Skip to yearly menu bar Skip to main content


Poster Session

Poster Session 6

Exhibit Hall 1

Abstract:

Chat is not available.


#100
Effective Structured Prompting by Meta-Learning and Representative Verbalizer

Weisen Jiang · Yu Zhang · James Kwok

Prompt tuning for pre-trained masked language models (MLM) has shown promising performance in natural language processing tasks with few labeled examples. It tunes a prompt for the downstream task, and a verbalizer is used to bridge the predicted token and label prediction. Due to the limited training data, prompt initialization is crucial for prompt tuning. Recently, MetaPrompting (Hou et al., 2022) uses meta-learning to learn a shared initialization for all task-specific prompts. However, a single initialization is insufficient to obtain good prompts for all tasks and samples when the tasks are complex. Moreover, MetaPrompting requires tuning the whole MLM, causing a heavy burden on computation and memory as the MLM is usually large. To address these issues, we use a prompt pool to extract more task knowledge and construct instance-dependent prompts via attention. We further propose a novel soft verbalizer (RepVerb) which constructs label embedding from feature embeddings directly. Combining meta-learning the prompt pool and RepVerb, we propose MetaPrompter for effective structured prompting. MetaPrompter is parameter-efficient as only the pool is required to be tuned. Experimental results demonstrate that MetaPrompter performs better than the recent state-of-the-arts and RepVerb outperforms existing soft verbalizers.


#101
Text Generation with Diffusion Language Models: A Pre-training Approach with Continuous Paragraph Denoise

Zhenghao Lin · Yeyun Gong · Yelong Shen · Tong Wu · Zhihao Fan · Chen Lin · Nan Duan · Weizhu Chen

In this paper, we introduce a novel dIffusion language modEl pre-training framework for text generation, which we call GENIE. GENIE is a large-scale pre-trained diffusion language model that consists of an encoder and a diffusion-based decoder, which can generate text by gradually transforming a random noise sequence into a coherent text sequence. To pre-train GENIE on a large-scale language corpus, we design a new continuous paragraph denoise objective, which encourages the diffusion-decoder to reconstruct a clean text paragraph from a corrupted version, while preserving the semantic and syntactic coherence. We evaluate GENIE on four downstream text generation benchmarks, namely XSum, CNN/DailyMail, Gigaword, and CommonGen. Our experimental results show that GENIE achieves comparable performance with the state-of-the-art autoregressive models on these benchmarks, and generates more diverse text samples. The code and models of GENIE are available at https://github.com/microsoft/ProphetNet/tree/master/GENIE.


#102
Parallel $Q$-Learning: Scaling Off-policy Reinforcement Learning under Massively Parallel Simulation

Zechu Li · Tao Chen · Zhang-Wei Hong · Anurag Ajay · Pulkit Agrawal

Reinforcement learning is time-consuming for complex tasks due to the need for large amounts of training data. Recent advances in GPU-based simulation, such as Isaac Gym, have sped up data collection thousands of times on a commodity GPU. Most prior works have used on-policy methods like PPO due to their simplicity and easy-to-scale nature. Off-policy methods are more sample-efficient, but challenging to scale, resulting in a longer wall-clock training time. This paper presents a novel Parallel Q-Learning (PQL) scheme that outperforms PPO in terms of wall-clock time and maintains superior sample efficiency. The driving force lies in the parallelization of data collection, policy function learning, and value function learning. Different from prior works on distributed off-policy learning, such as Apex, our scheme is designed specifically for massively parallel GPU-based simulation and optimized to work on a single workstation. In experiments, we demonstrate the capability of scaling up Q-learning methods to tens of thousands of parallel environments and investigate important factors that can affect learning speed, including the number of parallel environments, exploration strategies, batch size, GPU models, etc. The code is available at https://github.com/Improbable-AI/pql.


#511
ED-Batch: Efficient Automatic Batching of Dynamic Neural Networks via Learned Finite State Machines

Siyuan Chen · Pratik Fegade · Tianqi Chen · Phillip Gibbons · Todd Mowry

Batching has a fundamental influence on the efficiency of deep neural network (DNN) execution. However, for dynamic DNNs, efficient batching is particularly challenging as the dataflow graph varies per input instance. As a result, state-of-the-art frameworks use heuristics that result in suboptimal batching decisions. Further, batching puts strict restrictions on memory adjacency and can lead to high data movement costs. In this paper, we provide an approach for batching dynamic DNNs based on finite state machines, which enables the automatic discovery of batching policies specialized for each DNN via reinforcement learning. Moreover, we find that memory planning that is aware of the batching policy can save significant data movement overheads, which is automated by a PQ tree-based algorithm we introduce. Experimental results show that our framework speeds up state-of-the-art frameworks by on average 1.15x, 1.39x, and 2.45x for chain-based, tree-based, and lattice-based DNNs across CPU and GPU. The framework is open-sourced at https://github.com/gulang2019/ED-Batch.git.


#103
MultiRobustBench: Benchmarking Robustness Against Multiple Attacks

Sophie Dai · Saeed Mahloujifar · Chong Xiang · Vikash Sehwag · Pin-Yu Chen · Prateek Mittal

The bulk of existing research in defending against adversarial examples focuses on defending against a single (typically bounded $\ell_p$-norm) attack, but for a practical setting, machine learning (ML) models should be robust to a wide variety of attacks. In this paper, we present the first unified framework for considering multiple attacks against ML models. Our framework is able to model different levels of learner's knowledge about the test-time adversary, allowing us to model robustness against unforeseen attacks and robustness against unions of attacks. Using our framework, we present the first leaderboard, MultiRobustBench (https://multirobustbench.github.io), for benchmarking multiattack evaluation which captures performance across attack types and attack strengths. We evaluate the performance of 16 defended models for robustness against a set of 9 different attack types, including $\ell_p$-based threat models, spatial transformations, and color changes, at 20 different attack strengths (180 attacks total). Additionally, we analyze the state of current defenses against multiple attacks. Our analysis shows that while existing defenses have made progress in terms of average robustness across the set of attacks used, robustness against the worst-case attack is still a big open problem as all existing models perform worse than random guessing.


#104
Multi-Environment Pretraining Enables Transfer to Action Limited Datasets

David Venuto · Mengjiao Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum

Using massive datasets to train large-scale models has emerged as a dominant approach for broad generalization in natural language and vision applications. In reinforcement learning, however, a key challenge is that available data of sequential decision making is often not annotated with actions - for example, videos of game-play are much more available than sequences of frames paired with their logged game controls. We propose to circumvent this challenge by combining large but sparsely-annotated datasets from a *target* environment of interest with fully-annotated datasets from various other *source* environments. Our method, Action Limited PreTraining (ALPT), leverages the generalization capabilities of inverse dynamics modelling (IDM) to label missing action data in the target environment. We show that utilizing even one additional environment dataset of labelled data during IDM pretraining gives rise to substantial improvements in generating action labels for unannotated sequences. We evaluate our method on benchmark game-playing environments and show that we can significantly improve game performance and generalization capability compared to other approaches, using annotated datasets equivalent to only $12$ minutes of gameplay. Highlighting the power of IDM, we show that these benefits remain even when target and source environments share no common actions.


#105
Discovering Object-Centric Generalized Value Functions From Pixels

Somjit Nath · Gopeshh Subbaraj · Khimya Khetarpal · Samira Ebrahimi Kahou

Deep Reinforcement Learning has shown significant progress in extracting useful representations from high-dimensional inputs albeit using hand-crafted auxiliary tasks and pseudo rewards. Automatically learning such representations in an object-centric manner geared towards control and fast adaptation remains an open research problem. In this paper, we introduce a method that tries to discover meaningful features from objects, translating them to temporally coherent `question' functions and leveraging the subsequent learned general value functions for control. We compare our approach with state-of-the-art techniques alongside other ablations and show competitive performance in both stationary and non-stationary settings. Finally, we also investigate the discovered general value functions and through qualitative analysis show that the learned representations are not only interpretable but also, centered around objects that are invariant to changes across tasks facilitating fast adaptation.


#106
FedBR: Improving Federated Learning on Heterogeneous Data via Local Learning Bias Reduction

Yongxin Guo · Xiaoying Tang · Tao Lin

Federated Learning (FL) is a way for machines to learn from data that is kept locally, in order to protect the privacy of clients. This is typically done using local SGD, which helps to improve communication efficiency. However, such a scheme is currently constrained by slow and unstable convergence due to the variety of data on different clients' devices. In this work, we identify three under-explored phenomena of biased local learning that may explain these challenges caused by local updates in supervised FL. As a remedy, we propose FedBR, a novel unified algorithm that reduces the local learning bias on features and classifiers to tackle these challenges. FedBR has two components. The first component helps to reduce bias in local classifiers by balancing the output of the models. The second component helps to learn local features that are similar to global features, but different from those learned from other data sources. We conducted several experiments to test FedBR and found that it consistently outperforms other SOTA FL methods. Both of its components also individually show performance gains. Our code is available at https://github.com/lins-lab/fedbr.


#107
When Sparsity Meets Contrastive Models: Less Graph Data Can Bring Better Class-Balanced Representations

Chunhui Zhang · Chao Huang · Yijun Tian · Qianlong Wen · Zhongyu Ouyang · Youhuan Li · Yanfang Ye · Chuxu Zhang

Graph Neural Networks (GNNs) are powerful models for non-Euclidean data, but their training is often accentuated by massive unnecessary computation: on the one hand, training on non-Euclidean data has relatively high computational cost due to its irregular density properties; on the other hand, the class imbalance property often associated with non-Euclidean data cannot be alleviated by the massiveness of the data, thus hindering the generalisation of the models. To address the above issues, theoretically, we start with a hypothesis about the effectiveness of using a subset of training data for GNNs, which is guaranteed by the gradient distance between the subset and the full set. Empirically, we also observe that a subset of the data can provide informative gradients for model optimization and which changes over time dynamically. We name this phenomenon dynamic data sparsity. Additionally, we find that pruned sparse contrastive models may miss valuable information, leading to a large loss value on the informative subset. Motivated by the above findings, we develop a unified data model dynamic sparsity framework called Data Decantation (DataDec) to address the above challenges. The key idea of DataDec is to identify the informative subset dynamically during the training process by applying sparse graph contrastive learning. The effectiveness of DataDec is comprehensively evaluated on graph benchmark datasets and we also verify its generalizability on image data.


#108
Boosting Graph Contrastive Learning via Graph Contrastive Saliency

Chunyu Wei · Yu Wang · Bing Bai · Kai Ni · David Brady · LU FANG

Graph augmentation plays a crucial role in achieving good generalization for contrastive graph self-supervised learning. However, mainstream Graph Contrastive Learning (GCL) often favors random graph augmentations, by relying on random node dropout or edge perturbation on graphs. Random augmentations may inevitably lead to semantic information corruption during the training, and force the network to mistakenly focus on semantically irrelevant environmental background structures. To address these limitations and to improve generalization, we propose a novel self-supervised learning framework for GCL, which can adaptively screen the semantic-related substructure in graphs by capitalizing on the proposed gradient-based Graph Contrastive Saliency (GCS). The goal is to identify the most semantically discriminative structures of a graph via contrastive learning, such that we can generate semantically meaningful augmentations by leveraging on saliency. Empirical evidence on 16 benchmark datasets demonstrates the exclusive merits of the GCS-based framework. We also provide rigorous theoretical justification for GCS's robustness properties. Code is available at https://github.com/GCS2023/GCS .


#109
Simple Disentanglement of Style and Content in Visual Representations

Lilian Ngweta · Subha Maity · Alex Gittens · Yuekai Sun · Mikhail Yurochkin

Learning visual representations with interpretable features, i.e., disentangled representations, remains a challenging problem. Existing methods demonstrate some success but are hard to apply to large-scale vision datasets like ImageNet. In this work, we propose a simple post-processing framework to disentangle content and style in learned representations from pre-trained vision models. We model the pre-trained features probabilistically as linearly entangled combinations of the latent content and style factors and develop a simple disentanglement algorithm based on the probabilistic model. We show that the method provably disentangles content and style features and verify its efficacy empirically. Our post-processed features yield significant domain generalization performance improvements when the distribution shift occurs due to style changes or style-related spurious correlations.


#110
Meta Optimal Transport

Brandon Amos · Giulia Luise · samuel cohen · Ievgen Redko

We study the use of amortized optimization to predict optimal transport (OT) maps from the input measures, which we call Meta OT. This helps repeatedly solve similar OT problems between different measures by leveraging the knowledge and information present from past problems to rapidly predict and solve new problems. Otherwise, standard methods ignore the knowledge of the past solutions and suboptimally re-solve each problem from scratch. We instantiate Meta OT models in discrete and continuous settings between grayscale images, spherical data, classification labels, and color palettes and use them to improve the computational time of standard OT solvers. Our source code is available at http://github.com/facebookresearch/meta-ot


#111
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation

Fengxue Zhang · Jialin Song · James Bowden · Alexander Ladd · Yisong Yue · Thomas Desautels · Yuxin Chen

We study Bayesian optimization (BO) in high-dimensional and non-stationary scenarios. Existing algorithms for such scenarios typically require extensive hyperparameter tuning, which limits their practical effectiveness. We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest (ROI) as a superlevel-set of a nonparametric probabilistic model such as a Gaussian process (GP). Our approach is easy to tune, and is able to focus on local region of the optimization space that can be tackled by existing BO methods. The key idea is to use two probabilistic models: a coarse GP to identify the ROI, and a localized GP for optimization within the ROI. We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO without ROI filtering. We demonstrate empirically the effectiveness of BALLET on both synthetic and real-world optimization tasks.


#112
Reparameterized Policy Learning for Multimodal Trajectory Optimization

Zhiao Huang · Litian Liang · Zhan Ling · Xuanlin Li · Chuang Gan · Hao Su

We investigate the challenge of parametrizing policies for reinforcement learning (RL) in high-dimensional continuous action spaces. Our objective is to develop a multimodal policy that overcomes limitations inherent in the commonly-used Gaussian parameterization. To achieve this, we propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories. By conditioning the policy on a latent variable, we derive a novel variational bound as the optimization objective, which promotes exploration of the environment. We then present a practical model-based RL method, called Reparameterized Policy Gradient (RPG), which leverages the multimodal policy parameterization and learned world model to achieve strong exploration capabilities and high data efficiency. Empirical results demonstrate that our method can help agents evade local optima in tasks with dense rewards and solve challenging sparse-reward environments by incorporating an object-centric intrinsic reward. Our method consistently outperforms previous approaches across a range of tasks. Code and supplementary materials are available on the project page https://haosulab.github.io/RPG/


#113
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models

Junnan Li · DONGXU LI · Silvio Savarese · Steven Hoi

The cost of vision-and-language pre-training has become increasingly prohibitive due to end-to-end training of large-scale models. This paper proposes BLIP-2, a generic and efficient pre-training strategy that bootstraps vision-language pre-training from off-the-shelf frozen pre-trained image encoders and frozen large language models. BLIP-2 bridges the modality gap with a lightweight Querying Transformer, which is pre-trained in two stages. The first stage bootstraps vision-language representation learning from a frozen image encoder. The second stage bootstraps vision-to-language generative learning from a frozen language model. BLIP-2 achieves state-of-the-art performance on various vision-language tasks, despite having significantly fewer trainable parameters than existing methods. For example, our model outperforms Flamingo80B by 8.7% on zero-shot VQAv2 with 54x fewer trainable parameters. We also demonstrate the model's emerging capabilities of zero-shot image-to-text generation that can follow natural language instructions.


#114
GAT: Guided Adversarial Training with Pareto-optimal Auxiliary Tasks

Salah GHAMIZI · Jingfeng ZHANG · Maxime Cordy · Mike Papadakis · Masashi Sugiyama · YVES LE TRAON

While leveraging additional training data is well established to improve adversarial robustness, it incurs the unavoidable cost of data collection and the heavy computation to train models. To mitigate the costs, we propose *Guided Adversarial Training * (GAT), a novel adversarial training technique that exploits auxiliary tasks under a limited set of training data. Our approach extends single-task models into multi-task models during the min-max optimization of adversarial training, and drives the loss optimization with a regularization of the gradient curvature across multiple tasks. GAT leverages two types of auxiliary tasks: self-supervised tasks, where the labels are generated automatically, and domain-knowledge tasks, where human experts provide additional labels. Experimentally, under limited data, GAT increases the robust accuracy on CIFAR-10 up to four times (from 11% to 42% robust accuracy) and the robust AUC of CheXpert medical imaging dataset from 50% to 83%. On the full CIFAR-10 dataset, GAT outperforms eight state-of-the-art adversarial training strategies. Our large study across five datasets and six tasks demonstrates that task augmentation is an efficient alternative to data augmentation, and can be key to achieving both clean and robust performances.


#115
Controlling Type Confounding in Ad Hoc Teamwork with Instance-wise Teammate Feedback Rectification

Dong Xing · Pengjie Gu · Qian Zheng · Xinrun Wang · Shanqi Liu · Longtao Zheng · Bo An · Gang Pan

Ad hoc teamwork requires an agent to cooperate with unknown teammates without prior coordination. Many works propose to abstract teammate instances into high-level representation of types and then pre-train the best response for each type. However, most of them do not consider the distribution of teammate instances within a type. This could expose the agent to the hidden risk of type confounding. In the worst case, the best response for an abstract teammate type could be the worst response for all specific instances of that type. This work addresses the issue from the lens of causal inference. We first theoretically demonstrate that this phenomenon is due to the spurious correlation brought by uncontrolled teammate distribution. Then, we propose our solution, CTCAT, which disentangles such correlation through an instance-wise teammate feedback rectification. This operation reweights the interaction of teammate instances within a shared type to reduce the influence of type confounding. The effect of CTCAT is evaluated in multiple domains, including classic ad hoc teamwork tasks and real-world scenarios. Results show that CTCAT is robust to the influence of type confounding, a practical issue that directly hazards the robustness of our trained agents but was unnoticed in previous works.


#116
Revisiting Domain Randomization via Relaxed State-Adversarial Policy Optimization

Yun-Hsuan Lien · Ping-Chun Hsieh · Yu-Shuen Wang

Domain randomization (DR) is widely used in reinforcement learning (RL) to bridge the gap between simulation and reality by maximizing its average returns under the perturbation of environmental parameters. However, even the most complex simulators cannot capture all details in reality due to finite domain parameters and simplified physical models. Additionally, the existing methods often assume that the distribution of domain parameters belongs to a specific family of probability functions, such as normal distributions, which may not be correct. To overcome these limitations, we propose a new approach to DR by rethinking it from the perspective of adversarial state perturbation, without the need for reconfiguring the simulator or relying on prior knowledge about the environment. We also address the issue of over-conservatism that can occur when perturbing agents to the worst states during training by introducing a Relaxed State-Adversarial Algorithm that simultaneously maximizes the average-case and worst-case returns. We evaluate our method by comparing it to state-of-the-art methods, providing experimental results and theoretical proofs to verify its effectiveness. Our source code and appendix are available at https://github.com/sophialien/RAPPO.


#117
Representation Learning with Multi-Step Inverse Kinematics: An Efficient and Optimal Approach to Rich-Observation RL

Zakaria Mhammedi · Dylan Foster · Alexander Rakhlin

We study the design of sample-efficient algorithms for reinforcement learning in the presence of rich, high-dimensional observations, formalized via the Block MDP problem. Existing algorithms suffer from either 1) computational intractability, 2) strong statistical assumptions that are not necessarily satisfied in practice, or 3) suboptimal sample complexity. We address these issues by providing the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level, with minimal statistical assumptions. Our algorithm, MusIK, combines exploration with representation learning based on multi-step inverse kinematics, a learning objective in which the aim is to predict the current action from the current observation and observations in the (potentially distant) future. MusIK is simple and flexible, and can efficiently take advantage of general-purpose function approximation. Our analysis of MusIK leverages several new techniques tailored to non-optimistic algorithms for reward-free exploration, which we anticipate will find broader use.


#118
On the Identifiability and Estimation of Causal Location-Scale Noise Models

Alexander Immer · Christoph Schultheiss · Julia Vogt · Bernhard Schölkopf · Peter Bühlmann · Alexander Marx

We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect $Y$ can be written as a function of the cause $X$ and a noise source $N$ independent of $X$, which may be scaled by a positive function $g$ over the cause, i.e., $Y = f(X) + g(X)N$. Despite the generality of the model class, we show the causal direction is identifiable up to some pathological cases. To empirically validate these theoretical findings, we propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks. Both model the conditional distribution of $Y$ given $X$ as a Gaussian parameterized by its natural parameters. When the feature maps are correctly specified, we prove that our estimator is jointly concave, and a consistent estimator for the cause-effect identification task. Although the the neural network does not inherit those guarantees, it can fit functions of arbitrary complexity, and reaches state-of-the-art performance across benchmarks.


#119
Improving Adversarial Robustness of Deep Equilibrium Models with Explicit Regulations Along the Neural Dynamics

Zonghan Yang · Peng Li · Tianyu Pang · Yang Liu

Deep equilibrium (DEQ) models replace the multiple-layer stacking of conventional deep networks with a fixed-point iteration of a single-layer transformation. Having been demonstrated to be competitive in a variety of real-world scenarios, the adversarial robustness of general DEQs becomes increasingly crucial for their reliable deployment. Existing works improve the robustness of general DEQ models with the widely-used adversarial training (AT) framework, but they fail to exploit the structural uniquenesses of DEQ models. To this end, we interpret DEQs through the lens of neural dynamics and find that AT under-regulates intermediate states. Besides, the intermediate states typically provide predictions with a high prediction entropy. Informed by the correlation between the entropy of dynamical systems and their stability properties, we propose reducing prediction entropy by progressively updating inputs along the neural dynamics. During AT, we also utilize random intermediate states to compute the loss function. Our methods regulate the neural dynamics of DEQ models in this manner. Extensive experiments demonstrate that our methods substantially increase the robustness of DEQ models and even outperform the strong deep network baselines.


#121
Estimating Heterogeneous Treatment Effects: Mutual Information Bounds and Learning Algorithms

Xingzhuo Guo · Yuchen Zhang · Jianmin Wang · Mingsheng Long

Estimating heterogeneous treatment effects (HTE) from observational studies is rising in importance due to the widespread accumulation of data in many fields. Due to the selection bias behind the inaccessibility of counterfactual data, the problem differs fundamentally from supervised learning in a challenging way. However, existing works on modeling selection bias and corresponding algorithms do not naturally generalize to non-binary treatment spaces. To address this limitation, we propose to use mutual information to describe selection bias in estimating HTE and derive a novel error bound using the mutual information between the covariates and the treatments, which is the first error bound to cover general treatment schemes including multinoulli or continuous spaces. We then bring forth theoretically justified algorithms, the Mutual Information Treatment Network (MitNet), using adversarial optimization to reduce selection bias and obtain more accurate HTE estimations. Our algorithm reaches remarkable performance in both simulation study and empirical evaluation.


#122
Margin-based sampling in high dimensions: When being active is less efficient than staying passive

Alexandru Tifrea · Jacob Clarysse · Fanny Yang

It is widely believed that given the same labeling budget, active learning (AL) algorithms like margin-based active learning achieve better predictive performance than passive learning (PL), albeit at a higher computational cost. Recent empirical evidence suggests that this added cost might be in vain, as margin-based AL can sometimes perform even worse than PL. While existing works offer different explanations in the low-dimensional regime, this paper shows that the underlying mechanism is entirely different in high dimensions: we prove for logistic regression that PL outperforms margin-based AL even for noiseless data and when using the Bayes optimal decision boundary for sampling. Insights from our proof indicate that this high-dimensional phenomenon is exacerbated when the separation between the classes is small. We corroborate this intuition with experiments on 20 high-dimensional datasets spanning a diverse range of applications, from finance and histology to chemistry and computer vision.


#123
Non-autoregressive Conditional Diffusion Models for Time Series Prediction

Lifeng Shen · James Kwok

Recently, denoising diffusion models have led to significant breakthroughs in the generation of images, audio and text. However, it is still an open question on how to adapt their strong modeling ability to model time series. In this paper, we propose TimeDiff, a non-autoregressive diffusion model that achieves high-quality time series prediction with the introduction of two novel conditioning mechanisms: future mixup and autoregressive initialization. Similar to teacher forcing, future mixup allows parts of the ground-truth future predictions for conditioning, while autoregressive initialization helps better initialize the model with basic time series patterns such as short-term trends. Extensive experiments are performed on nine real-world datasets. Results show that TimeDiff consistently outperforms existing time series diffusion models, and also achieves the best overall performance across a variety of the existing strong baselines (including transformers and FiLM).


#124
DiscoBAX - Discovery of optimal intervention sets in genomic experiment design

Clare Lyle · Arash Mehrjou · Pascal Notin · Andrew Jesson · Stefan Bauer · Yarin Gal · Patrick Schwab

The discovery of therapeutics to treat genetically-driven pathologies relies on identifying genes involved in the underlying disease mechanism. Existing approaches search over the billions of potential interventions to maximize the expected influence on the target phenotype. However, to reduce the risk of failure in future stages of trials, practical experiment design aims to find a set of interventions that maximally change a target phenotype via diverse mechanisms. We propose DiscoBAX - a sample-efficient method for maximizing the rate of significant discoveries per experiment while simultaneously probing for a wide range of diverse mechanisms during a genomic experiment campaign. We provide theoretical guarantees of optimality under standard assumptions, and conduct a comprehensive experimental evaluation covering both synthetic as well as real-world experimental design tasks. DiscoBAX outperforms existing state-of-the-art methods for experimental design, selecting effective and diverse perturbations in biological systems.


#125
Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Justin Baker · Qingsong Wang · Cory Hauck · Bao Wang

Implicit graph neural networks (IGNNs) -- that solve a fixed-point equilibrium equation using Picard iteration for representation learning -- have shown remarkable performance in learning long-range dependencies (LRD) in the underlying graphs. However, IGNNs suffer from several issues, including 1) their expressivity is limited by their parameterizations for the well-posedness guarantee, 2) IGNNs are unstable in learning LRD, and 3) IGNNs become computationally inefficient when learning LRD. In this paper, we provide a new well-posedness characterization for IGNNs leveraging monotone operator theory, resulting in a much more expressive parameterization than the existing one. We also propose an orthogonal parameterization for IGNN based on Cayley transform to stabilize learning LRD. Furthermore, we leverage Anderson-accelerated operator splitting schemes to efficiently solve for the fixed point of the equilibrium equation of IGNN with monotone or orthogonal parameterization. We verify the computational efficiency and accuracy of the new models over existing IGNNs on various graph learning tasks at both graph and node levels.


#126
Multi-Symmetry Ensembles: Improving Diversity and Generalization via Opposing Symmetries

Charlotte Loh · Seungwook Han · Shivchander Sudalairaj · Rumen Dangovski · Kai Xu · Florian Wenzel · Marin Soljačić · Akash Srivastava

Deep ensembles (DE) have been successful in improving model performance by learning diverse members via the stochasticity of random initialization. While recent works have attempted to promote further diversity in DE via hyperparameters or regularizing loss functions, these methods primarily still rely on a stochastic approach to explore the hypothesis space. In this work, we present Multi-Symmetry Ensembles (MSE), a framework for constructing diverse ensembles by capturing the multiplicity of hypotheses along symmetry axes, which explore the hypothesis space beyond stochastic perturbations of model weights and hyperparameters. We leverage recent advances in contrastive representation learning to create models that separately capture opposing hypotheses of invariant and equivariant functional classes and present a simple ensembling approach to efficiently combine appropriate hypotheses for a given task. We show that MSE effectively captures the multiplicity of conflicting hypotheses that is often required in large, diverse datasets like ImageNet. As a result of their inherent diversity, MSE improves classification performance, uncertainty quantification, and generalization across a series of transfer tasks. Our code is available at https://github.com/clott3/multi-sym-ensem


#127
Equivariance with Learned Canonicalization Functions

Sékou-Oumar Kaba · Arnab Kumar Mondal · Yan Zhang · Yoshua Bengio · Siamak Ravanbakhsh

Symmetry-based neural networks often constrain the architecture in order to achieve invariance or equivariance to a group of transformations. In this paper, we propose an alternative that avoids this architectural constraint by learning to produce canonical representations of the data. These canonicalization functions can readily be plugged into non-equivariant backbone architectures. We offer explicit ways to implement them for some groups of interest. We show that this approach enjoys universality while providing interpretable insights. Our main hypothesis, supported by our empirical results, is that learning a small neural network to perform canonicalization is better than using predefined heuristics. Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks, including image classification, $N$-body dynamics prediction, point cloud classification and part segmentation, while being faster across the board.


#128
Graphically Structured Diffusion Models

Christian Weilbach · William Harvey · Frank Wood

We introduce a framework for automatically defining and learning deep generative models with problem-specific structure. We tackle problem domains that are more traditionally solved by algorithms such as sorting, constraint satisfaction for Sudoku, and matrix factorization. Concretely, we train diffusion models with an architecture tailored to the problem specification. This problem specification should contain a graphical model describing relationships between variables, and often benefits from explicit representation of subcomputations. Permutation invariances can also be exploited. Across a diverse set of experiments we improve the scaling relationship between problem dimension and our model's performance, in terms of both training time and final accuracy. Our code can be found at https://github.com/plai-group/gsdm.


#129
TRAK: Attributing Model Behavior at Scale

Sung Min (Sam) Park · Kristian Georgiev · Andrew Ilyas · Guillaume Leclerc · Aleksander Madry

The goal of data attribution is to trace model predictions back to training data. Despite a long line of work towards this goal, existing approaches to data attribution tend to force users to choose between computational tractability and efficacy. That is, computationally tractable methods can struggle with accurately attributing model predictions in non-convex settings (e.g., in the context of deep neural networks), while methods that are effective in such regimes require training thousands of models, which makes them impractical for large models or datasets. In this work, we introduce TRAK (Tracing with the Randomly-projected After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differentiable models. In particular, by leveraging only a handful of trained models, TRAK can match the performance of attribution methods that require training thousands of models. We demonstrate the utility of TRAK across various modalities and scales: image classifiers trained on ImageNet, vision-language models (CLIP), and language models (BERT and mT5). We provide code for using TRAK (and reproducing our work) at https://github.com/MadryLab/trak .


#130
Fast Online Value-Maximizing Prediction Sets with Conformal Cost Control

Zhen Lin · Shubhendu Trivedi · Cao Xiao · Jimeng Sun

Many real-world multi-label prediction problems involve set-valued predictions that must satisfy specific requirements dictated by downstream usage. We focus on a typical scenario where such requirements, separately encoding value and cost, compete with each other. For instance, a hospital might expect a smart diagnosis system to capture as many severe, often co-morbid, diseases as possible (the value), while maintaining strict control over incorrect predictions (the cost). We present a general pipeline, dubbed as FavMac, to maximize the value while controlling the cost in such scenarios. FavMac can be combined with almost any multi-label classifier, affording distribution-free theoretical guarantees on cost control. Moreover, unlike prior works, FavMac can handle real-world large-scale applications via a carefully designed online update mechanism, which is of independent interest. Our methodological and theoretical contributions are supported by experiments on several healthcare tasks and synthetic datasets - FavMac furnishes higher value compared with several variants and baselines while maintaining strict cost control.


#131
Recovery Bounds on Class-Based Optimal Transport: A Sum-of-Norms Regularization Framework

Arman Rahbar · Ashkan Panahi · Morteza Haghir Chehreghani · Devdatt Dubhashi · Hamid Krim

We develop a novel theoretical framework for understating Optimal Transport (OT) schemes respecting a class structure. For this purpose, we propose a convex OT program with a sum-of-norms regularization term, which provably recovers the underlying class structure under geometric assumptions. Furthermore, we derive an accelerated proximal algorithm with a closed-form projection and proximal operator scheme, thereby affording a more scalable algorithm for computing optimal transport plans. We provide a novel argument for the uniqueness of the optimum even in the absence of strong convexity. Our experiments show that the new regularizer not only results in a better preservation of the class structure in the data but also yields additional robustness to the data geometry, compared to previous regularizers.


#132
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization

Xufeng Cai · Chaobing Song · Stephen Wright · Jelena Diakonikolas

Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t. a Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We prove a faster linear convergence result when a Polyak-Łojasiewicz (PŁ) condition holds. To our knowledge, this work is the first to provide non-asymptotic convergence guarantees --- variance-reduced or not --- for a cyclic block coordinate method in general composite (smooth + nonsmooth) nonconvex settings. Our experimental results demonstrate the efficacy of the proposed cyclic scheme in training deep neural nets.


#133
Toward Efficient Gradient-Based Value Estimation

Arsalan Sharifnassab · Rich Sutton

Gradient-based methods for value estimation in reinforcement learning have favorable stability properties, but they are typically much slower than Temporal Difference (TD) learning methods. We study the root causes of this slowness and show that Mean Square Bellman Error (MSBE) is an ill-conditioned loss function in the sense that its Hessian has large condition-number. To resolve the adverse effect of poor conditioning of MSBE on gradient based methods, we propose a low complexity batch-free proximal method that approximately follows the Gauss-Newton direction and is asymptotically robust to parameterization. Our main algorithm, called RANS, is efficient in the sense that it is significantly faster than the residual gradient methods while having almost the same computational complexity, and is competitive with TD on the classic problems that we tested.


#134
Conditionally Strongly Log-Concave Generative Models

Florentin Guth · Etienne Lempereur · Joan Bruna · Stéphane Mallat

There is a growing gap between the impressive results of deep image generative models and classical algorithms that offer theoretical guarantees. The former suffer from mode collapse or memorization issues, limiting their application to scientific data. The latter require restrictive assumptions such as log-concavity to escape the curse of dimensionality. We partially bridge this gap by introducing conditionally strongly log-concave (CSLC) models, which factorize the data distribution into a product of conditional probability distributions that are strongly log-concave. This factorization is obtained with orthogonal projectors adapted to the data distribution. It leads to efficient parameter estimation and sampling algorithms, with theoretical guarantees, although the data distribution is not globally log-concave. We show that several challenging multiscale processes are conditionally log-concave using wavelet packet orthogonal projectors. Numerical results are shown for physical fields such as the $\varphi^4$ model and weak lensing convergence maps with higher resolution than in previous works.


#135
SinFusion: Training Diffusion Models on a Single Image or Video

Yaniv Nikankin · Niv Haim · Michal Irani

Diffusion models exhibited tremendous progress in image and video generation, exceeding GANs in quality and diversity. However, they are usually trained on very large datasets and are not naturally adapted to manipulate a given input image or video. In this paper we show how this can be resolved by training a diffusion model on a single input image or video. Our image/video-specific diffusion model (SinFusion) learns the appearance and dynamics of the single image or video, while utilizing the conditioning capabilities of diffusion models. It can solve a wide array of image/video-specific manipulation tasks. In particular, our model can learn from few frames the motion and dynamics of a single input video. It can then generate diverse new video samples of the same dynamic scene, extrapolate short videos into long ones (both forward and backward in time) and perform video upsampling. Most of these tasks are not realizable by current video-specific generation methods.


