into visual primitives - denoted as dense blob representations - that contain fine-grained details of the scene while being modular, human-interpretable, and easy-to-construct. Based on blob representations, we develop a blob-grounded text-to-image diffusion model, termed BlobGEN, for compositional generation. Particularly, we introduce a new masked cross-attention module to disentangle the fusion between blob representations and visual features. To leverage the compositionality of large language models (LLMs), we introduce a new in-context learning approach to generate blob representations from text prompts. Our extensive experiments show that BlobGEN achieves superior zero-shot generation quality and better layout-guided controllability on MS-COCO. When augmented by LLMs, our method exhibits superior numerical and spatial correctness on compositional image generation benchmarks.
[ Hall C 4-9 ]

Abstract
Autoregressive decoding of large language models (LLMs) is memory bandwidth bounded, resulting in high latency and significant wastes of the parallel processing power of modern accelerators. Existing methods for accelerating LLM decoding often require a draft model (e.g., speculative decoding), which is nontrivial to obtain and unable to generalize. In this paper, we introduce Lookahead decoding, an exact, parallel decoding algorithm that accelerates LLM decoding without needing auxiliary models or data stores. It allows trading per-step log(FLOPs) to reduce the number of total decoding steps, is more parallelizable on single or multiple modern accelerators, and is compatible with concurrent memory-efficient attention (e.g., FlashAttention). Our implementation of Lookahead decoding can speed up autoregressive decoding by up to 1.8x on MT-bench and 4x with strong scaling on multiple GPUs in code completion tasks. Our code is avialable at https://github.com/hao-ai-lab/LookaheadDecoding
[ Hall C 4-9 ]

Abstract
Popular guidance for denoising diffusion probabilistic model (DDPM) linearly combines distinct conditional models together to provide enhanced control over samples. However, this approach overlooks nonlinear effects that become significant when guidance scale is large. To address this issue, we propose characteristic guidance, a guidance method that provides first-principle non-linear correction for classifier-free guidance. Such correction forces the guided DDPMs to respect the Fokker-Planck (FP) equation of diffusion process, in a way that is training-free and compatible with existing sampling methods. Experiments show that characteristic guidance enhances semantic characteristics of prompts and mitigate irregularities in image generation, proving effective in diverse applications ranging from simulating magnet phase transitions to latent space sampling.
[ Hall C 4-9 ]

Abstract
As a dominant force in text-to-image generation tasks, Diffusion Probabilistic Models (DPMs) face a critical challenge in controllability, struggling to adhere strictly to complex, multi-faceted instructions. In this work, we aim to address this alignment challenge for conditional generation tasks. First, we provide an alternative view of state-of-the-art DPMs as a way of inverting advanced Vision-Language Models (VLMs). With this formulation, we naturally propose a training-free approach that bypasses the conventional sampling process associated with DPMs. By directly optimizing images with the supervision of discriminative VLMs, the proposed method can potentially achieve a better text-image alignment. As proof of concept, we demonstrate the pipeline with the pre-trained BLIP-2 model and identify several key designs for improved image generation. To further enhance the image fidelity, a Score Distillation Sampling module of Stable Diffusion is incorporated. By carefully balancing the two components during optimization, our method can produce high-quality images with near state-of-the-art performance on T2I-Compbench. The code is available at https://github.com/Pepper-lll/VLMinv.
[ Hall C 4-9 ]

Abstract
Gibbs sampling from continuous real-valued functions is a challenging problem of interest in machine learning. Here we leverage quantum Fourier transforms to build a quantum algorithm for this task when the function is periodic. We use the quantum algorithms for solving linear ordinary differential equations to solve the Fokker–Planck equation and prepare a quantum state encoding the Gibbs distribution. We show that the efficiency of interpolation and differentiation of these functions on a quantum computer depends on the rate of decay of the Fourier coefficients of the Fourier transform of the function. We view this property as a concentration of measure in the Fourier domain, and also provide functional analytic conditions for it. Our algorithm makes zeroeth order queries to a quantum oracle of the function and achieves polynomial quantum speedups in mean estimation in the Gibbs measure for generic non-convex periodic functions. At high temperatures the algorithm also allows for exponentially improved precision in sampling from Morse functions.
[ Hall C 4-9 ]

Abstract
Machine learning (ML) has been actively adopted in Linear Programming (LP) and Mixed-Integer Linear Programming (MILP), whose potential is hindered by instance scarcity. Current synthetic instance generation methods often fall short in closely mirroring the distribution of original datasets or ensuring the feasibility and boundedness of the generated data — a critical requirement for obtaining reliable supervised labels in model training. In this paper, we present a diffusion-based LP/MILP instance generative framework called MILP-FBGen. It strikes a balance between structural similarity and novelty while maintaining feasibility/boundedness via a meticulously designed structure-preserving generation module and a feasibility/boundedness-constrained sampling module. Our method shows superiority on two fronts: 1) preservation of key properties (hardness, feasibility, and boundedness) of LP/MILP instances, and 2) enhanced performance on downstream tasks. Extensive studies show two-fold superiority that our method ensures higher distributional similarity and 100% feasibility in both easy and hard datasets, surpassing current state-of-the-art techniques.
[ Hall C 4-9 ]

Abstract
Generating long-form 44.1kHz stereo audio from text prompts can be computationally demanding. Further, most previous works do not tackle that music and sound effects naturally vary in their duration. Our research focuses on the efficient generation of long-form, variable-length stereo music and sounds at 44.1kHz using text prompts with a generative model. It is based on latent diffusion, with its latent defined by a fully-convolutional variational autoencoder. The generative model is conditioned on text prompts as well as timing embeddings, allowing for fine control over both the content and length of the generated music and sounds. It is capable of rendering stereo signals of up to 95 sec at 44.1kHz in 8 sec on an A100 GPU. Despite its compute efficiency and fast inference, the proposed model is one of the best in two public text-to-music and -audio benchmarks and, differently from state-of-the-art models, can generate music with structure and stereo sounds.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]
Abstract
Despite their sophisticated capabilities, large language models (LLMs) encounter a major hurdle in effective assessment. This paper first revisits the prevalent evaluation method—multiple choice question answering (MCQA), which allows for straightforward accuracy measurement. Through a comprehensive evaluation of 24 models across 11 benchmarks, we highlight several potential drawbacks of MCQA, for instance, the inconsistency between the MCQA evaluation and the generation of open-ended responses in practical scenarios. In response, we introduce an RWQ-Elo rating system, engaging 24 LLMs such as GPT-4, GPT-3.5, Google-Gemini-Pro and LLaMA-1/-2, in a two-player competitive format, with GPT-4 serving as the judge. Each LLM receives an Elo rating thereafter. This system is designed to mirror real-world usage, and for this purpose, we have compiled a new benchmark called ``Real-world questions'' (RWQ), comprising 20,772 authentic user inquiries. Additionally, we thoroughly analyze the characteristics of our system and compare it with prior leaderboards like Alpaca Eval and MT-Bench. Our analysis reveals the stability of our RWQ-Elo system, the feasibility of registering new models, and its potential to reshape LLM leaderboards.
[ Hall C 4-9 ]

Abstract
In spite of their huge success, transformer models remain difficult to scale in depth. In this work, we develop a unified signal propagation theory and provide formulae that govern the moments of the forward and backward signal through the transformer model. Our framework can be used to understand and mitigate vanishing/exploding gradients, rank collapse, and instability associated with high attention scores. We also propose DeepScaleLM, an initialization and scaling scheme that conserves unit output/gradient moments throughout the model, enabling the training of very deep models with 1000 layers. We find that transformer models could be much deeper - our deep models with fewer parameters outperform shallow models in Language Modeling, Speech Translation, and Image Classification, across encoder-only, decoder-only and encoder-decoder variants, for both Pre-LN and Post-LN transformers, for multiple datasets and model sizes. These improvements also translate into improved performance on downstream Question Answering tasks and improved robustness for Image Classification.
[ Hall C 4-9 ]

Abstract
Ensuring alignment of language model's outputs with human preferences is critical to guarantee a useful, safe, and pleasant user experience. Thus, human alignment has been extensively studied recently and several methods such as Reinforcement Learning from Human Feedback (RLHF), Direct Policy Optimisation (DPO) and Sequence Likelihood Calibration (SLiC) have emerged. In this paper, our contribution is two-fold. First, we show the equivalence between two recent alignment methods, namely Identity Policy Optimisation (IPO) and Nash Mirror Descent (Nash-MD). Second, we introduce a generalisation of IPO, named IPO-MD, that leverages the regularised sampling approach proposed by Nash-MD. This equivalence may seem surprising at first sight, since IPO is an offline method whereas Nash-MD is an online method using a preference model. However, this equivalence can be proven when we consider the online version of IPO, that is when both generations are sampled by the online policy and annotated by a trained preference model. Optimising the IPO loss with such a stream of data becomes then equivalent to finding the Nash equilibrium of the preference model through self-play. Building on this equivalence, we introduce the IPO-MD algorithm that generates data with a mixture policy (between the online and reference policy) similarly as the …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Graph Contrastive Learning (GCL) aims to learn node representations by aligning positive pairs and separating negative ones. However, few of researchers have focused on the inner law behind specific augmentations used in graph-based learning. What kind of augmentation will help downstream performance, how does contrastive learning actually influence downstream tasks, and why the magnitude of augmentation matters so much? This paper seeks to address these questions by establishing a connection between augmentation and downstream performance. Our findings reveal that GCL contributes to downstream tasks mainly by separating different classes rather than gathering nodes of the same class. So perfect alignment and augmentation overlap which draw all intra-class samples the same can not fully explain the success of contrastive learning. Therefore, in order to understand how augmentation aids the contrastive learning process, we conduct further investigations into the generalization, finding that perfect alignment that draw positive pair the same could help contrastive loss but is poisonous to generalization, as a result, perfect alignment may not lead to best downstream performance, so specifically designed augmentation is needed to achieve appropriate alignment performance and improve downstream accuracy. We further analyse the result by information theory and graph spectrum theory and propose two simple …
[ Hall C 4-9 ]