#136
Stable and Consistent Prediction of 3D Characteristic Orientation via Invariant Residual Learning

Seungwook Kim · Chunghyun Park · Yoonwoo Jeong · Jaesik Park · Minsu Cho

Learning to predict reliable characteristic orientations of 3D point clouds is an important yet challenging problem, as different point clouds of the same class may have largely varying appearances. In this work, we introduce a novel method to decouple the shape geometry and semantics of the input point cloud to achieve both stability and consistency. The proposed method integrates shape-geometry-based SO(3)-equivariant learning and shape-semantics-based SO(3)-invariant residual learning, where a final characteristic orientation is obtained by calibrating an SO(3)-equivariant orientation hypothesis using an SO(3)-invariant residual rotation. In experiments, the proposed method not only demonstrates superior stability and consistency but also exhibits state-of-the-art performances when applied to point cloud part segmentation, given randomly rotated inputs.


#137
Learning Dense Correspondences between Photos and Sketches

Xuanchen Lu · Xiaolong Wang · Judith E. Fan

Humans effortlessly grasp the connection between sketches and real-world objects, even when these sketches are far from realistic. Moreover, human sketch understanding goes beyond categorization -- critically, it also entails understanding how individual elements within a sketch correspond to parts of the physical world it represents. What are the computational ingredients needed to support this ability? Towards answering this question, we make two contributions: first, we introduce a new sketch-photo correspondence benchmark, PSC6k, containing 150K annotations of 6250 sketch-photo pairs across 125 object categories, augmenting the existing Sketchy dataset with fine-grained correspondence metadata. Second, we propose a self-supervised method for learning dense correspondences between sketch-photo pairs, building upon recent advances in correspondence learning for pairs of photos. Our model uses a spatial transformer network to estimate the warp flow between latent representations of a sketch and photo extracted by a contrastive learning-based ConvNet backbone. We found that this approach outperformed several strong baselines and produced predictions that were quantitatively consistent with other warp-based methods. However, our benchmark also revealed systematic differences between predictions of the suite of models we tested and those of humans. Taken together, our work suggests a promising path towards developing artificial systems that achieve more human-like understanding of visual images at different levels of abstraction. Project page: https://photo-sketch-correspondence.github.io


#200
VIMA: Robot Manipulation with Multimodal Prompts

Yunfan Jiang · Agrim Gupta · Zichen Zhang · Guanzhi Wang · Yongqiang Dou · Yanjun Chen · Li Fei-Fei · Anima Anandkumar · Yuke Zhu · Jim Fan

Prompt-based learning has emerged as a successful paradigm in natural language processing, where a single general-purpose language model can be instructed to perform any task specified by input prompts. Yet task specification in robotics comes in various forms, such as imitating one-shot demonstrations, following language instructions, and reaching visual goals. They are often considered different tasks and tackled by specialized models. We show that a wide spectrum of robot manipulation tasks can be expressed with multimodal prompts, interleaving textual and visual tokens. Accordingly, we develop a new simulation benchmark that consists of thousands of procedurally-generated tabletop tasks with multimodal prompts, 600K+ expert trajectories for imitation learning, and a four-level evaluation protocol for systematic generalization. We design a transformer-based robot agent, VIMA, that processes these prompts and outputs motor actions autoregressively. VIMA features a recipe that achieves strong model scalability and data efficiency. It outperforms alternative designs in the hardest zero-shot generalization setting by up to $2.9\times$ task success rate given the same training data. With $10\times$ less training data, VIMA still performs $2.7\times$ better than the best competing variant. Code and video demos are available at https://vimalabs.github.io


#201
Jump-Start Reinforcement Learning

Ikechukwu Uchendu · Ted Xiao · Yao Lu · Banghua Zhu · Mengyuan Yan · Joséphine Simon · Matthew Bennice · Chuyuan Fu · Cong Ma · Jiantao Jiao · Sergey Levine · Karol Hausman

Reinforcement learning (RL) provides a theoretical framework for continuously improving an agent's behavior via trial and error. However, efficiently learning policies from scratch can be very difficult, particularly for tasks that present exploration challenges. In such settings, it might be desirable to initialize RL with an existing policy, offline data, or demonstrations. However, naively performing such initialization in RL often works poorly, especially for value-based methods. In this paper, we present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy, and is compatible with any RL approach. In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks: a guide-policy, and an exploration-policy. By using the guide-policy to form a curriculum of starting states for the exploration-policy, we are able to efficiently improve performance on a set of simulated robotic tasks. We show via experiments that it is able to significantly outperform existing imitation and reinforcement learning algorithms, particularly in the small-data regime. In addition, we provide an upper bound on the sample complexity of JSRL and show that with the help of a guide-policy, one can improve the sample complexity for non-optimism exploration methods from exponential in horizon to polynomial.


#202
ILLUME: Rationalizing Vision-Language Models through Human Interactions

Manuel Brack · Patrick Schramowski · Björn Deiseroth · Kristian Kersting

Bootstrapping from pre-trained language models has been proven to be an efficient approach for building vision-language models (VLM) for tasks such as image captioning or visual question answering. However, outputs of these models rarely align with user's rationales for specific answers. In order to improve this alignment and reinforce commonsense reasons, we propose a tuning paradigm based on human interactions with machine-generated data. Our ILLUME executes the following loop: Given an image-question-answer prompt, the VLM samples multiple candidate rationales, and a human critic provides feedback via preference selection, used for fine-tuning. This loop increases the training data and gradually carves out the VLM's rationalization capabilities that are aligned with human intent. Our exhaustive experiments demonstrate that ILLUME is competitive with standard supervised finetuning while using significantly fewer training data and only requiring minimal feedback.


#203
LeadFL: Client Self-Defense against Model Poisoning in Federated Learning

Chaoyi Zhu · Stefanie Roos · Lydia Y. Chen

Federated Learning is highly susceptible to backdoor and targeted attacks as participants can manipulate their data and models locally without any oversight on whether they follow the correct process. There are a number of server-side defenses that mitigate the attacks by modifying or rejecting local updates submitted by clients. However, we find that bursty adversarial patterns with a high variance in the number of malicious clients can circumvent the existing defenses. We propose a client-self defense, LeadFL, that is combined with existing server-side defenses to thwart backdoor and targeted attacks. The core idea of LeadFL is a novel regularization term in local model training such that the Hessian matrix of local gradients is nullified. We provide the convergence analysis of LeadFL and its robustness guarantee in terms of certified radius. Our empirical evaluation shows that LeadFL is able to mitigate bursty adversarial patterns for both iid and non-iid data distributions. It frequently reduces the backdoor accuracy from more than 75% for state-of-the-art defenses to less than 10% while its impact on the main task accuracy is always less than for other client-side defenses.


#204
Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods

Aleksandr Shevchenko · Kevin Kögler · Hamed Hassani · Marco Mondelli

Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.


#205
Pairwise Ranking Losses of Click-Through Rates Prediction for Welfare Maximization in Ad Auctions

Boxiang Lyu · Zhe Feng · Zach Robertson · Sanmi Koyejo

We study the design of loss functions for click-through rates (CTR) to optimize (social) welfare in advertising auctions. Existing works either only focus on CTR predictions without consideration of business objectives (e.g., welfare) in auctions or assume that the distribution over the participants' expected cost-per-impression (eCPM) is known a priori, then use various additional assumptions on the parametric form of the distribution to derive loss functions for predicting CTRs. In this work, we bring back the welfare objectives of ad auctions into CTR predictions and propose a novel weighted rankloss to train the CTR model. Compared to existing literature, our approach provides a provable guarantee on welfare but without assumptions on the eCPMs' distribution while also avoiding the intractability of naively applying existing learning-to-rank methods. Further, we propose a theoretically justifiable technique for calibrating the losses using labels generated from a teacher network, only assuming that the teacher network has bounded $\ell_2$ generalization error. Finally, we demonstrate the advantages of the proposed loss on synthetic and real-world data.


#206
Learning Instance-Specific Augmentations by Capturing Local Invariances

Ning Miao · Tom Rainforth · Emile Mathieu · Yann Dubois · Yee-Whye Teh · Adam Foster · Hyunjik Kim

We introduce InstaAug, a method for automatically learning input-specific augmentations from data. Previous methods for learning augmentations have typically assumed independence between the original input and the transformation applied to that input. This can be highly restrictive, as the invariances we hope our augmentation will capture are themselves often highly input dependent. InstaAug instead introduces a learnable invariance module that maps from inputs to tailored transformation parameters, allowing local invariances to be captured. This can be simultaneously trained alongside the downstream model in a fully end-to-end manner, or separately learned for a pre-trained model. We empirically demonstrate that InstaAug learns meaningful input-dependent augmentations for a wide range of transformation classes, which in turn provides better performance on both supervised and self-supervised tasks.


#207
NTK-approximating MLP Fusion for Efficient Language Model Fine-tuning

Tianxin Wei · Zeming Guo · Yifan Chen · Jingrui He

Fine-tuning a pre-trained language model (PLM) emerges as the predominant strategy in many natural language processing applications. However, even fine-tuning the PLMs and doing inference are expensive, especially on edge devices with low computing power. Some general approaches (e.g. quantization and distillation) have been widely studied to reduce the compute/memory of PLM fine-tuning, while very few one-shot compression techniques are explored. In this paper, we investigate the neural tangent kernel (NTK)--which reveals the gradient descent dynamics of neural networks--of the multilayer perceptrons (MLP) modules in a PLM and propose to coin a lightweight PLM through NTK-approximating MLP fusion. To achieve this, we reconsider the MLP as a bundle of sub-MLPs, and cluster them into a given number of centroids, which can then be restored as a compressed MLP and surprisingly shown to well approximate the NTK of the original PLM. Extensive experiments of PLM fine-tuning on both natural language understanding (NLU) and generation (NLG) tasks are provided to verify the effectiveness of the proposed method MLP fusion. Our code is available at https://github.com/weitianxin/MLP_Fusion.


#208
Compositional Exemplars for In-context Learning

Jiacheng Ye · Zhiyong Wu · Jiangtao Feng · Tao Yu · Lingpeng Kong

Large pretrained language models (LMs) have shown impressive In-Context Learning (ICL) ability, where the model learns to do an unseen task simply by conditioning on a prompt consisting of input-output examples as demonstration, without any parameter updates. The performance of ICL is highly dominated by the quality of the selected in-context examples. However, previous selection methods are mostly based on simple heuristics, leading to sub-optimal performance. In this work, we systematically formulate in-context example selection as a subset selection problem, and optimize it in an end-to-end fashion. We propose CEIL (Compositional Exemplars for In-context Learning), which is instantiated by Determinantal Point Processes (DPPs) to model the interaction between the given input and in-context examples, and optimized through carefully-designed contrastive learning to obtain preference from LMs. We validate CEIL on 12 classification and generation datasets from 7 distinct NLP tasks, including sentiment analysis, phraphrase detection, natural language inference, commonsense reasoning, open-domain question answering, code generation and semantic parsing. Extensive experiments demonstrate the effectiveness, transferability, compositionality of CEIL, shedding new lights on in-context leaning. Our code is released at https://github.com/HKUNLP/icl-ceil.


#210
Provable Multi-instance Deep AUC Maximization with Stochastic Pooling

Dixian Zhu · Bokun Wang · Zhi Chen · Yaxing Wang · Milan Sonka · Xiaodong Wu · Tianbao Yang

This paper considers a novel application of deep AUC maximization (DAM) for multi-instance learning (MIL), in which a single class label is assigned to a bag of instances (e.g., multiple 2D slices of a CT scan for a patient). We address a neglected yet non-negligible computational challenge of MIL in the context of DAM, i.e., bag size is too large to be loaded into GPU memory for backpropagation, which is required by the standard pooling methods of MIL. To tackle this challenge, we propose variance-reduced stochastic pooling methods in the spirit of stochastic optimization by formulating the loss function over the pooled prediction as a multi-level compositional function. By synthesizing techniques from stochastic compositional optimization and non-convex min-max optimization, we propose a unified and provable muli-instance DAM (MIDAM) algorithm with stochastic smoothed-max pooling or stochastic attention-based pooling, which only samples a few instances for each bag to compute a stochastic gradient estimator and to update the model parameter. We establish a similar convergence rate of the proposed MIDAM algorithm as the state-of-the-art DAM algorithms. Our extensive experiments on conventional MIL datasets and medical datasets demonstrate the superiority of our MIDAM algorithm. The method is open-sourced at https://libauc.org/.


#211
Towards Quantum Machine Learning for Constrained Combinatorial Optimization: a Quantum QAP Solver

Xinyu Ye · Ge Yan · Junchi Yan

Combinatorial optimization (CO) on the graph is a crucial but challenging research topic. Recent quantum algorithms provide a new perspective for solving CO problems and have the potential to demonstrate quantum advantage. Quantum Approximate Optimization Algorithm (QAOA) is a well-known quantum heuristic for CO constructed by a parametric quantum circuit. However, QAOA is originally designed for unconstrained problems and the circuit parameters and solutions are jointly solved with time-consuming iterations. In this paper, we propose a novel quantum neural network (QNN) for learning CO problems in a supervised manner to achieve better and faster results. We focus on the Quadratic Assignment Problem (QAP) with matching constraints and the node permutation invariance property. To this end, a quantum neural network called QAP-QNN is devised to translate the QAP into a constrained vertex classification task. Moreover, we study two QAP tasks: Graph Matching and Traveling Salesman Problem on TorchQauntum simulators, and empirically show the effectiveness of our approach.


#212
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models

Rui Li · ST John · Arno Solin

Approximate inference in Gaussian process (GP) models with non-conjugate likelihoods gets entangled with the learning of the model hyperparameters. We improve hyperparameter learning in GP models and focus on the interplay between variational inference (VI) and the learning target. While VI's lower bound to the marginal likelihood is a suitable objective for inferring the approximate posterior, we show that a direct approximation of the marginal likelihood as in Expectation Propagation (EP) is a better learning objective for hyperparameter optimization. We design a hybrid training procedure to bring the best of both worlds: it leverages conjugate-computation VI for inference and uses an EP-like marginal likelihood approximation for hyperparameter learning. We compare VI, EP, Laplace approximation, and our proposed training procedure and empirically demonstrate the effectiveness of our proposal across a wide range of data sets.


#213
Constrained Monotonic Neural Networks

Davor Runje · Sharath M Shankaranarayana

Wider adoption of neural networks in many critical domains such as finance and healthcare is being hindered by the need to explain their predictions and to impose additional constraints on them. Monotonicity constraint is one of the most requested properties in real-world scenarios and is the focus of this paper. One of the oldest ways to construct a monotonic fully connected neural network is to constrain signs on its weights. Unfortunately, this construction does not work with popular non-saturated activation functions as it can only approximate convex functions. We show this shortcoming can be fixed by constructing two additional activation functions from a typical unsaturated monotonic activation function and employing each of them on the part of neurons. Our experiments show this approach of building monotonic neural networks has better accuracy when compared to other state-of-the-art methods, while being the simplest one in the sense of having the least number of parameters, and not requiring any modifications to the learning procedure or post-learning steps. Finally, we prove it can approximate any continuous monotone function on a compact subset of $\mathbb{R}^n$.


#214
General Covariance Data Augmentation for Neural PDE Solvers

Fanaskov Vladimir · Tianchi Yu · Alexander Rudikov · Ivan Oseledets

The growing body of research shows how to replace classical partial differential equation (PDE) integrators with neural networks. The popular strategy is to generate the input-output pairs with a PDE solver, train the neural network in the regression setting, and use the trained model as a cheap surrogate for the solver. The bottleneck in this scheme is the number of expensive queries of a PDE solver needed to generate the dataset. To alleviate the problem, we propose a computationally cheap augmentation strategy based on general covariance and simple random coordinate transformations. Our approach relies on the fact that physical laws are independent of the coordinate choice, so the change in the coordinate system preserves the type of a parametric PDE and only changes PDE's data (e.g., initial conditions, diffusion coefficient). For tried neural networks and partial differential equations, proposed augmentation improves test error by 23% on average. The worst observed result is a 17% increase in test error for multilayer perceptron, and the best case is a 80% decrease for dilated residual network.


#215
Fast as CHITA: Neural Network Pruning with Combinatorial Optimization

Riade Benbaki · Wenyu Chen · Xiang Meng · Hussein Hazimeh · Natalia Ponomareva · Zhe Zhao · Rahul Mazumder

The sheer size of modern neural networks makes model serving a serious computational challenge. A popular class of compression techniques overcomes this challenge by pruning or sparsifying the weights of pretrained networks. While useful, these techniques often face serious tradeoffs between computational requirements and compression quality. In this work, we propose a novel optimization-based pruning framework that considers the combined effect of pruning (and updating) multiple weights subject to a sparsity constraint. Our approach, CHITA, extends the classical Optimal Brain Surgeon framework and results in significant improvements in speed, memory, and performance over existing optimization-based approaches for network pruning. CHITA's main workhorse performs combinatorial optimization updates on a memory-friendly representation of local quadratic approximation(s) of the loss function. On a standard benchmark of pretrained models and datasets, CHITA leads to superior sparsity-accuracy tradeoffs than competing methods. For example, for MLPNet with only 2% of the weights retained, our approach improves the accuracy by 63% relative to the state of the art. Furthermore, when used in conjunction with fine-tuning SGD steps, our method achieves significant accuracy gains over state-of-the-art approaches. Our code is publicly available at: https://github.com/mazumder-lab/CHITA .


#216
GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

Hanjing Wang · Man-Kit Sit · Congjie He · Ying Wen · Weinan Zhang · Jun Wang · Yaodong Yang · Luo Mai

This paper introduces a distributed, GPU-centric experience replay system, GEAR, designed to perform scalable reinforcement learning (RL) with large sequence models (such as transformers). With such models, existing systems such as Reverb face considerable bottlenecks in memory, computation, and communication. GEAR, however, optimizes memory efficiency by enabling the memory resources on GPU servers (including host memory and device memory) to manage trajectory data. Furthermore, it facilitates decentralized GPU devices to expedite various trajectory selection strategies, circumventing computational bottlenecks. GEAR is equipped with GPU kernels capable of collecting trajectories using zero-copy access to host memory, along with remote-directed-memory access over InfiniBand, improving communication efficiency. Cluster experiments have shown that GEAR can achieve performance levels up to 6× greater than Reverb when training state-of-the-art large RL models. GEAR is open-sourced at https:// github.com/bigrl-team/gear.


#217
Learning to Design Analog Circuits to Meet Threshold Specifications

Dmitrii Krylov · Pooya Khajeh · Junhan Ouyang · Thomas Reeves · Tongkai Liu · Hiba Ajmal · Hamidreza Aghasi · Roy Fox

Automated design of analog and radio-frequency circuits using supervised or reinforcement learning from simulation data has recently been studied as an alternative to manual expert design. It is straightforward for a design agent to learn an inverse function from desired performance metrics to circuit parameters. However, it is more common for a user to have threshold performance criteria rather than an exact target vector of feasible performance measures. In this work, we propose a method for generating from simulation data a dataset on which a system can be trained via supervised learning to design circuits to meet threshold specifications. We moreover perform the to-date most extensive evaluation of automated analog circuit design, including experimenting in a significantly more diverse set of circuits than in prior work, covering linear, nonlinear, and autonomous circuit configurations, and show that our method consistently reaches success rate better than 90% at 5% error margin, while also improving data efficiency by upward of an order of magnitude.


#218
Overcoming Simplicity Bias in Deep Networks using a Feature Sieve

Rishabh Tiwari · Pradeep Shenoy

Simplicity bias is the concerning tendency of deep networks to over-depend on simple, weakly predictive features, to the exclusion of stronger, more complex features. This causes biased, incorrect model predictions in many real-world applications, exacerbated by incomplete training data containing spurious feature-label correlations. We propose a direct, interventional method for addressing simplicity bias in DNNs, which we call the feature sieve. We aim to automatically identify and suppress easily-computable spurious features in lower layers of the network, thereby allowing the higher network levels to extract and utilize richer, more meaningful representations. We provide concrete evidence of this differential suppression & enhancement of relevant features on both controlled datasets and real-world images, and report substantial gains on many real-world debiasing benchmarks (11.4% relative gain on Imagenet-A; 3.2% on BAR, etc). Crucially, we outperform many baselines that incorporate knowledge about known spurious or biased attributes, despite our method not using any such information. We believe that our feature sieve work opens up exciting new research directions in automated adversarial feature extraction & representation learning for deep networks.


#219
Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single

Paul Vicol

We propose an evolution strategies-based algorithm for estimating gradients in unrolled computation graphs, called ES-Single. Similarly to the recently-proposed Persistent Evolution Strategies (PES), ES-Single is unbiased, and overcomes chaos arising from recursive function applications by smoothing the meta-loss landscape. ES-Single samples a single perturbation per particle, that is kept fixed over the course of an inner problem (e.g., perturbations are not re-sampled for each partial unroll). Compared to PES, ES-Single is simpler to implement and has lower variance: the variance of ES-Single is constant with respect to the number of truncated unrolls, removing a key barrier in applying ES to long inner problems using short truncations. We show that ES-Single is unbiased for quadratic inner problems, and demonstrate empirically that its variance can be substantially lower than that of PES. ES-Single consistently outperforms PES on a variety of tasks, including a synthetic benchmark task, hyperparameter optimization, training recurrent neural networks, and training learned optimizers.


#220
Robust One-Class Classification with Signed Distance Function using 1-Lipschitz Neural Networks

Louis Bethune · Paul Novello · Guillaume Coiffier · Thibaut Boissin · Mathieu Serrurier · Quentin VINCENOT · Andres Troya-Galvis

We propose a new method, dubbed One Class Signed Distance Function (OCSDF), to perform One Class Classification (OCC) by provably learning the Signed Distance Function (SDF) to the boundary of the support of any distribution. The distance to the support can be interpreted as a normality score, and its approximation using 1-Lipschitz neural networks provides robustness bounds against $l2$ adversarial attacks, an under-explored weakness of deep learning-based OCC algorithms. As a result, OCSDF comes with a new metric, certified AUROC, that can be computed at the same cost as any classical AUROC. We show that OCSDF is competitive against concurrent methods on tabular and image data while being way more robust to adversarial attacks, illustrating its theoretical properties. Finally, as exploratory research perspectives, we theoretically and empirically show how OCSDF connects OCC with image generation and implicit neural surface parametrization.


#221
Gradient Descent in Neural Networks as Sequential Learning in Reproducing Kernel Banach Space

Alistair Shilton · Sunil Gupta · Santu Rana · Svetha Venkatesh

The study of Neural Tangent Kernels (NTKs) has provided much needed insight into convergence and generalization properties of neural networks in the over-parametrized (wide) limit by approximating the network using a first-order Taylor expansion with respect to its weights in the neighborhood of their initialization values. This allows neural network training to be analyzed from the perspective of reproducing kernel Hilbert spaces (RKHS), which is informative in the over-parametrized regime, but a poor approximation for narrower networks as the weights change more during training. Our goal is to extend beyond the limits of NTK toward a more general theory. We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights as an inner product of two feature maps, respectively from data and weight-step space, to feature space, allowing neural network training to be analyzed from the perspective of reproducing kernel Banach space (RKBS). We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning in RKBS. Using this, we present novel bound on uniform convergence where the iterations count and learning rate play a central role, giving new theoretical insight into neural network training.


#222
How Powerful are Shallow Neural Networks with Bandlimited Random Weights?

Ming Li · Sho Sonoda · Feilong Cao · Yu Guang Wang · Jiye Liang

We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly reconstruct the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.


#223
Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere

Boris Bonev · Thorsten Kurth · Christian Hundt · Jaideep Pathak · Maximilian Baust · Karthik Kashinath · Anima Anandkumar

Fourier Neural Operators (FNOs) have proven to be an efficient and effective method for resolution-independent operator learning in a broad variety of application areas across scientific machine learning. A key reason for their success is their ability to accurately model long-range dependencies in spatio-temporal data by learning global convolutions in a computationally efficient manner. To this end, FNOs rely on the discrete Fourier transform (DFT), however, DFTs cause visual and spectral artifacts as well as pronounced dissipation when learning operators in spherical coordinates by incorrectly assuming flat geometry. To overcome this limitation, we generalize FNOs on the sphere, introducing Spherical FNOs (SFNOs) for learning operators on spherical geometries. We apply SFNOs to forecasting atmo- spheric dynamics, and demonstrate stable autoregressive rollouts for a year of simulated time (1,460 steps), while retaining physically plausible dynamics. The SFNO has important implications for machine learning-based simulation of climate dynamics that could eventually help accelerate our response to climate change.


#224
A Conditional Normalizing Flow for Accelerated Multi-Coil MR Imaging

Jeffrey Wen · Rizwan Ahmad · Phillip Schniter

Accelerated magnetic resonance (MR) imaging attempts to reduce acquisition time by collecting data below the Nyquist rate. As an ill-posed inverse problem, many plausible solutions exist, yet the majority of deep learning approaches generate only a single solution. We instead focus on sampling from the posterior distribution, which provides more comprehensive information for downstream inference tasks. To do this, we design a novel conditional normalizing flow (CNF) that infers the signal component in the measurement operator's nullspace, which is later combined with measured data to form complete images. Using fastMRI brain and knee data, we demonstrate fast inference and accuracy that surpasses recent posterior sampling techniques for MRI. Code is available at https://github.com/jwen307/mri_cnf


#120
LongCoder: A Long-Range Pre-trained Language Model for Code Completion

Daya Guo · Canwen Xu · Nan Duan · Jian Yin · Julian McAuley

In this paper, we introduce a new task for code completion that focuses on handling long code input and propose a sparse Transformer model, called LongCoder, to address this task. LongCoder employs a sliding window mechanism for self-attention and introduces two types of globally accessible tokens - bridge tokens and memory tokens - to improve performance and efficiency. Bridge tokens are inserted throughout the input sequence to aggregate local information and facilitate global interaction, while memory tokens are included to highlight important statements that may be invoked later and need to be memorized, such as package imports and definitions of classes, functions, or structures. We conduct experiments on a newly constructed dataset that contains longer code context and the publicly available CodeXGLUE benchmark. Experimental results demonstrate that LongCoder achieves superior performance on code completion tasks compared to previous models while maintaining comparable efficiency in terms of computational resources during inference.


#225
Deep Temporal Sets with Evidential Reinforced Attentions for Unique Behavioral Pattern Discovery

Dingrong Wang · Deep Pandey · Krishna Neupane · Zhiwei Yu · Ervine Zheng · Zhi Zheng · Qi Yu

Machine learning-driven human behavior analysis is gaining attention in behavioral/mental healthcare, due to its potential to identify behavioral patterns that cannot be recognized by traditional assessments. Real-life applications, such as digital behavioral biomarker identification, often require the discovery of complex spatiotemporal patterns in multimodal data, which is largely under-explored. To fill this gap, we propose a novel model that integrates uniquely designed Deep Temporal Sets (DTS) with Evidential Reinforced Attentions (ERA). DTS captures complex temporal relationships in the input and generates a set-based representation, while ERA captures the policy network's uncertainty and conducts evidence-aware exploration to locate attentive regions in behavioral data. Using child-computer interaction data as a testing platform, we demonstrate the effectiveness of DTS-ERA in differentiating children with Autism Spectrum Disorder and typically developing children based on sequential multimodal visual and touch behaviors. Comparisons with baseline methods show that our model achieves superior performance and has the potential to provide objective, quantitative, and precise analysis of complex human behaviors.


#226
Distortion and Uncertainty Aware Loss for Panoramic Depth Completion

Zhiqiang Yan · Xiang Li · Kun Wang · Shuo Chen · Jun Li · Jian Yang

Standard MSE or MAE loss function is commonly used in limited field-of-vision depth completion, treating each pixel equally under a basic assumption that all pixels have same contribution during optimization. Recently, with the rapid rise of panoramic photography, panoramic depth completion (PDC) has raised increasing attention in 3D computer vision. However, the assumption is inapplicable to panoramic data due to its latitude-wise distortion and high uncertainty nearby textures and edges. To handle these challenges, we propose distortion and uncertainty aware loss (DUL) that consists of a distortion-aware loss and an uncertainty-aware loss. The distortion-aware loss is designed to tackle the panoramic distortion caused by equirectangular projection, whose coordinate transformation relation is used to adaptively calculate the weight of the latitude-wise distortion, distributing uneven importance instead of the equal treatment for each pixel. The uncertainty-aware loss is presented to handle the inaccuracy in non-smooth regions. Specifically, we characterize uncertainty into PDC solutions under Bayesian deep learning framework, where a novel consistent uncertainty estimation constraint is designed to learn the consistency between multiple uncertainty maps of a single panorama. This consistency constraint allows model to produce more precise uncertainty estimation that is robust to feature deformation. Extensive experiments show the superiority of our method over standard loss functions, reaching the state of the art.


#227
UPop: Unified and Progressive Pruning for Compressing Vision-Language Transformers

Dachuan Shi · Chaofan Tao · Ying Jin · Zhendong Yang · Chun Yuan · Jiaqi Wang

Real-world data contains a vast amount of multimodal information, among which vision and language are the two most representative modalities. Moreover, increasingly heavier models, e.g., Transformers, have attracted the attention of researchers to model compression. However, how to compress multimodal models, especially vison-language Transformers, is still under-explored. This paper proposes the Unified and Progressive Pruning (UPop) as a universal vison-language Transformer compression framework, which incorporates 1) unifiedly searching multimodal subnets in a continuous optimization space from the original model, which enables automatic assignment of pruning ratios among compressible modalities and structures; 2) progressively searching and retraining the subnet, which maintains convergence between the search and retrain to attain higher compression ratios. Experiments on various tasks, datasets, and model architectures demonstrate the effectiveness and versatility of the proposed UPop framework. The code is available at https://github.com/sdc17/UPop.


#228
Equivariant Polynomials for Graph Neural Networks

Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman

Graph Neural Networks (GNN) are inherently limited in their expressive power. Recent seminal works (Xu et al., 2019; Morris et al., 2019b) introduced the Weisfeiler-Lehman (WL) hierarchy as a measure of expressive power. Although this hierarchy has propelled significant advances in GNN analysis and architecture developments, it suffers from several significant limitations. These include a complex definition that lacks direct guidance for model improvement and a WL hierarchy that is too coarse to study current GNNs. This paper introduces an alternative expressive power hierarchy based on the ability of GNNs to calculate equivariant polynomials of a certain degree. As a first step, we provide a full characterization of all equivariant graph polynomials by introducing a concrete basis, significantly generalizing previous results. Each basis element corresponds to a specific multi-graph, and its computation over some graph data input corresponds to a tensor contraction problem. Second, we propose algorithmic tools for evaluating the expressiveness of GNNs using tensor contraction sequences, and calculate the expressive power of popular GNNs. Finally, we enhance the expressivity of common GNN architectures by adding polynomial features or additional operations / aggregations inspired by our theory. These enhanced GNNs demonstrate state-of-the-art results in experiments across multiple graph learning benchmarks.


#231
COMCAT: Towards Efficient Compression and Customization of Attention-Based Vision Models

Jinqi Xiao · Miao Yin · Yu Gong · Xiao Zang · Jian Ren · Bo Yuan

Attention-based vision models, such as Vision Transformer (ViT) and its variants, have shown promising performance in various computer vision tasks. However, these emerging architectures suffer from large model sizes and high computational costs, calling for efficient model compression solutions. To date, pruning ViTs has been well studied, while other compression strategies that have been widely applied in CNN compression, e.g., model factorization, is little explored in the context of ViT compression. This paper explores an efficient method for compressing vision transformers to enrich the toolset for obtaining compact attention-based vision models. Based on the new insight on the multi-head attention layer, we develop a highly efficient ViT compression solution, which outperforms the state-of-the-art pruning methods. For compressing DeiT-small and DeiT-base models on ImageNet, our proposed approach can achieve $0.45\%$ and $0.76\%$ higher top-1 accuracy even with fewer parameters. Our finding can also be applied to improve the customization efficiency of text-to-image diffusion models, with much faster training (up to $2.6\times$ speedup) and lower extra storage cost (up to $1927.5\times$ reduction) than the existing works.


#229
Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering

Mingqi Yang · Wenjie Feng · Yanming Shen · Bryan Hooi

Proposing an effective and flexible matrix to represent a graph is a fundamental challenge that has been explored from multiple perspectives, e.g., filtering in Graph Fourier Transforms. In this work, we develop a novel and general framework which unifies many existing GNN models from the view of parameterized decomposition and filtering, and show how it helps to enhance the flexibility of GNNs while alleviating the smoothness and amplification issues of existing models. Essentially, we show that the extensively studied spectral graph convolutions with learnable polynomial filters are constrained variants of this formulation, and releasing these constraints enables our model to express the desired decomposition and filtering simultaneously. Based on this generalized framework, we develop models that are simple in implementation but achieve significant improvements and computational efficiency on a variety of graph learning tasks. Code is available at https://github.com/qslim/PDF.


#230
Geometric Latent Diffusion Models for 3D Molecule Generation

Minkai Xu · Alexander Powers · Ron Dror · Stefano Ermon · Jure Leskovec

Generative models, especially diffusion models (DMs), have achieved promising results for generating feature-rich geometries and advancing foundational science problems such as molecule design. Inspired by the recent huge success of Stable (latent) Diffusion models, we propose a novel and principled method for 3D molecule generation named Geometric Latent Diffusion Models (GeoLDM). GeoLDM is the first latent DM model for the molecular geometry domain, composed of autoencoders encoding structures into continuous latent codes and DMs operating in the latent space. Our key innovation is that for modeling the 3D molecular geometries, we capture its critical roto-translational equivariance constraints by building a point-structured latent space with both invariant scalars and equivariant tensors. Extensive experiments demonstrate that GeoLDM can consistently achieve better performance on multiple molecule generation benchmarks, with up to 7% improvement for the valid percentage of large biomolecules. Results also demonstrate GeoLDM's higher capacity for controllable generation thanks to the latent modeling. Code is provided at https://github.com/MinkaiXu/GeoLDM.


#232
Constrained Decision Transformer for Offline Safe Reinforcement Learning

Zuxin Liu · Zijian Guo · Yihang Yao · Zhepeng Cen · Wenhao Yu · Tingnan Zhang · Ding Zhao

Safe reinforcement learning (RL) trains a constraint satisfaction policy by interacting with the environment. We aim to tackle a more challenging problem: learning a safe policy from an offline dataset. We study the offline safe RL problem from a novel multi-objective optimization perspective and propose the $\epsilon$-reducible concept to characterize problem difficulties. The inherent trade-offs between safety and task performance inspire us to propose the constrained decision transformer (CDT) approach, which can dynamically adjust the trade-offs during deployment. Extensive experiments show the advantages of the proposed method in learning an adaptive, safe, robust, and high-reward policy. CDT outperforms its variants and strong offline safe RL baselines by a large margin with the same hyperparameters across all tasks, while keeping the zero-shot adaptation capability to different constraint thresholds, making our approach more suitable for real-world RL under constraints.


#233
Warm-Start Actor-Critic: From Approximation Error to Sub-optimality Gap

Hang Wang · Sen Lin · Junshan Zhang

Warm-Start reinforcement learning (RL), aided by a prior policy obtained from offline training, is emerging as a promising RL approach for practical applications. Recent empirical studies have demonstrated that the performance of Warm-Start RL can be improved quickly in some cases but become stagnant in other cases, especially when the function approximation is used. To this end, the primary objective of this work is to build a fundamental understanding on ''whether and when online learning can be significantly accelerated by a warm-start policy from offline RL?''. Specifically, we consider the widely used Actor-Critic (A-C) method with a prior policy. We first quantify the approximation errors in the Actor update and the Critic update, respectively. Next, we cast the Warm-Start A-C algorithm as Newton's method with perturbation, and study the impact of the approximation errors on the finite-time learning performance with inaccurate Actor/Critic updates. Under some general technical conditions, we derive the upper bounds, which shed light on achieving the desired finite-learning performance in the Warm-Start A-C algorithm. In particular, our findings reveal that it is essential to reduce the algorithm bias in online learning. We also obtain lower bounds on the sub-optimality gap of the Warm-Start A-C algorithm to quantify the impact of the bias and error propagation.


#234
Robust Satisficing MDPs

Haolin RUAN · Siyu Zhou · Zhi Chen · Chin Pang Ho

Despite being a fundamental building block for reinforcement learning, Markov decision processes (MDPs) often suffer from ambiguity in model parameters. Robust MDPs are proposed to overcome this challenge by optimizing the worst-case performance under ambiguity. While robust MDPs can provide reliable policies with limited data, their worst-case performances are often overly conservative, and so they do not offer practical insights into the actual performance of these reliable policies. This paper proposes robust satisficing MDPs (RSMDPs), where the expected returns of feasible policies are softly-constrained to achieve a user-specified target under ambiguity. We derive a tractable reformulation for RSMDPs and develop a first-order method for solving large instances. Experimental results demonstrate that RSMDPs can prescribe policies to achieve their targets, which are much higher than the optimal worst-case returns computed by robust MDPs. Moreover, the average and percentile performances of our model are competitive among other models. We also demonstrate the scalability of the proposed algorithm compared with a state-of-the-art commercial solver.


#235
Featured Graph Coarsening with Similarity Guarantees

MANOJ KUMAR · Anurag Sharma · Shashwat Saxena · Sandeep Kumar

Graph coarsening is a dimensionality reduction technique that aims to learn a smaller-tractable graph while preserving the properties of the original input graph. However, many real-world graphs also have features or contexts associated with each node. The existing graph coarsening methods do not consider the node features and rely solely on a graph matrix(e.g., adjacency and Laplacian) to coarsen graphs. However, some recent deep learning-based graph coarsening methods are designed for specific tasks considering both node features and graph matrix. In this paper, we introduce a novel optimization-based framework for graph coarsening that takes both the graph matrix and the node features as the input and jointly learns the coarsened graph matrix and the coarsened feature matrix while ensuring desired properties. To the best of our knowledge, this is the first work that guarantees that the learned coarsened graph is $\epsilon\in[0,1)$ similar to the original graph. Extensive experiments with both real and synthetic benchmark datasets elucidate the proposed framework's efficacy and applicability for numerous graph-based applications, including graph clustering, node classification, stochastic block model identification, and graph summarization.


#236
DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models

Liangbin Xie · Xintao Wang · Xiangyu Chen · Gen Li · Ying Shan · Jiantao Zhou · Chao Dong

Image super-resolution (SR) with generative adversarial networks (GAN) has achieved great success in restoring realistic details. However, it is notorious that GAN-based SR models will inevitably produce unpleasant and undesirable artifacts, especially in practical scenarios. Previous works typically suppress artifacts with an extra loss penalty in the training phase. They only work for in-distribution artifact types generated during training. When applied in real-world scenarios, we observe that those improved methods still generate obviously annoying artifacts during inference. In this paper, we analyze the cause and characteristics of the GAN artifacts produced in unseen test data without ground-truths. We then develop a novel method, namely, DeSRA, to Detect and then ``Delete'' those SR Artifacts in practice. Specifically, we propose to measure a relative local variance distance from MSE-SR results and GAN-SR results, and locate the problematic areas based on the above distance and semantic-aware thresholds. After detecting the artifact regions, we develop a finetune procedure to improve GAN-based SR models with a few samples, so that they can deal with similar types of artifacts in more unseen real data. Equipped with our DeSRA, we can successfully eliminate artifacts from inference and improve the ability of SR models to be applied in real-world scenarios. The code will be available at https://github.com/TencentARC/DeSRA.


#237
Revisiting Data-Free Knowledge Distillation with Poisoned Teachers

Junyuan Hong · Yi Zeng · Shuyang Yu · Lingjuan Lyu · Ruoxi Jia · Jiayu Zhou

Data-free knowledge distillation (KD) helps transfer knowledge from a pre-trained model (known as the teacher model) to a smaller model (known as the student model) without access to the original training data used for training the teacher model. However, the security of the synthetic or out-of-distribution (OOD) data required in data-free KD is largely unknown and under-explored. In this work, we make the first effort to uncover the security risk of data-free KD w.r.t. untrusted pre-trained models. We then propose Anti-Backdoor Data-Free KD (ABD), the first plug-in defensive method for data-free KD methods to mitigate the chance of potential backdoors being transferred. We empirically evaluate the effectiveness of our proposed ABD in diminishing transferred backdoor knowledge while maintaining compatible downstream performances as the vanilla KD. We envision this work as a milestone for alarming and mitigating the potential backdoors in data-free KD. Codes are released at https://github.com/illidanlab/ABD .


#300
Abstract-to-Executable Trajectory Translation for One-Shot Task Generalization

Stone Tao · Xiaochen Li · Tongzhou Mu · Zhiao Huang · Yuzhe Qin · Hao Su

Training long-horizon robotic policies in complex physical environments is essential for many applications, such as robotic manipulation. However, learning a policy that can generalize to unseen tasks is challenging. In this work, we propose to achieve one-shot task generalization by decoupling plan generation and plan execution. Specifically, our method solves complex long-horizon tasks in three steps: build a paired abstract environment by simplifying geometry and physics, generate abstract trajectories, and solve the original task by an abstract-to-executable trajectory translator. In the abstract environment, complex dynamics such as physical manipulation are removed, making abstract trajectories easier to generate. However, this introduces a large domain gap between abstract trajectories and the actual executed trajectories as abstract trajectories lack low-level details and are not aligned frame-to-frame with the executed trajectory. In a manner reminiscent of language translation, our approach leverages a seq-to-seq model to overcome the large domain gap between the abstract and executable trajectories, enabling the low-level policy to follow the abstract trajectory. Experimental results on various unseen long-horizon tasks with different robot embodiments demonstrate the practicability of our methods to achieve one-shot task generalization.


#301
Efficient Sequence Transduction by Jointly Predicting Tokens and Durations

Hainan Xu · Fei Jia · Somshubra Majumdar · He Huang · Shinji Watanabe · Boris Ginsburg

This paper introduces a novel Token-and-Duration Transducer (TDT) architecture for sequence-to-sequence tasks. TDT extends conventional RNN-Transducer architectures by jointly predicting both a token and its duration, i.e. the number of input frames covered by the emitted token. This is achieved by using a joint network with two outputs which are independently normalized to generate distributions over tokens and durations. During inference, TDT models can skip input frames guided by the predicted duration output, which makes them significantly faster than conventional Transducers which process the encoder output frame by frame. TDT models achieve both better accuracy and significantly faster inference than conventional Transducers on different sequence transduction tasks. TDT models for Speech Recognition achieve better accuracy and up to 2.82X faster inference than conventional Transducers. TDT models for Speech Translation achieve an absolute gain of over 1 BLEU on the MUST-C test compared with conventional Transducers, and its inference is 2.27X faster. In Speech Intent Classification and Slot Filling tasks, TDT models improve the intent accuracy by up to over 1% (absolute) over conventional Transducers, while running up to 1.28X faster. Our implementation of the TDT model will be open-sourced with the NeMo (https://github.com/NVIDIA/NeMo) toolkit.


#302
LEVER: Learning to Verify Language-to-Code Generation with Execution

Ansong Ni · Srinivasan Iyer · Dragomir Radev · Veselin Stoyanov · Scott Yih · Sida Wang · Xi Victoria Lin

The advent of large language models trained on code (code LLMs) has led to significant progress in language-to-code generation. State-of-the-art approaches in this area combine LLM decoding with sample pruning and reranking using test cases or heuristics based on the execution results. However, it is challenging to obtain test cases for many real-world language-to-code applications, and heuristics cannot well capture the semantic features of the execution results, such as data type and value range, which often indicates the correctness of the program. In this work, we propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results. Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results. The sampled programs are reranked by combining the verification score with the LLM generation probability, and marginalizing over programs with the same execution results. On four datasets across the domains of table QA, math QA and basic Python programming, LEVER consistently improves over the base code LLMs (4.6% to 10.9% with code-davinci-002) and achieves new state-of-the-art results on all of them.


#303
Interval Bound Interpolation for Few-shot Learning with Few Tasks

Shounak Datta · Sankha Subhra Mullick · Anish Chakrabarty · Swagatam Das

Few-shot learning aims to transfer the knowledge acquired from training on a diverse set of tasks to unseen tasks from the same task distribution, with a limited amount of labeled data. The underlying requirement for effective few-shot generalization is to learn a good representation of the task manifold. This becomes more difficult when only a limited number of tasks are available for training. In such a few-task few-shot setting, it is beneficial to explicitly preserve the local neighborhoods from the task manifold and exploit this to generate artificial tasks for training. To this end, we introduce the notion of interval bounds from the provably robust training literature to few-shot learning. The interval bounds are used to characterize neighborhoods around the training tasks. These neighborhoods can then be preserved by minimizing the distance between a task and its respective bounds. We then use a novel strategy to artificially form new tasks for training by interpolating between the available tasks and their respective interval bounds. We apply our framework to both model-agnostic meta-learning as well as prototype-based metric-learning paradigms. The efficacy of our proposed approach is evident from the improved performance on several datasets from diverse domains in comparison to recent methods.


#304
Towards Sustainable Learning: Coresets for Data-efficient Deep Learning

Yu Yang · Hao Kang · Baharan Mirzasoleiman

To improve the efficiency and sustainability of learning deep models, we propose CREST, the first scalable framework with rigorous theoretical guarantees to identify the most valuable examples for training non-convex models, particularly deep networks. To guarantee convergence to a stationary point of a non-convex function, CREST models the non-convex loss as a series of quadratic functions and extracts a coreset for each quadratic sub-region. In addition, to ensure faster convergence of stochastic gradient methods such as (mini-batch) SGD, CREST iteratively extracts multiple mini-batch coresets from larger random subsets of training data, to ensure nearly-unbiased gradients with small variances. Finally, to further improve scalability and efficiency, CREST identifies and excludes the examples that are learned from the coreset selection pipeline. Our extensive experiments on several deep networks trained on vision and NLP datasets, including CIFAR-10, CIFAR-100, TinyImageNet, and SNLI, confirm that CREST speeds up training deep networks on very large datasets, by 1.7x to 2.5x with minimum loss in the performance. By analyzing the learning difficulty of the subsets selected by CREST, we show that deep models benefit the most by learning from subsets of increasing difficulty levels.


#305
Conformal Prediction Sets for Graph Neural Networks

Soroush H. Zargarbashi · Simone Antonelli · Aleksandar Bojchevski

Despite the widespread use of graph neural networks (GNNs) we lack methods to reliably quantify their uncertainty. We propose a conformal procedure to equip GNNs with prediction sets that come with distribution-free guarantees -- the output set contains the true label with arbitrarily high probability. Our post-processing procedure can wrap around any (pretrained) GNN, and unlike existing methods, results in meaningful sets even when the model provides only the top class. The key idea is to diffuse the node-wise conformity scores to incorporate neighborhood information. By leveraging the network homophily we construct sets with comparable or better efficiency (average size) and significantly improved singleton hit ratio (correct sets of size one). In addition to an extensive empirical evaluation, we investigate the theoretical conditions under which smoothing provably improves efficiency.


#306
Continuously Parameterized Mixture Models

Christopher Bender · Yifeng Shi · Marc Niethammer · Junier Oliva

Mixture models are universal approximators of smooth densities but are difficult to utilize in complicated datasets due to restrictions on typically available modes and challenges with initialiations. We show that by continuously parameterizing a mixture of factor analyzers using a learned ordinary differential equation, we can improve the fit of mixture models over direct methods. Once trained, the mixture components can be extracted and the neural ODE can be discarded, leaving us with an effective, but low-resource model. We additionally explore the use of a training curriculum from an easy-to-model latent space extracted from a normalizing flow to the more complex input space and show that the smooth curriculum helps to stabilize and improve results with and without the continuous parameterization. Finally, we introduce a hierarchical version of the model to enable more flexible, robust classification and clustering, and show substantial improvements against traditional parameterizations of GMMs.


#307
Why Random Pruning Is All We Need to Start Sparse

Advait Gadhikar · Sohom Mukherjee · Rebekka Burkholz

Random masks define surprisingly effective sparse neural network models, as has been shown empirically. The resulting sparse networks can often compete with dense architectures and state-of-the-art lottery ticket pruning algorithms, even though they do not rely on computationally expensive prune-train iterations and can be drawn initially without significant computational overhead. We offer a theoretical explanation of how random masks can approximate arbitrary target networks if they are wider by a logarithmic factor in the inverse sparsity $1 / \log(1/\text{sparsity})$. This overparameterization factor is necessary at least for 3-layer random networks, which elucidates the observed degrading performance of random networks at higher sparsity. At moderate to high sparsity levels, however, our results imply that sparser networks are contained within random source networks so that any dense-to-sparse training scheme can be turned into a computationally more efficient sparse-to-sparse one by constraining the search to a fixed random mask. We demonstrate the feasibility of this approach in experiments for different pruning methods and propose particularly effective choices of initial layer-wise sparsity ratios of the random source network. As a special case, we show theoretically and experimentally that random source networks also contain strong lottery tickets.


#308
Understanding Self-Predictive Learning for Reinforcement Learning

Yunhao Tang · Zhaohan Guo · Pierre Richemond · Bernardo Avila Pires · Yash Chandak · Remi Munos · Mark Rowland · Mohammad Gheshlaghi Azar · Charline Le Lan · Clare Lyle · Andras Gyorgy · Shantanu Thakoor · Will Dabney · Bilal Piot · Daniele Calandriello · Michal Valko

We study the learning dynamics of self-predictive learning for reinforcement learning, a family of algorithms that learn representations by minimizing the prediction error of their own future latent representations. Despite its recent empirical success, such algorithms have an apparent defect: trivial representations (such as constants) minimize the prediction error, yet it is obviously undesirable to converge to such solutions. Our central insight is that careful designs of the optimization dynamics are critical to learning meaningful representations. We identify that a faster paced optimization of the predictor and semi-gradient updates on the representation, are crucial to preventing the representation collapse. Then in an idealized setup, we show self-predictive learning dynamics carries out spectral decomposition on the state transition matrix, effectively capturing information of the transition dynamics. Building on the theoretical insights, we propose bidirectional self-predictive learning, a novel self-predictive algorithm that learns two representations simultaneously. We examine the robustness of our theoretical insights with a number of small-scale experiments and showcase the promise of the novel representation learning algorithm with large-scale experiments.


#309
On the Statistical Benefits of Temporal Difference Learning

David Cheikhi · Daniel Russo

Given a dataset on actions and resulting long-term rewards, a direct estimation approach fits value functions that minimize prediction error on the training data. Temporal difference learning (TD) methods instead fit value functions by minimizing the degree of temporal inconsistency between estimates made at successive time-steps. Focusing on finite state Markov chains, we provide a crisp asymptotic theory of the statistical advantages of this approach. First, we show that an intuitive inverse trajectory pooling coefficient completely characterizes the percent reduction in mean-squared error of value estimates. Depending on problem structure, the reduction could be enormous or nonexistent. Next, we prove that there can be dramatic improvements in estimates of the difference in value-to-go for two states: TD's errors are bounded in terms of a novel measure -- the problem's trajectory crossing time -- which can be much smaller than the problem's time horizon.


#310
A Connection between One-Step RL and Critic Regularization in Reinforcement Learning

Benjamin Eysenbach · Matthieu Geist · Sergey Levine · Ruslan Salakhutdinov

As with any machine learning problem with limited data, effective offline RL algorithms require careful regularization to avoid overfitting. One class of methods, known as one-step RL, perform just one step of policy improvement. These methods, which include advantage-weighted regression and conditional behavioral cloning, are thus simple and stable, but can have limited asymptotic performance. A second class of methods, known as critic regularization, perform many steps of policy improvement with a regularized objective. These methods typically require more compute but have appealing lower-bound guarantees. In this paper, we draw a connection between these methods: applying a multi-step critic regularization method with a regularization coefficient of 1 yields the same policy as one-step RL. While our theoretical results require assumptions (e.g., deterministic dynamics), our experiments nevertheless show that our analysis makes accurate, testable predictions about practical offline RL methods (CQL and one-step RL) with commonly-used hyperparameters.


#405
Revisiting Bellman Errors for Offline Model Selection

Joshua Zitovsky · Daniel de Marchi · Rishabh Agarwal · Michael Kosorok

Offline model selection (OMS), that is, choosing the best policy from a set of many policies given only logged data, is crucial for applying offline RL in real-world settings. One idea that has been extensively explored is to select policies based on the mean squared Bellman error (MSBE) of the associated Q-functions. However, previous work has struggled to obtain adequate OMS performance with Bellman errors, leading many researchers to abandon the idea. To this end, we elucidate why previous work has seen pessimistic results with Bellman errors and identify conditions under which OMS algorithms based on Bellman errors will perform well. Moreover, we develop a new estimator of the MSBE that is more accurate than prior methods. Our estimator obtains impressive OMS performance on diverse discrete control tasks, including Atari games.


#311
Predictive Flows for Faster Ford-Fulkerson

Sami Davies · Benjamin Moseley · Sergei Vassilvitskii · Yuyan Wang

Recent work has shown that leveraging learned predictions can improve the running time of algorithms for bipartite matching and similar combinatorial problems. In this work, we build on this idea to improve the performance of the widely used Ford-Fulkerson algorithm for computing maximum flows by seeding Ford-Fulkerson with predicted flows. Our proposed method offers strong theoretical performance in terms of the quality of the prediction. We then consider image segmentation, a common use-case of flows in computer vision, and complement our theoretical analysis with strong empirical results.


#312
Differential Privacy has Bounded Impact on Fairness in Classification

Paul Mangold · Michaël Perrot · Aurélien Bellet · Marc Tommasi

We theoretically study the impact of differential privacy on fairness in classification. We prove that, given a class of models, popular group fairness measures are pointwise Lipschitz-continuous with respect to the parameters of the model. This result is a consequence of a more general statement on accuracy conditioned on an arbitrary event (such as membership to a sensitive group), which may be of independent interest. We use this Lipschitz property to prove a non-asymptotic bound showing that, as the number of samples increases, the fairness level of private models gets closer to the one of their non-private counterparts. This bound also highlights the importance of the confidence margin of a model on the disparate impact of differential privacy.


#313
Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

Yongho Shin · Changyeol Lee · Gukryeol Lee · Hyung-Chan An

In this paper, we present improved learning-augmented algorithms for the multi-option ski rental problem. Learning-augmented algorithms take ML predictions as an added part of the input and incorporates these predictions in solving the given problem. Due to their unique strength that combines the power of ML predictions with rigorous performance guarantees, they have been extensively studied in the context of online optimization problems. Even though ski rental problems are one of the canonical problems in the field of online optimization, only deterministic algorithms were previously known for multi-option ski rental, with or without learning augmentation. We present the first randomized learning-augmented algorithm for this problem, surpassing previous performance guarantees given by deterministic algorithms. Our learning-augmented algorithm is based on a new, provably best-possible randomized competitive algorithm for the problem. Our results are further complemented by lower bounds for deterministic and randomized algorithms, and computational experiments evaluating our algorithms' performance improvements.


#314
Robust Non-Linear Feedback Coding via Power-Constrained Deep Learning

Junghoon Kim · Taejoon Kim · David Love · Christopher G. Brinton

The design of codes for feedback-enabled communications has been a long-standing open problem. Recent research on non-linear, deep learning-based coding schemes have demonstrated significant improvements in communication reliability over linear codes, but are still vulnerable to the presence of forward and feedback noise over the channel. In this paper, we develop a new family of non-linear feedback codes that greatly enhance robustness to channel noise. Our autoencoder-based architecture is designed to learn codes based on consecutive blocks of bits, which obtains de-noising advantages over bit-by-bit processing to help overcome the physical separation between the encoder and decoder over a noisy channel. Moreover, we develop a power control layer at the encoder to explicitly incorporate hardware constraints into the learning optimization, and prove that the resulting average power constraint is satisfied asymptotically. Numerical experiments demonstrate that our scheme outperforms state-of-the-art feedback codes by wide margins over practical forward and feedback noise regimes, and provide information-theoretic insights on the behavior of our non-linear codes. Moreover, we observe that, in a long blocklength regime, canonical error correction codes are still preferable to feedback codes when the feedback noise becomes high. Our code is available at https://anonymous.4open.science/r/RCode1.


#315
Feature Directions Matter: Long-Tailed Learning via Rotated Balanced Representation

Peifeng Gao · Qianqian Xu · Peisong Wen · Zhiyong Yang · Huiyang Shao · Qingming Huang

Long-tailed learning is one of the most challenging problems in visual recognition. There are some studies aiming to solve long-tailed classification from the perspective of feature learning. Recent work proposes to learn the balanced representation by fixing the linear classifier as Equiangular Tight Frame (ETF), since they argue what matters in classification is the structure of the feature, instead of their directions. Holding a different view, in this paper, we show that features with fixed directions may be harmful to the generalization of models, even if it is completely symmetric. To avoid this issue, we propose Representation-Balanced Learning Framework (RBL), which introduces orthogonal matrices to learn directions while maintaining the geometric structure of ETF. Theoretically, our contributions are two-fold: 1). we point out that the feature learning of RBL is insensitive toward training set label distribution, it always learns a balanced representation space. 2). we provide a generalization analysis of proposed RBL through training stability. To analyze the stability of the parameter with orthogonal constraint, we propose a novel training stability analysis paradigm, Two-Parameter Model Stability. Practically, our method is extremely simple in implementation but shows great superiority on several benchmark datasets.


#316
$\pi$-Tuning: Transferring Multimodal Foundation Models with Optimal Multi-task Interpolation

CHENGYUE WU · Teng Wang · Yixiao Ge · Zeyu Lu · Ruisong Zhou · Ying Shan · Ping Luo

Foundation models have achieved great advances in multi-task learning with a unified interface of unimodal and multimodal tasks. However, the potential of such multi-task learners has not been exploited during transfer learning. In this work, we present a universal parameter-efficient transfer learning method, termed Predict-Interpolate Tuning ($\pi$-Tuning), for vision, language, and vision-language tasks. It aggregates the parameters of lightweight task-specific experts learned from similar tasks to aid the target downstream task. The task similarities are predicted in a unified modality-independent space, yielding a scalable graph to demonstrate task relationships. $\pi$-Tuning has several appealing benefits. First, it flexibly explores both intra- and inter-modal transferability between similar tasks to improve the accuracy and robustness of transfer learning, especially in data-scarce scenarios. Second, it offers a systematical solution for transfer learning with multi-task prediction-and-then-interpolation, compatible with diverse types of parameter-efficient experts, such as prompt and adapter. Third, an extensive study of task-level mutual benefits on 14 unimodal and 6 multimodal datasets shows that $\pi$-Tuning surpasses fine-tuning and other parameter-efficient transfer learning methods both in full-shot and low-shot regimes. The task graph also enables an in-depth interpretable analysis of task transferability across modalities. The code will be available at https://github.com/TencentARC/pi-Tuning.


#317
FREDIS: A Fusion Framework of Refinement and Disambiguation for Unreliable Partial Label Learning

Congyu Qiao · Ning Xu · JIAQI LYU · yi ren · Xin Geng

To reduce the difficulty of annotation, partial label learning (PLL) has been widely studied, where each example is ambiguously annotated with a set of candidate labels instead of the exact correct label. PLL assumes that the candidate label set contains the correct label, which induces disambiguation, i.e., identification of the correct label in the candidate label set, adopted in most PLL methods. However, this assumption is impractical as no one could guarantee the existence of the correct label in the candidate label set under real-world scenarios. Therefore, Unreliable Partial Label Learning (UPLL) is investigated where the correct label of each example may not exist in the candidate label set. In this paper, we propose a fusion framework of refinement and disambiguation named FREDIS to handle the UPLL problem. Specifically, with theoretical guarantees, not only does disambiguation move incorrect labels from candidate labels to non-candidate labels but also refinement, an opposite procedure, moves correct labels from non-candidate labels to candidate labels. Besides, we prove that the classifier trained by our framework could eventually approximate the Bayes optimal classifier. Extensive experiments on widely used benchmark datasets validate the effectiveness of our proposed framework.


#318
Which Invariance Should We Transfer? A Causal Minimax Learning Approach

Mingzhou Liu · Xiangyu Zheng · Xinwei Sun · Fang Fang · Yizhou Wang

A major barrier to deploying current machine learning models lies in their non-reliability to dataset shifts. To resolve this problem, most existing studies attempted to transfer stable information to unseen environments. Particularly, independent causal mechanisms-based methods proposed to remove mutable causal mechanisms via the do-operator. Compared to previous methods, the obtained stable predictors are more effective in identifying stable information. However, a key question remains: which subset of this whole stable information should the model transfer, in order to achieve optimal generalization ability? To answer this question, we present a comprehensive minimax analysis from a causal perspective. Specifically, we first provide a graphical condition for the whole stable set to be optimal. When this condition fails, we surprisingly find with an example that this whole stable set, although can fully exploit stable information, is not the optimal one to transfer. To identify the optimal subset under this case, we propose to estimate the worst-case risk with a novel optimization scheme over the intervention functions on mutable causal mechanisms. We then propose an efficient algorithm to search for the subset with minimal worst-case risk, based on a newly defined equivalence relation between stable subsets. Compared to the exponential cost of exhaustively searching over all subsets, our searching strategy enjoys a polynomial complexity. The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.


#319
Auxiliary Modality Learning with Generalized Curriculum Distillation

Yu Shen · Xijun Wang · Peng Gao · Ming Lin

Driven by the need from real-world applications, Auxiliary Modality Learning (AML) offers the possibility to utilize more information from auxiliary data in training, while only requiring data from one or fewer modalities in test, to save the overall computational cost and reduce the amount of input data for inferencing. In this work, we formally define ``Auxiliary Modality Learning'' (AML), systematically classify types of auxiliary modality (in visual computing) and architectures for AML, and analyze their performance. We also analyze the conditions under which AML works well from the optimization and data distribution perspectives. To guide various choices to achieve optimal performance using AML, we propose a novel method to assist in choosing the best auxiliary modality and estimating an upper bound performance before executing AML. In addition, we propose a new AML method using generalized curriculum distillation to enable more effective curriculum learning. Our method achieves the best performance compared to other SOTA methods.


#428
Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Ziming Wang · Runhao Jiang · Shuang Lian · Rui Yan · Huajin Tang

Spiking neural networks (SNNs) with biologically inspired spatio-temporal dynamics demonstrate superior energy efficiency on neuromorphic architectures. Error backpropagation in SNNs is prohibited by the all-or-none nature of spikes. The existing solution circumvents this problem by a relaxation on the gradient calculation using a continuous function with a constant relaxation de- gree, so-called surrogate gradient learning. Nevertheless, such a solution introduces additional smoothing error on spike firing which leads to the gradients being estimated inaccurately. Thus, how to adaptively adjust the relaxation degree and eliminate smoothing error progressively is crucial. Here, we propose a methodology such that training a prototype neural network will evolve into training an SNN gradually by fusing the learnable relaxation degree into the network with random spike noise. In this way, the network learns adaptively the accurate gradients of loss landscape in SNNs. The theoretical analysis further shows optimization on such a noisy network could be evolved into optimization on the embedded SNN with shared weights progressively. Moreover, The experiments on static images, dynamic event streams, speech, and instrumental sounds show the proposed method achieves state-of-the-art performance across all the datasets with remarkable robustness on different relaxation degrees.


#320
An Investigation into Pre-Training Object-Centric Representations for Reinforcement Learning

Jaesik Yoon · Yi-Fu Wu · Heechul Bae · Sungjin Ahn

Unsupervised object-centric representation (OCR) learning has recently drawn attention as a new paradigm of visual representation. This is because of its potential of being an effective pre-training technique for various downstream tasks in terms of sample efficiency, systematic generalization, and reasoning. Although image-based reinforcement learning (RL) is one of the most important and thus frequently mentioned such downstream tasks, the benefit in RL has surprisingly not been investigated systematically thus far. Instead, most of the evaluations have focused on rather indirect metrics such as segmentation quality and object property prediction accuracy. In this paper, we investigate the effectiveness of OCR pre-training for image-based reinforcement learning via empirical experiments. For systematic evaluation, we introduce a simple object-centric visual RL benchmark and conduct experiments to answer questions such as "Does OCR pre-training improve performance on object-centric tasks?" and "Can OCR pre-training help with out-of-distribution generalization?". Our results provide empirical evidence for valuable insights into the effectiveness of OCR pre-training for RL and the potential limitations of its use in certain scenarios. Additionally, this study also examines the critical aspects of incorporating OCR pre-training in RL, including performance in a visually complex environment and the appropriate pooling layer to aggregate the object representations.


#321
Expertise Trees Resolve Knowledge Limitations in Collective Decision-Making

Axel Abels · Tom Lenaerts · Vito Trianni · Ann Nowe

Experts advising decision-makers are likely to display expertise which varies as a function of the problem instance. In practice, this may lead to sub-optimal or discriminatory decisions against minority cases. In this work, we model such changes in depth and breadth of knowledge as a partitioning of the problem space into regions of differing expertise. We provide here new algorithms that explicitly consider and adapt to the relationship between problem instances and experts' knowledge. We first propose and highlight the drawbacks of a naive approach based on nearest neighbor queries. To address these drawbacks we then introduce a novel algorithm --- expertise trees --- that constructs decision trees enabling the learner to select appropriate models. We provide theoretical insights and empirically validate the improved performance of our novel approach on a range of problems for which existing methods proved to be inadequate.


#322
Regions of Reliability in the Evaluation of Multivariate Probabilistic Forecasts

Étienne Marcotte · Valentina Zantedeschi · Alexandre Drouin · Nicolas Chapados

Multivariate probabilistic time series forecasts are commonly evaluated via proper scoring rules, i.e., functions that are minimal in expectation for the ground-truth distribution. However, this property is not sufficient to guarantee good discrimination in the non-asymptotic regime. In this paper, we provide the first systematic finite-sample study of proper scoring rules for time series forecasting evaluation. Through a power analysis, we identify the ``region of reliability'' of a scoring rule, i.e., the set of practical conditions where it can be relied on to identify forecasting errors. We carry out our analysis on a comprehensive synthetic benchmark, specifically designed to test several key discrepancies between ground-truth and forecast distributions, and we gauge the generalizability of our findings to real-world tasks with an application to an electricity production problem. Our results reveal critical shortcomings in the evaluation of multivariate probabilistic forecasts as commonly performed in the literature.


#323
A/B Testing in Network Data with Covariate-Adaptive Randomization

Jialu Wang · Ping Li · Feifang Hu

Users linked together through a network often tend to have similar behaviors. This phenomenon is usually known as network interaction. Users' characteristics, the covariates, are often correlated with their outcomes. Therefore, one should incorporate both the covariates and the network information in a carefully designed randomization to improve the estimation of the average treatment effect (ATE) in network A/B testing. In this paper, we propose a new adaptive procedure to balance both the network and the covariates. We show that the imbalance measures with respect to the covariates and the network are $O_p(1)$. We also demonstrate the relationships between the improved balances and the increased efficiency in terms of the mean square error (MSE). Numerical studies demonstrate the advanced performance of the proposed procedure regarding the greater comparability of the treatment groups and the reduction of MSE for estimating the ATE.


#324
Alternating Local Enumeration (TnALE): Solving Tensor Network Structure Search with Fewer Evaluations

Chao Li · Junhua Zeng · Chunmei Li · Cesar F Caiafa · Qibin Zhao

Tensor network (TN) is a powerful framework in machine learning, but selecting a good TN model, known as TN structure search (TN-SS), is a challenging and computationally intensive task. The recent approach TNLS (Li et al., 2022) showed promising results for this task. However, its computational efficiency is still unaffordable, requiring too many evaluations of the objective function. We propose TnALE, a surprisingly simple algorithm that updates each structure-related variable alternately by local enumeration, greatly reducing the number of evaluations compared to TNLS. We theoretically investigate the descent steps for TNLS and TnALE, proving that both the algorithms can achieve linear convergence up to a constant if a sufficient reduction of the objective is reached in each neighborhood. We further compare the evaluation efficiency of TNLS and TnALE, revealing that $\Omega(2^K)$ evaluations are typically required in TNLS for reaching the objective reduction, while ideally $O(KR)$ evaluations are sufficient in TnALE, where $K$ denotes the dimension of search space and $R$ reflects the ``low-rankness'' of the neighborhood. Experimental results verify that TnALE can find practically good TN structures with vastly fewer evaluations than the state-of-the-art algorithms.


#325
Consistency of Multiple Kernel Clustering

Weixuan Liang · Xinwang Liu · Yong Liu · Chuan Ma · Yunping Zhao · Zhe Liu · En Zhu

Consistency plays an important role in learning theory. However, in multiple kernel clustering (MKC), the consistency of kernel weights has not been sufficiently investigated. In this work, we fill this gap with a non-asymptotic analysis on the consistency of kernel weights of a novel method termed SimpleMKKM. Under the assumptions of the eigenvalue gap, we give an infinity norm bound as $\widetilde{\mathcal{O}}(k/\sqrt{n})$, where $k$ is the number of clusters and $n$ is the number of samples. On this basis, we establish an upper bound for the excess clustering risk. Moreover, we study the difference of the kernel weights learned from $n$ samples and $r$ points sampled without replacement, and derive its upper bound as $\widetilde{\mathcal{O}}(k\cdot\sqrt{1/r-1/n})$. Based on the above results, we propose a novel strategy with Nyström method to enable SimpleMKKM to handle large-scale datasets with a theoretical learning guarantee. Finally, extensive experiments are conducted to verify the theoretical results and the effectiveness of the proposed large-scale strategy.


#326
Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR

Kaiwen Wang · Nathan Kallus · Wen Sun

In this paper, we study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance $\tau$. Starting with multi-arm bandits (MABs), we show the minimax CVaR regret rate is $\Omega(\sqrt{\tau^{-1}AK})$, where $A$ is the number of actions and $K$ is the number of episodes, and that it is achieved by an Upper Confidence Bound algorithm with a novel Bernstein bonus. For online RL in tabular Markov Decision Processes (MDPs), we show a minimax regret lower bound of $\Omega(\sqrt{\tau^{-1}SAK})$ (with normalized cumulative rewards), where $S$ is the number of states, and we propose a novel bonus-driven Value Iteration procedure. We show that our algorithm achieves the optimal regret of $\widetilde O(\sqrt{\tau^{-1}SAK})$ under a continuity assumption and in general attains a near-optimal regret of $\widetilde O(\tau^{-1}\sqrt{SAK})$, which is minimax-optimal for constant $\tau$. This improves on the best available bounds. By discretizing rewards appropriately, our algorithms are computationally efficient.