Abstract
Graph Transformer, due to its global attention mechanism, has emerged as a new tool in dealing with graph-structured data. It is well recognized that the global attention mechanism considers a wider receptive field in a fully connected graph, leading many to believe that useful information can be extracted from all the nodes. In this paper, we challenge this belief: does the globalizing property always benefit Graph Transformers? We reveal the over-globalizing problem in Graph Transformer by presenting both empirical evidence and theoretical analysis, i.e., the current attention mechanism overly focuses on those distant nodes, while the near nodes, which actually contain most of the useful information, are relatively weakened. Then we propose a novel Bi-Level Global Graph Transformer with Collaborative Training (CoBFormer), including the inter-cluster and intra-cluster Transformers, to prevent the over-globalizing problem while keeping the ability to extract valuable information from distant nodes. Moreover, the collaborative training is proposed to improve the model's generalization ability with a theoretical guarantee. Extensive experiments on various graphs well validate the effectiveness of our proposed CoBFormer.
[ Hall C 4-9 ]
Abstract
Suppose a self-driving car is crashing into pedestrians, or a chatbot is instructing its users to conduct criminal wrongdoing; the stakeholders of such products will undoubtedly want to patch these catastrophic errors as soon as possible. To address such concerns, Model Editing: the study of efficiently patching model behaviors without significantly altering their general performance, has seen considerable activity, with hundreds of editing techniques developed in various domains such as CV and NLP. However, the graph learning community has objectively fallen behind with only a few Graph Neural Network-compatible — and just one GNN-specific — model editing methods available, where all of which are limited in their practical scope. We argue that the impracticality of these methods lies in their lack of Sequential Editing Robustness: the ability to edit multiple errors sequentially, and therefore fall short in effectiveness, as this approach mirrors how errors are discovered and addressed in the real world. In this paper, we delve into the specific reasons behind the difficulty of editing GNNs in succession and observe the root cause to be model overfitting. We subsequently propose a simple yet effective solution — SEED-GNN — by leveraging overfit-prevention techniques in a GNN-specific context to derive …
[ Hall C 4-9 ]

Abstract
Class imbalance is prevalent in real-world node classification tasks and poses great challenges for graph learning models. Most existing studies are rooted in a class-rebalancing (CR) perspective and address class imbalance with class-wise reweighting or resampling. In this work, we approach the root cause of class-imbalance bias from an topological paradigm. Specifically, we theoretically reveal two fundamental phenomena in the graph topology that greatly exacerbate the predictive bias stemming from class imbalance. On this basis, we devise a lightweight topological augmentation framework BAT to mitigate the class-imbalance bias without class rebalancing. Being orthogonal to CR, BAT can function as an efficient plug-and-play module that can be seamlessly combined with and significantly boost existing CR techniques. Systematic experiments on real-world imbalanced graph learning tasks show that BAT can deliver up to 46.27% performance gain and up to 72.74% bias reduction over existing techniques. Code, examples, and documentations are available at https://github.com/ZhiningLiu1998/BAT.
[ Hall C 4-9 ]

Abstract
Spectral Graph Neural Networks (GNNs), alternatively known as graph filters, have gained increasing prevalence for heterophily graphs. Optimal graph filters rely on Laplacian eigendecomposition for Fourier transform. In an attempt to avert prohibitive computations, numerous polynomial filters have been proposed. However, polynomials in the majority of these filters are predefined and remain fixed across different graphs, failing to accommodate the varying degrees of heterophily. Addressing this gap, we demystify the intrinsic correlation between the spectral property of desired polynomial bases and the heterophily degrees via thorough theoretical analyses. Subsequently, we develop a novel adaptive heterophily basis wherein the basis vectors mutually form angles reflecting the heterophily degree of the graph. We integrate this heterophily basis with the homophily basis to construct a universal polynomial basis UniBasis, which devises a polynomial filter based graph neural network – UniFilter. It optimizes the convolution and propagation in GNN, thus effectively limiting over-smoothing and alleviating over-squashing. Our extensive experiments, conducted on datasets with a diverse range of heterophily, support the superiority of UniBasis in the universality but also its proficiency in graph explanation.
[ Hall C 4-9 ]

Abstract
Online Bayesian bipartite matching is a central problem in digital marketplaces and exchanges, including advertising, crowdsourcing, ridesharing, and kidney exchange. We introduce a graph neural network (GNN) approach that emulates the problem's combinatorially-complex optimal online algorithm, which selects actions (e.g., which nodes to match) by computing each action's value-to-go (VTG)—the expected weight of the final matching if the algorithm takes that action, then acts optimally in the future. We train a GNN to estimate VTG and show empirically that this GNN returns high-weight matchings across a variety of tasks. Moreover, we identify a common family of graph distributions in spatial crowdsourcing applications, such as rideshare, under which VTG can be efficiently approximated by aggregating information within local neighborhoods in the graphs. This structure matches the local behavior of GNNs, providing theoretical justification for our approach.
[ Hall C 4-9 ]

Abstract
Mixup, which generates synthetic training samples on the data manifold, has been shown to be highly effective in augmenting Euclidean data. However, finding a proper data manifold for graph data is non-trivial, as graphs are non-Euclidean data in disparate spaces. Though efforts have been made, most of the existing graph mixup methods neglect the intrinsic geodesic guarantee, thereby generating inconsistent sample-label pairs. To address this issue, we propose GeoMix to mixup graphs on the Gromov-Wasserstein (GW) geodesics. A joint space over input graphs is first defined based on the GW distance, and graphs are then transformed into the GW space through equivalence-preserving transformations. We further show that the linear interpolation of the transformed graph pairs defines a geodesic connecting the original pairs on the GW manifold, hence ensuring the consistency between generated samples and labels. An accelerated mixup algorithm on the approximate low-dimensional GW manifold is further proposed. Extensive experiments show that the proposed GeoMix promotes the generalization and robustness of GNN models.
[ Hall C 4-9 ]

Abstract
Inner product-based decoders are among the most influential frameworks used to extract meaningful data from latent embeddings. However, such decoders have shown limitations in representation capacity in numerous works within the literature, which have been particularly notable in graph reconstruction problems. In this paper, we provide the first theoretical elucidation of this pervasive phenomenon in graph data, and suggest straightforward modifications to circumvent this issue without deviating from the inner product framework.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
Graph neural networks based on iterative one-hop message passing have been shown to struggle in harnessing the information from distant nodes effectively. Conversely, graph transformers allow each node to attend to all other nodes directly, but lack graph inductive bias and have to rely on ad-hoc positional encoding. In this paper, we propose a new architecture to reconcile these challenges. Our approach stems from the recent breakthroughs in long-range modeling provided by deep state-space models: for a given target node, our model aggregates other nodes by their shortest distances to the target and uses a linear RNN to encode the sequence of hop representations. The linear RNN is parameterized in a particular diagonal form for stable long-range signal propagation and is theoretically expressive enough to encode the neighborhood hierarchy. With no need for positional encoding, we empirically show that the performance of our model is comparable to or better than that of state-of-the-art graph transformers on various benchmarks, with a significantly reduced computational cost. Our code is open-source at https://github.com/skeletondyh/GRED.
[ Hall C 4-9 ]
Abstract
We propose Diffusion Inference-Time T-Optimization (DITTO), a general-purpose framework for controlling pre-trained text-to-music diffusion models at inference-time via optimizing initial noise latents. Our method can be used to optimize through any differentiable feature matching loss to achieve a target (stylized) output and leverages gradient checkpointing for memory efficiency. We demonstrate a surprisingly wide-range of applications for music generation including inpainting, outpainting, and looping as well as intensity, melody, and musical structure control – all without ever fine-tuning the underlying model. When we compare our approach against related training, guidance, and optimization-based methods, we find DITTO achieves state-of-the-art performance on nearly all tasks, including outperforming comparable approaches on controllability, audio quality, and computational efficiency, thus opening the door for high-quality, flexible, training-free control of diffusion models. Sound examples can be found at https://ditto-music.github.io/web/.
[ Hall C 4-9 ]

Abstract
We present a novel theoretical framework for understanding the expressive power of normalizing flows. Despite their prevalence in scientific applications, a comprehensive understanding of flows remains elusive due to their restricted architectures. Existing theorems fall short as they require the use of arbitrarily ill-conditioned neural networks, limiting practical applicability. We propose a distributional universality theorem for well-conditioned coupling-based normalizing flows such as RealNVP. In addition, we show that volume-preserving normalizing flows are not universal, what distribution they learn instead, and how to fix their expressivity. Our results support the general wisdom that affine and related couplings are expressive and in general outperform volume-preserving flows, bridging a gap between empirical results and theoretical understanding.
[ Hall C 4-9 ]
Abstract
Despite the impressive performance in a variety of complex tasks, modern large language models (LLMs) still have trouble dealing with some math problems that are simple and intuitive for humans, such as addition. While we can easily learn basic rules of addition and apply them to new problems of any length, LLMs struggle to do the same. Instead, they may rely on similar cases seen in the training corpus for help. We define these two different reasoning mechanisms as "rule-based reasoning" and "case-based reasoning". Since rule-based reasoning is essential for acquiring systematic generalization ability, we aim to explore exactly whether transformers use rule-based or case-based reasoning for math problems. Through carefully designed intervention experiments on five math tasks, we confirm that transformers are performing case-based reasoning, no matter whether scratchpad is used, which aligns with the previous observations that transformers use subgraph matching/shortcut learning to reason. To mitigate such problems, we propose a Rule-Following Fine-Tuning (RFFT) technique to teach transformers to perform rule-based reasoning. Specifically, we provide explicit rules in the input and then instruct transformers to recite and follow the rules step by step. Through RFFT, we successfully enable LLMs fine-tuned on 1-5 digit addition …
[ Hall C 4-9 ]

Abstract
Regulators and academics are increasingly interested in the causal effect that algorithmic actions of a digital platform have on user consumption. In pursuit of estimating this effect from observational data, we identify a set of assumptions that permit causal identifiability without assuming randomized platform actions. Our results are applicable to platforms that rely on machine-learning-powered predictions and leverage knowledge from historical data. The key novelty of our approach is to explicitly model the dynamics of consumption over time, exploiting the repeated interaction of digital platforms with their participants to prove our identifiability results. By viewing the platform as a controller acting on a dynamical system, we can show that exogenous variation in consumption and appropriately responsive algorithmic control actions are sufficient for identifying the causal effect of interest. We complement our claims with an analysis of ready-to-use finite sample estimators and empirical investigations. More broadly, our results deriving identifiability conditions tailored to digital platform settings illustrate a fruitful interplay of control theory and causal inference.
[ Hall C 4-9 ]
Abstract
Large language models (LLMs) can store a vast amount of world knowledge, often extractable via question-answering (e.g., "What is Abraham Lincoln's birthday?''). However, do they answer such questions based on exposure to similar questions during training (i.e., cheating), or by genuinely learning to extract knowledge from sources like Wikipedia? In this paper, we investigate this issue using a controlled biography dataset. We find a strong correlation between the model's ability to extract knowledge and various diversity measures of the training data. Essentially, for knowledge to be reliably extracted, it must be sufficiently augmented (e.g., through paraphrasing, sentence shuffling) during pretraining. Without such augmentation, knowledge may be memorized but not extractable, leading to 0% accuracy, regardless of subsequent instruction fine-tuning. To understand why this occurs, we employ (nearly) linear probing to demonstrate a strong connection between the observed correlation and how the model internally encodes knowledge --- whether it is linearly encoded in the hidden embeddings of entity names or distributed across other token embeddings in the training text. This paper provides several key recommendations for LLM pretraining in the industry: (1) rewrite the pretraining data --- using small, auxiliary models --- to provide knowledge augmentation, and (2) incorporate …
[ Hall C 4-9 ]