#327
A Framework for Adapting Offline Algorithms to Solve Combinatorial Multi-Armed Bandit Problems with Bandit Feedback

Guanyu Nie · Yididiya Nadew · Yanhui Zhu · Vaneet Aggarwal · Christopher J Quinn

We investigate the problem of stochastic, combinatorial multi-armed bandits where the learner only has access to bandit feedback and the reward function can be non-linear. We provide a general framework for adapting discrete offline approximation algorithms into sublinear $\alpha$-regret methods that only require bandit feedback, achieving $\mathcal{O}\left(T^\frac{2}{3}\log(T)^\frac{1}{3}\right)$ expected cumulative $\alpha$-regret dependence on the horizon $T$. The framework only requires the offline algorithms to be robust to small errors in function evaluation. The adaptation procedure does not even require explicit knowledge of the offline approximation algorithm --- the offline algorithm can be used as black box subroutine. To demonstrate the utility of the proposed framework, the proposed framework is applied to multiple problems in submodular maximization, adapting approximation algorithms for cardinality and for knapsack constraints. The new CMAB algorithms for knapsack constraints outperform a full-bandit method developed for the adversarial setting in experiments with real-world data.


#328
Weighted Tallying Bandits: Overcoming Intractability via Repeated Exposure Optimality

Dhruv Malik · Conor Igoe · Yuanzhi Li · Aarti Singh

In human-interactive applications of online learning, a human's preferences or abilities are often a function of the algorithm's recent actions. Motivated by this, a significant line of work has formalized settings where an action's loss is a function of the number of times it was played in the prior $m$ timesteps, where $m$ corresponds to a bound on human memory capacity. To more faithfully capture decay of human memory with time, we introduce the Weighted Tallying Bandit (WTB), which generalizes this setting by requiring that an action's loss is a function of a *weighted* summation of the number of times it was played in the last $m$ timesteps. WTB is intractable without further assumption. So we study it under Repeated Exposure Optimality (REO), a condition requiring the existence of an action that when repetitively played will eventually yield smaller loss than any other action sequence. We study the minimization of complete policy regret (CPR), which is the strongest notion of regret, in WTB under REO. Since $m$ is often unknown, we only assume access to an upper bound $M$ on $m$. We show that for problems with $K$ actions and horizon $T$, a simple modification of the successive elimination algorithm has $\mathcal{O} \left( \sqrt{KT} + (m+M)K \right)$ CPR. Upto an additive (in lieu of mutliplicative) factor in $(m+M)K$, this recovers the classical guarantee for the far simpler stochastic multi-armed bandit with traditional regret. We additionally show that in our setting, any algorithm will suffer additive CPR of $\Omega \left( mK + M \right)$, demonstrating our result is near optimal. Our method is computationally efficient, and we experimentally demonstrate its practicality and superiority over various baselines.


#329
The Price of Differential Privacy under Continual Observation

Palak Jain · Sofya Raskhodnikova · Satchit Sivakumar · Adam Smith

We study the accuracy of differentially private mechanisms in the continual release model. A continual release mechanism receives a sensitive dataset as a stream of $T$ inputs and produces, after receiving each input, an output that is accurate for all the inputs received so far. We provide the first strong lower bounds on the error of continual release mechanisms. In particular, for two fundamental problems that are closely related to empirical risk minimization and widely studied and used in the standard (batch) model, we prove that the worst case error of every continual release algorithm is $\tilde \Omega(T^{1/3})$ times larger than that of the best batch algorithm. Previous work shows only a $\Omega(\log T)$ gap between the worst case error achievable in these two models. We also formulate a model that allows for adaptively selected inputs, thus capturing dependencies that arise in many applications of continual release. Even though, in general, both privacy and accuracy are harder to attain in this model, we show that our lower bounds are matched by the error of simple algorithms that work even for adaptively selected inputs.


#330
Subset-Based Instance Optimality in Private Estimation

Travis Dick · Alex Kulesza · Ziteng Sun · Ananda Suresh

We propose a new definition of instance optimality for differentially private estimation algorithms. Our definition requires an optimal algorithm to compete, simultaneously for every dataset $D$, with the best private benchmark algorithm that (a) knows $D$ in advance and (b) is evaluated by its worst-case performance on large subsets of $D$. That is, the benchmark algorithm need not perform well when potentially extreme points are added to $D$; it only has to handle the removal of a small number of real data points that already exist. This makes our benchmark significantly stronger than those proposed in prior work. We nevertheless show, for real-valued datasets, how to construct private algorithms that achieve our notion of instance optimality when estimating a broad class of dataset properties, including means, quantiles, and $\ell_p$-norm minimizers. For means in particular, we provide a detailed analysis and show that our algorithm simultaneously matches or exceeds the asymptotic performance of existing algorithms under a range of distributional assumptions.


#331
A Law of Robustness beyond Isoperimetry

Yihan Wu · Heng Huang · Hongyang Zhang

We study the robust interpolation problem of arbitrary data distributions supported on a bounded space and propose a two-fold law of robustness. Robust interpolation refers to the problem of interpolating $n$ noisy training data points in $R^d$ by a Lipschitz function. Although this problem has been well understood when the samples are drawn from an isoperimetry distribution, much remains unknown concerning its performance under generic or even the worst-case distributions. We prove a Lipschitzness lower bound $\Omega(\sqrt{n/p})$ of the interpolating neural network with $p$ parameters on arbitrary data distributions. With this result, we validate the law of robustness conjecture in prior work by Bubeck, Li and Nagaraj on two-layer neural networks with polynomial weights. We then extend our result to arbitrary interpolating approximators and prove a Lipschitzness lower bound $\Omega(n^{1/d})$ for robust interpolation. Our results demonstrate a two-fold law of robustness: a) we show the potential benefit of overparametrization for smooth data interpolation when $n=poly(d)$, and b) we disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=\exp(\omega(d))$.


#332
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

Tanya Marwah · Zachary Lipton · Jianfeng Lu · Andrej Risteski

A burgeoning line of research has developed deep neural networks capable of approximating the solutions to high dimensional PDEs, opening related lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most theoretical analyses thus far have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as *nonlinear elliptic variational PDEs*, whose solutions minimize an *Euler-Lagrange* energy functional $\mathcal{E}(u) = \int_\Omega L(x, u(x), \nabla u(x)) - f(x) u(x)dx$. We show that if composing a function with Barron norm $b$ with partial derivatives of $L$ produces a function of Barron norm at most $B_L b^p$, the solution to the PDE can be $\epsilon$-approximated in the $L^2$ sense by a function with Barron norm $O\left(\left(dB_L\right)^{\max\{p \log(1/ \epsilon), p^{\log(1/\epsilon)}\}}\right)$. By a classical result due to Barron (1993), this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating $p, \epsilon, B_L$ as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs over a unit hypercube.


#333
Sample Complexity Bounds for Learning High-dimensional Simplices in Noisy Regimes

seyed amir saberi · Amir Najafi · Abolfazl Motahari · Babak Khalaj

In this paper, we propose sample complexity bounds for learning a simplex from noisy samples. A dataset of size $n$ is given which includes i.i.d. samples drawn from a uniform distribution over an unknown arbitrary simplex in $\mathbb{R}^K$, where samples are assumed to be corrupted by a multi-variate additive Gaussian noise of an arbitrary magnitude. We prove the existence of an algorithm that with high probability outputs a simplex having a $\ell_2$ distance of at most $\varepsilon$ from the true simplex (for any $\varepsilon>0$). Also, we theoretically show that in order to achieve this bound, it is sufficient to have $n\ge\tilde{\Omega}\left(K^2/\varepsilon^2\right)e^{\Omega\left(K/\mathrm{SNR}^2\right)}$ samples, where $\mathrm{SNR}$ stands for the signal-to-noise ratio and is defined as the ratio of the maximum component-wise standard deviation of the simplex (signal) to that of the noise vector. This result solves an important open problem in this area of research, and shows as long as $\mathrm{SNR}\ge\Omega\left(\sqrt{K}\right)$ the sample complexity of the noisy regime has the same order to that of the noiseless case. Our proofs are a combination of the so-called sample compression technique in (Ashtiani et al., 2018), mathematical tools from high-dimensional geometry, and Fourier analysis. In particular, we have proposed a general Fourier-based technique for recovery of a more general class of distribution families from additive Gaussian noise, which can be further used in a variety of other related problems.


#334
Phase Transitions in the Detection of Correlated Databases

Dor Elimelech · Wasim Huleihel

We study the problem of detecting the correlation between two Gaussian databases $\mathsf{X}\in\mathbb{R}^{n\times d}$ and $\mathsf{Y}^{n\times d}$, each composed of $n$ users with $d$ features. This problem is relevant in the analysis of social media, computational biology, etc. We formulate this as a hypothesis testing problem: under the null hypothesis, these two databases are statistically independent. Under the alternative, however, there exists an unknown permutation $\sigma$ over the set of $n$ users (or, row permutation), such that $\mathsf{X}$ is $\rho$-correlated with $\mathsf{Y}^\sigma$, a permuted version of $\mathsf{Y}$. We determine sharp thresholds at which optimal testing exhibits a phase transition, depending on the asymptotic regime of $n$ and $d$. Specifically, we prove that if $\rho^2d\to0$, as $d\to\infty$, then weak detection (performing slightly better than random guessing) is statistically impossible, *irrespectively* of the value of $n$. This compliments the performance of a simple test that thresholds the sum all entries of $\mathsf{X}^T\mathsf{Y}$. Furthermore, when $d$ is fixed, we prove that strong detection (vanishing error probability) is impossible for any $\rho<\rho^\star$, where $\rho^\star$ is an explicit function of $d$, while weak detection is again impossible as long as $\rho^2d=o(1)$, as $n\to\infty$. These results close significant gaps in current recent related studies.


#335
A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints

Ming Shi · Yingbin LIANG · Ness Shroff

In many applications of Reinforcement Learning (RL), it is critically important that the algorithm performs safely, such that instantaneous hard constraints are satisfied at each step, and unsafe states and actions are avoided. However, existing algorithms for ``safe'' RL are often designed under constraints that either require expected cumulative costs to be bounded or assume all states are safe. Thus, such algorithms could violate instantaneous hard constraints and traverse unsafe states (and actions) in practice. Hence, in this paper, we develop the first near-optimal safe RL algorithm for episodic Markov Decision Processes with unsafe states and actions under instantaneous hard constraints and the linear mixture model. It achieves a regret $\tilde{O}(\frac{d H^3 \sqrt{d K}}{\Delta_c})$ that nearly matches the state-of-the-art regret in the setting with only unsafe actions and that in the unconstrained setting, and is safe at each step, where $d$ is the feature-mapping dimension, $K$ is the number of episodes, $H$ is the episode length, and $\Delta_c$ is a safety-related parameter. We also provide a lower bound $\tilde{\Omega}(\max\{d H \sqrt{K}, \frac{H}{\Delta_c^2}\})$, which indicates that the dependency on $\Delta_c$ is necessary. Further, both our algorithm design and regret analysis involve several novel ideas, which may be of independent interest.


#336
Sharper Bounds for $\ell_p$ Sensitivity Sampling

David Woodruff · Taisuke Yasuda

In large scale machine learning, *random sampling* is a popular way to approximate datasets by a small representative subset of examples. In particular, *sensitivity sampling* is an intensely studied technique which provides provable guarantees on the quality of approximation, while reducing the number of examples to the product of the *VC dimension* $d$ and the *total sensitivity* $\mathfrak{S}$ in remarkably general settings. However, guarantees going beyond this general bound of $\mathfrak{S} d$ are known in perhaps only one setting, for *$\ell_2$ subspace embeddings*, despite intense study of sensitivity sampling in prior work. In this work, we show the first bounds for sensitivity sampling for $\ell_p$ subspace embeddings for $p\neq 2$ that improve over the general $\mathfrak{S} d$ bound, achieving a bound of roughly $\mathfrak{S}^{2/p}$ for $1\leq p<2$ and $\mathfrak{S}^{2-2/p}$ for $2


#337
Tighter Analysis for ProxSkip

Zhengmian Hu · Heng Huang

In this paper, we provide a tighter analysis for ProxSkip, an algorithm that allows fewer proximal operator computations to solve composite optimization problems. We improve the existing decreasing speed of Lyapunov function from $\mathcal{O}(p^2)$ to $\mathcal{O}(p)$, when $p$, the frequency of the proximal operators is small enough. Our theoretical analysis also reveals the drawbacks of using large step sizes for gradient descent in ProxSkip when the proximal operator part is the bottleneck. Our main motivation comes from the continuous limit in which the original analysis of ProxSkip fails to guarantee convergence when both the step size $\gamma$ and frequency $p$ tend to zero. We construct a counterexample to demonstrate why such counterintuitive behavior occurs for the original analysis and then propose a novel Lyapunov function variant to construct a tighter analysis, avoiding the problem of the old one. Such a new Lyapunov function can be directly extended to many other variants of ProxSkip. When applied to stochastic gradient setup, our analysis leads to an improved proximal operator complexity for SProxSkip from $\mathcal{O}(\sqrt{\frac{1}{\varepsilon\mu^2}}\log(\frac{1}{\varepsilon}))$ to $\mathcal{O}(\sqrt{\kappa}\log(\frac{1}{\varepsilon}))$.


#338
Learning Functional Distributions with Private Labels

Changlong Wu · Yifan Wang · Ananth Grama · Wojciech Szpankowski

We study the problem of learning functional distributions in the presence of noise. A functional is a map from the space of features to *distributions* over a set of labels, and is often assumed to belong to a known class of hypotheses $\mathcal{F}$. Features are generated by a general random process and labels are sampled independently from feature-dependent distributions. In privacy sensitive applications, labels are passed through a noisy kernel. We consider *online learning*, where at each time step, a predictor attempts to predict the *actual* (label) distribution given only the features and *noisy* labels in prior steps. The performance of the predictor is measured by the expected KL-risk that compares the predicted distributions to the underlying truth. We show that the *minimax* expected KL-risk is of order $\tilde{\Theta}(\sqrt{T\log|\mathcal{F}|})$ for finite hypothesis class $\mathcal{F}$ and *any* non-trivial noise level. We then extend this result to general infinite classes via the concept of *stochastic sequential covering* and provide matching lower and upper bounds for a wide range of natural classes.


#400
Stochastic Gradient Succeeds for Bandits

Jincheng Mei · Zixin Zhong · Bo Dai · Alekh Agarwal · Csaba Szepesvari · Dale Schuurmans

We show that the stochastic gradient bandit algorithm converges to a globally optimal policy at an $O(1/t)$ rate, even with a constant step size. Remarkably, global convergence of the stochastic gradient bandit algorithm has not been previously established, even though it is an old algorithm known to be applicable to bandits. The new result is achieved by establishing two novel technical findings: first, the noise of the stochastic updates in the gradient bandit algorithm satisfies a strong “growth condition” property, where the variance diminishes whenever progress becomes small, implying that additional noise control via diminishing step sizes is unnecessary; second, a form of “weak exploration” is automatically achieved through the stochastic gradient updates, since they prevent the action probabilities from decaying faster than $O(1/t)$, thus ensuring that every action is sampled infinitely often with probability $1$. These two findings can be used to show that the stochastic gradient update is already “sufficient” for bandits in the sense that exploration versus exploitation is automatically balanced in a manner that ensures almost sure convergence to a global optimum. These novel theoretical findings are further verified by experimental results.


#401
A Unified Optimization Framework of ANN-SNN Conversion: Towards Optimal Mapping from Activation Values to Firing Rates

Haiyan Jiang · srinivas anumasa · Giulia De Masi · Huan Xiong · Bin Gu

Spiking Neural Networks (SNNs) have gained significant attention for their energy-efficient and fast-inference capabilities, but training SNNs from scratch can be challenging due to the discrete nature of spikes. One alternative method is to convert an Artificial Neural Network (ANN) into an SNN, known as ANN-SNN conversion. Currently, existing ANN-SNN conversion methods often involve redesigning the ANN with a new activation function, rather than utilizing the traditional ReLU, and converting it to an SNN. However, these methods do not take into account the potential performance loss between the regular ANN with ReLU and the tailored ANN. In this work, we propose a unified optimization framework for ANN-SNN conversion that considers both performance loss and conversion error. To achieve this, we introduce the SlipReLU activation function, which is a weighted sum of the threshold-ReLU and the step function. Theoretical analysis demonstrates that conversion error can be zero on a range of shift values $\delta \in [-0.5,0.5]$ rather than a fixed shift term 0.5. We evaluate our SlipReLU method on CIFAR datasets, which shows that SlipReLU outperforms current ANN-SNN conversion methods and supervised training methods in terms of accuracy and latency. To the best of our knowledge, this is the first ANN-SNN conversion method that enables SNN inference using only 1 time step. Code is available at https://github.com/HaiyanJiang/SNN_Conversion_unified.


#402
Masked Trajectory Models for Prediction, Representation, and Control

Philipp Wu · Arjun Majumdar · Kevin Stone · Yixin Lin · Igor Mordatch · Pieter Abbeel · Aravind Rajeswaran

We introduce Masked Trajectory Models (MTM) as a generic abstraction for sequential decision making. MTM takes a trajectory, such as a state-action sequence, and aims to reconstruct the trajectory conditioned on random subsets of the same trajectory. By training with a highly randomized masking pattern, MTM learns versatile networks that can take on different roles or capabilities, by simply choosing appropriate masks at inference time. For example, the same MTM network can be used as a forward dynamics model, inverse dynamics model, or even an offline RL agent. Through extensive experiments in several continuous control tasks, we show that the same MTM network -- i.e. same weights -- can match or outperform specialized networks trained for the aforementioned capabilities. Additionally, we find that state representations learned by MTM can significantly accelerate the learning speed of traditional RL algorithms. Finally, in offline RL benchmarks, we find that MTM is competitive with specialized offline RL algorithms, despite MTM being a generic self-supervised learning method without any explicit RL components. Code is available at https://github.com/facebookresearch/mtm.


#403
Information-Theoretic State Space Model for Multi-View Reinforcement Learning

HyeongJoo Hwang · Seokin Seo · Youngsoo Jang · Sungyoon Kim · Geon-Hyeong Kim · Seunghoon Hong · Kee-Eung Kim

Multi-View Reinforcement Learning (MVRL) seeks to find an optimal control for an agent given multi-view observations from various sources. Despite recent advances in multi-view learning that aim to extract the latent representation from multi-view data, it is not straightforward to apply them to control tasks, especially when the observations are temporally dependent on one another. The problem can be even more challenging if the observations are intermittently missing for a subset of views. In this paper, we introduce Fuse2Control (F2C), an information-theoretic approach to capturing the underlying state space model from the sequences of multi-view observations. We conduct an extensive set of experiments in various control tasks showing that our method is highly effective in aggregating task-relevant information across many views, that scales linearly with the number of views while retaining robustness to arbitrary missing view scenarios.


#404
Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks

Qiyu Kang · Kai Zhao · Yang Song · Sijie Wang · Wee Peng Tay

In the graph node embedding problem, embedding spaces can vary significantly for different data types, leading to the need for different GNN model types. In this paper, we model the embedding update of a node feature as a Hamiltonian orbit over time. Since the Hamiltonian orbits generalize the exponential maps, this approach allows us to learn the underlying manifold of the graph in training, in contrast to most of the existing literature that assumes a fixed graph embedding manifold with a closed exponential map solution. Our proposed node embedding strategy can automatically learn, without extensive tuning, the underlying geometry of any given graph dataset even if it has diverse geometries. We test Hamiltonian functions of different forms and verify the performance of our approach on two graph node embedding downstream tasks: node classification and link prediction. Numerical experiments demonstrate that our approach adapts better to different types of graph datasets than popular state-of-the-art graph node embedding GNNs. The code is available at https://github.com/zknus/Hamiltonian-GNN.


#406
Personalized Subgraph Federated Learning

Jinheon Baek · Wonyong Jeong · Jiongdao Jin · Jaehong Yoon · Sung Ju Hwang

Subgraphs of a larger global graph may be distributed across multiple devices, and only locally accessible due to privacy restrictions, although there may be links between subgraphs. Recently proposed subgraph Federated Learning (FL) methods deal with those missing links across local subgraphs while distributively training Graph Neural Networks (GNNs) on them. However, they have overlooked the inevitable heterogeneity between subgraphs comprising different communities of a global graph, consequently collapsing the incompatible knowledge from local GNN models. To this end, we introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNNs rather than learning a single global model, and propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it. Since the server cannot access the subgraph in each client, FED-PUB utilizes functional embeddings of the local GNNs using random graphs as inputs to compute similarities between them, and use the similarities to perform weighted averaging for server-side aggregation. Further, it learns a personalized sparse mask at each client to select and update only the subgraph-relevant subset of the aggregated parameters. We validate our FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs, on which it significantly outperforms relevant baselines. Our code is available at https://github.com/JinheonBaek/FED-PUB.


#407
Leveraging Label Non-Uniformity for Node Classification in Graph Neural Networks

Feng Ji · See Hian Lee · Meng HanYang · Kai Zhao · Jielong Yang · Wee Peng Tay

In node classification using graph neural networks (GNNs), a typical model generates logits for different class labels at each node. A softmax layer often outputs a label prediction based on the largest logit. We demonstrate that it is possible to infer hidden graph structural information from the dataset using these logits. We introduce the key notion of label non-uniformity, which is derived from the Wasserstein distance between the softmax distribution of the logits and the uniform distribution. We demonstrate that nodes with small label non-uniformity are harder to classify correctly. We theoretically analyze how the label non-uniformity varies across the graph, which provides insights into boosting the model performance: increasing training samples with high non-uniformity or dropping edges to reduce the maximal cut size of the node set of small non-uniformity. These mechanisms can be easily added to a base GNN model. Experimental results demonstrate that our approach improves the performance of many benchmark base models.


#408
Anti-Exploration by Random Network Distillation

Alexander Nikulin · Vladislav Kurenkov · Denis Tarasov · Sergey Kolesnikov

Despite the success of Random Network Distillation (RND) in various domains, it was shown as not discriminative enough to be used as an uncertainty estimator for penalizing out-of-distribution actions in offline reinforcement learning. In this paper, we revisit these results and show that, with a naive choice of conditioning for the RND prior, it becomes infeasible for the actor to effectively minimize the anti-exploration bonus and discriminativity is not an issue. We show that this limitation can be avoided with conditioning based on Feature-wise Linear Modulation (FiLM), resulting in a simple and efficient ensemble-free algorithm based on Soft Actor-Critic. We evaluate it on the D4RL benchmark, showing that it is capable of achieving performance comparable to ensemble-based methods and outperforming ensemble-free approaches by a wide margin.


#409
Distance Weighted Supervised Learning for Offline Interaction Data

Joey Hejna · Jensen Gao · Dorsa Sadigh

Sequential decision making algorithms often struggle to leverage different sources of unstructured offline interaction data. Imitation learning (IL) methods based on supervised learning are robust, but require optimal demonstrations, which are hard to collect. Offline goal-conditioned reinforcement learning (RL) algorithms promise to learn from sub-optimal data, but face optimization challenges especially with high-dimensional data. To bridge the gap between IL and RL, we introduce Distance Weighted Supervised Learning or DWSL, a supervised method for learning goal-conditioned policies from offline data. DWSL models the entire distribution of time-steps between states in offline data with only supervised learning, and uses this distribution to approximate shortest path distances. To extract a policy, we weight actions by their reduction in distance estimates. Theoretically, DWSL converges to an optimal policy constrained to the data distribution, an attractive property for offline learning, without any bootstrapping. Across all datasets we test, DWSL empirically maintains behavior cloning as a lower bound while still exhibiting policy improvement. In high-dimensional image domains, DWSL surpasses the performance of both prior goal-conditioned IL and RL algorithms. Visualizations and code can be found at https://sites.google.com/view/dwsl/home.


#410
Likelihood Adjusted Semidefinite Programs for Clustering Heterogeneous Data

Yubo Zhuang · Xiaohui Chen · Yun Yang

Clustering is a widely deployed unsupervised learning tool. Model-based clustering is a flexible framework to tackle data heterogeneity when the clusters have different shapes. Likelihood-based inference for mixture distributions often involves non-convex and high-dimensional objective functions, imposing difficult computational and statistical challenges. The classic expectation-maximization (EM) algorithm is a computationally thrifty iterative method that maximizes a surrogate function minorizing the log-likelihood of observed data in each iteration, which however suffers from bad local maxima even in the special case of the standard Gaussian mixture model with common isotropic covariance matrices. On the other hand, recent studies reveal that the unique global solution of a semidefinite programming (SDP) relaxed $K$-means achieves the information-theoretically sharp threshold for perfectly recovering the cluster labels under the standard Gaussian mixture model. In this paper, we extend the SDP approach to a general setting by integrating cluster labels as model parameters and propose an iterative likelihood adjusted SDP (iLA-SDP) method that directly maximizes the exact observed likelihood in the presence of data heterogeneity. By lifting the cluster assignment to group-specific membership matrices, iLA-SDP avoids centroids estimation -- a key feature that allows exact recovery under well-separateness of centroids without being trapped by their adversarial configurations. Thus iLA-SDP is less sensitive than EM to initialization and more stable on high-dimensional data. Our numeric experiments demonstrate that iLA-SDP can achieve lower mis-clustering errors over several widely used clustering methods including $K$-means, SDP and EM algorithms.


#411
Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

Shibo Li · Michael Penwarden · Yiming Xu · Conor Tillinghast · Akil Narayan · Mike Kirby · Shandian Zhe

Physics-informed neural networks (PINNs) are emerging as popular mesh-free solvers for partial differential equations (PDEs). Recent extensions decompose the domain, apply different PINNs to solve the problem in each subdomain, and stitch the subdomains at the interface. Thereby, they can further alleviate the problem complexity, reduce the computational cost, and allow parallelization. However, the performance of multi-domain PINNs is sensitive to the choice of the interface conditions. While quite a few conditions have been proposed, there is no suggestion about how to select the conditions according to specific problems. To address this gap, we propose META Learning of Interface Conditions (METALIC), a simple, efficient yet powerful approach to dynamically determine appropriate interface conditions for solving a family of parametric PDEs. Specifically, we develop two contextual multi-arm bandit (MAB) models. The first one applies to the entire training course, and online updates a Gaussian process (GP) reward that given the PDE parameters and interface conditions predicts the performance. We prove a sub-linear regret bound for both UCB and Thompson sampling, which in theory guarantees the effectiveness of our MAB. The second one partitions the training into two stages, one is the stochastic phase and the other deterministic phase; we update a GP reward for each phase to enable different condition selections at the two stages to further bolster the flexibility and performance. We have shown the advantage of METALIC on four bench-mark PDE families.


#412
Complementary Attention for Multi-Agent Reinforcement Learning

Jianzhun Shao · Hongchang Zhang · Yun Qu · Chang Liu · Shuncheng He · Yuhang Jiang · Xiangyang Ji

In cooperative multi-agent reinforcement learning, centralized training with decentralized execution (CTDE) shows great promise for a trade-off between independent Q-learning and joint action learning. However, vanilla CTDE methods assumed a fixed number of agents could hardly adapt to real-world scenarios where dynamic team compositions typically suffer from dramatically variant partial observability. Specifically, agents with extensive sight ranges are prone to be affected by trivial environmental substrates, dubbed the "distracted attention" issue; ones with limited observation can hardly sense their teammates, degrading the cooperation quality. In this paper, we propose Complementary Attention for Multi-Agent reinforcement learning (CAMA), which applies a divide-and-conquer strategy on input entities accompanied with the complementary attention of enhancement and replenishment. Concretely, to tackle the distracted attention issue, highly contributed entities' attention is enhanced by the execution-related representation extracted via action prediction with an inverse model. For better out-of-sight-range cooperation, the lowly contributed ones are compressed to brief messages with a conditional mutual information estimator. Our CAMA facilitates stable and sustainable teamwork, which is justified by the impressive results reported on the challenging StarCraftII, MPE, and Traffic Junction benchmarks.


#413
Multi-Modal Classifiers for Open-Vocabulary Object Detection

Prannay Kaul · Weidi Xie · Andrew Zisserman

The goal of this paper is open-vocabulary object detection (OVOD) — building a model that can detect objects beyond the set of categories seen at training, thus enabling the user to specify categories of interest at inference without the need for model retraining. We adopt a standard two- stage object detector architecture, and explore three ways for specifying novel categories: via language descriptions, via image exemplars, or via a combination of the two. We make three contributions: first, we prompt a large language model (LLM) to generate informative language descriptions for object classes, and construct powerful text-based classifiers; second, we employ a visual aggregator on image exemplars that can ingest any number of images as input, forming vision-based classifiers; and third, we provide a simple method to fuse information from language descriptions and image exemplars, yield- ing a multi-modal classifier. When evaluating on the challenging LVIS open-vocabulary bench- mark we demonstrate that: (i) our text-based classifiers outperform all previous OVOD works; (ii) our vision-based classifiers perform as well as text-based classifiers in prior work; (iii) using multi-modal classifiers perform better than either modality alone; and finally, (iv) our text-based and multi-modal classifiers yield better performance than a fully-supervised detector.


#414
Hyperparameters in Reinforcement Learning and How To Tune Them

Theresa Eimer · Marius Lindauer · Roberta Raileanu

In order to improve reproducibility, deep reinforcement learning (RL) has been adopting better scientific practices such as standardized evaluation metrics and reporting. However, the process of hyperparameter optimization still varies widely across papers, which makes it challenging to compare RL algorithms fairly. In this paper, we show that hyperparameter choices in RL can significantly affect the agent's final performance and sample efficiency, and that the hyperparameter landscape can strongly depend on the tuning seed which may lead to overfitting. We therefore propose adopting established best practices from AutoML, such as the separation of tuning and testing seeds, as well as principled hyperparameter optimization (HPO) across a broad search space. We support this by comparing multiple state-of-the-art HPO tools on a range of RL algorithms and environments to their hand-tuned counterparts, demonstrating that HPO approaches often have higher performance and lower compute overhead. As a result of our findings, we recommend a set of best practices for the RL community, which should result in stronger empirical results with fewer computational costs, better reproducibility, and thus faster progress. In order to encourage the adoption of these practices, we provide plug-and-play implementations of the tuning algorithms used in this paper at https://github.com/facebookresearch/how-to-autorl.


#415
Never mind the metrics---what about the uncertainty? Visualising binary confusion matrix metric distributions to put performance in perspective

David Lovell · Dimity Miller · Jaiden Capra · Andrew Bradley

There are strong incentives to build classification systems that show outstanding performance on various datasets and benchmarks. This can encourage a narrow focus on models and the performance metrics used to evaluate and compare them—resulting in a growing body of literature to evaluate and compare metrics. This paper strives for a more balanced perspective on binary classifier performance metrics by showing how uncertainty in these metrics can easily eclipse differences in empirical performance. We emphasise the discrete nature of confusion matrices and show how they can be well represented in a 3D lattice whose cross-sections form the space of receiver operating characteristic (ROC) curves. We develop novel interactive visualisations of performance metric contours within (and beyond) ROC space, showing the discrete probability mass functions of true and false positive rates and how these relate to performance metric distributions. We aim to raise awareness of the substantial uncertainty in performance metric estimates that can arise when classifiers are evaluated on empirical datasets and benchmarks, and that performance claims should be tempered by this understanding.


#416
Data Feedback Loops: Model-driven Amplification of Dataset Biases

Rohan Taori · Tatsunori Hashimoto

Datasets scraped from the internet have been critical to large-scale machine learning. Yet, its success puts the utility of future internet-derived datasets at potential risk, as model outputs begin to replace human annotations as a source of supervision. In this work, we formalize a system where interactions with one model are recorded as history and scraped as training data in the future. We then analyze its stability over time by tracking changes to a test-time bias statistic (e.g. gender bias of model predictions). We find that the degree of bias amplification is closely linked to whether the model's outputs behave like samples from the training distribution, a behavior which we characterize and define as uniform faithfulness. Experiments in three conditional prediction scenarios -- image classification, visual role-labeling, and language generation -- demonstrate that models that exhibit a sampling-like behavior are more faithful and thus more stable. Based on this insight, we propose an intervention to help mitigate and stabilize unstable feedback systems.


#209
When Personalization Harms Performance: Reconsidering the Use of Group Attributes in Prediction

Vinith Suriyakumar · Marzyeh Ghassemi · Berk Ustun

Machine learning models are often personalized with categorical attributes that define groups. In this work, we show that personalization with group attributes can inadvertently reduce performance at a group level -- i.e., groups may receive unnecessarily inaccurate predictions by sharing their personal characteristics. We present formal conditions to ensure the fair use of group attributes in a prediction task, and describe how they can be checked by training one additional model. We characterize how fair use conditions be violated due to standard practices in model development, and study the prevalence of fair use violations in clinical prediction tasks. Our results show that personalization often fails to produce a tailored performance gain for every group who reports personal data, and underscore the need to evaluate fair use when personalizing models with characteristics that are protected, sensitive, self-reported, or costly to acquire.


#417
Fair Neighbor Embedding

Jaakko Peltonen · Wen Xu · Timo Nummenmaa · Jyrki Nummenmaa

We consider fairness in dimensionality reduction. Nonlinear dimensionality reduction yields low dimensional representations that let users visualize and explore high-dimensional data. However, traditional dimensionality reduction may yield biased visualizations overemphasizing relationships of societal phenomena to sensitive attributes or protected groups. We introduce a framework of fair neighbor embedding, the Fair Neighbor Retrieval Visualizer, which formulates fair nonlinear dimensionality reduction as an information retrieval task whose performance and fairness are quantified by information retrieval criteria. The method optimizes low-dimensional embeddings that preserve high-dimensional data neighborhoods without yielding biased association of such neighborhoods to protected groups. In experiments the method yields fair visualizations outperforming previous methods.


#418
Kernel Sufficient Dimension Reduction and Variable Selection for Compositional Data via Amalgamation

Junyoung Park · Jeongyoun Ahn · Cheolwoo Park

Compositional data with a large number of components and an abundance of zeros are frequently observed in many fields recently. Analyzing such sparse high-dimensional compositional data naturally calls for dimension reduction or, more preferably, variable selection. Most existing approaches lack interpretability or cannot handle zeros properly, as they rely on a log-ratio transformation. We approach this problem with sufficient dimension reduction (SDR), one of the most studied dimension reduction frameworks in statistics. Characterized by the conditional independence of the data to the response on the found subspace, the SDR framework has been effective for both linear and nonlinear dimension reduction problems. This work proposes a compositional SDR that can handle zeros naturally while incorporating the nonlinear nature and spurious negative correlations among components rigorously. A critical consideration of sub-composition versus amalgamation for compositional variable selection is discussed. The proposed compositional SDR is shown to be statistically consistent in constructing a sub-simplex consisting of true signal variables. Simulation and real microbiome data are used to demonstrate the performance of the proposed SDR compared to existing state-of-art approaches.