Abstract
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning; adoption that has fueled a wealth of new models such as LLaVa, InstructBLIP, and PaLI-3. Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored, making it challenging to understand what factors account for model performance – a challenge further complicated by the lack of objective, consistent evaluations. To address these gaps, we first compile a suite of standardized evaluations spanning visual question answering, object localization, and challenge sets that probe properties such as hallucination; evaluations that provide fine-grained insight VLM capabilities. Second, we rigorously investigate VLMs along key design axes, including pretrained visual representations and training from base vs. instruct-tuned language models, amongst others. We couple our analysis with three resource contributions: (1) a unified framework for evaluating VLMs, (2) optimized, flexible training code, and (3) checkpoints for all models, including a family of VLMs at the 7-13B scale that strictly outperform InstructBLIP and LLaVa v1.5, the state-of-the-art in open VLMs.
[ Hall C 4-9 ]
Abstract
The advancement of Large Language Models (LLMs) has led to increasing concerns about the misuse of AI-generated text, and watermarking LLM-generated text has emerged as a potential solution. However, it is challenging to generate high-quality watermarked text while maintaining robustness, security, and the ability to detect watermarks without prior knowledge of the prompt and model. This paper proposes an adaptive text watermarking strategy to address such a challenge. To improve the text quality and maintain robustness, we adaptively add watermarking to token distributions with high entropy measured by an auxiliary model and keep the low-entropy token distributions untouched. For the sake of security and to further minimize the watermark's impact on text quality, instead of using a fixed green/red list generated from a random secret key, which can be vulnerable to decryption and forgery, we adaptively scale up the output logits based on the semantic embedding of previously generated text using a well designed semantic mapping model. Our experiments involving various LLMs demonstrate that our approach achieves comparable robustness performance to existing watermark methods. Additionally, the text generated by our method has perplexity comparable to that of un-watermarked LLMs while maintaining sufficient security.
[ Hall C 4-9 ]

Abstract
Large Language Models (LLMs) have become pivotal in advancing the field of artificial intelligence, yet their immense sizes pose significant challenges for both fine-tuning and deployment. Current post-training pruning methods, while reducing the sizes of LLMs, often fail to maintain their original performance. To address these challenges, this paper introduces SPP, a Sparsity-Preserved Parameter-efficient fine-tuning method. Different from existing post-training pruning approaches that struggle with performance retention, SPP proposes to employ lightweight learnable column and row matrices to optimize sparse LLM weights, keeping the structure and sparsity of pruned pre-trained models intact. By element-wise multiplication and residual addition, SPP ensures the consistency of model sparsity pattern and ratio during both training and weight-merging processes. We demonstrate the effectiveness of SPP by applying it to the LLaMA and LLaMA-2 model families with recent post-training pruning methods. Our results show that SPP significantly enhances the performance of models with different sparsity patterns (i.e. unstructured and N:M sparsity), especially for those with high sparsity ratios (e.g. 75%), making it a promising solution for the efficient fine-tuning of sparse LLMs. Code will be made available at https://github.com/Lucky-Lance/SPP.
[ Hall C 4-9 ]

Abstract
Large Language Models' success in text generation has also made them better at code generation and coding tasks. While a lot of work has demonstrated their remarkable performance on tasks such as code completion and editing, it is still unclear as to why. We help bridge this gap by exploring to what degree auto-regressive models understand the logical constructs of the underlying programs. We propose Counterfactual Analysis for Programming Concept Predicates (CACP) as a counterfactual testing framework to evaluate whether Large Code Models understand programming concepts. With only black-box access to the model, we use CACP to evaluate ten popular Large Code Models for four different programming concepts. Our findings suggest that current models lack understanding of concepts such as data flow and control flow.
[ Hall C 4-9 ]

Abstract
Large language models generate high-quality responses with potential misinformation, underscoring the need for regulation by distinguishing AI-generated and human-written texts. Watermarking is pivotal in this context, which involves embedding hidden markers in texts during the LLM inference phase, which is imperceptible to humans. Achieving both the detectability of inserted watermarks and the semantic quality of generated texts is challenging. While current watermarking algorithms have made promising progress in this direction, there remains significant scope for improvement. To address these challenges, we introduce a novel multi-objective optimization (MOO) approach for watermarking that utilizes lightweight networks to generate token-specific watermarking logits and splitting ratios. By leveraging MOO to optimize for both detection and semantic objective functions, our method simultaneously achieves detectability and semantic integrity. Experimental results show that our method outperforms current watermarking techniques in enhancing the detectability of texts generated by LLMs while maintaining their semantic coherence. Our code is available at https://github.com/mignonjia/TS_watermark.
[ Hall C 4-9 ]

Abstract
We study the in-context learning dynamics of large language models (LLMs) using three instrumental learning tasks adapted from cognitive psychology. We find that LLMs update their beliefs in an asymmetric manner and learn more from better-than-expected outcomes than from worse-than-expected ones. Furthermore, we show that this effect reverses when learning about counterfactual feedback and disappears when no agency is implied. We corroborate these findings by investigating idealized in-context learning agents derived through meta-reinforcement learning, where we observe similar patterns. Taken together, our results contribute to our understanding of how in-context learning works by highlighting that the framing of a problem significantly influences how learning occurs, a phenomenon also observed in human cognition.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuring the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
[ Hall C 4-9 ]
Abstract
To improve the ability of the large language model (LLMs) to tackle complex reasoning problems, chain-of-thoughts (CoT) methods were proposed to guide LLMs to reason step-by-step, enabling problem solving from simple to complex. State-of-the-art methods for generating such a chain involve interactive collaboration, where the learner generates candidate intermediate thoughts, evaluated by the LLM, guiding the generation of subsequent thoughts. However, a widespread yet understudied problem is that the evaluation from the LLM is typically noisy and unreliable, potentially misleading the generation process in selecting promising intermediate thoughts. In this paper, motivated by Vapnik's principle, we use pairwise-comparison evaluation instead of point-wise scoring to search for promising intermediate thoughts with the noisy feedback from the LLM. In each round, we randomly pair intermediate thoughts and directly prompt the LLM to select the more promising one from each pair, allowing us to identify the most promising thoughts through an iterative process. To further alleviate the noise in the comparison, we incorporate techniques from ensemble learning and dueling bandits, proposing two variants of the algorithm. Experiments on three real-world tasks demonstrate the effectiveness of our proposed algorithm and verify the rationale of the pairwise comparison mechanism.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
In this work, we introduce Libra, a prototype model with a decoupled vision system on a large language model (LLM). The decoupled vision system decouples inner-modal modeling and cross-modal interaction, yielding unique visual information modeling and effective cross-modal comprehension. Libra is trained through discrete auto-regressive modeling on both vision and language inputs. Specifically, we incorporate a routed visual expert with a cross-modal bridge module into a pretrained LLM to route the vision and language flows during attention computing to enable different attention patterns in inner-modal modeling and cross-modal interaction scenarios. Experimental results demonstrate that the dedicated design of Libra achieves a strong MLLM baseline that rivals existing works in the image-to-text scenario with merely 50 million training data, providing a new perspective for future multimodal foundation models. Code is available at https://github.com/YifanXu74/Libra.
[ Hall C 4-9 ]

Abstract
While large language models (LLMs) are increasingly being used for program synthesis, they lack the global view needed to develop useful abstractions; they generally predict programs one at a time, often repeating the same functionality. Generating redundant code from scratch is both inefficient and error-prone. To address this, we propose Refactoring for Generalizable Abstraction Learning (ReGAL), a gradient-free method for learning a library of reusable functions via code refactorization, i.e., restructuring code without changing its execution output. ReGAL learns from a small set of existing programs, iteratively verifying and refining its abstractions via execution. We find that the shared function libraries discovered by ReGAL make programs easier to predict across diverse domains. On five datasets – LOGO graphics generation, Date reasoning, TextCraft (a Minecraft-based text-game) MATH, and TabMWP – both open-source and proprietary LLMs improve in accuracy when predicting programs with REGAL functions. For CodeLlama-13B, REGAL results in absolute accuracy increases of 11.5% on LOGO, 26.1% on date understanding, and 8.1% on TextCraft, out-performing GPT-3.5 in two of three domains. Our analysis reveals REGAL’s abstractions encapsulate frequently-used subroutines as well as environment dynamics.
[ Hall C 4-9 ]
Abstract
As Large Language Models (LLMs) become more integrated into our daily lives, it is crucial to identify and mitigate their risks, especially when the risks can have profound impacts on human users and societies. Guardrails, which filter the inputs or outputs of LLMs, have emerged as a core safeguarding technology. This position paper takes a deep look at current open-source solutions (Llama Guard, Nvidia NeMo, Guardrails AI), and discusses the challenges and the road towards building more complete solutions. Drawing on robust evidence from previous research, we advocate for a systematic approach to construct guardrails for LLMs, based on comprehensive consideration of diverse contexts across various LLMs applications. We propose employing socio-technical methods through collaboration with a multi-disciplinary team to pinpoint precise technical requirements, exploring advanced neural-symbolic implementations to embrace the complexity of the requirements, and developing verification and testing to ensure the utmost quality of the final product.
[ Hall C 4-9 ]

Abstract
An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful for their human users. This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones, a process referred to as alignment. In this paper, we propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models. Importantly, we prove that within the limits of this framework, for any behavior that has a finite probability of being exhibited by the model, there exist prompts that can trigger the model into outputting this behavior, with probability that increases with the length of the prompt. This implies that any alignment process that attenuates an undesired behavior but does not remove it altogether, is not safe against adversarial prompting attacks. Furthermore, our framework hints at the mechanism by which leading alignment approaches such as reinforcement learning from human feedback make the LLM prone to being prompted into the undesired behaviors. This theoretical result is being experimentally demonstrated in large scale by the so called contemporary "chatGPT jailbreaks", where adversarial users trick …
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Planning is a fundamental property of human intelligence. Reasoning about asynchronous plans is challenging since it requires sequential and parallel planning to optimize time costs. Can large language models (LLMs) succeed at this task? Here, we present the first large-scale study investigating this question. We find that a representative set of closed and open-source LLMs, including GPT-4 and LLaMA-2, behave poorly when not supplied with illustrations about the task-solving process in our benchmark AsyncHow. We propose a novel technique called Plan Like a Graph (PLaG) that combines graphs with natural language prompts and achieves state-of-the-art results. We show that although PLaG can boost model performance, LLMs still suffer from drastic degradation when task complexity increases, highlighting the limits of utilizing LLMs for simulating digital devices. We see our study as an exciting step towards using LLMs as efficient autonomous agents. Our code and data are available at https://github.com/fangru-lin/graph-llm-asynchow-plan.
[ Hall C 4-9 ]
Abstract
The question-answering (QA) capabilities of foundation models are highly sensitive to prompt variations, rendering their performance susceptible to superficial, non-meaning-altering changes. This vulnerability often stems from the model's preference or bias towards specific input characteristics, such as option position or superficial image features in multi-modal settings. We propose to rectify this bias directly in the model's internal representation. Our approach, SteerFair, finds the bias direction in the model's representation space and steers activation values away from it during inference. Specifically, we exploit the observation that bias often adheres to simple association rules, such as the spurious association between the first option and correctness likelihood. Next, we construct demonstrations of these rules from unlabeled samples and use them to identify the bias directions. We empirically show that SteerFair significantly reduces instruction-tuned model performance variance across prompt modifications on three benchmark tasks. Remarkably, our approach surpasses a supervised baseline with 100 labels by an average of 10.86% accuracy points and 12.95 score points and matches the performance with 500 labels.
[ Hall C 4-9 ]
Abstract
Large language models (LLMs) have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and capability (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones, suggesting that open-source models can achieve high levels of trustworthiness without additional mechanisms like moderator, offering valuable insights for developers in this field. Thirdly, it is important to note …
[ Hall C 4-9 ]

Abstract
Tokenization is an understudied and often neglected component of modern LLMs. Most published works use a single tokenizer for all experiments, often borrowed from another model, without performing ablations or analysis to optimize tokenization. Moreover, the tokenizer is generally kept unchanged when fine-tuning a base model. In this paper, we show that the size, pre-tokenization regular expression, and training data of a tokenizer can significantly impact the model's generation speed, effective context size, memory usage, and downstream performance. We train specialized Byte-Pair Encoding code tokenizers, and conduct extensive ablations on the impact of tokenizer design on the performance of LLMs for code generation tasks such as HumanEval and MBPP, and provide recommendations for tokenizer hyper-parameters selection and switching the tokenizer in a pre-trained LLM. We perform our experiments on models trained from scratch and from pre-trained models, verifying their applicability to a wide range of use-cases. We find that when fine-tuning on more than 50 billion tokens, we can specialize the tokenizer of a pre-trained LLM to obtain large gains in generation speed and effective context size.
[ Hall C 4-9 ]

Abstract
Trustworthiness is an essential prerequisite for the real-world application of large language models. In this paper, we focus on the trustworthiness of language models with respect to retrieval augmentation. Despite being supported with external evidence, retrieval-augmented generation still suffers from hallucinations, one primary cause of which is the conflict between contextual and parametric knowledge. We deem that retrieval-augmented language models have the inherent capabilities of supplying response according to both contextual and parametric knowledge. Inspired by aligning language models with human preference, we take the first step towards aligning retrieval-augmented language models to a status where it responds relying merely on the external evidence and disregards the interference of parametric knowledge. Specifically, we propose a reinforcement learning based algorithm Trustworthy-Alignment, theoretically and experimentally demonstrating large language models' capability of reaching a trustworthy status without explicit supervision on how to respond. Our work highlights the potential of large language models on exploring its intrinsic abilities by its own and expands the application scenarios of alignment from fulfilling human preference to creating trustworthy agents.
[ Hall C 4-9 ]

Abstract
Instruction Tuning (IT), the process of training large language models (LLMs) using instruction-response pairs, has emerged as the predominant method for transforming base pre-trained LLMs into open-domain conversational agents. While IT has achieved notable success and widespread adoption, its limitations and shortcomings remain underexplored. In this paper, through rigorous experiments and an in-depth analysis of the changes LLMs undergo through IT, we reveal various limitations of IT. In particular, we show that (1) IT fails to enhance knowledge or skills in LLMs. LoRA fine-tuning is limited to learning response initiation and style tokens, and full-parameter fine-tuning leads to knowledge degradation. (2) Copying response patterns from IT datasets derived from knowledgeable sources leads to a decline in response quality. (3) Full-parameter fine-tuning increases hallucination by inaccurately borrowing tokens from conceptually similar instances in the IT dataset for generating responses. (4) Popular methods to improve IT do not lead to performance improvements over a simple LoRA fine-tuned model. Our findings reveal that responses generated solely from pre-trained knowledge consistently outperform responses by models that learn any form of new knowledge from IT on open-source datasets. We hope the insights and challenges revealed in this paper inspire future work in related directions.
[ Hall C 4-9 ]
Abstract
We introduce Magicoder, a series of fully open-source (code, weights, and data) Large Language Models (LLMs) for code that significantly closes the gap with top code models while having no more than 7B parameters. Magicoder models are trained on 75K synthetic instruction data using OSS-Instruct, a novel approach to enlightening LLMs with open-source code snippets to generate diverse instruction data for code. Our main motivation is to mitigate the inherent bias of the synthetic data generated by LLMs through the wealth of open-source references for the production of more realistic and controllable data. The orthogonality of OSS-Instruct and other data generation methods like Evol-Instruct further enables us to build an enhanced MagicoderS. Both Magicoder and MagicoderS substantially outperform state-of-the-art code models with similar or even larger sizes on a wide range of coding benchmarks. Notably, MagicoderS-CL-7B based on CodeLlama even surpasses the prominent ChatGPT on HumanEval+ (66.5 vs. 65.9 in pass@1 ). Overall, OSS-Instruct opens a new direction for crafting diverse synthetic instruction data for code using abundant open-source references.
[ Hall C 4-9 ]
Abstract
Understanding neural networks is challenging in part because of the dense, continuous nature of their hidden states. We explore whether we can train neural networks to have hidden states that are sparse, discrete, and more interpretable by quantizing their continuous features into what we call codebook features. Codebook features are produced by finetuning neural networks with vector quantization bottlenecks at each layer, producing a network whose hidden features are the sum of a small number of discrete vector codes chosen from a larger codebook. Surprisingly, we find that neural networks can operate under this extreme bottleneck with only modest degradation in performance. In addition, we can control a model's behavior by finding codes that activate on a desired behavior, then activating those same codes during generation. We first validate codebook features on a finite state machine dataset with far more hidden states than neurons. In this setting, our approach overcomes the superposition problem by assigning states to distinct codes, and we find that we can make the neural network behave as if it is in a different state by activating the code for that state. We then train Transformer language models with up to 410M parameters on two natural language …
[ Hall C 4-9 ]

Abstract
We argue that auto-regressive LLMs cannot, by themselves, do planning or self-verification (which is after all a form of reasoning), and shed some light on the reasons for misunderstandings in the literature. We will also argue that LLMs should be viewed as universal approximate knowledge sources that have much more meaningful roles to play in planning/reasoning tasks beyond simple front-end/back-end format translators. We present a vision of LLM-Modulo Frameworks that combine the strengths of LLMs with external model-based verifiers in a tighter bi-directional interaction regime. We will show how the models driving the external verifiers themselves can be acquired with the help of LLMs. We will also argue that rather than simply pipelining LLMs and symbolic components, this LLM-Modulo Framework provides a better neuro-symbolic approach that offers tighter integration between LLMs and symbolic components, and allows extending the scope of model-based planning/reasoning regimes towards more flexible knowledge, problem and preference specifications.
[ Hall C 4-9 ]

Abstract
Reinforcement Learning from Human Feedback (RLHF) is key to aligning Large Language Models (LLMs), typically paired with the Proximal Policy Optimization (PPO) algorithm. While PPO is a powerful method designed for general reinforcement learning tasks, it is overly sophisticated for LLMs, leading to laborious hyper-parameter tuning and significant computation burdens. To make RLHF efficient, we present ReMax, which leverages 3 properties of RLHF: fast simulation, deterministic transitions, and trajectory-level rewards. These properties are not exploited in PPO, making it less suitable for RLHF. Building on the renowned REINFORCE algorithm, ReMax does not require training an additional value model as in PPO and is further enhanced with a new variance reduction technique. ReMax offers several benefits over PPO: it is simpler to implement, eliminates more than 4 hyper-parameters in PPO, reduces GPU memory usage, and shortens training time. ReMax can save about 46% GPU memory than PPO when training a 7B model and enables training on A800-80GB GPUs without the memory-saving offloading technique needed by PPO. Applying ReMax to a Mistral-7B model resulted in a 94.78% win rate on the AlpacaEval leaderboard and a 7.739 score on MT-bench, setting a new SOTA for open-source 7B models. These results show the effectiveness …
[ Hall C 4-9 ]
Abstract
As the number of large language models (LLMs) released to the public grows, there is a pressing need to understand the safety implications associated with these models learning from third-party custom finetuning data. We explore the behavior of LLMs finetuned on noisy custom data containing unsafe content, represented by datasets that contain biases, toxicity, and harmfulness, finding that while aligned LLMs can readily learn this unsafe content, they also tend to forget it more significantly than other examples when subsequently finetuned on safer content. Drawing inspiration from the discrepancies in forgetting, we introduce the “ForgetFilter” algorithm, which filters unsafe data based on how strong the model's forgetting signal is for that data. We demonstrate that the ForgetFilter algorithm ensures safety in customized finetuning without compromising downstream task performance, unlike sequential safety finetuning. ForgetFilter outperforms alternative strategies like replay and moral self-correction in curbing LLMs’ ability to assimilate unsafe content during custom finetuning, e.g. 75% lower than not applying any safety measures and 62% lower than using self-correction in toxicity score.
[ Hall C 4-9 ]

Abstract
Recent LLM-driven visual agents mainly focus on solving image-based tasks, which limits their ability to understand dynamic scenes, making it far from real-life applications like guiding students in laboratory experiments and identifying their mistakes. Hence, this paper explores DoraemonGPT, a comprehensive and conceptually elegant system driven by LLMs to understand dynamic scenes. Considering the video modality better reflects the ever-changing nature of real-world scenarios, we exemplify DoraemonGPT as a video agent. Given a video with a question/task, DoraemonGPT begins by converting the input video into a symbolic memory that stores task-related attributes. This structured representation allows for spatial-temporal querying and reasoning by well-designed sub-task tools, resulting in concise intermediate results. Recognizing that LLMs have limited internal knowledge when it comes to specialized domains (e.g., analyzing the scientific principles underlying experiments), we incorporate plug-and-play tools to assess external knowledge and address tasks across different domains. Moreover, a novel LLM-driven planner based on Monte Carlo Tree Search is introduced to explore the large planning space for scheduling various tools. The planner iteratively finds feasible solutions by backpropagating the result's reward, and multiple solutions can be summarized into an improved final answer. We extensively evaluate DoraemonGPT's effectiveness on three benchmarks and several in-the-wild …
[ Hall C 4-9 ]