#419
Adaptive Whitening in Neural Populations with Gain-modulating Interneurons

Lyndon Duong · David Lipshutz · David Heeger · Dmitri Chklovskii · Eero Simoncelli

Statistical whitening transformations play a fundamental role in many computational systems, and may also play an important role in biological sensory systems. Existing neural circuit models of adaptive whitening operate by modifying synaptic interactions; however, such modifications would seem both too slow and insufficiently reversible. Motivated by the extensive neuroscience literature on gain modulation, we propose an alternative model that adaptively whitens its responses by modulating the gains of individual neurons. Starting from a novel whitening objective, we derive an online algorithm that whitens its outputs by adjusting the marginal variances of an overcomplete set of projections. We map the algorithm onto a recurrent neural network with fixed synaptic weights and gain-modulating interneurons. We demonstrate numerically that sign-constraining the gains improves robustness of the network to ill-conditioned inputs, and a generalization of the circuit achieves a form of local whitening in convolutional populations, such as those found throughout the visual or auditory systems.


#420
Hierarchies of Reward Machines

Daniel Furelos-Blanco · Mark Law · Anders Jonsson · Krysia Broda · Alessandra Russo

Reward machines (RMs) are a recent formalism for representing the reward function of a reinforcement learning task through a finite-state machine whose edges encode subgoals of the task using high-level events. The structure of RMs enables the decomposition of a task into simpler and independently solvable subtasks that help tackle long-horizon and/or sparse reward tasks. We propose a formalism for further abstracting the subtask structure by endowing an RM with the ability to call other RMs, thus composing a hierarchy of RMs (HRM). We exploit HRMs by treating each call to an RM as an independently solvable subtask using the options framework, and describe a curriculum-based method to learn HRMs from traces observed by the agent. Our experiments reveal that exploiting a handcrafted HRM leads to faster convergence than with a flat HRM, and that learning an HRM is feasible in cases where its equivalent flat representation is not.


#421
Learning Deep Time-index Models for Time Series Forecasting

Gerald Woo · Chenghao Liu · Doyen Sahoo · Akshat Kumar · Steven Hoi

Deep learning has been actively applied to time series forecasting, leading to a deluge of new methods, belonging to the class of historical-value models. Yet, despite the attractive properties of time-index models, such as being able to model the continuous nature of underlying time series dynamics, little attention has been given to them. Indeed, while naive deep time-index models are far more expressive than the manually predefined function representations of classical time-index models, they are inadequate for forecasting, being unable to generalize to unseen time steps due to the lack of inductive bias. In this paper, we propose DeepTime, a meta-optimization framework to learn deep time-index models which overcome these limitations, yielding an efficient and accurate forecasting model. Extensive experiments on real world datasets in the long sequence time-series forecasting setting demonstrate that our approach achieves competitive results with state-of-the-art methods, and is highly efficient. Code is available at https://github.com/salesforce/DeepTime.


#422
What is Essential for Unseen Goal Generalization of Offline Goal-conditioned RL?

Rui Yang · Yong LIN · Xiaoteng Ma · Hao Hu · Chongjie Zhang · Tong Zhang

Offline goal-conditioned RL (GCRL) offers a way to train general-purpose agents from fully offline datasets. In addition to being conservative within the dataset, the generalization ability to achieve unseen goals is another fundamental challenge for offline GCRL. However, to the best of our knowledge, this problem has not been well studied yet. In this paper, we study out-of-distribution (OOD) generalization of offline GCRL both theoretically and empirically to identify factors that are important. In a number of experiments, we observe that weighted imitation learning enjoys better generalization than pessimism-based offline RL method. Based on this insight, we derive a theory for OOD generalization, which characterizes several important design choices. We then propose a new offline GCRL method, Generalizable Offline goAl-condiTioned RL (GOAT), by combining the findings from our theoretical and empirical studies. On a new benchmark containing 9 independent identically distributed (IID) tasks and 17 OOD tasks, GOAT outperforms current state-of-the-art methods by a large margin.


#423
Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity

Dixian Zhu · Yiming Ying · Tianbao Yang

We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification that are formulated from distributionally robust optimization (DRO) perspective, where the uncertainty in the given label information are modeled and captured by taking the worse case of distributional weights. The benefits of this perspective are several fold: (i) it provides a unified framework to explain the classical cross-entropy (CE) loss and SVM loss and their variants, (ii) it includes a special family corresponding to the temperature-scaled CE loss, which is widely adopted but poorly understood; (iii) it allows us to achieve adaptivity to the uncertainty degree of label information at an instance level. Our contributions include: (1) we study both consistency and robustness by establishing top-$k$ ($\forall k\geq 1$) consistency of LDR losses for multi-class classification, and a negative result that a top-$1$ consistent and symmetric robust loss cannot achieve top-$k$ consistency simultaneously for all $k\geq 2$; (2) we propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance; (3) we demonstrate stable and competitive performance for the proposed adaptive LDR loss on 7 benchmark datasets under 6 noisy label and 1 clean settings against 13 loss functions, and on one real-world noisy dataset. The method is open-sourced at https://github.com/Optimization-AI/ICML2023_LDR.


#424
OpenFE: Automated Feature Generation with Expert-level Performance

Tianping Zhang · Zheyu Zhang · Zhiyuan Fan · Haoyan Luo · Fengyuan Liu · Qian Liu · Wei Cao · Li Jian

The goal of automated feature generation is to liberate machine learning experts from the laborious task of manual feature generation, which is crucial for improving the learning performance of tabular data. The major challenge in automated feature generation is to efficiently and accurately identify effective features from a vast pool of candidate features. In this paper, we present OpenFE, an automated feature generation tool that provides competitive results against machine learning experts. OpenFE achieves high efficiency and accuracy with two components: 1) a novel feature boosting method for accurately evaluating the incremental performance of candidate features and 2) a two-stage pruning algorithm that performs feature pruning in a coarse-to-fine manner. Extensive experiments on ten benchmark datasets show that OpenFE outperforms existing baseline methods by a large margin. We further evaluate OpenFE in two Kaggle competitions with thousands of data science teams participating. In the two competitions, features generated by OpenFE with a simple baseline model can beat 99.3% and 99.6% data science teams respectively. In addition to the empirical results, we provide a theoretical perspective to show that feature generation can be beneficial in a simple yet representative setting.


#425
Linear Time GPs for Inferring Latent Trajectories from Neural Spike Trains

Matthew Dowling · Yuan Zhao · Memming Park

Latent Gaussian process (GP) models are widely used in neuroscience to uncover hidden state evolutions from sequential observations, mainly in neural activity recordings. While latent GP models provide a principled and powerful solution in theory, the intractable posterior in non-conjugate settings necessitates approximate inference schemes, which may lack scalability. In this work, we propose cvHM, a general inference framework for latent GP models leveraging Hida-Matérn kernels and conjugate computation variational inference (CVI). With cvHM, we are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods. The reparameterization of stationary kernels using Hida-Matérn GPs helps us connect the latent variable models that encode prior assumptions through dynamical systems to those that encode trajectory assumptions through GPs. In contrast to previous work, we use bidirectional information filtering, leading to a more concise implementation. Furthermore, we employ the Whittle approximate likelihood to achieve highly efficient hyperparameter learning.


#426
Unscented Autoencoder

Faris Janjoš · Lars Rosenbaum · Maxim Dolgov · J. Marius Zoellner

The Variational Autoencoder (VAE) is a seminal approach in deep generative modeling with latent variables. Interpreting its reconstruction process as a nonlinear transformation of samples from the latent posterior distribution, we apply the Unscented Transform (UT) -- a well-known distribution approximation used in the Unscented Kalman Filter (UKF) from the field of filtering. A finite set of statistics called sigma points, sampled deterministically, provides a more informative and lower-variance posterior representation than the ubiquitous noise-scaling of the reparameterization trick, while ensuring higher-quality reconstruction. We further boost the performance by replacing the Kullback-Leibler (KL) divergence with the Wasserstein distribution metric that allows for a sharper posterior. Inspired by the two components, we derive a novel, deterministic-sampling flavor of the VAE, the Unscented Autoencoder (UAE), trained purely with regularization-like terms on the per-sample posterior. We empirically show competitive performance in Fréchet Inception Distance scores over closely-related models, in addition to a lower training variance than the VAE.


#427
Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning

Tongzhou Wang · Antonio Torralba · Phillip Isola · Amy Zhang

In goal-reaching reinforcement learning (RL), the optimal value function has a particular geometry, called quasimetrics structure. This paper introduces Quasimetric Reinforcement Learning (QRL), a new RL method that utilizes quasimetric models to learn optimal value functions. Distinct from prior approaches, the QRL objective is specifically designed for quasimetrics, and provides strong theoretical recovery guarantees. Empirically, we conduct thorough analyses on a discretized MountainCar environment, identifying properties of QRL and its advantages over alternatives. On offline and online goal-reaching benchmarks, QRL also demonstrates improved sample efficiency and performance, across both state-based and image-based observations.


#429
Learning in POMDPs is Sample-Efficient with Hindsight Observability

Jonathan Lee · Alekh Agarwal · Christoph Dann · Tong Zhang

POMDPs capture a broad class of decision making problems, but hardness results suggest that learning is intractable even in simple settings due to the inherent partial observability. However, in many realistic problems, more information is either revealed or can be computed during some point of the learning process. Motivated by diverse applications ranging from robotics to data center scheduling, we formulate a Hindsight Observable Markov Decision Process (HOMDP) as a POMDP where the latent states are revealed to the learner in hindsight and only during training. We introduce new algorithms for the tabular and function approximation settings that are provably sample-efficient with hindsight observability, even in POMDPs that would otherwise be statistically intractable. We give a lower bound showing that the tabular algorithm is optimal in its dependence on latent state and observation cardinalities.


#430
On the Power of Pre-training for Generalization in RL: Provable Benefits and Hardness

Haotian Ye · Xiaoyu Chen · Liwei Wang · Simon Du

Generalization in Reinforcement Learning (RL) aims to train an agent during training that generalizes to the target environment. In this work, we first point out that RL generalization is fundamentally different from the generalization in supervised learning, and fine-tuning on the target environment is necessary for good test performance. Therefore, we seek to answer the following question: how much can we expect pre-training over training environments to be helpful for efficient and effective fine-tuning? On one hand, we give a surprising result showing that asymptotically, the improvement from pre-training is at most a constant factor. On the other hand, we show that pre-training can be indeed helpful in the non-asymptotic regime by designing a policy collection-elimination (PCE) algorithm and proving a distribution-dependent regret bound that is independent of the state-action space. We hope our theoretical results can provide insight towards understanding pre-training and generalization in RL.


#431
Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Xiaohui Chen · JIAXING HE · Xu Han · Liping Liu

Diffusion-based generative graph models have been proven effective in generating high-quality small graphs. However, they need to be more scalable for generating large graphs containing thousands of nodes desiring graph statistics. In this work, we propose EDGE, a new diffusion-based generative graph model that addresses generative tasks with large graphs. To improve computation efficiency, we encourage graph sparsity by using a discrete diffusion process that randomly removes edges at each time step and finally obtains an empty graph. EDGE only focuses on a portion of nodes in the graph at each denoising step. It makes much fewer edge predictions than previous diffusion-based models. Moreover, EDGE admits explicitly modeling the node degrees of the graphs, further improving the model performance. The empirical study shows that EDGE is much more efficient than competing methods and can generate large graphs with thousands of nodes. It also outperforms baseline models in generation quality: graphs generated by our approach have more similar graph statistics to those of the training graphs.


#432
GFlowOut: Dropout with Generative Flow Networks

Dianbo Liu · Moksh Jain · Bonaventure F. P. Dossou · Qianli Shen · Salem Lahlou · Anirudh Goyal · Nikolay Malkin · Chris Emezue · Dinghuai Zhang · Nadhir Hassen · Xu Ji · Kenji Kawaguchi · Yoshua Bengio

Bayesian inference offers principled tools to tackle many critical problems with modern neural networks such as poor calibration and generalization, and data inefficiency. However, scaling Bayesian inference to large architectures is challenging and requires restrictive approximations. Monte Carlo Dropout has been widely used as a relatively cheap way to approximate inference and estimate uncertainty with deep neural networks. Traditionally, the dropout mask is sampled independently from a fixed distribution. Recent research shows that the dropout mask can be seen as a latent variable, which can be inferred with variational inference. These methods face two important challenges: (a) the posterior distribution over masks can be highly multi-modal which can be difficult to approximate with standard variational inference and (b) it is not trivial to fully utilize sample-dependent information and correlation among dropout masks to improve posterior estimation. In this work, we propose GFlowOut to address these issues. GFlowOut leverages the recently proposed probabilistic framework of Generative Flow Networks (GFlowNets) to learn the posterior distribution over dropout masks. We empirically demonstrate that GFlowOut results in predictive distributions that generalize better to out-of-distribution data and provide uncertainty estimates which lead to better performance in downstream tasks.


#433
Quantifying Human Priors over Social and Navigation Networks

Gecia Bravo-Hermsdorff

Human knowledge is largely implicit and relational --- do we have a friend in common? can I walk from here to there? In this work, we leverage the combinatorial structure of graphs to quantify human priors over such relational data. Our experiments focus on two domains that have been continuously relevant over evolutionary timescales: social interaction and spatial navigation. We find that some features of the inferred priors are remarkably consistent, such as the tendency for sparsity as a function of graph size. Other features are domain-specific, such as the propensity for triadic closure in social interactions. More broadly, our work demonstrates how nonclassical statistical analysis of indirect behavioral experiments can be used to efficiently model latent biases in the data.


#434
Biases in Evaluation of Molecular Optimization Methods and Bias Reduction Strategies

Hiroshi Kajino · Kohei Miyaguchi · Takayuki Osogami

We are interested in an evaluation methodology for molecular optimization. Given a sample of molecules and their properties of our interest, we wish not only to train a generator of molecules optimized with respect to a target property but also to evaluate its performance accurately. A common practice is to train a predictor of the target property using the sample and apply it to both training and evaluating the generator. However, little is known about its statistical properties, and thus, we are not certain about whether this performance estimate is reliable or not. We theoretically investigate this evaluation methodology and show that it potentially suffers from two biases; one is due to misspecification of the predictor and the other to reusing the same finite sample for training and evaluation. We discuss bias reduction methods for each of the biases, and empirically investigate their effectiveness.


#435
Recovering Top-Two Answers and Confusion Probability in Multi-Choice Crowdsourcing

Hyeonsu Jeong · Hye Won Chung

Crowdsourcing has emerged as an effective platform for labeling large amounts of data in a cost- and time-efficient manner. Most previous work has focused on designing an efficient algorithm to recover only the ground-truth labels of the data. In this paper, we consider multi-choice crowdsourcing tasks with the goal of recovering not only the ground truth, but also the most confusing answer and the confusion probability. The most confusing answer provides useful information about the task by revealing the most plausible answer other than the ground truth and how plausible it is. To theoretically analyze such scenarios, we propose a model in which there are the top two plausible answers for each task, distinguished from the rest of the choices. Task difficulty is quantified by the probability of confusion between the top two, and worker reliability is quantified by the probability of giving an answer among the top two. Under this model, we propose a two-stage inference algorithm to infer both the top two answers and the confusion probability. We show that our algorithm achieves the minimax optimal convergence rate. We conduct both synthetic and real data experiments and demonstrate that our algorithm outperforms other recent algorithms. We also show the applicability of our algorithms in inferring the difficulty of tasks and in training neural networks with top-two soft labels.


#436
Learning Perturbations to Explain Time Series Predictions

Joseph Enguehard

Explaining predictions based on multivariate time series data carries the additional difficulty of handling not only multiple features, but also time dependencies. It matters not only what happened, but also when, and the same feature could have a very different impact on a prediction depending on this time information. Previous work has used perturbation-based saliency methods to tackle this issue, perturbing an input using a trainable mask to discover which features at which times are driving the predictions. However these methods introduce fixed perturbations, inspired from similar methods on static data, while there seems to be little motivation to do so on temporal data. In this work, we aim to explain predictions by learning not only masks, but also associated perturbations. We empirically show that learning these perturbations significantly improves the quality of these explanations on time series data.


#437
Incentivizing Exploration with Linear Contexts and Combinatorial Actions

Mark Sellke

We advance the study of incentivized bandit exploration, in which arm choices are viewed as recommendations and are required to be Bayesian incentive compatible. Recent work of Sellke-Slivkins (Operations Research 2022) has shown that for the special case of independent arms, after collecting enough initial samples, the popular Thompson sampling algorithm becomes incentive compatible. This was generalized to the combinatorial semibandit in Hu-Ngo-Slivkins-Wu (NeurIPS 2022). We give an analog of this result for linear bandits, where the independence of the prior is replaced by a natural convexity condition. This opens up the possibility of efficient and regret-optimal incentivized exploration in high-dimensional action spaces. In the semibandit model, we also improve the sample complexity for the pre-Thompson sampling phase of initial data collection.


#438
From Robustness to Privacy and Back

Hilal Asi · Jonathan Ullman · Lydia Zakynthinou

We study the relationship between two desiderata of algorithms in statistical inference and machine learning---differential privacy and robustness to adversarial data corruptions. Their conceptual similarity was first observed by Dwork and Lei (STOC 2009), who observed that private algorithms satisfy robustness, and gave a general method for converting robust algorithms to private ones. However, all general methods for transforming robust algorithms into private ones lead to suboptimal error rates. Our work gives the first black-box transformation that converts any adversarially robust algorithm into one that satisfies pure differential privacy. Moreover, we show that for any low-dimensional estimation task, applying our transformation to an optimal robust estimator results in an optimal private estimator. Thus, we conclude that for any low-dimensional task, the optimal error rate for $\varepsilon$-differentially private estimators is essentially the same as the optimal error rate for estimators that are robust to adversarially corrupting $1/\varepsilon$ training samples. We apply our transformation to obtain new optimal private estimators for several high-dimensional statistical tasks, including Gaussian linear regression and PCA. Finally, we present an extension of our transformation that leads to approximately differentially private algorithms whose error does not depend on the range of the output space, which is impossible under pure differential privacy.


#439
Learning to Bid in Repeated First-Price Auctions with Budgets

Qian Wang · Zongjun Yang · Xiaotie Deng · Yuqing Kong

Budget management strategies in repeated auctions have received growing attention in online advertising markets. However, previous work on budget management in online bidding mainly focused on second-price auctions. The rapid shift from second-price auctions to first-price auctions for online ads in recent years has motivated the challenging question of how to bid in repeated first-price auctions while controlling budgets. In this work, we study the problem of learning in repeated first-price auctions with budgets. We design a dual-based algorithm that can achieve a near-optimal $\widetilde{O}(\sqrt{T})$ regret with full information feedback where the maximum competing bid is always revealed after each auction. We further consider the setting with one-sided information feedback where only the winning bid is revealed after each auction. We show that our modified algorithm can still achieve an $\widetilde{O}(\sqrt{T})$ regret with mild assumptions on the bidder's value distribution. Finally, we complement the theoretical results with numerical experiments to confirm the effectiveness of our budget management policy.


#440
Distributed Linear Bandits under Communication Constraints

Sudeep Salgia · Qing Zhao

We consider distributed linear bandits where $M$ agents learn collaboratively to minimize the overall cumulative regret incurred by all agents. Information exchange is facilitated by a central server, and both the uplink and downlink communications are carried over channels with fixed capacity, which limits the amount of information that can be transmitted in each use of the channels. We investigate the regret-communication trade-off by (i) establishing information-theoretic lower bounds on the required communications (in terms of bits) for achieving a sublinear regret order; (ii) developing an efficient algorithm that achieves the minimum sublinear regret order offered by centralized learning using the minimum order of communications dictated by the information-theoretic lower bounds. For sparse linear bandits, we show a variant of the proposed algorithm offers better regret-communication trade-off by leveraging the sparsity of the problem.


#441
Statistical Foundations of Prior-Data Fitted Networks

Thomas Nagler

Prior-data fitted networks (PFNs) were recently proposed as a new paradigm for machine learning. Instead of training the network to an observed training set, a fixed model is pre-trained offline on small, simulated training sets from a variety of tasks. The pre-trained model is then used to infer class probabilities in-context on fresh training sets with arbitrary size and distribution. Empirically, PFNs achieve state-of-the-art performance on tasks with similar size to the ones used in pre-training. Surprisingly, their accuracy further improves when passed larger data sets during inference. This article establishes a theoretical foundation for PFNs and illuminates the statistical mechanisms governing their behavior. While PFNs are motivated by Bayesian ideas, a purely frequentistic interpretation of PFNs as pre-tuned, but untrained predictors explains their behavior. A predictor's variance vanishes if its sensitivity to individual training samples does and the bias vanishes only if it is appropriately localized around the test feature. The transformer architecture used in current PFN implementations ensures only the former. These findings shall prove useful for designing architectures with favorable empirical behavior.


#442
Neural networks trained with SGD learn distributions of increasing complexity

Maria Refinetti · Alessandro Ingrosso · Sebastian Goldt

The uncanny ability of over-parameterised neural networks to generalise well has been explained using various "simplicity biases". These theories postulate that neural networks avoid overfitting by first fitting simple, linear classifiers before learning more complex, non-linear functions. Meanwhile, data structure is also recognised as a key ingredient for good generalisation, yet its role in simplicity biases is not yet understood. Here, we show that neural networks trained using stochastic gradient descent initially classify their inputs using lower-order input statistics, like mean and covariance, and exploit higher-order statistics only later during training. We first demonstrate this distributional simplicity bias (DSB) in a solvable model of a single neuron trained on synthetic data. We then demonstrate DSB empirically in a range of deep convolutional networks and visual transformers trained on CIFAR10, and show that it even holds in networks pre-trained on ImageNet. We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of Gaussian universality in learning.


#500
Scaling Laws for Multilingual Neural Machine Translation

Patrick Fernandes · Behrooz Ghorbani · Xavier Garcia · Markus Freitag · Orhan Firat

In this work, we provide a large-scale empirical study of the scaling properties of multilingual neural machine translation models. We examine how increases in the model size affect the model performance and investigate the role of the individual language pair weights on the scaling behavior. We find that these weights only affect the multiplicative factor of the scaling law, and in particular, the scaling exponent is unaffected by them. Through a novel joint scaling law formulation, we compute the effective number of parameters allocated to each language pair and examine the role of language similarity in the scaling behavior of our models. We find little evidence that language similarity has any impact. In contrast, ``direction'' of the multilinguality plays a significant role, with models translating from multiple languages into English having a larger number of effective parameters per task than their reversed counterparts. Finally, we leverage our observations to predict the performance of multilingual models trained with any language weighting at any scale, greatly reducing efforts required for language balancing in large multilingual models. Our findings apply to both in-domain and out-of-domain test sets and to multiple evaluation metrics, such as ChrF and BLEURT.


#501
Explaining the effects of non-convergent MCMC in the training of Energy-Based Models

Elisabeth Agoritsas · Giovanni Catania · Aurélien Decelle · Beatriz Seoane

In this paper, we quantify the impact of using non-convergent Markov chains to train Energy-Based models (EBMs). In particular, we show analytically that EBMs trained with non-persistent short runs to estimate the gradient can perfectly reproduce a set of empirical statistics of the data, not at the level of the equilibrium measure, but through a precise dynamical process. Our results provide a first-principles explanation for the observations of recent works proposing the strategy of using short runs starting from random initial conditions as an efficient way to generate high-quality samples in EBMs, and lay the groundwork for using EBMs as diffusion models. After explaining this effect in generic EBMs, we analyze two solvable models in which the effect of the non-convergent sampling in the trained parameters can be described in detail. Finally, we test these predictions numerically on a ConvNet EBM and a Boltzmann machine.


#502
Metagenomic Binning using Connectivity-constrained Variational Autoencoders

Andre Lamurias · Alessandro Tibo · Katja Hose · Mads Albertsen · Thomas D. Nielsen

Current state-of-the-art techniques for metagenomic binning only utilize local features for the individual DNA sequences (contigs), neglecting additional information such as the assembly graph, in which the contigs are connected according to overlapping reads, and gene markers identified in the contigs. In this paper, we propose the use of a Variational AutoEncoder (VAE) tailored to leverage auxiliary structural information about contig relations when learning contig representations for subsequent metagenomic binning. Our method, CCVAE, improves on previous work that used VAEs for learning latent representations of the individual contigs, by constraining these representations according to the connectivity information from the assembly graph. Additionally, we incorporate into the model additional information in the form of marker genes to better differentiate contigs from different genomes. Our experiments on both simulated and real-world datasets demonstrate that CCVAE outperforms current state-of-the-art techniques, thus providing a more effective method for metagenomic binning.


#503
Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation

Qianru Zhang · Chao Huang · Lianghao Xia · Zheng Wang · Siu Ming Yiu · Ruihua Han

Spatial-temporal graph learning has emerged as the state-of-the-art solution for modeling structured spatial-temporal data in learning region representations for various urban sensing tasks (e.g., crime forecasting, traffic flow prediction). However, most existing models are vulnerable to the quality of the generated region graph due to the inartistic graph-structured information aggregation schema. The ubiquitous spatial-temporal data noise and incompleteness in real-life scenarios bring difficulties to generate high-quality region representations. In this paper, we propose a Spatial-Temporal Adversarial Graph contrastive learning model (STAG) to tackle this challenge for adaptive self-supervised graph augmentation. Specifically, we propose a learnable contrastive learning function that enables the automated distillation of important multi-view self-supervised signals for adaptive spatial-temporal graph augmentation. To enhance the representation discrimination ability and robustness, the designed adversarial contrastive learning mechanism empowers STAG to adaptively identify hard samples for better self-supervision. Finally, a cross-view contrastive learning paradigm is introduced to model the inter-dependencies across view-specific region representations and preserve the underlying relation heterogeneity. We verify the superiority of our STAG method in various spatial-temporal prediction tasks on several benchmark datasets.


#504
Beyond In-Domain Scenarios: Robust Density-Aware Calibration

Christian Tomani · Futa Waseda · Yuesong Shen · Daniel Cremers

Calibrating deep learning models to yield uncertainty-aware predictions is crucial as deep neural networks get increasingly deployed in safety-critical applications. While existing post-hoc calibration methods achieve impressive results on in-domain test datasets, they are limited by their inability to yield reliable uncertainty estimates in domain-shift and out-of-domain (OOD) scenarios. We aim to bridge this gap by proposing DAC, an accuracy-preserving as well as Density-Aware Calibration method based on k-nearest-neighbors (KNN). In contrast to existing post-hoc methods, we utilize hidden layers of classifiers as a source for uncertainty-related information and study their importance. We show that DAC is a generic method that can readily be combined with state-of-the-art post-hoc methods. DAC boosts the robustness of calibration performance in domain-shift and OOD, while maintaining excellent in-domain predictive uncertainty estimates. We demonstrate that DAC leads to consistently better calibration across a large number of model architectures, datasets, and metrics. Additionally, we show that DAC improves calibration substantially on recent large-scale neural networks pre-trained on vast amounts of data.


#505
Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning

Jaehyung Kim · Jinwoo Shin · Dongyeop Kang

The development of largely human-annotated benchmarks has driven the success of deep neural networks in various NLP tasks. To enhance the effectiveness of existing benchmarks, collecting new additional input-output pairs is often too costly and challenging, particularly considering their marginal impact on improving the current model accuracy. Instead, additional or complementary annotations on the existing input texts in the benchmarks can be preferable as an efficient way to pay the additional human cost. In this paper, we investigate task-specific preferences between pairs of input texts as a new alternative way for such auxiliary data annotation. From pair-wise comparisons with respect to the task, the auxiliary preference learning enables the model to learn an additional informative training signal that cannot be captured with instance-wise task labels. To this end, we propose a novel multi-task learning framework, called prefer-to-classify (P2C), which can enjoy the cooperative effect of learning both the given classification task and the auxiliary preferences. Here, we provide three different ways to collect preference signals in practice: (a) implicitly extracting from annotation records (for free, but often unavailable), (b) collecting explicitly from crowd workers (high paid), or (c) pre-trained large language models such as GPT-3 (low paid). Given existing classification NLP benchmarks, we demonstrate that the proposed auxiliary preference learning via P2C on them is effective in improving text classifiers. Our codes are publicly available.


#506
Disentangled Multiplex Graph Representation Learning

Yujie Mo · Yajie Lei · Jialie SHEN · Xiaoshuang Shi · Heng Tao Shen · Xiaofeng Zhu

Unsupervised multiplex graph representation learning (UMGRL) has received increasing interest, but few works simultaneously focused on the common and private information extraction. In this paper, we argue that it is essential for conducting effective and robust UMGRL to extract complete and clean common information, as well as more-complementarity and less-noise private information. To achieve this, we first investigate disentangled representation learning for the multiplex graph to capture complete and clean common information, as well as design a contrastive constraint to preserve the complementarity and remove the noise in the private information. Moreover, we theoretically analyze that the common and private representations learned by our method are provably disentangled and contain more task-relevant and less task-irrelevant information to benefit downstream tasks. Extensive experiments verify the superiority of the proposed method in terms of different downstream tasks.


#507
Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks

Peng XU · Lin Zhang · Xuanzhou Liu · Jiaqi Sun · Yue Zhao · Haiqin Yang · Bei Yu

Neural architecture search (NAS) for Graph neural networks (GNNs), called NAS-GNNs, has achieved significant performance over manually designed GNN architectures. However, these methods inherit issues from the conventional NAS methods, such as high computational cost and optimization difficulty. More importantly, previous NAS methods have ignored the uniqueness of GNNs, where GNNs possess expressive power without training. With the randomly-initialized weights, we can then seek the optimal architecture parameters via the sparse coding objective and derive a novel NAS-GNNs method, namely neural architecture coding (NAC). Consequently, our NAC holds a no-update scheme on GNNs and can efficiently compute in linear time. Empirical evaluations on multiple GNN benchmark datasets demonstrate that our approach leads to state-of-the-art performance, which is up to $200\times$ faster and $18.8\%$ more accurate than the strong baselines.


#508
Provably Learning Object-Centric Representations

Jack Brady · Roland S. Zimmermann · Yash Sharma · Bernhard Schölkopf · Julius von Kügelgen · Wieland Brendel

Learning structured representations of the visual world in terms of objects promises to significantly improve the generalization abilities of current machine learning models. While recent efforts to this end have shown promising empirical progress, a theoretical account of when unsupervised object-centric representation learning is possible is still lacking. Consequently, understanding the reasons for the success of existing object-centric methods as well as designing new theoretically grounded methods remains challenging. In the present work, we analyze when object-centric representations can provably be learned without supervision. To this end, we first introduce two assumptions on the generative process for scenes comprised of several objects, which we call compositionality and irreducibility. Under this generative process, we prove that the ground-truth object representations can be identified by an invertible and compositional inference model, even in the presence of dependencies between objects. We empirically validate our results through experiments on synthetic data. Finally, we provide evidence that our theory holds predictive power for existing object-centric models by showing a close correspondence between models' compositionality and invertibility and their empirical identifiability.


#509
BiBench: Benchmarking and Analyzing Network Binarization

Haotong Qin · Mingyuan Zhang · Yifu Ding · Aoyu Li · Zhongang Cai · Ziwei Liu · Fisher Yu · Xianglong Liu

Network binarization emerges as one of the most promising compression approaches offering extraordinary computation and memory savings by minimizing the bit-width. However, recent research has shown that applying existing binarization algorithms to diverse tasks, architectures, and hardware in realistic scenarios is still not straightforward. Common challenges of binarization, such as accuracy degradation and efficiency limitation, suggest that its attributes are not fully understood. To close this gap, we present BiBench, a rigorously designed benchmark with in-depth analysis for network binarization. We first carefully scrutinize the requirements of binarization in the actual production and define evaluation tracks and metrics for a comprehensive and fair investigation. Then, we evaluate and analyze a series of milestone binarization algorithms that function at the operator level and with extensive influence. Our benchmark reveals that 1) the binarized operator has a crucial impact on the performance and deployability of binarized networks; 2) the accuracy of binarization varies significantly across different learning tasks and neural architectures; 3) binarization has demonstrated promising efficiency potential on edge devices despite the limited hardware support. The results and analysis also lead to a promising paradigm for accurate and efficient binarization. We believe that BiBench will contribute to the broader adoption of binarization and serve as a foundation for future research. The code for our BiBench is released https://github.com/htqin/BiBench .


#510
Scaling Laws for Generative Mixed-Modal Language Models

Armen Aghajanyan · LILI YU · Alexis Conneau · Wei-Ning Hsu · Karen Hambardzumyan · Susan Zhang · Stephen Roller · Naman Goyal · Omer Levy · Luke Zettlemoyer

Generative language models define distributions over sequences of tokens that can represent essentially any combination of data modalities (e.g., any permutation of image tokens from VQ-VAEs, speech tokens from HuBERT, BPE tokens for language or code, and so on). To better understand the scaling properties of such mixed-modal models, we conducted over 250 experiments using seven different modalities and model sizes ranging from 8 million to 30 billion, trained on 5-100 billion tokens. We report new mixed-modal scaling laws that unify the contributions of individual modalities and the interactions between them. Specifically, we explicitly model the optimal synergy and competition due to data and model size as an additive term to previous uni-modal scaling laws. We also find four empirical phenomena observed during the training, such as emergent coordinate-ascent style training that naturally alternates between modalities, guidelines for selecting critical hyper-parameters, and connections between mixed-modal competition and training stability. Finally, we test our scaling law by training a 30B speech-text model, which significantly outperforms the corresponding unimodal models. Overall, our research provides valuable insights into the design and training of mixed-modal generative models, an important new class of unified models that have unique distributional properties.


#512
Sampling-based Nyström Approximation and Kernel Quadrature

Satoshi Hayakawa · Harald Oberhauser · Terry Lyons

We analyze the Nyström approximation of a positive definite kernel associated with a probability measure. We first prove an improved error bound for the conventional Nyström approximation with i.i.d. sampling and singular-value decomposition in the continuous regime; the proof techniques are borrowed from statistical learning theory. We further introduce a refined selection of subspaces in Nyström approximation with theoretical guarantees that is applicable to non-i.i.d. landmark points. Finally, we discuss their application to convex kernel quadrature and give novel theoretical guarantees as well as numerical observations.


#513
Adversarial robustness of amortized Bayesian inference

Manuel Gloeckler · Michael Deistler · Jakob Macke

Bayesian inference usually requires running potentially costly inference procedures separately for every new observation. In contrast, the idea of amortized Bayesian inference is to initially invest computational cost in training an inference network on simulated data, which can subsequently be used to rapidly perform inference (i.e., to return estimates of posterior distributions) for new observations. This approach has been applied to many real-world models in the sciences and engineering, but it is unclear how robust the approach is to adversarial perturbations in the observed data. Here, we study the adversarial robustness of amortized Bayesian inference, focusing on simulation-based estimation of multi-dimensional posterior distributions. We show that almost unrecognizable, targeted perturbations of the observations can lead to drastic changes in the predicted posterior and highly unrealistic posterior predictive samples, across several benchmark tasks and a real-world example from neuroscience. We propose a computationally efficient regularization scheme based on penalizing the Fisher information of the conditional density estimator, and show how it improves the adversarial robustness of amortized Bayesian inference.