Abstract
We present evidence of substantial benefit from efficient exploration in gathering human feedback to improve large language models. In our experiments, an agent sequentially generates queries while fitting a reward model to the feedback received. Our best-performing agent generates queries using double Thompson sampling, with uncertainty represented by an epistemic neural network. Our results demonstrate that efficient exploration enables high levels of performance with far fewer queries. Further, both uncertainty estimation and the choice of exploration scheme play critical roles.
[ Hall C 4-9 ]

Abstract
Large context window is a desirable feature in large language models (LLMs). However, due to high fine-tuning costs, scarcity of long texts, and catastrophic values introduced by new token positions, current extended context windows are limited to around 128k tokens. This paper introduces LongRoPE that, for the first time, extends the context window of pre-trained LLMs to an impressive 2048k tokens, with up to only 1k fine-tuning steps at within 256k training lengths, while maintaining performance at the original short context window. This is achieved by three key innovations: (i) we identify and exploit two forms of non-uniformities in positional interpolation through an efficient search, providing a better initialization for fine-tuning and enabling an 8x extension in non-fine-tuning scenarios; (ii) we introduce a progressive extension strategy that first fine-tunes a 256k length LLM and then conducts a second positional interpolation on the fine-tuned extended LLM to achieve a 2048k context window; (iii) we readjust LongRoPE on 8k length to recover the short context window performance. Extensive experiments on LLaMA2 and Mistral across various tasks demonstrate the effectiveness of our method. Models extended via LongRoPE retain the original architecture with minor modifications to the positional embedding, and can reuse most pre-existing …
[ Hall C 4-9 ]

Abstract
Harnessing the power of human-annotated data through Supervised Fine-Tuning (SFT) is pivotal for advancing Large Language Models (LLMs). In this paper, we delve into the prospect of growing a strong LLM out of a weak one without the need for acquiring additional human-annotated data. We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN), which starts from a supervised fine-tuned model. At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself. More specifically, the LLM generates its own training data from its previous iterations, refining its policy by discerning these self-generated responses from those obtained from human-annotated data. Our method progressively elevates the LLM from a nascent model to a formidable one, unlocking the full potential of human-annotated demonstration data for SFT. Theoretically, we prove that the global optimum to the training objective function of our method is achieved only when the LLM policy aligns with the target data distribution. Empirically, we evaluate our method on several benchmark datasets including the HuggingFace Open LLM Leaderboard, MT-Bench, and datasets from Big-Bench. Our results show that SPIN can significantly improve the LLM's performance across a variety of benchmarks and even outperform …
[ Hall C 4-9 ]

Abstract
We address the challenge of utilizing large language models (LLMs) for complex embodied tasks, in the environment where decision-making systems operate timely on capacity-limited, off-the-shelf devices. We present DeDer, a framework for decomposing and distilling the embodied reasoning capabilities from LLMs to efficient, small language model (sLM)-based policies. In DeDer, the decision-making process of LLM-based strategies is restructured into a hierarchy with a reasoning-policy and planning-policy. The reasoning-policy is distilled from the data that is generated through the embodied in-context learning and self-verification of an LLM, so it can produce effective rationales. The planning-policy, guided by the rationales, can render optimized plans efficiently. In turn, DeDer allows for adopting sLMs for both policies, deployed on off-the-shelf devices. Furthermore, to enhance the quality of intermediate rationales, specific to embodied tasks, we devise the embodied knowledge graph, and to generate multiple rationales timely through a single inference, we also use the contrastively prompted attention model. Our experiments with the ALFRED benchmark demonstrate that DeDer surpasses leading language planning and distillation approaches, indicating the applicability and efficiency of sLM-based embodied policies derived through DeDer.
[ Hall C 4-9 ]

Abstract
How do large language models (LLMs) obtain their answers? The ability to explain and control an LLM’s reasoning process is key for reliability, transparency, and future model developments. We propose SelfIE (Self-Interpretation of Embeddings), a framework that enables LLMs to interpret their own embeddings in natural language by leveraging their ability to respond to inquiries about a given passage. Capable of interpreting open-world concepts in the hidden embeddings, SelfIE reveals LLM internal reasoning in cases such as making ethical decisions, internalizing prompt injection, and recalling harmful knowledge. SelfIE’s text descriptions on hidden embeddings open avenues to control LLM reasoning. We propose Supervised Control, which allows editing open-ended concepts while only requiring gradient computation of individual layer. We extend RLHF to hidden embeddings and propose Reinforcement Control that erases harmful knowledge in LLM without supervision targets.
[ Hall C 4-9 ]

Abstract
Due to the growing complexity of modern Integrated Circuits (ICs), there is a need for automated circuit design methods. Recent years have seen increasing research in hardware design language generation to facilitate the design process. In this work, we propose a Verilog generation framework, BetterV, which fine-tunes large language models (LLMs) on processed domain-specific datasets and incorporates generative discriminators for guidance on particular design demands. Verilog modules are collected, filtered, and processed from the internet to form a clean and abundant dataset. Instruct-tuning methods are specially designed to fine-tune the LLMs to understand knowledge about Verilog. Furthermore, data are augmented to enrich the training set and are also used to train a generative discriminator on particular downstream tasks, providing guidance for the LLMs to optimize Verilog implementation. BetterV has the ability to generate syntactically and functionally correct Verilog, outperforming GPT-4 on the VerilogEval benchmark. With the help of task-specific generative discriminators, BetterV achieves remarkable improvements on various electronic design automation (EDA) downstream tasks, including netlist node reduction for synthesis and verification runtime reduction with Boolean Satisfiability (SAT) solving.
[ Hall C 4-9 ]

Abstract
In large language model training, input documents are typically concatenated together and then split into sequences of equal length to avoid padding tokens. Despite its efficiency, the concatenation approach compromises data integrity—it inevitably breaks many documents into incomplete pieces, leading to excessive truncations that hinder the model from learning to compose logically coherent and factually consistent content that is grounded on the complete context. To address the issue, we propose Best-fit Packing, a scalable and efficient method that packs documents into training sequences through length-aware combinatorial optimization. Our method completely eliminates unnecessary truncations while retaining the same training efficiency as concatenation. Empirical results from both text and code pre-training show that our method achieves superior performance (e.g., +4.7% on reading comprehension; +16.8% in context following; and +9.2% on program synthesis), and reduces closed-domain hallucination effectively by up to 58.3%.
[ Hall C 4-9 ]
Abstract
While Large Language Models’ (LLMs) coding capabilities have advanced rapidly, corresponding evaluation benchmarks on real-world programming setups are yet to catch up. Building a scalable and interactive testbed for evaluating general-purpose AI coding agents for real-world code has been challenging, particularly due to a lack of high-quality test suites available. In this paper, we present Repository to Environment (R2E), a framework that can turn any GitHub repository into a test environment to evaluate the performance of code-generating systems, both static and interactive. R2E is powered by a synergistic combination of program analysis and LLMs to construct equivalence test harnesses for any GitHub function. We instantiate our framework to build the first large-scale benchmark, R2E-Eval1, for building realistic environments for AI coding assistants. Our results demonstrate that even when SOTA models cannot generate correct solutions with advanced prompting techniques, they can effectively use environment feedback highlighting the need to move from static functional coding to interactive programming paradigm. We hope that our framework (and the instantiated benchmark) can motivate research directions by providing web-scale open-ended coding environments. R2E code is available at https://r2e.dev/
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
There is increasing interest in using LLMs as decision-making "agents". Doing so includes many degrees of freedom: which model should be used; how should it be prompted; should it be asked to introspect, conduct chain-of-thought reasoning, etc? Settling these questions---and more broadly, determining whether an LLM agent is reliable enough to be trusted---requires a methodology for assessing such an agent's economic rationality. In this paper, we provide one. We begin by surveying the economic literature on rational decision making, taxonomizing a large set of fine-grained "elements" that an agent should exhibit, along with dependencies between them. We then propose a benchmark distribution that quantitatively scores an LLMs performance on these elements and, combined with a user-provided rubric, produces a "rationality report card". Finally, we describe the results of a large-scale empirical experiment with 14 different LLMs, characterizing the both current state of the art and the impact of different model sizes on models' ability to exhibit rational behavior.
[ Hall C 4-9 ]

Abstract
It is well known that LLMs cannot generalize well to long contexts whose lengths are larger than the training sequence length. This poses challenges when employing LLMs for processing long input sequences during inference. In this work, we argue that LLMs themselves have inherent capabilities to handles s long contexts without fine-tuning. To achieve this goal, we propose SelfExtend to extend the context window of LLMs by constructing bi-level attention information: the grouped attention and the neighbor attention. The grouped attention captures the dependencies among tokens that are far apart, while neighbor attention captures dependencies among adjacent tokens within a specified range. The two-level attentions are computed based on the original model's self-attention mechanism during inference. With minor code modification, our SelfExtend can effortlessly extend existing LLMs' context window without any fine-tuning. We conduct comprehensive experiments on multiple benchmarks and the results show that our SelfExtend can effectively extend existing LLMs' context window length.
[ Hall C 4-9 ]

Abstract
Vision-language models (VLMs) have emerged as formidable tools, showing their strong capability in handling various open-vocabulary tasks in image recognition, text-driven visual content generation, and visual chatbots, to name a few. In recent years, considerable efforts and resources have been devoted to adaptation methods for improving downstream performance of VLMs, particularly on parameter-efficient fine-tuning methods like prompt learning. However, a crucial aspect that has been largely overlooked is the confidence calibration problem in fine-tuned VLMs, which could greatly reduce reliability when deploying such models in the real world. This paper bridges the gap by systematically investigating the confidence calibration problem in the context of prompt learning and reveals that existing calibration methods are insufficient to address the problem, especially in the open-vocabulary setting. To solve the problem, we present a simple and effective approach called Distance-Aware Calibration (DAC), which is based on scaling the temperature using as guidance the distance between predicted text labels and base classes. The experiments with 7 distinct prompt learning methods applied across 11 diverse downstream datasets demonstrate the effectiveness of DAC, which achieves high efficacy without sacrificing the inference speed.
[ Hall C 4-9 ]

Abstract
The last decade has seen blossoming research in deep learning theory attempting to answer, ``Why does deep learning generalize?" A powerful shift in perspective precipitated this progress: the study of overparametrized models in the interpolation regime. In this paper, we argue that another perspective shift is due, since some of the desirable qualities of LLMs are not a consequence of good statistical generalization and require a separate theoretical explanation. Our core argument relies on the observation that AR probabilistic models are inherently non-identifiable: models zero or near-zero KL divergence apart---thus, equivalent test loss---can exhibit markedly different behaviors. We support our position with mathematical examples and empirical observations, illustrating why non-identifiability has practical relevance through three case studies: (1) the non-identifiability of zero-shot rule extrapolation; (2) the approximate non-identifiability of in-context learning; and (3) the non-identifiability of fine-tunability. We review promising research directions focusing on LLM-relevant generalization measures, transferability, and inductive biases.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
We propose Stacked Deep Sets and Quantile Pooling for learning tasks on set data. We introduce Quantile Pooling, a novel permutation-invariant pooling operation that synergizes max and average pooling. Just like max pooling, quantile pooling emphasizes the most salient features of the data. Like average pooling, it captures the overall distribution and subtle features of the data. Like both, it is lightweight and fast. We demonstrate the effectiveness of our approach in a variety of tasks, showing that quantile pooling can outperform both max and average pooling in each of their respective strengths. We also introduce a variant of deep set networks that is more expressive and universal. While Quantile Pooling balances robustness and sensitivity, Stacked Deep Sets enhances learning with depth.
[ Hall C 4-9 ]

Abstract
Abstract visual reasoning is a characteristically human ability, allowing the identification of relational patterns that are abstracted away from object features, and the systematic generalization of those patterns to unseen problems. Recent work has demonstrated strong systematic generalization in visual reasoning tasks involving multi-object inputs, through the integration of slot-based methods used for extracting object-centric representations coupled with strong inductive biases for relational abstraction. However, this approach was limited to problems containing a single rule, and was not scalable to visual reasoning problems containing a large number of objects. Other recent work proposed Abstractors, an extension of Transformers that incorporates strong relational inductive biases, thereby inheriting the Transformer's scalability and multi-head architecture, but it has yet to be demonstrated how this approach might be applied to multi-object visual inputs. Here we combine the strengths of the above approaches and propose Slot Abstractors, an approach to abstract visual reasoning that can be scaled to problems involving a large number of objects and multiple relations among them. The approach displays state-of-the-art performance across four abstract visual reasoning tasks, as well as an abstract reasoning task involving real-world images.
[ Hall C 4-9 ]

Abstract
Though feature-alignment based Domain Adaptive Object Detection (DAOD) methods have achieved remarkable progress, they ignore the source bias issue, i.e., the detector tends to acquire more source-specific knowledge, impeding its generalization capabilities in the target domain. Furthermore, these methods face a more formidable challenge in achieving consistent classification and localization in the target domain compared to the source domain. To overcome these challenges, we propose a novel Distillation-based Source Debiasing (DSD) framework for DAOD, which can distill domain-agnostic knowledge from a pre-trained teacher model, improving the detector's performance on both domains. In addition, we design a Target-Relevant Object Localization Network (TROLN), which can mine target-related localization information from source and target-style mixed data. Accordingly, we present a Domain-aware Consistency Enhancing (DCE) strategy, in which these information are formulated into a new localization representation to further refine classification scores in the testing stage, achieving a harmonization between classification and localization. Extensive experiments have been conducted to manifest the effectiveness of this method, which consistently improves the strong baseline by large margins, outperforming existing alignment-based works.
[ Hall C 4-9 ]

Abstract
In adversarial defense, adversarial purification can be viewed as a special generation task with the purpose to remove adversarial attacks and diffusion models excel in adversarial purification for their strong generative power. With different predetermined generation requirements, various types of guidance have been proposed, but few of them focuses on adversarial purification. In this work, we propose to guide diffusion models for adversarial purification using contrastive guidance. We theoretically derive the proper noise level added in the forward process diffusion models for adversarial purification from a feature learning perspective. For the reverse process, it is implied that the role of contrastive loss guidance is to facilitate the evolution towards the signal direction. From the theoretical findings and implications, we design the forward process with the proper amount of Gaussian noise added and the reverse process with the gradient of contrastive loss as the guidance of diffusion models for adversarial purification. Empirically, extensive experiments on CIFAR-10, CIFAR-100, the German Traffic Sign Recognition Benchmark and ImageNet datasets with ResNet and WideResNet classifiers show that our method outperforms most of current adversarial training and adversarial purification methods by a large improvement.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
We study the problem of training an unbiased and accurate model given a dataset with multiple biases. This problem is challenging since the multiple biases cause multiple undesirable shortcuts during training, and even worse, mitigating one may exacerbate the other. We propose a novel training method to tackle this challenge. Our method first groups training data so that different groups induce different shortcuts, and then optimizes a linear combination of group-wise losses while adjusting their weights dynamically to alleviate conflicts between the groups in performance; this approach, rooted in the multi-objective optimization theory, encourages to achieve the minimax Pareto solution. We also present a new benchmark with multiple biases, dubbed MultiCelebA, for evaluating debiased training methods under realistic and challenging scenarios. Our method achieved the best on three datasets with multiple biases, and also showed superior performance on conventional single-bias datasets.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
No free lunch theorems for supervised learning state that no learner can solve all problems or that all learners achieve exactly the same accuracy on average over a uniform distribution on learning problems. Accordingly, these theorems are often referenced in support of the notion that individual problems require specially tailored inductive biases. While virtually all uniformly sampled datasets have high complexity, real-world problems disproportionately generate low-complexity data, and we argue that neural network models share this same preference, formalized using Kolmogorov complexity. Notably, we show that architectures designed for a particular domain, such as computer vision, can compress datasets on a variety of seemingly unrelated domains. Our experiments show that pre-trained and even randomly initialized language models prefer to generate low-complexity sequences. Whereas no free lunch theorems seemingly indicate that individual problems require specialized learners, we explain how tasks that often require human intervention such as picking an appropriately sized model when labeled data is scarce or plentiful can be automated into a single learning algorithm. These observations justify the trend in deep learning of unifying seemingly disparate problems with an increasingly small set of machine learning models.
[ Hall C 4-9 ]
Abstract
Abductive learning models (ABL) and neural-symbolic predictive models (NeSy) have been recently shown effective, as they allow us to infer labels that are consistent with some prior knowledge by reasoning over high-level concepts extracted from sub-symbolic inputs. However, their generalization ability is affected by reasoning shortcuts: high accuracy on given targets but leveraging intermediate concepts with unintended semantics. Although there have been techniques to alleviate reasoning shortcuts, theoretical efforts on this issue remain to be limited. This paper proposes a simple and effective analysis to quantify harm caused by it and how can mitigate it. We quantify three main factors in how NeSy algorithms are affected by reasoning shortcuts: the complexity of the knowledge base, the sample size, and the hypothesis space. In addition, we demonstrate that ABL can reduce shortcut risk by selecting specific distance functions in consistency optimization, thereby demonstrating its potential and approach to solving shortcut problems. Empirical studies demonstrate the rationality of the analysis. Moreover, the proposal is suitable for many ABL and NeSy algorithms and can be easily extended to handle other cases of reasoning shortcuts.
[ Hall C 4-9 ]

Abstract
The recent theoretical analysis of deep neural networks in their infinite-width limits has deepened our understanding of initialisation, feature learning, and training of those networks, and brought new practical techniques for finding appropriate hyperparameters, learning network weights, and performing inference. In this paper, we broaden this line of research by showing that this infinite-width analysis can be extended to the Jacobian of a deep neural network. We show that a multilayer perceptron (MLP) and its Jacobian at initialisation jointly converge to a Gaussian process (GP) as the widths of the MLP's hidden layers go to infinity and characterise this GP. We also prove that in the infinite-width limit, the evolution of the MLP under the so-called robust training (i.e., training with a regulariser on the Jacobian) is described by a linear first-order ordinary differential equation that is determined by a variant of the Neural Tangent Kernel. We experimentally show the relevance of our theoretical claims to wide finite networks, and empirically analyse the properties of kernel regression solution to obtain an insight into Jacobian regularisation.
[ Hall C 4-9 ]

Abstract
[ Hall C 4-9 ]

Abstract
Self-supervised learning of image representations by predicting future frames is a promising direction but still remains a challenge. This is because of the under-determined nature of frame prediction; multiple potential futures can arise from a single current frame. To tackle this challenge, in this paper, we revisit the idea of stochastic video generation that learns to capture uncertainty in frame prediction and explore its effectiveness for representation learning. Specifically, we design a framework that trains a stochastic frame prediction model to learn temporal information between frames. Moreover, to learn dense information within each frame, we introduce an auxiliary masked image modeling objective along with a shared decoder architecture. We find this architecture allows for combining both objectives in a synergistic and compute-efficient manner. We demonstrate the effectiveness of our framework on a variety of tasks from video label propagation and vision-based robot learning domains, such as video segmentation, pose tracking, vision-based robotic locomotion, and manipulation tasks. Code is available on the project webpage: https://sites.google.com/view/2024rsp.
[ Hall C 4-9 ]

Abstract
Supervised contrastive representation learning has been shown to be effective in various transfer learning scenarios. However, while asymmetric non-contrastive learning (ANCL) often outperforms its contrastive learning counterpart in self-supervised representation learning, the extension of ANCL to supervised scenarios is less explored. To bridge the gap, we study ANCL for supervised representation learning, coined SupSiam and SupBYOL, leveraging labels in ANCL to achieve better representations. The proposed supervised ANCL framework improves representation learning while avoiding collapse. Our analysis reveals that providing supervision to ANCL reduces intra-class variance, and the contribution of supervision should be adjusted to achieve the best performance. Experiments demonstrate the superiority of supervised ANCL across various datasets and tasks. The code is available at: https://github.com/JH-Oh-23/Sup-ANCL.
[ Hall C 4-9 ]
Abstract
[ Hall C 4-9 ]

Abstract
This paper introduces a novel approach to improving the training stability of self-supervised learning (SSL) methods by leveraging a non-parametric memory of seen concepts. The proposed method involves augmenting a neural network with a memory component to stochastically compare current image views with previously encountered concepts. Additionally, we introduce stochastic memory blocks to regularize training and enforce consistency between image views. We extensively benchmark our method on many vision tasks, such as linear probing, transfer learning, few-shot classification, and image retrieval on many datasets. The experimental results consolidate the effectiveness of the proposed approach in achieving stable SSL training without additional regularizers while learning highly transferable representations and requiring less computing time and resources.
[ Hall C 4-9 ]

Abstract
Entropy minimization (EM) is frequently used to increase the accuracy of classification models when they're faced with new data at test time. EM is a self-supervised learning method that optimizes classifiers to assign even higher probabilities to their top predicted classes. In this paper, we analyze why EM works when adapting a model for a few steps and why it eventually fails after adapting for many steps. We show that, at first, EM causes the model to embed test images close to training images, thereby increasing model accuracy. After many steps of optimization, EM makes the model embed test images far away from the embeddings of training images, which results in a degradation of accuracy. Building upon our insights, we present a method for solving a practical problem: estimating a model's accuracy on a given arbitrary dataset without having access to its labels. Our method estimates accuracy by looking at how the embeddings of input images change as the model is optimized to minimize entropy. Experiments on 23 challenging datasets show that our method sets the SoTA with a mean absolute error of 5.75%, an improvement of 29.62% over the previous SoTA on this task. Our code is available at: …
[ Hall C 4-9 ]