#514
Discover-Then-Rank Unlabeled Support Vectors in the Dual Space for Multi-Class Active Learning

Dayou Yu · Weishi Shi · Qi Yu

We propose to approach active learning (AL) from a novel perspective of discovering and then ranking potential support vectors by leveraging the key properties of the dual space of a sparse kernel max-margin predictor. We theoretically analyze the change of a hinge loss in the dual form and provide both the upper and lower bounds that are deeply connected to the key geometric properties induced by the dual space, which then help us identify various types of important data samples for AL. These bounds inform the design of a novel sampling strategy that leverages class-wise evidence as a key vehicle, formed through an affine combination of dual variables and kernel evaluation. We construct two distinct types of sampling functions, including discovery and ranking. The former focuses on samples with low total evidence from all classes, which signifies their potential to support exploration; the latter exploits the current decision boundary to identify the most conflicting regions for sampling, aiming to further refine the decision boundary. These two functions, which are complementary to each other, are automatically arranged into a two-phase active sampling process that starts with the discovery and then transitions to the ranking of data points to most effectively balance exploration and exploitation. Experiments on various real-world data demonstrate the state-of-the-art AL performance achieved by our model.


#515
Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

Yushi Bai · Xin Lv · Juanzi Li · Lei Hou

Answering complex logical queries on incomplete knowledge graphs is a challenging task, and has been widely studied. Embedding-based methods require training on complex queries and may not generalize well to out-of-distribution query structures. Recent work frames this task as an end-to-end optimization problem, and it only requires a pretrained link predictor. However, due to the exponentially large combinatorial search space, the optimal solution can only be approximated, limiting the final accuracy. In this work, we propose QTO (Query Computation Tree Optimization) that can efficiently find the exact optimal solution. QTO finds the optimal solution by a forward-backward propagation on the tree-like computation graph, i.e., query computation tree. In particular, QTO utilizes the independence encoded in the query computation tree to reduce the search space, where only local computations are involved during the optimization procedure. Experiments on 3 datasets show that QTO obtains state-of-the-art performance on complex query answering, outperforming previous best results by an average of 22%. Moreover, QTO can interpret the intermediate solutions for each of the one-hop atoms in the query with over 90% accuracy.


#517
Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions

Anant Raj · Lingjiong Zhu · Mert Gurbuzbalaban · Umut Simsekli

Heavy-tail phenomena in stochastic gradient descent (SGD) have been reported in several empirical studies. Experimental evidence in previous works suggests a strong interplay between the heaviness of the tails and generalization behavior of SGD. To address this empirical phenomena theoretically, several works have made strong topological and statistical assumptions to link the generalization error to heavy tails. Very recently, new generalization bounds have been proven, indicating a non-monotonic relationship between the generalization error and heavy tails, which is more pertinent to the reported empirical observations. While these bounds do not require additional topological assumptions given that SGD can be modeled using a heavy-tailed stochastic differential equation (SDE), they can only apply to simple quadratic problems. In this paper, we build on this line of research and develop generalization bounds for a more general class of objective functions, which includes non-convex functions as well. Our approach is based on developing Wasserstein stability bounds for heavy-tailed SDEs and their discretizations, which we then convert to generalization bounds. Our results do not require any nontrivial assumptions; yet, they shed more light to the empirical observations, thanks to the generality of the loss functions.


#518
Mixing Predictions for Online Metric Algorithms

Antonios Antoniadis · Christian Coester · Marek Elias · Adam Polak · Bertrand Simon

A major technique in learning-augmented online algorithms is combining multiple algorithms or predictors. Since the performance of each predictor may vary over time, it is desirable to use not the single best predictor as a benchmark, but rather a dynamic combination which follows different predictors at different times. We design algorithms that combine predictions and are competitive against such dynamic combinations for a wide class of online problems, namely, metrical task systems. Against the best (in hindsight) unconstrained combination of $\ell$ predictors, we obtain a competitive ratio of $O(\ell^2)$, and show that this is best possible. However, for a benchmark with slightly constrained number of switches between different predictors, we can get a $(1+\epsilon)$-competitive algorithm. Moreover, our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time. An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the $k$-server problem.


#519
Understanding the Impact of Adversarial Robustness on Accuracy Disparity

Yuzheng Hu · Fan Wu · Hongyang Zhang · Han Zhao

While it has long been empirically observed that adversarial robustness may be at odds with standard accuracy and may have further disparate impacts on different classes, it remains an open question to what extent such observations hold and how the class imbalance plays a role within. In this paper, we attempt to understand this question of accuracy disparity by taking a closer look at linear classifiers under a Gaussian mixture model. We decompose the impact of adversarial robustness into two parts: an inherent effect that will degrade the standard accuracy on all classes due to the robustness constraint, and the other caused by the class imbalance ratio, which will increase the accuracy disparity compared to standard training. Furthermore, we also show that such effects extend beyond the Gaussian mixture model, by generalizing our data model to the general family of stable distributions. More specifically, we demonstrate that while the constraint of adversarial robustness consistently degrades the standard accuracy in the balanced class setting, the class imbalance ratio plays a fundamentally different role in accuracy disparity compared to the Gaussian case, due to the heavy tail of the stable distribution. We additionally perform experiments on both synthetic and real-world datasets to corroborate our theoretical findings. Our empirical results also suggest that the implications may extend to nonlinear models over real-world datasets. Our code is publicly available on GitHub at https://github.com/Accuracy-Disparity/AT-on-AD.


#520
SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

Liren Yu · Jiaming Xu · Xiaojun Lin

There is a growing interest in designing Graph Neural Networks (GNNs) for seeded graph matching, which aims to match two unlabeled graphs using only topological information and a small set of seed nodes. However, most previous GNNs for this task use a semi-supervised approach, which requires a large number of seeds and cannot learn knowledge that is transferable to unseen graphs. In contrast, this paper proposes a new supervised approach that can learn from a training set how to match unseen graphs with only a few seeds. Our SeedGNN architecture incorporates several novel designs, inspired by theoretical studies of seeded graph matching: 1) it can learn to compute and use witness-like information from different hops, in a way that can be generalized to graphs of different sizes; 2) it can use easily-matched node-pairs as new seeds to improve the matching in subsequent layers. We evaluate SeedGNN on synthetic and real-world graphs and demonstrate significant performance improvements over both non-learning and learning algorithms in the existing literature. Furthermore, our experiments confirm that the knowledge learned by SeedGNN from training graphs can be generalized to test graphs of different sizes and categories.


#522
BPipe: Memory-Balanced Pipeline Parallelism for Training Large Language Models

Taebum Kim · Hyoungjoo Kim · Gyeong-In Yu · Byung-Gon Chun

Pipeline parallelism is a key technique for training large language models within GPU clusters. However, it often leads to a memory imbalance problem, where certain GPUs face high memory pressure while others underutilize their capacity. This imbalance results in suboptimal training performance, even when the overall GPU memory capacity is sufficient for more efficient setups. To address this inefficiency, we propose BPipe, a novel approach for achieving memory balance in pipeline parallelism. BPipe employs an activation balancing method to transfer intermediate activations between GPUs during training, enabling all GPUs to utilize comparable amounts of memory. With balanced memory utilization, BPipe enhances the training efficiency of large language models like GPT-3 by eliminating redundant recomputations or increasing the micro-batch size. Our evaluation conducted on 48 A100 GPUs across six nodes interconnected with HDR InfiniBand shows that BPipe accelerates the training of GPT-3 96B and GPT-3 134B models by 1.25x-2.17x compared to Megatron-LM, a state-of-the-art framework for training large language models.


#523
DoCoFL: Downlink Compression for Cross-Device Federated Learning

Ron Dorfman · Shay Vargaftik · Yaniv Ben Itzhak · Kfir Levy

Many compression techniques have been proposed to reduce the communication overhead of Federated Learning training procedures. However, these are typically designed for compressing model updates, which are expected to decay throughout training. As a result, such methods are inapplicable to downlink (i.e., from the parameter server to clients) compression in the cross-device setting, where heterogeneous clients may appear only once during training and thus must download the model parameters. Accordingly, we propose DoCoFL -- a new framework for downlink compression in the cross-device setting. Importantly, DoCoFL can be seamlessly combined with many uplink compression schemes, rendering it suitable for bi-directional compression. Through extensive evaluation, we show that DoCoFL offers significant bi-directional bandwidth reduction while achieving competitive accuracy to that of a baseline without any compression.


#524
GNN&GBDT-Guided Fast Optimizing Framework for Large-scale Integer Programming

Huigen Ye · Hua Xu · Hongyan Wang · Chengming WANG · Yu Jiang

The latest two-stage optimization framework based on graph neural network (GNN) and large neighborhood search (LNS) is the most popular framework in solving large-scale integer programs (IPs). However, the framework can not effectively use the embedding spatial information in GNN and still highly relies on large-scale solvers in LNS, resulting in the scale of IP being limited by the ability of the current solver and performance bottlenecks. To handle these issues, this paper presents a GNN&GBDT-guided fast optimizing framework for large-scale IPs that only uses a small-scale optimizer to solve large-scale IPs efficiently. Specifically, the proposed framework can be divided into three stages: Multi-task GNN Embedding to generate the embedding space, GBDT Prediction to effectively use the embedding spatial information, and Neighborhood Optimization to solve large-scale problems fast using the small-scale optimizer. Extensive experiments show that the proposed framework can solve IPs with millions of scales and surpass SCIP and Gurobi in the specified wall-clock time using only a small-scale optimizer with 30% of the problem size. It also shows that the proposed framework can save 99% of running time in achieving the same solution quality as SCIP, which verifies the effectiveness and efficiency of the proposed framework in solving large-scale IPs.


#525
Coarse-to-Fine: a Hierarchical Diffusion Model for Molecule Generation in 3D

Bo Qiang · Yuxuan Song · Minkai Xu · Jingjing Gong · Bowen Gao · Hao Zhou · Wei-Ying Ma · Yanyan Lan

Generating desirable molecular structures in 3D is a fundamental problem for drug discovery. Despite the considerable progress we have achieved, existing methods usually generate molecules in atom resolution and ignore intrinsic local structures such as rings, which leads to poor quality in generated structures, especially when generating large molecules. Fragment-based molecule generation is a promising strategy, however, it is nontrivial to be adapted for 3D non-autoregressive generations because of the combinational optimization problems. In this paper, we utilize a coarse-to-fine strategy to tackle this problem, in which a Hierarchical Diffusion-based model (i.e. HierDiff) is proposed to preserve the validity of local segments without relying on autoregressive modeling. Specifically, HierDiff first generates coarse-grained molecule geometries via an equivariant diffusion process, where each coarse-grained node reflects a fragment in a molecule. Then the coarse-grained nodes are decoded into fine-grained fragments by a message-passing process and a newly designed iterative refined sampling module. Lastly, the fine-grained fragments are then assembled to derive a complete atomic molecular structure. Extensive experiments demonstrate that HierDiff consistently improves the quality of molecule generation over existing methods.


#526
NNSplitter: An Active Defense Solution for DNN Model via Automated Weight Obfuscation

Tong Zhou · Yukui Luo · Shaolei Ren · Xiaolin Xu

As a type of valuable intellectual property (IP), deep neural network (DNN) models have been protected by techniques like watermarking. However, such passive model protection cannot fully prevent model abuse. In this work, we propose an active model IP protection scheme, namely NNSplitter, which actively protects the model by splitting it into two parts: the obfuscated model that performs poorly due to weight obfuscation, and the model secrets consisting of the indexes and original values of the obfuscated weights, which can only be accessed by authorized users with the support of the trusted execution environment. Experimental results demonstrate the effectiveness of NNSplitter, e.g., by only modifying 275 out of over 11 million (i.e., 0.002%) weights, the accuracy of the obfuscated ResNet-18 model on CIFAR-10 can drop to 10%. Moreover, NNSplitter is stealthy and resilient against norm clipping and fine-tuning attacks, making it an appealing solution for DNN model protection. The code is available at: https://github.com/Tongzhou0101/NNSplitter.


#527
Data-Driven Subgroup Identification for Linear Regression

Zachary Izzo · Ruishan Liu · James Zou

Medical studies frequently require to extract the relationship between each covariate and the outcome with statistical confidence measures. To do this, simple parametric models are frequently used (e.g. coefficients of linear regression) but always fitted on the whole dataset. However, it is common that the covariates may not have a uniform effect over the whole population and thus a unified simple model can miss the heterogeneous signal. For example, a linear model may be able to explain a subset of the data but fail on the rest due to the nonlinearity and heterogeneity in the data. In this paper, we propose DDGroup (data-driven group discovery), a data-driven method to effectively identify subgroups in the data with a uniform linear relationship between the features and the label. DDGroup outputs an interpretable region in which the linear model is expected to hold. It is simple to implement and computationally tractable for use. We show theoretically that, given a large enough sample, DDGroup recovers a region where a single linear model with low variance is well-specified (if one exists), and experiments on real-world medical datasets confirm that it can discover regions where a local linear model has improved performance. Our experiments also show that DDGroup can uncover subgroups with qualitatively different relationships which are missed by simply applying parametric approaches to the whole dataset.


#528
Simplex Random Features

Isaac Reid · Krzysztof Choromanski · Valerii Likhosherstov · Adrian Weller

We present Simplex Random Features (SimRFs), a new random feature (RF) mechanism for unbiased approximation of the softmax and Gaussian kernels by geometrical correlation of random projection vectors. We prove that SimRFs provide the smallest possible mean square error (MSE) on unbiased estimates of these kernels among the class of weight-independent geometrically-coupled positive random feature (PRF) mechanisms, substantially outperforming the previously most accurate Orthogonal Random Features (ORFs) at no observable extra cost. We present a more computationally expensive SimRFs+ variant, which we prove is asymptotically optimal in the broader family of weight-dependent geometrical coupling schemes (which permit correlations between random vector directions and norms). In extensive empirical studies, we show consistent gains provided by SimRFs in settings including pointwise kernel estimation, nonparametric classification and scalable Transformers.


#529
Abstracting Imperfect Information Away from Two-Player Zero-Sum Games

Samuel Sokota · Ryan D'Orazio · Chun Kai Ling · David Wu · Zico Kolter · Noam Brown

In their seminal work, Nayyar et al. (2013) showed that imperfect information can be abstracted away from common-payoff games by having players publicly announce their policies as they play. This insight underpins sound solvers and decision-time planning algorithms for common-payoff games. Unfortunately, a naive application of the same insight to two-player zero-sum games fails because Nash equilibria of the game with public policy announcements may not correspond to Nash equilibria of the original game. As a consequence, existing sound decision-time planning algorithms require complicated additional mechanisms that have unappealing properties. The main contribution of this work is showing that certain regularized equilibria do not possess the aforementioned non-correspondence problem---thus, computing them can be treated as perfect-information problems. Because these regularized equilibria can be made arbitrarily close to Nash equilibria, our result opens the door to a new perspective to solving two-player zero-sum games and yields a simplified framework for decision-time planning in two-player zero-sum games, void of the unappealing properties that plague existing decision-time planning approaches.


#530
Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data

Minshuo Chen · Kaixuan Huang · Tuo Zhao · Mengdi Wang

Diffusion models achieve state-of-the-art performance in various generation tasks. However, their theoretical foundations fall far behind. This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace. Our result provides sample complexity bounds for distribution estimation using diffusion models. We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated. Further, the generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution. The convergence rate depends on subspace dimension, implying that diffusion models can circumvent the curse of data ambient dimensionality.


#531
Proper Losses for Discrete Generative Models

Dhamma Kimpara · Rafael Frongillo · Bo Waggoner

We initiate the study of proper losses for evaluating generative models in the discrete setting. Unlike traditional proper losses, we treat both the generative model and the target distribution as black-boxes, only assuming ability to draw i.i.d. samples. We define a loss to be black-box proper if the generative distribution that minimizes expected loss is equal to the target distribution. Using techniques from statistical estimation theory, we give a general construction and characterization of black-box proper losses: they must take a polynomial form, and the number of draws from the model and target distribution must exceed the degree of the polynomial. The characterization rules out a loss whose expectation is the cross-entropy between the target distribution and the model. By extending the construction to arbitrary sampling schemes such as Poisson sampling, however, we show that one can construct such a loss.


#532
ClusterFuG: Clustering Fully connected Graphs by Multicut

Ahmed Abbas · Paul Swoboda

We propose a graph clustering formulation based on multicut (a.k.a. weighted correlation clustering) on the complete graph. Our formulation does not need specification of the graph topology as in the original sparse formulation of multicut, making our approach simpler and potentially better performing. In contrast to unweighted correlation clustering we allow for a more expressive weighted cost structure. In dense multicut, the clustering objective is given in a factorized form as inner products of node feature vectors. This allows for an efficient formulation and inference in contrast to multicut/weighted correlation clustering, which has at least quadratic representation and computation complexity when working on the complete graph. We show how to rewrite classical greedy algorithms for multicut in our dense setting and how to modify them for greater efficiency and solution quality. In particular, our algorithms scale to graphs with tens of thousands of nodes. Empirical evidence on instance segmentation on Cityscapes and clustering of ImageNet datasets shows the merits of our approach.


#533
Efficient Graph Field Integrators Meet Point Clouds

Krzysztof Choromanski · Arijit Sehanobish · Han Lin · YUNFAN ZHAO · Eli Berger · Tetiana Parshakova · Qingkai Pan · David Watkins · Tianyi Zhang · Valerii Likhosherstov · Somnath Basu Roy Chowdhury · Kumar Avinava Dubey · Deepali Jain · Tamas Sarlos · Snigdha Chaturvedi · Adrian Weller

We present two new classes of algorithms for efficient field integration on graphs encoding point cloud data. The first class, $\mathrm{SeparatorFactorization}$ (SF), leverages the bounded genus of point cloud mesh graphs, while the second class, $\mathrm{RFDiffusion}$ (RFD), uses popular $\epsilon$-nearest-neighbor graph representations for point clouds. Both can be viewed as providing the functionality of Fast Multipole Methods (FMMs), which have had a tremendous impact on efficient integration, but for non-Euclidean spaces. We focus on geometries induced by distributions of walk lengths between points (e.g. shortest-path distance). We provide an extensive theoretical analysis of our algorithms, obtaining new results in structural graph theory as a byproduct. We also perform exhaustive empirical evaluation, including on-surface interpolation for rigid and deformable objects (in particular for mesh-dynamics modeling) as well as Wasserstein distance computations for point clouds, including the Gromov-Wasserstein variant.


#534
Dirichlet Diffusion Score Model for Biological Sequence Generation

Pavel Avdeyev · Chenlai Shi · Yuhao Tan · Kseniia Dudnyk · Jian Zhou

Designing biological sequences is an important challenge that requires satisfying complex constraints and thus is a natural problem to address with deep generative modeling. Diffusion generative models have achieved considerable success in many applications. Score-based generative stochastic differential equations (SDE) model is a continuous-time diffusion model framework that enjoys many benefits, but the originally proposed SDEs are not naturally designed for modeling discrete data. To develop generative SDE models for discrete data such as biological sequences, here we introduce a diffusion process defined in the probability simplex space with stationary distribution being the Dirichlet distribution. This makes diffusion in continuous space natural for modeling discrete data. We refer to this approach as Dirchlet diffusion score model. We demonstrate that this technique can generate samples that satisfy hard constraints using a Sudoku generation task. This generative model can also solve Sudoku, including hard puzzles, without additional training. Finally, we applied this approach to develop the first human promoter DNA sequence design model and showed that designed sequences share similar properties with natural promoter sequences.


#535
Sequential Monte Carlo Learning for Time Series Structure Discovery

Feras Saad · Brian Patton · Matthew Hoffman · Rif Saurous · Vikash Mansinghka

This paper presents a new approach to automatically discovering accurate models of complex time series data. Working within a Bayesian nonparametric prior over a symbolic space of Gaussian process time series models, we present a novel structure learning algorithm that integrates sequential Monte Carlo (SMC) and involutive MCMC for highly effective posterior inference. Our method can be used both in "online'' settings, where new data is incorporated sequentially in time, and in ``offline'' settings, by using nested subsets of historical data to anneal the posterior. Empirical measurements on real-world time series show that our method can deliver 10x--100x runtime speedups over previous MCMC and greedy-search structure learning algorithms targeting the same model family. We use our method to perform the first large-scale evaluation of Gaussian process time series structure learning on a prominent benchmark of 1,428 econometric datasets. The results show that our method discovers sensible models that deliver more accurate point forecasts and interval forecasts over multiple horizons as compared to widely used statistical and neural baselines that struggle on this challenging data.


#536
Kernel QuantTree

Diego Stucchi · Paolo Rizzo · Nicolò Folloni · Giacomo Boracchi

We present Kernel QuantTree (KQT), a non-parametric change detection algorithm that monitors multivariate data through a histogram. KQT constructs a nonlinear partition of the input space that matches pre-defined target probabilities and specifically promotes compact bins adhering to the data distribution, resulting in a powerful detection algorithm. We prove two key theoretical advantages of KQT: *i*) statistics defined over the KQT histogram do not depend on the stationary data distribution $\phi_0$, so detection thresholds can be set a priori to control false positive rate, and *ii*) thanks to the kernel functions adopted, the KQT monitoring scheme is invariant to the roto-translation of the input data. Consequently, KQT does not require any preprocessing step like PCA. Our experiments show that KQT achieves superior detection power than non-parametric state-of-the-art change detection methods, and can reliably control the false positive rate.


#537
FaDIn: Fast Discretized Inference for Hawkes Processes with General Parametric Kernels

Guillaume Staerman · Cédric Allain · Alexandre Gramfort · Thomas Moreau

Temporal point processes (TPP) are a natural tool for modeling event-based data. Among all TPP models, Hawkes processes have proven to be the most widely used, mainly due to their adequate modeling for various applications, particularly when considering exponential or non-parametric kernels. Although non-parametric kernels are an option, such models require large datasets. While exponential kernels are more data efficient and relevant for specific applications where events immediately trigger more events, they are ill-suited for applications where latencies need to be estimated, such as in neuroscience. This work aims to offer an efficient solution to TPP inference using general parametric kernels with finite support. The developed solution consists of a fast $\ell_2$ gradient-based solver leveraging a discretized version of the events. After theoretically supporting the use of discretization, the statistical and computational efficiency of the novel approach is demonstrated through various numerical experiments. Finally, the method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG). Given the use of general parametric kernels, results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.


#538
Model-Free Robust Average-Reward Reinforcement Learning

Yue Wang · Alvaro Velasquez · George Atia · Ashley Prater-Bennette · Shaofeng Zou

Robust Markov decision processes (MDPs) address the challenge of model uncertainty by optimizing the worst-case performance over an uncertainty set of MDPs. In this paper, we focus on the robust average-reward MDPs under the model-free setting. We first theoretically characterize the structure of solutions to the robust average-reward Bellman equation, which is essential for our later convergence analysis. We then design two model-free algorithms, robust relative value iteration (RVI) TD and robust RVI Q-learning, and theoretically prove their convergence to the optimal solution. We provide several widely used uncertainty sets as examples, including those defined by the contamination model, total variation, Chi-squared divergence, Kullback-Leibler (KL) divergence, and Wasserstein distance.


#539
Beyond Exponentially Fast Mixing in Average-Reward Reinforcement Learning via Multi-Level Monte Carlo Actor-Critic

Wesley A. Suttle · Amrit Bedi · Bhrij Patel · Brian Sadler · Alec Koppel · Dinesh Manocha

Many existing reinforcement learning (RL) methods employ stochastic gradient iteration on the back end, whose stability hinges upon a hypothesis that the data-generating process mixes exponentially fast with a rate parameter that appears in the step-size selection. Unfortunately, this assumption is violated for large state spaces or settings with sparse rewards, and the mixing time is unknown, making the step size inoperable. In this work, we propose an RL methodology attuned to the mixing time by employing a multi-level Monte Carlo estimator for the critic, the actor, and the average reward embedded within an actor-critic (AC) algorithm. This method, which we call Multi-level Actor-Critic (MAC), is developed specifically for infinite-horizon average-reward settings and neither relies on oracle knowledge of the mixing time in its parameter selection nor assumes its exponential decay; it is therefore readily applicable to applications with slower mixing times. Nonetheless, it achieves a convergence rate comparable to SOTA actor-critic algorithms. We experimentally show that these alleviated restrictions on the technical conditions required for stability translate to superior performance in practice for RL problems with sparse rewards.


#540
Direct Parameterization of Lipschitz-Bounded Deep Networks

Ruigang Wang · Ian Manchester

This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed $\ell^2$ Lipschitz bounds, i.e. limited sensitivity to input perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP). We provide a ``direct'' parameterization, i.e., a smooth mapping from $\mathbb R^N$ onto the set of weights satisfying the SDP-based bound. Moreover, our parameterization is complete, i.e. a neural network satisfies the SDP bound if and only if it can be represented via our parameterization. This enables training using standard gradient methods, without any inner approximation or computationally intensive tasks (e.g. projections or barrier terms) for the SDP constraint. The new parameterization can equivalently be thought of as either a new layer type (the *sandwich layer*), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. A comprehensive set of experiments on image classification shows that sandwich layers outperform previous approaches on both empirical and certified robust accuracy. Code is available at https://github.com/acfr/LBDN.


#541
Fast Rates in Time-Varying Strongly Monotone Games

Yu-Hu Yan · Peng Zhao · Zhi-Hua Zhou

Multi-player online games depict the interaction of multiple players with each other over time. Strongly monotone games are of particular interest since they have benign properties and also relate to many classic games that have applications in real life. Existing works mainly focus on the time-invariant case with provable guarantees established. However, the research of the more general time-varying games in changing environments is underexplored and the best-known result cannot match the guarantees in the time-invariant case. In this work, we present a new decentralized online algorithm for time-varying strongly monotone games, which greatly improves existing results and obtains fast rates, matching the best time-invariant guarantee without knowing the environmental non-stationarity. Furthermore, to achieve faster rates, we generalize the RVU property with smoothness and establish a series of problem-dependent bounds that also match the best time-invariant one. To realize all those results, we make a comprehensive use of the techniques in non-stationary and universal online learning.


#542
The Value of Out-of-Distribution Data

Ashwin De Silva · Rahul Ramesh · Carey Priebe · Pratik Chaudhari · Joshua Vogelstein

Generalization error always improves with more in-distribution data. However, it is an open question what happens as we add out-of-distribution (OOD) data. Intuitively, if the OOD data is quite different, it seems more data would harm generalization error, though if the OOD data are sufficiently similar, much empirical evidence suggests that OOD data can actually improve generalization error. We show a counter-intuitive phenomenon: the generalization error of a task can be a non-monotonic function of the amount of OOD data. Specifically, we prove that generalization error can improve with small amounts of OOD data, and then get worse than no OOD data with larger amounts. In other words, there is value in training on small amounts of OOD data. We analytically demonstrate these results via Fisher's Linear Discriminant on synthetic datasets, and empirically demonstrate them via deep networks on computer vision benchmarks such as MNIST, CIFAR-10, CINIC-10, PACS and DomainNet. In the idealistic setting where we know which samples are OOD, we show that these non-monotonic trends can be exploited using an appropriately weighted objective of the target and OOD empirical risk. While its practical utility is limited, this does suggest that if we can detect OOD samples, then there may be ways to benefit from them. When we do not know which samples are OOD, we show how a number of go-to strategies such as data-augmentation, hyper-parameter optimization and pre-training are not enough to ensure that the target generalization error does not deteriorate with the number of OOD samples in the dataset.


#543
DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design

Jiaqi Guan · Xiangxin Zhou · Yuwei Yang · Yu Bao · Jian Peng · Jianzhu Ma · Qiang Liu · Liang Wang · Quanquan Gu

Designing 3D ligands within a target binding site is a fundamental task in drug discovery. Existing structured-based drug design methods treat all ligand atoms equally, which ignores different roles of atoms in the ligand for drug design and can be less efficient for exploring the large drug-like molecule space. In this paper, inspired by the convention in pharmaceutical practice, we decompose the ligand molecule into two parts, namely arms and scaffold, and propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold. In order to facilitate the decomposed generation and improve the properties of the generated molecules, we incorporate both bond diffusion in the model and additional validity guidance in the sampling phase. Extensive experiments on CrossDocked2020 show that our approach achieves state-of-the-art performance in generating high-affinity molecules while maintaining proper molecular properties and conformational stability, with up to $-8.39$ Avg. Vina Dock score and $24.5\%$ Success Rate. The code is provided at https://github.com/bytedance/DecompDiff


#544
Everyone's Preference Changes Differently: A Weighted Multi-Interest Model For Retrieval

hui shi · Yupeng Gu · Yitong Zhou · Bo Zhao · Sicun Gao · Jishen Zhao

User embeddings (vectorized representations of a user) are essential in recommendation systems. Numerous approaches have been proposed to construct a representation for the user in order to find similar items for retrieval tasks, and they have been proven effective in industrial recommendation systems. Recently people have discovered the power of using multiple embeddings to represent a user, with the hope that each embedding represents the user's interest in a certain topic. With multi-interest representation, it's important to model the user's preference over the different topics and how the preference changes with time. However, existing approaches either fail to estimate the user's affinity to each interest or unreasonably assume every interest of every user fades at an equal rate with time, thus hurting the performance of candidate retrieval. In this paper, we propose the Multi-Interest Preference (MIP) model, an approach that not only produces multi-interest for users by using the user's sequential engagement more effectively but also automatically learns a set of weights to represent the preference over each embedding so that the candidates can be retrieved from each interest proportionally. Extensive experiments have been done on various industrial-scale datasets to demonstrate the effectiveness of our approach.


#545
PFGM++: Unlocking the Potential of Physics-Inspired Generative Models

Yilun Xu · Ziming Liu · Yonglong Tian · Shangyuan Tong · Max Tegmark · Tommi Jaakkola

We introduce a new family of physics-inspired generative models termed PFGM++ that unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize generative trajectories for N dimensional data by embedding paths in N+D dimensional space while still controlling the progression with a simple scalar norm of the D additional variables. The new models reduce to PFGM when D=1 and to diffusion models when D$\to\infty$. The flexibility of choosing D allows us to trade off robustness against rigidity as increasing D results in more concentrated coupling between the data and the additional variable norms. We dispense with the biased large batch field targets used in PFGM and instead provide an unbiased perturbation-based objective similar to diffusion models. To explore different choices of D, we provide a direct alignment method for transferring well-tuned hyperparameters from diffusion models (D$\to\infty$) to any finite D values. Our experiments show that models with finite D can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ 64$\times$64 datasets/LSUN Churches 256$\times$256, with median Ds. In class-conditional setting, D=2048 yields current state-of-the-art FID of 1.74 on CIFAR-10 without additional training. Furthermore, we demonstrate that models with smaller $D$ exhibit improved robustness against modeling errors. Code is available at https://github.com/Newbeeer/pfgmpp


#600
Algorithmic Collective Action in Machine Learning

Moritz Hardt · Eric Mazumdar · Celestine Mendler-Dünner · Tijana Zrnic

We initiate a principled study of algorithmic collective action on digital platforms that deploy machine learning algorithms. We propose a simple theoretical model of a collective interacting with a firm's learning algorithm. The collective pools the data of participating individuals and executes an algorithmic strategy by instructing participants how to modify their own data to achieve a collective goal. We investigate the consequences of this model in three fundamental learning-theoretic settings: nonparametric optimal learning, parametric risk minimization, and gradient-based optimization. In each setting, we come up with coordinated algorithmic strategies and characterize natural success criteria as a function of the collective's size. Complementing our theory, we conduct systematic experiments on a skill classification task involving tens of thousands of resumes from a gig platform for freelancers. Through more than two thousand model training runs of a BERT-like language model, we see a striking correspondence emerge between our empirical observations and the predictions made by our theory. Taken together, our theory and experiments broadly support the conclusion that algorithmic collectives of exceedingly small fractional size can exert significant control over a platform's learning algorithm.


#601
Probabilistic Categorical Adversarial Attack and Adversarial Training

Han Xu · Pengfei He · Jie Ren · Yuxuan Wan · Zitao Liu · Hui Liu · Jiliang Tang

The studies on adversarial attacks and defenses have greatly improved the robustness of Deep Neural Networks (DNNs). Most advanced approaches have been overwhelmingly designed for continuous data such as images. However, these achievements are still hard to be generalized to categorical data. To bridge this gap, we propose a novel framework, Probabilistic Categorical Adversarial Attack (or PCAA). It transfers the discrete optimization problem of finding categorical adversarial examples to a continuous problem that can be solved via gradient-based methods. We analyze the optimality (attack success rate) and time complexity of PCAA to demonstrate its significant advantage over current search-based attacks. More importantly, through extensive empirical studies, we demonstrate that the well-established defenses for continuous data, such as adversarial training and TRADES, can be easily accommodated to defend DNNs for categorical data.


#602
Generalization Analysis for Contrastive Representation Learning

Yunwen Lei · Tianbao Yang · Yiming Ying · Ding-Xuan Zhou

Recently, contrastive learning has found impressive success in advancing the state of the art in solving various machine learning tasks. However, the existing generalization analysis is very limited or even not meaningful. In particular, the existing generalization error bounds depend linearly on the number $k$ of negative examples while it was widely shown in practice that choosing a large $k$ is necessary to guarantee good generalization of contrastive learning in downstream tasks. In this paper, we establish novel generalization bounds for contrastive learning which do not depend on $k$, up to logarithmic terms. Our analysis uses structural results on empirical covering numbers and Rademacher complexities to exploit the Lipschitz continuity of loss functions. For self-bounding Lipschitz loss functions, we further improve our results by developing optimistic bounds which imply fast rates in a low noise condition. We apply our results to learning with both linear representation and nonlinear representation by deep neural networks, for both of which we derive Rademacher complexity bounds to get improved generalization bounds.


#603
Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision Processes

Jiafan He · Heyang Zhao · Dongruo Zhou · Quanquan Gu

We study reinforcement learning (RL) with linear function approximation. For episodic time-inhomogeneous linear Markov decision processes (linear MDPs) whose transition probability can be parameterized as a linear function of a given feature mapping, we propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $\tilde O(d\sqrt{H^3K})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $K$ is the number of episodes. Our algorithm is based on a weighted linear regression scheme with a carefully designed weight, which depends on a new variance estimator that (1) directly estimates the variance of the *optimal* value function, (2) monotonically decreases with respect to the number of episodes to ensure a better estimation accuracy, and (3) uses a rare-switching policy to update the value function estimator to control the complexity of the estimated value function class. Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.


#604
Federated Adversarial Learning: A Framework with Convergence Analysis

Xiaoxiao Li · Zhao Song · Jiaming Yang

Federated learning (FL) is a trending training paradigm to utilize decentralized training data. FL allows clients to update model parameters locally for several epochs, then share them to a global model for aggregation. This training paradigm with multi-local step updating before aggregation exposes unique vulnerabilities to adversarial attacks. Adversarial training is a popular and effective method to improve the robustness of networks against adversaries. In this work, we formulate a general form of federated adversarial learning (FAL) that is adapted from adversarial learning in the centralized setting. On the client side of FL training, FAL has an inner loop to generate adversarial samples for adversarial training and an outer loop to update local model parameters. On the server side, FAL aggregates local model updates and broadcast the aggregated model. We design a global robust training loss and formulate FAL training as a min-max optimization problem. Unlike the convergence analysis in classical centralized training that relies on the gradient direction, it is significantly harder to analyze the convergence in FAL for three reasons: 1) the complexity of min-max optimization, 2) model not updating in the gradient direction due to the multi-local updates on the client-side before aggregation and 3) inter-client heterogeneity. We address these challenges by using appropriate gradient approximation and coupling techniques and present the convergence analysis in the over-parameterized regime. Our main result theoretically shows that the minimum loss under our algorithm can converge to $\epsilon$ small with chosen learning rate and communication rounds. It is noteworthy that our analysis is feasible for non-IID clients.