Abstract
We introduce LaGTran, a novel framework that utilizes text supervision to guide robust transfer of discriminative knowledge from labeled source to unlabeled target data with domain gaps. While unsupervised adaptation methods have been established to address this problem, they show limitations in handling challenging domain shifts due to their exclusive operation within the pixel-space. Motivated by our observation that semantically richer text modality has more favorable transfer properties, we devise a transfer mechanism to use a source-trained text-classifier to generate predictions on the target text descriptions, and utilize these predictions as supervision for the corresponding images. Our approach driven by language guidance is surprisingly easy and simple, yet significantly outperforms all prior approaches on challenging datasets like GeoNet and DomainNet, validating its extreme effectiveness. To further extend the scope of our study beyond images, we introduce a new benchmark called Ego2Exo to study ego-exo transfer in videos and find that our language-aided approach LaGTran yields significant gains in this highly challenging and non-trivial transfer setting. Code, models, and proposed datasets are publicly available at https://tarun005.github.io/lagtran/.
[ Hall C 4-9 ]
Abstract
Deep learning based methods for image reconstruction are state-of-the-art for a variety of imaging tasks. However, neural networks often perform worse if the training data differs significantly from the data they are applied to. For example, a model trained for accelerated magnetic resonance imaging (MRI) on one scanner performs worse on another scanner. In this work, we investigate the impact of the training data on a model's performance and robustness for accelerated MRI. We find that models trained on the combination of various data distributions, such as those obtained from different MRI scanners and anatomies, exhibit robustness equal or superior to models trained on the best single distribution for a specific target distribution. Thus training on such diverse data tends to improve robustness. Furthermore, training on such a diverse dataset does not compromise in-distribution performance, i.e., a model trained on diverse data yields in-distribution performance at least as good as models trained on the more narrow individual distributions. Our results suggest that training a model for imaging on a variety of distributions tends to yield a more effective and robust model than maintaining separate models for individual distributions.
[ Hall C 4-9 ]
Abstract
Mixup is a highly successful technique to improve generalization by augmenting training data with combinations of random pairs. Selective mixup is a family of methods that apply mixup to specific pairs e.g. combining examples across classes or domains. Despite remarkable performance on benchmarks with distribution shifts, these methods are still poorly understood. We find that an overlooked aspect of selective mixup explains some of its success in a completely new light. The non-random selection of pairs affects the training distribution and improves generalization by means completely unrelated to the mixing. For example in binary classification, mixup across classes implicitly resamples the data to uniform class distribution - a classical solution to label shift. We verify empirically that this resampling explains some of the improvements reported in prior work. Theoretically, the effect relies on a ``regression toward the mean'', an accidental property we find in several datasets. Outcomes. We now better understand why selective mixup works. This lets us predict a yet-unknown failure mode and conditions where the method is detrimental. We also use the equivalence with resampling to design better variants that combine mixing and resampling effects.
[ Hall C 4-9 ]
Abstract
Adversarial training has achieved substantial performance in defending image retrieval against adversarial examples. However, existing studies in deep metric learning (DML) still suffer from two major limitations: weak adversary and model collapse. In this paper, we address these two limitations by proposing Collapse-Aware TRIplet DEcoupling (CA-TRIDE). Specifically, TRIDE yields a stronger adversary by spatially decoupling the perturbation targets into the anchor and the other candidates. Furthermore, CA prevents the consequential model collapse, based on a novel metric, collapseness, which is incorporated into the optimization of perturbation. We also identify two drawbacks of the existing robustness metric in image retrieval and propose a new metric for a more reasonable robustness evaluation. Extensive experiments on three datasets demonstrate that CA-TRIDE outperforms existing defense methods in both conventional and new metrics. Codes are available at https://github.com/michaeltian108/CA-TRIDE.
[ Hall C 4-9 ]

Abstract
The generalization bound is a crucial theoretical tool for assessing the generalizability of learning methods and there exist vast literatures on generalizability of normal learning, adversarial learning, and data poisoning. Unlike other data poison attacks, the backdoor attack has the special property that the poisoned triggers are contained in both the training set and the test set and the purpose of the attack is two-fold. To our knowledge, the generalization bound for the backdoor attack has not been established. In this paper, we fill this gap by deriving algorithm-independent generalization bounds in the clean-label backdoor attack scenario. Precisely, based on the goals of backdoor attack, we give upper bounds for the clean sample population errors and the poison population errors in terms of the empirical error on the poisoned training dataset. Furthermore, based on the theoretical result, a new clean-label backdoor attack is proposed that computes the poisoning trigger by combining adversarial noise and indiscriminate poison. We show its effectiveness in a variety of settings.
[ Hall C 4-9 ]
Abstract
A key challenge that threatens the widespread use of neural networks in safety-critical applications is their vulnerability to adversarial attacks. In this paper, we study the second-order behavior of continuously differentiable deep neural networks, focusing on robustness against adversarial perturbations. First, we provide a theoretical analysis of robustness and attack certificates for deep classifiers by leveraging local gradients and upper bounds on the second derivative (curvature constant). Next, we introduce a novel algorithm to analytically compute provable upper bounds on the second derivative of neural networks. This algorithm leverages the compositional structure of the model to propagate the curvature bound layer-by-layer, giving rise to a scalable and modular approach. The proposed bound can serve as a differentiable regularizer to control the curvature of neural networks during training, thereby enhancing robustness. Finally, we demonstrate the efficacy of our method on classification tasks using the MNIST and CIFAR-10 datasets.
[ Hall C 4-9 ]
Abstract
Invited Talk: Lucía Magis-Weinberg
The effects of digital technology on youth development in low-and-middle-income countries
Most youth grow up in low- and middle-income countries (LMICs) in an increasingly digitized context but with unequal digital media access, skill, and opportunity. In these settings, limited resources to effectively scaffold digital media use constrain youth thriving. As a result, globally, adolescents facing offline disadvantages often find themselves further marginalized in the digital realm. In this talk, I will review the current knowledge on the interaction between digital media and adolescent development, highlight crucial evidence gaps in LMICs, and propose and future directions to address these pressing issues.
Bio :
Oral 2A Representation Learning 1 Tue 23 Jul 04:30 p.m.
[ Hall C 1-3 ]
Abstract
We argue that representations in AI models, particularly deep networks, are converging. First, we survey many examples of convergence in the literature: over time and across multiple domains, the ways by which different neural networks represent data are becoming more aligned. Next, we demonstrate convergence across data modalities: as vision models and language models get larger, they measure distance between datapoints in a more and more alike way. We hypothesize that this convergence is driving toward a shared statistical model of reality, akin to Plato's concept of an ideal reality. We term such a representation the platonic representation and discuss several possible selective pressures toward it. Finally, we discuss the implications of these trends, their limitations, and counterexamples to our analysis.
[ Hall C 1-3 ]
Abstract
[ Hall C 1-3 ]

Abstract
[ Hall C 1-3 ]
Abstract
This paper enhances image-GPT (iGPT), one of the pioneering works that introduce autoregressive pretraining to predict the next pixels for visual representation learning. Two simple yet essential changes are made. First, we shift the prediction target from raw pixels to semantic tokens, enabling a higher-level understanding of visual content. Second, we supplement the autoregressive modeling by instructing the model to predict not only the next tokens but also the visible tokens. This pipeline is particularly effective when semantic tokens are encoded by discriminatively trained models, such as CLIP. We introduce this novel approach as D-iGPT. Extensive experiments showcase that D-iGPT excels as a strong learner of visual representations: A notable achievement is its compelling performance on the ImageNet-1K dataset --- by training on publicly available datasets, D-iGPT unprecedentedly achieves 90.0% top-1 accuracy with a vanilla ViT-H. Additionally, D-iGPT shows strong generalization on the downstream task. Code is available at https://github.com/OliverRensu/D-iGPT.
Oral 2F Efficient LLMs Tue 23 Jul 04:30 p.m.
[ Lehar 1-4 ]

Abstract
While overparameterization in machine learning models offers great benefits in terms of optimization and generalization, it also leads to increased computational requirements as model sizes grow. In this work, we show that by leveraging the inherent low-dimensional structures of data and compressible dynamics within the model parameters, we can reap the benefits of overparameterization without the computational burdens. In practice, we demonstrate the effectiveness of this approach for deep low-rank matrix completion as well as fine-tuning language models. Our approach is grounded in theoretical findings for deep overparameterized low-rank matrix recovery, where we show that the learning dynamics of each weight matrix are confined to an invariant low-dimensional subspace. Consequently, we can construct and train compact, highly compressed factorizations possessing the same benefits as their overparameterized counterparts. In the context of deep matrix completion, our technique substantially improves training efficiency while retaining the advantages of overparameterization. For language model fine-tuning, we propose a method called "Deep LoRA", which improves the existing low-rank adaptation (LoRA) technique, leading to reduced overfitting and a simplified hyperparameter setup, while maintaining comparable efficiency. We validate the effectiveness of Deep LoRA on natural language tasks, particularly when fine-tuning with limited data.
[ Lehar 1-4 ]

Abstract
[ Lehar 1-4 ]
Abstract
In an effort to reduce the computational load of Transformers, research on linear attention has gained significant momentum. However, the improvement strategies for attention mechanisms typically necessitate extensive retraining, which is impractical for large language models with a vast array of parameters. In this paper, we present DiJiang, a novel Frequency Domain Kernelization approach that enables the transformation of a pre-trained vanilla Transformer into a linear complexity model with little training costs. By employing a weighted Quasi-Monte Carlo method for sampling, the proposed approach theoretically offers superior approximation efficiency. To further reduce the training computational complexity, our kernelization is based on Discrete Cosine Transform (DCT) operations. Extensive experiments demonstrate that the proposed method achieves comparable performance to the original Transformer, but with significantly reduced training costs and much faster inference speeds. Our DiJiang-7B achieves comparable performance with LLaMA2-7B on various benchmark while requires only about 1/50 training cost. Code is available at https://github.com/YuchuanTian/DiJiang.
[ Lehar 1-4 ]

Abstract
Oral 2E Attention Tue 23 Jul 04:30 p.m.
[ Straus 1-3 ]