#605
An Adaptive Entropy-Regularization Framework for Multi-Agent Reinforcement Learning

WOOJUN KIM · Youngchul Sung

In this paper, we propose an adaptive entropy-regularization framework (ADER) for multi-agent reinforcement learning (RL) to learn the adequate amount of exploration of each agent for entropy-based exploration. In order to derive a metric for the proper level of exploration entropy for each agent, we disentangle the soft value function into two types: one for pure return and the other for entropy. By applying multi-agent value factorization to the disentangled value function of pure return, we obtain a metric to determine the relevant level of exploration entropy for each agent, given by the partial derivative of the pure-return value function with respect to (w.r.t.) the policy entropy of each agent. Based on this metric, we propose the ADER algorithm based on maximum entropy RL, which controls the necessary level of exploration across agents over time by learning the proper target entropy for each agent. Experimental results show that the proposed scheme significantly outperforms current state-of-the-art multi-agent RL algorithms.


#606
Solving Linear Programs with Fast Online Learning Algorithms

Wenzhi Gao · Dongdong Ge · Chunlin Sun · Yinyu Ye

This paper presents fast first-order methods for solving linear programs (LPs) approximately. We adapt online linear programming algorithms to offline LPs and obtain algorithms that avoid any matrix multiplication. We also introduce a variable-duplication technique that copies each variable $K$ times and reduces the optimality gap and constraint violation by a factor of $\sqrt{K}$. Furthermore, we show how online algorithms can be effectively integrated into sifting, a column generation scheme for large-scale LPs. Numerical experiments demonstrate that our methods can serve as either an approximate direct solver, or an initialization subroutine for exact LP solving.


#607
Robust Budget Pacing with a Single Sample

Santiago Balseiro · Rachitesh Kumar · Vahab Mirrokni · Balasubramanian Sivan · Di Wang

Major Internet advertising platforms offer budget pacing tools as a standard service for advertisers to manage their ad campaigns. Given the inherent non-stationarity in an advertiser's value and also competing advertisers' values over time, a commonly used approach is to learn a target expenditure plan that specifies a target spend as a function of time, and then run a controller that tracks this plan. This raises the question: *how many historical samples are required to learn a good expenditure plan*? We study this question by considering an advertiser repeatedly participating in $T$ second-price auctions, where the tuple of her value and the highest competing bid is drawn from an unknown time-varying distribution. The advertiser seeks to maximize her total utility subject to her budget constraint. Prior work has shown the sufficiency of *$T\log T$ samples per distribution* to achieve the optimal $O(\sqrt{T})$-regret. We dramatically improve this state-of-the-art and show that *just one sample per distribution* is enough to achieve the near-optimal $\tilde O(\sqrt{T})$-regret, while still being robust to noise in the sampling distributions.


#608
Poisoning Language Models During Instruction Tuning

Alexander Wan · Eric Wallace · Sheng Shen · Dan Klein

Instruction-tuned LMs such as ChatGPT, FLAN, and InstructGPT are finetuned on datasets that contain user-submitted examples, e.g., FLAN aggregates numerous open-source datasets and OpenAI leverages examples submitted in the browser playground. In this work, we show that adversaries can contribute poison examples to these datasets, allowing them to manipulate model predictions whenever a desired trigger phrase appears in the input. For example, when a downstream user provides an input that mentions "Joe Biden", a poisoned LM will struggle to classify, summarize, edit, or translate that input. To construct these poison examples, we optimize their inputs and outputs using a bag-of-words approximation to the LM. We evaluate our method on open-source instruction-tuned LMs. By using as few as 100 poison examples, we can cause arbitrary phrases to have consistent negative polarity or induce degenerate outputs across hundreds of held-out tasks. Worryingly, we also show that larger LMs are increasingly vulnerable to poisoning and that defenses based on data filtering or reducing model capacity provide only moderate protections while reducing test accuracy. Notice: This paper contains tasks with obscene content.


#609
RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank

Quentin Garrido · Randall Balestriero · Laurent Najman · Yann LeCun

Joint-Embedding Self Supervised Learning (JE-SSL) has seen a rapid development, with the emergence of many method variations but only few principled guidelines that would help practitioners to successfully deploy them. The main reason for that pitfall comes from JE-SSL's core principle of not employing any input reconstruction therefore lacking visual cues of unsuccessful training. Adding non informative loss values to that, it becomes difficult to deploy SSL on a new dataset for which no labels can help to judge the quality of the learned representation. In this study, we develop a simple unsupervised criterion that is indicative of the quality of the learned JE-SSL representations: their effective rank. Albeit simple and computationally friendly, this method ---coined RankMe--- allows one to assess the performance of JE-SSL representations, even on different downstream datasets, without requiring any labels. A further benefit of RankMe is that it does not have any training or hyper-parameters to tune. Through thorough empirical experiments involving hundreds of training episodes, we demonstrate how RankMe can be used for hyperparameter selection with nearly no reduction in final performance compared to the current selection method that involve a dataset's labels. We hope that RankMe will facilitate the deployment of JE-SSL towards domains that do not have the opportunity to rely on labels for representations' quality assessment.


#610
Bootstrap in High Dimension with Low Computation

Henry Lam · Zhenyuan Liu

The bootstrap is a popular data-driven method to quantify statistical uncertainty, but for modern high-dimensional problems, it could suffer from huge computational costs due to the need to repeatedly generate resamples and refit models. We study the use of bootstraps in high-dimensional environments with a small number of resamples. In particular, we show that with a recent "cheap" bootstrap perspective, using a number of resamples as small as one could attain valid coverage even when the dimension grows closely with the sample size, thus strongly supporting the implementability of the bootstrap for large-scale problems. We validate our theoretical results and compare the performance of our approach with other benchmarks via a range of experiments.


#611
Hidden Symmetries of ReLU Networks

Elisenda Grigsby · Kathryn Lindsey · David Rolnick

The parameter space for any fixed architecture of feedforward ReLU neural networks serves as a proxy during training for the associated class of functions - but how faithful is this representation? It is known that many different parameter settings $\theta$ can determine the same function $f$. Moreover, the degree of this redundancy is inhomogeneous: for some networks, the only symmetries are permutation of neurons in a layer and positive scaling of parameters at a neuron, while other networks admit additional hidden symmetries. In this work, we prove that, for any network architecture where no layer is narrower than the input, there exist parameter settings with no hidden symmetries. We also describe a number of mechanisms through which hidden symmetries can arise, and empirically approximate the functional dimension of different network architectures at initialization. These experiments indicate that the probability that a network has no hidden symmetries decreases towards 0 as depth increases, while increasing towards 1 as width and input dimension increase.


#612
Learning to Initiate and Reason in Event-Driven Cascading Processes

Yuval Atzmon · Eli Meirom · Shie Mannor · Gal Chechik

Training agents to control a dynamic environment is a fundamental task in AI. In many environments, the dynamics can be summarized by a small set of events that capture the semantic behavior of the system. Typically, these events form chains or cascades. We often wish to change the system behavior using a single intervention that propagates through the cascade. For instance, one may trigger a biochemical cascade to switch the state of a cell or, in logistics, reroute a truck to meet an unexpected, urgent delivery. We introduce a new supervised learning setup called Cascade. An agent observes a system with known dynamics evolving from some initial state. The agent is given a structured semantic instruction and needs to make an intervention that triggers a cascade of events, such that the system reaches an alternative (counterfactual) behavior. We provide a test-bed for this problem, consisting of physical objects. We combine semantic tree search with an event-driven forward model and devise an algorithm that learns to efficiently search in exponentially large semantic trees. We demonstrate that our approach learns to follow instructions to intervene in new complex scenes. When provided with an observed cascade of events, it can also reason about alternative outcomes.


#613
Do Embodied Agents Dream of Pixelated Sheep: Embodied Decision Making using Language Guided World Modelling

Kolby Nottingham · Prithviraj Ammanabrolu · Alane Suhr · Yejin Choi · Hannaneh Hajishirzi · Sameer Singh · Roy Fox

Reinforcement learning (RL) agents typically learn tabula rasa, without prior knowledge of the world. However, if initialized with knowledge of high-level subgoals and transitions between subgoals, RL agents could utilize this Abstract World Model (AWM) for planning and exploration. We propose using few-shot large language models (LLMs) to hypothesize an AWM, that will be verified through world experience, to improve sample efficiency of RL agents. Our DECKARD agent applies LLM-guided exploration to item crafting in Minecraft in two phases: (1) the Dream phase where the agent uses an LLM to decompose a task into a sequence of subgoals, the hypothesized AWM; and (2) the Wake phase where the agent learns a modular policy for each subgoal and verifies or corrects the hypothesized AWM. Our method of hypothesizing an AWM with LLMs and then verifying the AWM based on agent experience not only increases sample efficiency over contemporary methods by an order of magnitude but is also robust to and corrects errors in the LLM, successfully blending noisy internet-scale information from LLMs with knowledge grounded in environment dynamics.


#614
QASA: Advanced Question Answering on Scientific Articles

Yoonjoo Lee · Kyungjae Lee · Sunghyun Park · Dasol Hwang · Jaehyeon Kim · Hong-in Lee · Moontae Lee

Reasoning is the crux of intellectual thinking. While question answering (QA) tasks are prolific with various computational models and benchmark datasets, they mostly tackle factoid or shallow QA without asking deeper understanding. Dual process theory asserts that human reasoning consists of associative thinking to collect relevant pieces of knowledge and logical reasoning to consciously conclude grounding on evidential rationale. Based on our intensive think-aloud study that revealed the three types of questions: surface, testing, and deep questions, we first propose the QASA benchmark that consists of 1798 novel question answering pairs that require full-stack reasoning on scientific articles in AI and ML fields. Then we propose the QASA approach that tackles the full-stack reasoning with large language models via associative selection, evidential rationale-generation, and systematic composition. Our experimental results show that QASA's full-stack inference outperforms the state-of-the-art InstructGPT by a big margin. We also find that rationale-generation is critical for the performance gain, claiming how we should rethink advanced question answering. The dataset is available at https://github.com/lgresearch/QASA.


#615
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes

Louis Chi-Chun Tiao · Vincent Dutordoir · Victor Picheny

Despite their many desirable properties, Gaussian processes (GPs) are often compared unfavorably to deep neural networks (NNs) for lacking the ability to learn representations. Recent efforts to bridge the gap between GPs and deep NNs have yielded a new class of inter-domain variational GPs in which the inducing variables correspond to hidden units of a feedforward NN. In this work, we examine some practical issues associated with this approach and propose an extension that leverages the orthogonal decomposition of GPs to mitigate these limitations. In particular, we introduce spherical inter-domain features to construct more flexible data-dependent basis functions for both the principal and orthogonal components of the GP approximation and show that incorporating NN activation features under this framework not only alleviates these shortcomings but is more scalable than alternative strategies. Experiments on multiple benchmark datasets demonstrate the effectiveness of our approach.


#616
Oracles & Followers: Stackelberg Equilibria in Deep Multi-Agent Reinforcement Learning

Matthias Gerstgrasser · David Parkes

Stackelberg equilibria arise naturally in a range of popular learning problems, such as in security games or indirect mechanism design, and have received increasing attention in the reinforcement learning literature. We present a general framework for implementing Stackelberg equilibria search as a multi-agent RL problem, allowing a wide range of algorithmic design choices. We discuss how previous approaches can be seen as specific instantiations of this framework. As a key insight, we note that the design space allows for approaches not previously seen in the literature, for instance by leveraging multitask and meta-RL techniques for follower convergence. We propose one such approach using contextual policies, and evaluate it experimentally on both standard and novel benchmark domains, showing greatly improved sample efficiency compared to previous approaches. Finally, we explore the effect of adopting algorithm designs outside the borders of our framework.


#617
Patch-level Contrastive Learning via Positional Query for Visual Pre-training

Shaofeng Zhang · Qiang Zhou · Zhibin Wang · Fan Wang · Junchi Yan

Dense contrastive learning (DCL) has been recently explored for learning localized information for dense prediction tasks (e.g., detection and segmentation). It still suffers the difficulty of mining pixels/patches correspondence between two views. A simple way is inputting the same view twice and aligning the pixel/patch representation. However, it would reduce the variance of inputs, and hurts the performance. We propose a plug-in method PQCL (Positional Query for patch-level Contrastive Learning), which allows performing patch-level contrasts between two views with exact patch correspondence. Besides, by using positional queries, PQCL increases the variance of inputs, to enhance training. We apply PQCL to popular transformer-based CL frameworks (DINO and iBOT, and evaluate them on classification, detection and segmentation tasks, where our method obtains stable improvements, especially for dense tasks. It achieves new state-of-the-art in most settings. Code is available at https://github.com/Sherrylone/Query_Contrastive.


#618
Learning to Optimize Differentiable Games

Xuxi Chen · Nelson Vadori · Tianlong Chen · Zhangyang “Atlas” Wang

Many machine learning problems can be abstracted in solving game theory formulations and boil down to optimizing nested objectives, such as generative adversarial networks (GANs) and multi-agent reinforcement learning. Solving these games requires finding their stable fixed points or Nash equilibrium. However, existing algorithms for solving games suffer from empirical instability, hence demanding heavy ad-hoc tuning in practice. To tackle these challenges, we resort to the emerging scheme of Learning to Optimize (L2O), which discovers problem-specific efficient optimization algorithms through data-driven training. Our customized L2O framework for differentiable game theory problems, dubbed ``Learning to Play Games" (L2PG), seeks a stable fixed point solution, by predicting the fast update direction from the past trajectory, with a novel gradient stability-aware, sign-based loss function. We further incorporate curriculum learning and self-learning to strengthen the empirical training stability and generalization of L2PG. On test problems including quadratic games and GANs, L2PG can substantially accelerate the convergence, and demonstrates a remarkably more stable trajectory. Codes are available at https://github.com/VITA-Group/L2PG.


#619
Generating Language Corrections for Teaching Physical Control Tasks

Megha Srivastava · Noah Goodman · Dorsa Sadigh

AI assistance continues to help advance applications in education, from language learning to intelligent tutoring systems, yet current methods for providing students feedback are still quite limited. Most automatic feedback systems either provide binary correctness feedback, which may not help a student understand how to improve, or require hand-coding feedback templates, which may not generalize to new domains. This can be particularly challenging for physical control tasks, where the rich diversity in student behavior and specialized domains make it challenging to leverage general-purpose assistive tools for providing feedback. We design and build CORGI, a model trained to generate language corrections for physical control tasks, such as learning to ride a bike. CORGI takes in as input a pair of student and expert trajectories, and then generates natural language corrections to help the student improve. We collect and train CORGI over data from three diverse physical control tasks (drawing, steering, and joint movement). Through both automatic and human evaluations, we show that CORGI can (i) generate valid feedback for novel student trajectories, (ii) outperform baselines on domains with novel control dynamics, and (iii) improve student learning in an interactive drawing task.


#620
Behavior Contrastive Learning for Unsupervised Skill Discovery

Rushuai Yang · Chenjia Bai · Hongyi Guo · Siyuan Li · Bin Zhao · Zhen Wang · Peng Liu · Xuelong Li

In reinforcement learning, unsupervised skill discovery aims to learn diverse skills without extrinsic rewards. Previous methods discover skills by maximizing the mutual information (MI) between states and skills. However, such an MI objective tends to learn simple and static skills and may hinder exploration. In this paper, we propose a novel unsupervised skill discovery method through contrastive learning among behaviors, which makes the agent produce similar behaviors for the same skill and diverse behaviors for different skills. Under mild assumptions, our objective maximizes the MI between different behaviors based on the same skill, which serves as an upper bound of the previous MI objective. Meanwhile, our method implicitly increases the state entropy to obtain better state coverage. We evaluate our method on challenging mazes and continuous control tasks. The results show that our method generates diverse and far-reaching skills, and also obtains competitive performance in downstream tasks compared to the state-of-the-art methods.


#621
On Penalty-based Bilevel Gradient Descent Method

Han Shen · Tianyi Chen

Bilevel optimization enjoys a wide range of applications in hyper-parameter optimization, meta-learning and reinforcement learning. However, bilevel problems are difficult to solve and recent progress on scalable bilevel algorithms mainly focuses on bilevel optimization problems where the lower-level objective is either strongly convex or unconstrained. In this work, we tackle the bilevel problem through the lens of the penalty method. We show that under certain conditions, the penalty reformulation recovers the solutions of the original bilevel problem. Further, we propose the penalty-based bilevel gradient descent algorithm and establish its finite-time convergence for the constrained bilevel problem without lower-level strong convexity. The experimental results showcase the efficiency of the proposed algorithm.


#622
Beyond Uniform Lipschitz Condition in Differentially Private Optimization

Rudrajit Das · Satyen Kale · Zheng Xu · Tong Zhang · Sujay Sanghavi

Most prior results on differentially private stochastic gradient descent (DP-SGD) are derived under the simplistic assumption of uniform Lipschitzness, i.e., the per-sample gradients are uniformly bounded. We generalize uniform Lipschitzness by assuming that the per-sample gradients have sample-dependent upper bounds, i.e., per-sample Lipschitz constants, which themselves may be unbounded. We provide principled guidance on choosing the clip norm in DP-SGD for convex over-parameterized settings satisfying our general version of Lipschitzness when the per-sample Lipschitz constants are bounded; specifically, we recommend tuning the clip norm only till values up to the minimum per-sample Lipschitz constant. This finds application in the private training of a softmax layer on top of a deep network pre-trained on public data. We verify the efficacy of our recommendation via experiments on 8 datasets. Furthermore, we provide new convergence results for DP-SGD on convex and nonconvex functions when the Lipschitz constants are unbounded but have bounded moments, i.e., they are heavy-tailed.


#623
Cooperative Multi-Agent Reinforcement Learning: Asynchronous Communication and Linear Function Approximation

Yifei Min · Jiafan He · Tianhao Wang · Quanquan Gu

We study multi-agent reinforcement learning in the setting of episodic Markov decision processes, where many agents cooperate via communication through a central server. We propose a provably efficient algorithm based on value iteration that can simultaneously allow asynchronous communication and guarantee the benefit of cooperation with low communication complexity. Under linear function approximation, we prove that our algorithm enjoys a $\tilde{\mathcal{O}}(d^{3/2}H^2\sqrt{K})$ regret upper bound with $\tilde{\mathcal{O}}(dHM^2)$ communication complexity, where $d$ is the feature dimension, $H$ is the horizon length, $M$ is the total number of agents, and $K$ is the total number of episodes. We also provide a lower bound showing that an $\Omega(dM)$ communication complexity is necessary to improve the performance through collaboration.


#624
Efficient displacement convex optimization with particle gradient descent

Hadi Daneshmand · Jason Lee · Chi Jin

Particle gradient descent, which uses particles to represent a probability measure and performs gradient descent on particles in parallel, is widely used to optimize functions of probability measures. This paper considers particle gradient descent with a finite number of particles and establishes its theoretical guarantees to optimize functions that are *displacement convex* in measures. Concretely, for Lipschitz displacement convex functions defined on probability over $R^d$, we prove that $O(1/\epsilon^2)$ particles and $O(d/\epsilon^4)$ iterations are sufficient to find the $\epsilon$-optimal solutions. We further provide improved complexity bounds for optimizing smooth displacement convex functions. An application of our results proves the conjecture of *no optimization-barrier up to permutation invariance*, proposed by Entezari et al. (2022), for specific two-layer neural networks with two-dimensional inputs uniformly drawn from unit circle.


#625
Differentially Private Stochastic Convex Optimization under a Quantile Loss Function

Du Chen · Geoffrey Chua

We study $(\varepsilon,\delta)$-differentially private (DP) stochastic convex optimization under an $r$-th quantile loss function taking the form $c(u) = ru^+ + (1-r)(-u)^+$. The function is non-smooth, and we propose to approximate it with a smooth function obtained by convolution smoothing, which enjoys both structure and bandwidth flexibility and can address outliers. This leads to a better approximation than those obtained from existing methods such as Moreau Envelope. We then design private algorithms based on DP stochastic gradient descent and objective perturbation, and show that both algorithms achieve (near) optimal excess generalization risk $O(\max\{\frac{1}{\sqrt{n}}, \frac{\sqrt{d\ln(1/\delta)}}{n\varepsilon}\})$. Through objective perturbation, we further derive an upper bound $O(\max\{\sqrt{\frac{d}{n}}, \sqrt{\frac{d\ln(1/\delta)}{n\varepsilon}}\})$ on the parameter estimation error under mild assumptions on data generating processes. Some applications in private quantile regression and private inventory control will be discussed.


#626
Recasting Self-Attention with Holographic Reduced Representations

Mohammad Mahmudul Alam · Edward Raff · Stella Biderman · Tim Oates · James Holt

In recent years, self-attention has become the dominant paradigm for sequence modeling in a variety of domains. However, in domains with very long sequence lengths the $\mathcal{O}(T^2)$ memory and $\mathcal{O}(T^2 H)$ compute costs can make using transformers infeasible. Motivated by problems in malware detection, where sequence lengths of $T \geq 100,000$ are a roadblock to deep learning, we re-cast self-attention using the neuro-symbolic approach of Holographic Reduced Representations (HRR). In doing so we perform the same high-level strategy of the standard self-attention: a set of queries matching against a set of keys, and returning a weighted response of the values for each key. Implemented as a ``Hrrformer'' we obtain several benefits including $\mathcal{O}(T H \log H)$ time complexity, $\mathcal{O}(T H)$ space complexity, and convergence in $10\times$ fewer epochs. Nevertheless, the Hrrformer achieves near state-of-the-art accuracy on LRA benchmarks and we are able to learn with just a single layer. Combined, these benefits make our Hrrformer the first viable Transformer for such long malware classification sequences and up to $280\times$ faster to train on the Long Range Arena benchmark.


#627
Coder Reviewer Reranking for Code Generation

Tianyi Zhang · Tao Yu · Tatsunori Hashimoto · Mike Lewis · Scott Yih · Daniel Fried · Sida Wang

Sampling diverse programs from a code language model and reranking with model likelihood is a popular method for code generation but it is prone to preferring degenerate solutions. Inspired by collaborative programming, we propose Coder-Reviewer reranking. We augment Coder language models from past work, which generate programs given language instructions, with Reviewer models, which evaluate the likelihood of the instruction given the generated programs. We perform an extensive study across six datasets with eight models from three model families. Experimental results show that Coder-Reviewer reranking leads to consistent and significant improvement (up to 17% absolute accuracy gain) over reranking with the Coder model only. When combined with executability filtering, Coder-Reviewer reranking can often outperform the minimum Bayes risk method. Coder-Reviewer reranking is easy to implement by prompting, can generalize to different programming languages, and works well with off-the-shelf hyperparameters.


#628
Leveraging Proxy of Training Data for Test-Time Adaptation

Juwon Kang · Nayeong Kim · Donghyeon Kwon · Jungseul Ok · Suha Kwak

We consider test-time adaptation (TTA), the task of adapting a trained model to an arbitrary test domain using unlabeled input data on-the-fly during testing. A common practice of TTA is to disregard data used in training due to large memory demand and privacy leakage. However, the training data are the only source of supervision. This motivates us to investigate a proper way of using them while minimizing the side effects. To this end, we propose two lightweight yet informative proxies of the training data and a TTA method fully exploiting them. One of the proxies is composed of a small number of images synthesized (hence, less privacy-sensitive) by data condensation which minimizes their domain-specificity to capture a general underlying structure over a wide spectrum of domains. Then, in TTA, they are translated into labeled test data by stylizing them to match styles of unlabeled test samples. This enables virtually supervised test-time training. The other proxy is inter-class relations of training data, which are transferred to target model during TTA. On four public benchmarks, our method outperforms the state-of-the-art ones at remarkably less computation and memory.


#629
Image Shortcut Squeezing: Countering Perturbative Availability Poisons with Compression

Zhuoran Liu · Zhengyu Zhao · Martha Larson

Perturbative availability poisoning (PAP) adds small changes to images to prevent their use for model training. Current research adopts the belief that practical and effective approaches to countering such poisons do not exist. In this paper, we argue that it is time to abandon this belief. We present extensive experiments showing that 12 state-of-the-art PAP methods are vulnerable to Image Shortcut Squeezing (ISS), which is based on simple compression. For example, on average, ISS restores the CIFAR-10 model accuracy to 81.73%, surpassing the previous best preprocessing-based countermeasures by 37.97% absolute. ISS also (slightly) outperforms adversarial training and has higher generalizability to unseen perturbation norms and also higher efficiency. Our investigation reveals that the property of PAP perturbations depends on the type of surrogate model used for poison generation, and it explains why a specific ISS compression yields the best performance for a specific type of PAP perturbation. We further test stronger, adaptive poisoning, and show it falls short of being an ideal defense against ISS. Overall, our results demonstrate the importance of considering various (simple) countermeasures to ensure the meaningfulness of analysis carried out during the development of availability poisons.


#630
NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations

Yonggan Fu · Ye Yuan · Souvik Kundu · Shang Wu · Shunyao Zhang · Yingyan (Celine) Lin

Generalizable Neural Radiance Fields (GNeRF) are one of the most promising real-world solutions for novel view synthesis, thanks to their cross-scene generalization capability and thus the possibility of instant rendering on new scenes. While adversarial robustness is essential for real-world applications, little study has been devoted to understanding its implication on GNeRF. We hypothesize that because GNeRF is implemented by conditioning on the source views from new scenes, which are often acquired from the Internet or third-party providers, there are potential new security concerns regarding its real-world applications. Meanwhile, existing understanding and solutions for neural networks' adversarial robustness may not be applicable to GNeRF, due to its 3D nature and uniquely diverse operations. To this end, we present NeRFool, which to the best of our knowledge is the first work that sets out to understand the adversarial robustness of GNeRF. Specifically, NeRFool unveils the vulnerability patterns and important insights regarding GNeRF's adversarial robustness. Built upon the above insights gained from NeRFool, we further develop NeRFool$^+$, which integrates two techniques capable of effectively attacking GNeRF across a wide range of target views, and provide guidelines for defending against our proposed attacks. We believe that our NeRFool/NeRFool$^+$ lays the initial foundation for future innovations in developing robust real-world GNeRF solutions. Our codes are available at: https://github.com/GATECH-EIC/NeRFool.


#632
Effective and Efficient Structural Inference with Reservoir Computing

Aoran Wang · Tsz Pan Tong · Jun Pang

In this paper, we present an effective and efficient structural inference approach by integrating a Reservoir Computing (RC) network into a Variational Auto-encoder-based (VAE-based) structural inference framework. With the help of Bi-level Optimization, the backbone VAE-based method follows the Information Bottleneck principle and infers a general adjacency matrix in its latent space; the RC net substitutes the partial role of the decoder and encourages the whole approach to perform further steps of gradient descent based on limited available data. The experimental results on various datasets including biological networks, simulated fMRI data, and physical simulations show the effectiveness and efficiency of our proposed method for structural inference, either with much fewer trajectories or with much shorter trajectories compared with previous works.


#634
Cross-Modal Fine-Tuning: Align then Refine

Junhong Shen · Liam Li · Lucio Dery · Corey Staten · Mikhail Khodak · Graham Neubig · Ameet Talwalkar

Fine-tuning large-scale pretrained models has led to tremendous progress in well-studied modalities such as vision and NLP. However, similar gains have not been observed in many other modalities due to a lack of relevant pretrained models. In this work, we propose ORCA, a general cross-modal fine-tuning framework that extends the applicability of a single large-scale pretrained model to diverse modalities. ORCA adapts to a target task via an align-then-refine workflow: given the target input, ORCA first learns an embedding network that aligns the embedded feature distribution with the pretraining modality. The pretrained model is then fine-tuned on the embedded data to exploit the knowledge shared across modalities. Through extensive experiments, we show that ORCA obtains state-of-the-art results on 3 benchmarks containing over 60 datasets from 12 modalities, outperforming a wide range of hand-designed, AutoML, general-purpose, and task-specific cross-modal methods. We highlight the importance of data alignment via a series of ablation studies and exemplify ORCA's utility in data-limited regimes.


#516
Global Context Vision Transformers

Ali Hatamizadeh · Hongxu Yin · Greg Heinrich · Jan Kautz · Pavlo Molchanov

We propose global context vision transformer (GC ViT), a novel architecture that enhances parameter and compute utilization for computer vision. Our method leverages global context self-attention modules, joint with standard local self-attention, to effectively and efficiently model both long and short-range spatial interactions, without the need for expensive operations such as computing attention masks or shifting local windows. In addition, we address the lack of the inductive bias in ViTs, and propose to leverage a modified fused inverted residual blocks in our architecture. Our proposed GC ViT achieves state-of-the-art results across image classification, object detection and semantic segmentation tasks. On ImageNet-1K dataset for classification, the variants of GC ViT with 51M, 90M and 201M parameters achieve 84.3%, 85.0% and 85.7% Top-1 accuracy, respectively, at 224 image resolution and without any pre-training, hence surpassing comparably-sized prior art such as CNN-based ConvNeXt and ViT-based MaxViT and Swin Transformer by a large margin. Pre-trained GC ViT backbones in downstream tasks of object detection, instance segmentation, and semantic segmentation using MS COCO and ADE20K datasets outperform prior work consistently. Specifically, GC ViT with a 4-scale DINO detection head achieves a box AP of 58.3 on MS COCO dataset.


#635
GeCoNeRF: Few-shot Neural Radiance Fields via Geometric Consistency

Min-Seop Kwak · Jiuhn Song · Seungryong Kim

We present a novel framework to regularize Neural Radiance Field (NeRF) in a few-shot setting with a geometry-aware consistency regularization. The proposed approach leverages a rendered depth map at unobserved viewpoint to warp sparse input images to the unobserved viewpoint and impose them as pseudo ground truths to facilitate learning of NeRF. By encouraging such geometry-aware consistency at a feature-level instead of using pixel-level reconstruction loss, we regularize the NeRF at semantic and structural levels while allowing for modeling view dependent radiance to account for color variations across viewpoints. We also propose an effective method to filter out erroneous warped solutions, along with training strategies to stabilize training during optimization. We show that our model achieves competitive results compared to state-of-the-art few-shot NeRF models.


#636
Modality-Agnostic Variational Compression of Implicit Neural Representations

Jonathan Richard Schwarz · Jihoon Tack · Yee-Whye Teh · Jaeho Lee · Jinwoo Shin

We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR). Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism. This allows the specialisation of a shared INR network to each data item through subnetwork selection. After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression. Variational Compression of Implicit Neural Representations (VC-INR) shows improved performance given the same representational capacity pre quantisation while also outperforming previous quantisation schemes used for other INR techniques.Our experiments demonstrate strong results over a large set of diverse modalities using the same algorithm without any modality-specific inductive biases. We show results on images, climate data, 3D shapes and scenes as well as audio and video, introducing VC-INR as the first INR-based method to outperform codecs as well-known and diverse as JPEG 2000, MP3 and AVC/HEVC on their respective modalities.


#637
High Fidelity Image Counterfactuals with Probabilistic Causal Models

Fabio De Sousa Ribeiro · Tian Xia · Miguel Monteiro · Nick Pawlowski · Ben Glocker

We present a general causal generative modelling framework for accurate estimation of high fidelity image counterfactuals with deep structural causal models. Estimation of interventional and counterfactual queries for high-dimensional structured variables, such as images, remains a challenging task. We leverage ideas from causal mediation analysis and advances in generative modelling to design new deep causal mechanisms for structured variables in causal models. Our experiments demonstrate that our proposed mechanisms are capable of accurate abduction and estimation of direct, indirect and total effects as measured by axiomatic soundness of counterfactuals.


#638
High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance

Abdurakhmon Sadiev · Marina Danilova · Eduard Gorbunov · Samuel Horváth · Gauthier Gidel · Pavel Dvurechenskii · Alexander Gasnikov · Peter Richtarik

During the recent years the interest of optimization and machine learning communities in high-probability convergence of stochastic optimization methods has been growing. One of the main reasons for this is that high-probability complexity bounds are more accurate and less studied than in-expectation ones. However, SOTA high-probability non-asymptotic convergence results are derived under strong assumptions such as boundedness of the gradient noise variance or of the objective's gradient itself. In this paper, we propose several algorithms with high-probability convergence results under less restrictive assumptions. In particular, we derive new high-probability convergence results under the assumption that the gradient/operator noise has bounded central $\alpha$-th moment for $\alpha \in (1,2]$ in the following setups: (i) smooth non-convex / Polyak-Lojasiewicz / convex / strongly convex / quasi-strongly convex minimization problems, (ii) Lipschitz / star-cocoercive and monotone / quasi-strongly monotone variational inequalities. These results justify the usage of the considered methods for solving problems that do not fit standard functional classes studied in stochastic optimization.


#639
On the Complexity of Bayesian Generalization

Yu-Zhe Shi · Manjie Xu · John Hopcroft · Kun He · Josh Tenenbaum · Song-Chun Zhu · Ying Nian Wu · Wenjuan Han · Yixin Zhu

We examine concept generalization at a large scale in the natural visual spectrum. Established computational modes (i.e., rule-based or similarity-based) are primarily studied isolated, focusing on confined and abstract problem spaces. In this work, we study these two modes when the problem space scales up and when the complexity of concepts becomes diverse. At the representational level, we investigate how the complexity varies when a visual concept is mapped to the representation space. Prior literature has shown that two types of complexities (Griffiths & Tenenbaum, 2003) build an inverted-U relation (Donderi, 2006; Sun & Firestone, 2021). Leveraging Representativeness of Attribute (RoA), we computationally confirm: Models use attributes with high RoA to describe visual concepts, and the description length falls in an inverted-U relation with the increment in visual complexity. At the computational level, we examine how the complexity of representation affects the shift between the rule- and similarity-based generalization. We hypothesize that category-conditioned visual modeling estimates the co-occurrence frequency between visual and categorical attributes, thus potentially serving as the prior for the natural visual world. Experimental results show that representations with relatively high subjective complexity outperform those with relatively low subjective complexity in rule-based generalization, while the trend is the opposite in similarity-based generalization.


#640
Expectation-Complete Graph Representations with Homomorphisms

Pascal Welke · Maximilian Thiessen · Fabian Jogl · Thomas Gärtner

We investigate novel random graph embeddings that can be computed in expected polynomial time and that are able to distinguish all non-isomorphic graphs in expectation. Previous graph embeddings have limited expressiveness and either cannot distinguish all graphs or cannot be computed efficiently for every graph. To be able to approximate arbitrary functions on graphs, we are interested in efficient alternatives that become arbitrarily expressive with increasing resources. Our approach is based on Lovász' characterisation of graph isomorphism through an infinite dimensional vector of homomorphism counts. Our empirical evaluation shows competitive results on several benchmark graph learning tasks.