Abstract
Large language models based on the Transformer architecture have demonstrated impressive capabilities to learn in context. However, existing theoretical studies on how this phenomenon arises are limited to the dynamics of a single layer of attention trained on linear regression tasks. In this paper, we study the optimization of a Transformer consisting of a fully connected layer followed by a linear attention layer. The MLP acts as a common nonlinear representation or feature map, greatly enhancing the power of in-context learning. We prove in the mean-field and two-timescale limit that the infinite-dimensional loss landscape for the distribution of parameters, while highly nonconvex, becomes quite benign. We also analyze the second-order stability of mean-field dynamics and show that Wasserstein gradient flow almost always avoids saddle points. Furthermore, we establish novel methods for obtaining concrete improvement rates both away from and near critical points. This represents the first saddle point analysis of mean-field dynamics in general and the techniques are of independent interest.
[ Straus 1-3 ]

Abstract
[ Straus 1-3 ]

Abstract
Multi-Head Attention (MHA) is a key component of Transformer. In MHA, attention heads work independently, causing problems such as low-rank bottleneck of attention score matrices and head redundancy. We propose Dynamically Composable Multi-Head Attention (DCMHA), a parameter and computation efficient attention architecture that tackles the shortcomings of MHA and increases the expressive power of the model by dynamically composing attention heads. At the core of DCMHA is a Compose function that transforms the attention score and weight matrices in an input-dependent way. DCMHA can be used as a drop-in replacement of MHA in any transformer architecture to obtain the corresponding DCFormer. DCFormer significantly outperforms Transformer on different architectures and model scales in language modeling, matching the performance of models with 1.7x-2.0x compute. For example, DCPythia-6.9B outperforms open source Pythia-12B on both pretraining perplexity and downstream task evaluation.
[ Straus 1-3 ]

Abstract
Graph Transformer, due to its global attention mechanism, has emerged as a new tool in dealing with graph-structured data. It is well recognized that the global attention mechanism considers a wider receptive field in a fully connected graph, leading many to believe that useful information can be extracted from all the nodes. In this paper, we challenge this belief: does the globalizing property always benefit Graph Transformers? We reveal the over-globalizing problem in Graph Transformer by presenting both empirical evidence and theoretical analysis, i.e., the current attention mechanism overly focuses on those distant nodes, while the near nodes, which actually contain most of the useful information, are relatively weakened. Then we propose a novel Bi-Level Global Graph Transformer with Collaborative Training (CoBFormer), including the inter-cluster and intra-cluster Transformers, to prevent the over-globalizing problem while keeping the ability to extract valuable information from distant nodes. Moreover, the collaborative training is proposed to improve the model's generalization ability with a theoretical guarantee. Extensive experiments on various graphs well validate the effectiveness of our proposed CoBFormer.
Oral 2C Privacy Tue 23 Jul 04:30 p.m.
[ Hall A2 ]

Abstract
We demonstrate a substantial gap between the privacy guarantees of the Adaptive Batch Linear Queries (ABLQ) mechanism under different types of batch sampling: (i) Shuffling, and (ii) Poisson subsampling; the typical analysis of Differentially Private Stochastic Gradient Descent (DP-SGD) follows by interpreting it as a post-processing of ABLQ. While shuffling-based DP-SGD is more commonly used in practical implementations, it has not been amenable to easy privacy analysis, either analytically or even numerically. On the other hand, Poisson subsampling-based DP-SGD is challenging to scalably implement, but has a well-understood privacy analysis, with multiple open-source numerically tight privacy accountants available. This has led to a common practice of using shuffling-based DP-SGD in practice, but using the privacy analysis for the corresponding Poisson subsampling version. Our result shows that there can be a substantial gap between the privacy analysis when using the two types of batch sampling, and thus advises caution in reporting privacy parameters for DP-SGD.
[ Hall A2 ]
Abstract
[ Hall A2 ]
Abstract
[ Hall A2 ]
Abstract
Oral 2D Music and audio Tue 23 Jul 04:30 p.m.
[ Hall A8 ]

Abstract
We study the problem of symbolic music generation (e.g., generating piano rolls), with a technical focus on non-differentiable rule guidance. Musical rules are often expressed in symbolic form on note characteristics, such as note density or chord progression, many of which are non-differentiable which pose a challenge when using them for guided diffusion. We propose Stochastic Control Guidance (SCG), a novel guidance method that only requires forward evaluation of rule functions that can work with pre-trained diffusion models in a plug-and-play way, thus achieving training-free guidance for non-differentiable rules for the first time. Additionally, we introduce a latent diffusion architecture for symbolic music generation with high time resolution, which can be composed with SCG in a plug-and-play fashion. Compared to standard strong baselines in symbolic music generation, this framework demonstrates marked advancements in music quality and rule-based controllability, outperforming current state-of-the-art generators in a variety of settings. For detailed demonstrations, code and model checkpoints, please visit our project website.
[ Hall A8 ]
Abstract
We propose Diffusion Inference-Time T-Optimization (DITTO), a general-purpose framework for controlling pre-trained text-to-music diffusion models at inference-time via optimizing initial noise latents. Our method can be used to optimize through any differentiable feature matching loss to achieve a target (stylized) output and leverages gradient checkpointing for memory efficiency. We demonstrate a surprisingly wide-range of applications for music generation including inpainting, outpainting, and looping as well as intensity, melody, and musical structure control – all without ever fine-tuning the underlying model. When we compare our approach against related training, guidance, and optimization-based methods, we find DITTO achieves state-of-the-art performance on nearly all tasks, including outperforming comparable approaches on controllability, audio quality, and computational efficiency, thus opening the door for high-quality, flexible, training-free control of diffusion models. Sound examples can be found at https://ditto-music.github.io/web/.
[ Hall A8 ]

Abstract
Generating long-form 44.1kHz stereo audio from text prompts can be computationally demanding. Further, most previous works do not tackle that music and sound effects naturally vary in their duration. Our research focuses on the efficient generation of long-form, variable-length stereo music and sounds at 44.1kHz using text prompts with a generative model. It is based on latent diffusion, with its latent defined by a fully-convolutional variational autoencoder. The generative model is conditioned on text prompts as well as timing embeddings, allowing for fine control over both the content and length of the generated music and sounds. It is capable of rendering stereo signals of up to 95 sec at 44.1kHz in 8 sec on an A100 GPU. Despite its compute efficiency and fast inference, the proposed model is one of the best in two public text-to-music and -audio benchmarks and, differently from state-of-the-art models, can generate music with structure and stereo sounds.
[ Hall A8 ]

Abstract
Despite the impressive performance of deep learning models across diverse tasks, their complexity poses challenges for interpretation. This challenge is particularly evident for audio signals, where conveying interpretations becomes inherently difficult. To address this issue, we introduce Listenable Maps for Audio Classifiers (L-MAC), a posthoc interpretation method that generates faithful and listenable interpretations. L-MAC utilizes a decoder on top of a pretrained classifier to generate binary masks that highlight relevant portions of the input audio. We train the decoder with a loss function that maximizes the confidence of the classifier decision on the masked-in portion of the audio while minimizing the probability of model output for the masked-out portion. Quantitative evaluations on both in-domain and out-of-domain data demonstrate that L-MAC consistently produces more faithful interpretations than several gradient and masking-based methodologies. Furthermore, a user study confirms that, on average, users prefer the interpretations generated by the proposed technique.
Oral 2B Positions on AI Opportunities and Risks for Society Tue 23 Jul 04:30 p.m.
[ Hall A1 ]
Abstract
In light of recent advancements in AI capabilities and the increasingly widespread integration of AI systems into society, governments worldwide are actively seeking to mitigate the potential harms and risks associated with these technologies through regulation and other governance tools. However, there exist significant gaps between governance aspirations and the current state of the technical tooling necessary for their realisation. In this position paper, we survey policy documents published by public-sector institutions in the EU, US, and China to highlight specific areas of disconnect between the technical requirements necessary for enacting proposed policy actions, and the current technical state of the art. Our analysis motivates a call for tighter integration of the AI/ML research community within AI governance in order to i) catalyse technical research aimed at bridging the gap between current and supposed technical underpinnings of regulatory action, as well as ii) increase the level of technical expertise within governing institutions so as to inform and guide effective governance of AI.
[ Hall A1 ]

Abstract
The recent embrace of machine learning (ML) in the development of autonomous weapons systems (AWS) creates serious risks to geopolitical stability and the free exchange of ideas in AI research. This topic has received comparatively little attention of late compared to risks stemming from superintelligent artificial general intelligence (AGI), but requires fewer assumptions about the course of technological development and is thus a nearer-future issue. ML is already enabling the substitution of AWS for human soldiers in many battlefield roles, reducing the upfront human cost, and thus political cost, of waging offensive war. In the case of peer adversaries, this increases the likelihood of "low intensity" conflicts which risk escalation to broader warfare. In the case of non-peer adversaries, it reduces the domestic blowback to wars of aggression. This effect can occur regardless of other ethical issues around the use of military AI such as the risk of civilian casualties, and does not require any superhuman AI capabilities. Further, the military value of AWS raises the specter of an AI-powered arms race and the misguided imposition of national security restrictions on AI research. Our goal in this paper is to raise awareness among the public and ML researchers on the …
[ Hall A1 ]

Abstract
In the next few years, applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education. The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation, in particular from some of the major tech companies who are leading in AI development. While regulation is important, it is key that it does not put at risk the budding field of open-source Generative AI. We argue for the responsible open sourcing of generative AI models in the near and medium term. To set the stage, we first introduce an AI openness taxonomy system and apply it to 40 current large language models. We then outline differential benefits and risks of open versus closed source AI and present potential risk mitigation, ranging from best practices to calls for technical and scientific contributions. We hope that this report will add a much needed missing voice to the current public discourse on near to mid-term AI safety and other societal impact.
[ Hall A1 ]
Abstract
Foundation models are powerful technologies: how they are released publicly directly shapes their societal impact. In this position paper, we focus on open foundation models, defined here as those with broadly available model weights (e.g., Llama 3, Stable Diffusion XL). We identify five distinctive properties (e.g., greater customizability, poor monitoring) that mediate their benefits and risks. Open foundation models present significant benefits, with some caveats, that span innovation, competition, the distribution of decision-making power, and transparency. To understand their risks of misuse, we design a risk assessment framework for analyzing their marginal risk. Across several misuse vectors (e.g., cyberattacks, bioweapons), we find that current research is insufficient to effectively characterize the marginal risk of open foundation models relative to pre-existing technologies. The framework helps explain why the marginal risk is low in some cases, clarifies disagreements about misuse risks by revealing that past work has focused on different subsets of the framework with different assumptions, and articulates a way forward for more constructive debate. Overall, our work helps support a more grounded assessment of the societal impact of open foundation models by outlining what research is needed to empirically validate their theoretical benefits and risks.
AI Safety Social: Navigating Misuse, Ethical Challenges, and Systemic Risks Tue 23 Jul 05:30 p.m.
Social: Physics4ML Tue 23 Jul 05:30 p.m.
The Physics4ML social will bring together attendees with physics backgrounds who work towards a theoretical understanding of deep learning.