#641
Shapley Based Residual Decomposition for Instance Analysis

Tommy Liu · Amanda Barnard

In this paper, we introduce the idea of decomposing the residuals of regression with respect to the data instances instead of features. This allows us to determine the effects of each individual instance on the model and each other, and in doing so makes for a model-agnostic method of identifying instances of interest. In doing so, we can also determine the appropriateness of the model and data in the wider context of a given study. The paper focuses on the possible applications that such a framework brings to the relatively unexplored field of instance analysis in the context of Explainable AI tasks.


#642
Efficient Algorithms for Exact Graph Matching on Correlated Stochastic Block Models with Constant Correlation

Joonhyuk Yang · Dongpil Shin · Hye Won Chung

We consider the problem of graph matching, or learning vertex correspondence, between two correlated stochastic block models (SBMs). The graph matching problem arises in various fields, including computer vision, natural language processing and bioinformatics, and in particular, matching graphs with inherent community structure has significance related to de-anonymization of correlated social networks. Compared to the correlated Erdos-Renyi (ER) model, where various efficient algorithms have been developed, among which a few algorithms have been proven to achieve the exact matching with constant edge correlation, no low-order polynomial algorithm has been known to achieve exact matching for the correlated SBMs with constant correlation. In this work, we propose an efficient algorithm for matching graphs with community structure, based on the comparison between partition trees rooted from each vertex, by extending the idea of Mao et al. (2021) to graphs with communities. The partition tree divides the large neighborhoods of each vertex into disjoint subsets using their edge statistics to different communities. Our algorithm is the first low-order polynomial-time algorithm achieving exact matching between two correlated SBMs with high probability in dense graphs.


#643
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss

Pierre Bréchet · Katerina Papagiannouli · Jing An · Guido Montufar

We consider a deep matrix factorization model of covariance matrices trained with the Bures-Wasserstein distance. While recent works have made advances in the study of the optimization problem for overparametrized low-rank matrix approximation, much emphasis has been placed on discriminative settings and the square loss. In contrast, our model considers another type of loss and connects with the generative setting. We characterize the critical points and minimizers of the Bures-Wasserstein distance over the space of rank-bounded matrices. The Hessian of this loss at low-rank matrices can theoretically blow up, which creates challenges to analyze convergence of gradient optimization methods. We establish convergence results for gradient flow using a smooth perturbative version of the loss as well as convergence results for finite step size gradient descent under certain assumptions on the initial weights.


#644
Performative Reinforcement Learning

Debmalya Mandal · Stelios Triantafyllou · Goran Radanovic

We introduce the framework of performative reinforcement learning where the policy chosen by the learner affects the underlying reward and transition dynamics of the environment. Following the recent literature on performative prediction (Perdomo et al., 2020), we introduce the concept of performatively stable policy. We then consider a regularized version of the reinforcement learning problem and show that repeatedly optimizing this objective converges to a performatively stable policy under reasonable assumptions on the transition dynamics. Our proof utilizes the dual perspective of the reinforcement learning problem and may be of independent interest in analyzing the convergence of other algorithms with decision-dependent environments. We then extend our results for the setting where the learner just performs gradient ascent steps instead of fully optimizing the objective, and for the setting where the learner has access to a finite number of trajectories from the changed environment. For both the settings, we leverage the dual formulation of performative reinforcement learning, and establish convergence to a stable solution. Finally, through extensive experiments on a grid-world environment, we demonstrate the dependence of convergence on various parameters e.g. regularization, smoothness, and the number of samples.


#645
Last Switch Dependent Bandits with Monotone Payoff Functions

Ayoub Foussoul · Vineet Goyal · Orestis Papadigenopoulos · Assaf Zeevi

In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.


#700
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule

Maor Ivgi · Oliver Hinder · Yair Carmon

We propose a tuning-free dynamic SGD step size formula, which we call Distance over Gradients (DoG). The DoG step sizes depend on simple empirical quantities (distance from the initial point and norms of gradients) and have no ``learning rate'' parameter. Theoretically, we show that, for stochastic convex optimization, a slight variation of the DoG formula enjoys strong, high-probability parameter-free convergence guarantees and iterate movement bounds. Empirically, we consider a broad range of vision and language transfer learning tasks, and show that DoG's performance is close to that of SGD with tuned learning rate. We also propose a per-layer variant of DoG that generally outperforms tuned SGD, approaching the performance of tuned Adam. A PyTorch implementation of our algorithms is available at https://github.com/formll/dog.


#701
Trustworthy Policy Learning under the Counterfactual No-Harm Criterion

Haoxuan Li · Chunyuan Zheng · Yixiao Cao · zhi geng · Yue Liu · Peng Wu

Trustworthy policy learning has significant importance in making reliable and harmless treatment decisions for individuals. Previous policy learning approaches aim at the well-being of subgroups by maximizing the utility function (e.g., conditional average causal effects, post-view click-through&conversion rate in recommendations), however, individual-level counterfactual no-harm criterion has rarely been discussed. In this paper, we first formalize the counterfactual no-harm criterion for policy learning from a principal stratification perspective. Next, we propose a novel upper bound for the fraction negatively affected by the policy and show the consistency and asymptotic normality of the estimator. Based on the estimators for the policy utility and harm upper bounds, we further propose a policy learning approach that satisfies the counterfactual no-harm criterion, and prove its consistency to the optimal policy reward for parametric and non-parametric policy classes, respectively. Extensive experiments are conducted to show the effectiveness of the proposed policy learning approach for satisfying the counterfactual no-harm criterion.


#702
Are Gaussian Data All You Need? The Extents and Limits of Universality in High-Dimensional Generalized Linear Estimation

Luca Pesce · FLORENT KRZAKALA · Bruno Loureiro · Ludovic Stephan

In this manuscript we consider the problem of generalized linear estimation on Gaussian mixture data with labels given by a single-index model. Our first result is a sharp asymptotic expression for the test and training errors in the high-dimensional regime. Motivated by the recent stream of results on the Gaussian universality of the test and training errors in generalized linear estimation, we ask ourselves the question: "when is a single Gaussian enough to characterize the error?". Our formula allows us to give sharp answers to this question, both in the positive and negative directions. More precisely, we show that the sufficient conditions for Gaussian universality (or lack thereof) crucially depend on the alignment between the target weights and the means and covariances of the mixture clusters, which we precisely quantify. In the particular case of least-squares interpolation, we prove a strong universality property of the training error and show it follows a simple, closed-form expression. Finally, we apply our results to real datasets, clarifying some recent discussions in the literature about Gaussian universality of the errors in this context.


#703
Certified Robust Neural Networks: Generalization and Corruption Resistance

Amine Bennouna · Ryan Lucas · Bart Van Parys

Recent work have demonstrated that robustness (to "corruption") can be at odds with generalization. Adversarial training, for instance, aims to reduce the problematic susceptibility of modern neural networks to small data perturbations. Surprisingly, overfitting is a major concern in adversarial training despite being mostly absent in standard training. We provide here theoretical evidence for this peculiar ``robust overfitting'' phenomenon. Subsequently, we advance a novel distributionally robust loss function bridging robustness and generalization. We demonstrate both theoretically as well as empirically the loss to enjoy a certified level of robustness against two common types of corruption|data evasion and poisoning attacks|while ensuring guaranteed generalization. We show through careful numerical experiments that our resulting holistic robust (HR) training procedure yields SOTA performance. Finally, we indicate that HR training can be interpreted as a direct extension of adversarial training and comes with a negligible additional computational burden. A ready-to-use python library implementing our algorithm is available at https://github.com/RyanLucas3/HRNeuralNetworks.


#704
Generalizing Neural Wave Functions

Nicholas Gao · Stephan Günnemann

Recent neural network-based wave functions have achieved state-of-the-art accuracies in modeling ab-initio ground-state potential energy surface. However, these networks can only solve different spatial arrangements of the same set of atoms. To overcome this limitation, we present Graph-learned orbital embeddings (Globe), a neural network-based reparametrization method that can adapt neural wave functions to different molecules. Globe learns representations of local electronic structures that generalize across molecules via spatial message passing by connecting molecular orbitals to covalent bonds. Further, we propose a size-consistent wave function Ansatz, the Molecular orbital network (Moon), tailored to jointly solve Schrödinger equations of different molecules. In our experiments, we find Moon converging in 4.5 times fewer steps to similar accuracy as previous methods or to lower energies given the same time. Further, our analysis shows that Moon's energy estimate scales additively with increased system sizes, unlike previous work where we observe divergence. In both computational chemistry and machine learning, we are the first to demonstrate that a single wave function can solve the Schrödinger equation of molecules with different atoms jointly.


#705
On the convergence of the MLE as an estimator of the learning rate in the Exp3 algorithm

Julien Aubert · Luc Lehéricy · Patricia Reynaud-Bouret

When fitting the learning data of an individual to algorithm-like learning models, the observations are so dependent and non-stationary that one may wonder what the classical Maximum Likelihood Estimator (MLE) could do, even if it is the usual tool applied to experimental cognition. Our objective in this work is to show that the estimation of the learning rate cannot be efficient if the learning rate is constant in the classical Exp3 (Exponential weights for Exploration and Exploitation) algorithm. Secondly, we show that if the learning rate decreases polynomially with the sample size, then the prediction error and in some cases the estimation error of the MLE satisfy bounds in probability that decrease at a polynomial rate.


#706
Neural Markov Jump Processes

Patrick Seifner · Ramses J Sanchez

Markov jump processes are continuous-time stochastic processes with a wide range of applications in both natural and social sciences. Despite their widespread use, inference in these models is highly non-trivial and typically proceeds via either Monte Carlo or expectation-maximization methods. In this work we introduce an alternative, variational inference algorithm for Markov jump processes which relies on neural ordinary differential equations, and is trainable via back-propagation. Our methodology learns neural, continuous-time representations of the observed data, that are used to approximate the initial distribution and time-dependent transition probability rates of the posterior Markov jump process. The time-independent rates of the prior process are in contrast trained akin to generative adversarial networks. We test our approach on synthetic data sampled from ground-truth Markov jump processes, experimental switching ion channel data and molecular dynamics simulations. Source code to reproduce our experiments is available online.


#707
Learning Control-Oriented Dynamical Structure from Data

Spencer M. Richards · Jean-Jacques Slotine · Navid Azizan · Marco Pavone

Even for known nonlinear dynamical systems, feedback controller synthesis is a difficult problem that often requires leveraging the particular structure of the dynamics to induce a stable closed-loop system. For general nonlinear models, including those fit to data, there may not be enough known structure to reliably synthesize a stabilizing feedback controller. In this paper, we discuss a state-dependent nonlinear tracking controller formulation based on a state-dependent Riccati equation for general nonlinear control-affine systems. This formulation depends on a nonlinear factorization of the system of vector fields defining the control-affine dynamics, which always exists under mild smoothness assumptions. We propose a method for learning this factorization from a finite set of data. On a variety of simulated nonlinear dynamical systems, we empirically demonstrate the efficacy of learned versions of this controller in stable trajectory tracking. Alongside our learning method, we evaluate recent ideas in jointly learning a controller and stabilizability certificate for known dynamical systems; we show experimentally that such methods can be frail in comparison.


#708
Bayesian Estimation of Differential Privacy

Santiago Zanella-Beguelin · Lukas Wutschitz · Shruti Tople · Ahmed Salem · Victor Ruehle · Andrew Paverd · Mohammad Naseri · Boris Köpf · Dan Jones

Algorithms such as Differentially Private SGD enable training machine learning models with formal privacy guarantees. However, because these guarantees hold with respect to unrealistic adversaries, the protection afforded against practical attacks is typically much better. An emerging strand of work empirically estimates the protection afforded by differentially private training as a confidence interval for the privacy budget $\hat{\varepsilon}$ spent with respect to specific threat models. Existing approaches derive confidence intervals for $\hat{\varepsilon}$ from confidence intervals for false positive and false negative rates of membership inference attacks, which requires training an impractically large number of models to get intervals that can be acted upon. We propose a novel, more efficient Bayesian approach that brings privacy estimates within the reach of practitioners. Our approach reduces sample size by computing a posterior for $\hat{\varepsilon}$ (not just a confidence interval) from the joint posterior of the false positive and false negative rates of membership inference attacks. We implement an end-to-end system for privacy estimation that integrates our approach and state-of-the-art membership inference attacks, and evaluate it on text and vision classification tasks. For the same number of samples, we see a reduction in interval width of up to 40% compared to prior work.


#709
Eliminating Adversarial Noise via Information Discard and Robust Representation Restoration

Dawei Zhou · Yukun Chen · Nannan Wang · Decheng Liu · Xinbo Gao · Tongliang Liu

Deep neural networks (DNNs) are vulnerable to adversarial noise. Denoising model-based defense is a major protection strategy. However, denoising models may fail and induce negative effects in fully white-box scenarios. In this work, we start from the latent inherent properties of adversarial samples to break the limitations. Unlike solely learning a mapping from adversarial samples to natural samples, we aim to achieve denoising by destroying the spatial characteristics of adversarial noise and preserving the robust features of natural information. Motivated by this, we propose a defense based on information discard and robust representation restoration. Our method utilize complementary masks to disrupt adversarial noise and guided denoising models to restore robust-predictive representations from masked samples. Experimental results show that our method has competitive performance against white-box attacks and effectively reverses the negative effect of denoising models.


#710
The Numerical Stability of Hyperbolic Representation Learning

Gal Mishne · Zhengchao Wan · Yusu Wang · Sheng Yang

The hyperbolic space is widely used for representing hierarchical datasets due to its ability to embed trees with small distortion. However, this property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we analyze the limitations of two popular models for the hyperbolic space, namely, the Poincaré ball and the Lorentz model. We find that, under the 64-bit arithmetic system, the Poincaré ball has a relatively larger capacity than the Lorentz model for correctly representing points. However, the Lorentz model is superior to the Poincaré ball from the perspective of optimization, which we theoretically validate. To address these limitations, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these issues. We further extend this Euclidean parametrization to hyperbolic hyperplanes and demonstrate its effectiveness in improving the performance of hyperbolic SVM.


#711
Improved Algorithms for White-Box Adversarial Streams

Ying Feng · David Woodruff

We study streaming algorithms in the white-box adversarial stream model, where the internal state of the streaming algorithm is revealed to an adversary who adaptively generates the stream updates, but the algorithm obtains fresh randomness unknown to the adversary at each time step. We incorporate cryptographic assumptions to construct robust algorithms against such adversaries. We propose efficient algorithms for sparse recovery of vectors, low rank recovery of matrices and tensors, as well as low rank plus sparse recovery of matrices, i.e., robust PCA. Unlike deterministic algorithms, our algorithms can report when the input is not sparse or low rank even in the presence of such an adversary. We use these recovery algorithms to improve upon and solve new problems in numerical linear algebra and combinatorial optimization on white-box adversarial streams. For example, we give the first efficient algorithm for outputting a matching in a graph with insertions and deletions to its edges provided the matching size is small, and otherwise we declare the matching size is large. We also improve the approximation versus memory tradeoff of previous work for estimating the number of non-zero elements in a vector and computing the matrix rank.


#712
Q-Flow: Generative Modeling for Differential Equations of Open Quantum Dynamics with Normalizing Flows

Owen Dugan · Peter Y. Lu · Rumen Dangovski · Di Luo · Marin Soljačić

Studying the dynamics of open quantum systems can enable breakthroughs both in fundamental physics and applications to quantum engineering and quantum computation. Since the density matrix $\rho$, which is the fundamental description for the dynamics of such systems, is high-dimensional, customized deep generative neural networks have been instrumental in modeling $\rho$. However, the complex-valued nature and normalization constraints of $\rho$, as well as its complicated dynamics, prohibit a seamless connection between open quantum systems and the recent advances in deep generative modeling. Here we lift that limitation by utilizing a reformulation of open quantum system dynamics to a partial differential equation (PDE) for a corresponding probability distribution $Q$, the Husimi Q function. Thus, we model the Q function seamlessly with *off-the-shelf* deep generative models such as normalizing flows. Additionally, we develop novel methods for learning normalizing flow evolution governed by high-dimensional PDEs based on the Euler method and the application of the time-dependent variational principle. We name the resulting approach *Q-Flow* and demonstrate the scalability and efficiency of Q-Flow on open quantum system simulations, including the dissipative harmonic oscillator and the dissipative bosonic model. Q-Flow is superior to conventional PDE solvers and state-of-the-art physics-informed neural network solvers, especially in high-dimensional systems.


#713
On the Convergence of Gradient Flow on Multi-layer Linear Models

Hancheng Min · Rene Vidal · Enrique Mallada

In this paper, we analyze the convergence of gradient flow on a multi-layer linear model with a loss function of the form $f(W_1W_2\cdots W_L)$. We show that when $f$ satisfies the gradient dominance property, proper weight initialization leads to exponential convergence of the gradient flow to a global minimum of the loss. Moreover, the convergence rate depends on two trajectory-specific quantities that are controlled by the weight initialization: the *imbalance matrices*, which measure the difference between the weights of adjacent layers, and the least singular value of the *weight product* $W=W_1W_2\cdots W_L$. Our analysis exploits the fact that the gradient of the overparameterized loss can be written as the composition of the non-overparametrized gradient with a time-varying (weight-dependent) linear operator whose smallest eigenvalue controls the convergence rate. The key challenge we address is to derive a uniform lower bound for this time-varying eigenvalue that lead to improved rates for several multi-layer network models studied in the literature.


#714
Online Learning in Stackelberg Games with an Omniscient Follower

Geng Zhao · Banghua Zhu · Jiantao Jiao · Michael Jordan

We study the problem of online learning in a two-player decentralized cooperative Stackelberg game. In each round, the leader first takes an action, followed by the follower who takes their action after observing the leader's move. The goal of the leader is to learn to minimize the cumulative regret based on the history of interactions. Differing from the traditional formulation of repeated Stackelberg games, we assume the follower is omniscient, with full knowledge of the true reward, and that they always best-respond to the leader's actions. We analyze the sample complexity of regret minimization in this repeated Stackelberg game. We show that depending on the reward structure, the existence of the omniscient follower may change the sample complexity drastically, from constant to exponential, even for linear cooperative Stackelberg games. This poses unique challenges for the learning process of the leader and the subsequent regret analysis.


#715
Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Yuan-Ting Hu · Alex Schwing · Raymond A. Yeh

Reconstructing the 3D shape of objects observed in a single image is a challenging task. Recent approaches rely on visual cues extracted from a given image learned from a deep net. In this work, we leverage recent advances in monocular scene understanding to incorporate an additional geometric cue of surface normals. For this, we proposed a novel optimization layer that encourages the face normals of the reconstructed shape to be aligned with estimated surface normals. We develop a computationally efficient conjugate-gradient-based method that avoids the computation of a high-dimensional sparse matrix. We show this framework to achieve compelling shape reconstruction results on the challenging Pix3D and ShapeNet datasets.


#716
Streaming Active Learning with Deep Neural Networks

Akanksha Saran · Safoora Yousefi · Akshay Krishnamurthy · John Langford · Jordan Ash

Active learning is perhaps most naturally posed as an online learning problem. However, prior active learning approaches with deep neural networks assume offline access to the entire dataset ahead of time. This paper proposes VeSSAL, a new algorithm for batch active learning with deep neural networks in streaming settings, which samples groups of points to query for labels at the moment they are encountered. Our approach trades off between uncertainty and diversity of queried samples to match a desired query rate without requiring any hand-tuned hyperparameters. Altogether, we expand the applicability of deep neural networks to realistic active learning scenarios, such as applications relevant to HCI and large, fractured datasets.


#717
Unit Scaling: Out-of-the-Box Low-Precision Training

Charlie Blake · Douglas Orr · Carlo Luschi

We present unit scaling, a paradigm for designing deep learning models that simplifies the use of low-precision number formats. Training in FP16 or the recently proposed FP8 formats offers substantial efficiency gains, but can lack sufficient range for out-of-the-box training. Unit scaling addresses this by introducing a principled approach to model numerics: seeking unit variance of all weights, activations and gradients at initialisation. Unlike alternative methods, this approach neither requires multiple training runs to find a suitable scale nor has significant computational overhead. We demonstrate the efficacy of unit scaling across a range of models and optimisers. We further show that existing models can be adapted to be unit-scaled, training BERT-Large in FP16 and then FP8 with no degradation in accuracy.


#718
Linear Causal Disentanglement via Interventions

Chandler Squires · Anna Seigal · Salil Bhate · Caroline Uhler

Causal disentanglement seeks a representation of data involving latent variables that are related via a causal model. A representation is identifiable if both the latent model and the transformation from latent to observed variables are unique. In this paper, we study observed variables that are a linear transformation of a linear latent causal model. Data from interventions are necessary for identifiability: if one latent variable is missing an intervention, we show that there exist distinct models that cannot be distinguished. Conversely, we show that a single intervention on each latent variable is sufficient for identifiability. Our proof uses a generalization of the RQ decomposition of a matrix that replaces the usual orthogonal and upper triangular conditions with analogues depending on a partial order on the rows of the matrix, with partial order determined by a latent causal model. We corroborate our theoretical results with a method for causal disentanglement. We show that the method accurately recovers a latent causal model on synthetic and semi-synthetic data and we illustrate a use case on a dataset of single-cell RNA sequencing measurements.


#719
Competing for Shareable Arms in Multi-Player Multi-Armed Bandits

Renzhe Xu · Haotian Wang · Xingxuan Zhang · Bo Li · Peng Cui

Competitions for shareable and limited resources have long been studied with strategic agents. In reality, agents often have to learn and maximize the rewards of the resources at the same time. To design an individualized competing policy, we model the competition between agents in a novel multi-player multi-armed bandit (MPMAB) setting where players are selfish and aim to maximize their own rewards. In addition, when several players pull the same arm, we assume that these players averagely share the arms' rewards by expectation. Under this setting, we first analyze the Nash equilibrium when arms' rewards are known. Subsequently, we propose a novel Selfish MPMAB with Averaging Allocation (SMAA) approach based on the equilibrium. We theoretically demonstrate that SMAA could achieve a good regret guarantee for each player when all players follow the algorithm. Additionally, we establish that no single selfish player can significantly increase their rewards through deviation, nor can they detrimentally affect other players' rewards without incurring substantial losses for themselves. We finally validate the effectiveness of the method in extensive synthetic experiments.


#720
MANSA: Learning Fast and Slow in Multi-Agent Systems

David Mguni · Haojun Chen · Taher Jafferjee · Jianhong Wang · Longfei Yue · Xidong Feng · Stephen Mcaleer · Feifei Tong · Jun Wang · Yaodong Yang

In multi-agent reinforcement learning (MARL), independent learning (IL) often shows remarkable performance and easily scales with the number of agents. Yet, using IL can be inefficient and runs the risk of failing to successfully train, particularly in scenarios that require agents to coordinate their actions. Using centralised learning (CL) enables MARL agents to quickly learn how to coordinate their behaviour but employing CL everywhere is often prohibitively expensive in real-world applications. Besides, using CL in value-based methods often needs strong representational constraints (e.g. individual-global-max condition) that can lead to poor performance if violated. In this paper, we introduce a novel plug & play IL framework named Multi-Agent Network Selection Algorithm (MANSA) which selectively employs CL only at states that require coordination. At its core, MANSA has an additional agent that uses switching controls to quickly learn the best states to activate CL during training, using CL only where necessary and vastly reducing the computational burden of CL. Our theory proves MANSA preserves cooperative MARL convergence properties, boosts IL performance and can optimally make use of a fixed budget on the number CL calls. We show empirically in Level-based Foraging (LBF) and StarCraft Multi-agent Challenge (SMAC) that MANSA achieves fast, superior and more reliable performance while making 40% fewer CL calls in SMAC and using CL at only 1% CL calls in LBF.


#721
Thompson Sampling with Less Exploration is Fast and Optimal

Tianyuan Jin · XIANGLIN YANG · Xiaokui Xiao · Pan Xu

We propose $\epsilon$-Exploring Thompson Sampling ($\epsilon$-TS), a modified version of the Thompson Sampling (TS) algorithm for multi-armed bandits. In $\epsilon$-TS, arms are selected greedily based on empirical mean rewards with probability $1-\epsilon$, and based on posterior samples obtained from TS with probability $\epsilon$. Here, $\epsilon\in(0,1)$ is a user-defined constant. By reducing exploration, $\epsilon$-TS improves computational efficiency compared to TS while achieving better regret bounds. We establish that $\epsilon$-TS is both minimax optimal and asymptotically optimal for various popular reward distributions, including Gaussian, Bernoulli, Poisson, and Gamma. A key technical advancement in our analysis is the relaxation of the requirement for a stringent anti-concentration bound of the posterior distribution, which was necessary in recent analyses that achieved similar bounds. As a result, $\epsilon$-TS maintains the posterior update structure of TS while minimizing alterations, such as clipping the sampling distribution or solving the inverse of the Kullback-Leibler (KL) divergence between reward distributions, as done in previous work. Furthermore, our algorithm is as easy to implement as TS, but operates significantly faster due to reduced exploration. Empirical evaluations confirm the efficiency and optimality of $\epsilon$-TS.


#722
SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems

Aaron Ferber · Taoan Huang · Daochen Zha · Martin Schubert · Benoit Steiner · Bistra Dilkina · Yuandong Tian

Optimization problems with nonlinear cost functions and combinatorial constraints appear in many real-world applications but remain challenging to solve efficiently compared to their linear counterparts. To bridge this gap, we propose $\textbf{\emph{\texttt{SurCo}}}$ that learns linear $\underline{\text{Sur}}$rogate costs which can be used in existing $\underline{\text{Co}}$mbinatorial solvers to output good solutions to the original nonlinear combinatorial optimization problem. The surrogate costs are learned end-to-end with nonlinear loss by differentiating through the linear surrogate solver, combining the flexibility of gradient-based methods with the structure of linear combinatorial optimization. We propose three $\texttt{SurCo}$ variants: $\texttt{SurCo}-\texttt{zero}$ for individual nonlinear problems, $\texttt{SurCo}-\texttt{prior}$ for problem distributions, and $\texttt{SurCo}-\texttt{hybrid}$ to combine both distribution and problem-specific information. We give theoretical intuition motivating $\texttt{SurCo}$, and evaluate it empirically. Experiments show that $\texttt{SurCo}$ finds better solutions faster than state-of-the-art and domain expert approaches in real-world optimization problems such as embedding table sharding, inverse photonic design, and nonlinear route planning.


#723
Faster Rates of Convergence to Stationary Points in Differentially Private Optimization

Raman Arora · Raef Bassily · Tomás González · Cristobal Guzman · Michael Menart · Enayat Ullah

We study the problem of approximating stationary points of Lipschitz and smooth functions under $(\varepsilon,\delta)$-differential privacy (DP) in both the finite-sum and stochastic settings. A point $\widehat{w}$ is called an $\alpha$-stationary point of a function $F:\mathbb{R}^d\rightarrow\mathbb{R}$ if $\|\nabla F(\widehat{w})\|\leq \alpha$. We give a new construction that improves over the existing rates in the stochastic optimization setting, where the goal is to find approximate stationary points of the population risk given $n$ samples. Our construction finds a $\tilde{O}\big(\frac{1}{n^{1/3}} + \big[\frac{\sqrt{d}}{n\varepsilon}\big]^{1/2}\big)$-stationary point of the population risk in time linear in $n$. We also provide an efficient algorithm that finds an $\tilde{O}\big(\big[\frac{\sqrt{d}}{n\varepsilon}\big]^{2/3}\big)$-stationary point in the finite-sum setting. This improves on the previous best rate of $\tilde{O}\big(\big[\frac{\sqrt{d}}{n\varepsilon}\big]^{1/2}\big)$. Furthermore, under the additional assumption of convexity, we completely characterize the sample complexity of finding stationary points of the population risk (up to polylog factors) and show that the optimal rate on population stationarity is $\tilde \Theta\big(\frac{1}{\sqrt{n}}+\frac{\sqrt{d}}{n\varepsilon}\big)$. Finally, we show that our methods can be used to provide dimension-independent rates of $O\big(\frac{1}{\sqrt{n}}+\min\big(\big[\frac{\sqrt{rank}}{n\varepsilon}\big]^{2/3},\frac{1}{(n\varepsilon)^{2/5}}\big)\big)$ on population stationarity for Generalized Linear Models (GLM), where $rank$ is the rank of the design matrix, which improves upon the previous best known rate.


#724
Quantitative Universal Approximation Bounds for Deep Belief Networks

Julian Sieber · Johann Gehringer

We show that deep belief networks with binary hidden units can approximate any multivariate probability density under very mild integrability requirements on the parental density of the visible nodes. The approximation is measured in the $L^q$-norm for $q\in[1,\infty]$ ($q=\infty$ corresponding to the supremum norm) and in Kullback-Leibler divergence. Furthermore, we establish sharp quantitative bounds on the approximation error in terms of the number of hidden units.


#725
Vector-Valued Control Variates

Zhuo Sun · Alessandro Barp · Francois-Xavier Briol

Control variates are variance reduction tools for Monte Carlo estimators. They can provide significant variance reduction, but usually require a large number of samples, which can be prohibitive when sampling or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple Monte Carlo estimators jointly. This allows for the transfer of information across integration tasks, and hence reduces the need for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling, Bayesian inference for dynamical systems, and model evidence computation through thermodynamic integration.


#726
Deep Anomaly Detection under Labeling Budget Constraints

Aodong Li · Chen Qiu · Marius Kloft · Padhraic Smyth · Stephan Mandt · Maja Rudolph

Selecting informative data points for expert feedback can significantly improve the performance of anomaly detection (AD) in various contexts, such as medical diagnostics or fraud detection. In this paper, we determine a set of theoretical conditions under which anomaly scores generalize from labeled queries to unlabeled data. Motivated by these results, we propose a data labeling strategy with optimal data coverage under labeling budget constraints. In addition, we propose a new learning framework for semi-supervised AD. Extensive experiments on image, tabular, and video data sets show that our approach results in state-of-the-art semi-supervised AD performance under labeling budget constraints.


#727
Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series

Aniruddh Raghu · Payal Chandak · Ridwan Alam · John Guttag · Collin Stultz

Self-supervised learning (SSL) for clinical time series data has received significant attention in recent literature, since these data are highly rich and provide important information about a patient's physiological state. However, most existing SSL methods for clinical time series are limited in that they are designed for unimodal time series, such as a sequence of structured features (e.g., lab values and vitals signs) or an individual high-dimensional physiological signal (e.g., an electrocardiogram). These existing methods cannot be readily extended to model time series that exhibit multimodality, with structured features and high-dimensional data being recorded at each timestep in the sequence. In this work, we address this gap and propose a new SSL method --- Sequential Multi-Dimensional SSL --- where a SSL loss is applied both at the level of the entire sequence and at the level of the individual high-dimensional data points in the sequence in order to better capture information at both scales. Our strategy is agnostic to the specific form of loss function used at each level -- it can be contrastive, as in SimCLR, or non-contrastive, as in VICReg. We evaluate our method on two real-world clinical datasets, where the time series contains sequences of (1) high-frequency electrocardiograms and (2) structured data from lab values and vitals signs. Our experimental results indicate that pre-training with our method and then fine-tuning on downstream tasks improves performance over baselines on both datasets, and in several settings, can lead to improvements across different self-supervised loss functions.


#728
Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

Ruisi Cai · Zhenyu Zhang · Zhangyang “Atlas” Wang

Given a robust model trained to be resilient to one or multiple types of distribution shifts (e.g., natural image corruptions), how is that "robustness" encoded in the model weights, and how easily can it be disentangled and/or "zero-shot" transferred to some other models? This paper empirically suggests a surprisingly simple answer: linearly - by straightforward model weight arithmetic! We start by drawing several key observations: (i) assuming that we train the same model architecture on both a clean dataset and its corrupted version, a comparison between the two resultant models shows their weights to mostly differ in shallow layers; (ii) the weight difference after projection, which we call "Robust Weight Signature" (RWS), appears to be discriminative and indicative of different corruption types; (iii) perhaps most strikingly, for the same corruption type, the RWSs obtained by one model architecture are highly consistent and transferable across different datasets. Based on those RWS observations, we propose a minimalistic model robustness "patching" framework that carries a model trained on clean data together with its pre-extracted RWSs. In this way, injecting certain robustness to the model is reduced to directly adding the corresponding RWS to its weight. We experimentally verify our proposed framework to be remarkably (1) lightweight. since RWSs concentrate on the shallowest few layers and we further show they can be painlessly quantized, storing an RWS is up to 13 x more compact than storing the full weight copy; (2) in-situ adjustable. RWSs can be appended as needed and later taken off to restore the intact clean model. We further demonstrate one can linearly re-scale the RWS to control the patched robustness strength; (3) composable. Multiple RWSs can be added simultaneously to patch more comprehensive robustness at once; and (4) transferable. Even when the clean model backbone is continually adapted or updated, RWSs remain as effective patches due to their outstanding cross-dataset transferability.


#729
Better Diffusion Models Further Improve Adversarial Training

Zekai Wang · Tianyu Pang · Chao Du · Min Lin · Weiwei Liu · Shuicheng YAN

It has been recognized that the data generated by the denoising diffusion probabilistic model (DDPM) improves adversarial training. After two years of rapid development in diffusion models, a question naturally arises: can better diffusion models further improve adversarial training? This paper gives an affirmative answer by employing the most recent diffusion model which has higher efficiency ($\sim 20$ sampling steps) and image quality (lower FID score) compared with DDPM. Our adversarially trained models achieve state-of-the-art performance on RobustBench using only generated data (no external datasets). Under the $\ell_\infty$-norm threat model with $\epsilon=8/255$, our models achieve $70.69\\\%$ and $42.67\\\%$ robust accuracy on CIFAR-10 and CIFAR-100, respectively, i.e. improving upon previous state-of-the-art models by $+4.58\\\%$ and $+8.03\\\%$. Under the $\ell_2$-norm threat model with $\epsilon=128/255$, our models achieve $84.86\\\%$ on CIFAR-10 ($+4.44\\\%$). These results also beat previous works that use external data. We also provide compelling results on the SVHN and TinyImageNet datasets. Our code is at https://github.com/wzekai99/DM-Improves-AT.


#730
Explaining Reinforcement Learning with Shapley Values

Daniel Beechey · Thomas M. S. Smith · Özgür Şimşek

For reinforcement learning systems to be widely adopted, their users must understand and trust them. We present a theoretical analysis of explaining reinforcement learning using Shapley values, following a principled approach from game theory for identifying the contribution of individual players to the outcome of a cooperative game. We call this general framework Shapley Values for Explaining Reinforcement Learning (SVERL). Our analysis exposes the limitations of earlier uses of Shapley values in reinforcement learning. We then develop an approach that uses Shapley values to explain agent performance. In a variety of domains, SVERL produces meaningful explanations that match and supplement human intuition.


#731
Randomized Schur Complement Views for Graph Contrastive Learning

Vignesh Kothapalli

We introduce a randomized topological augmentor based on Schur complements for Graph Contrastive Learning (GCL). Given a graph laplacian matrix, the technique generates unbiased approximations of its Schur complements and treats the corresponding graphs as augmented views. We discuss the benefits of our approach, provide theoretical justifications and present connections with graph diffusion. Unlike previous efforts, we study the empirical effectiveness of the augmentor in a controlled fashion by varying the design choices for subsequent GCL phases, such as encoding and contrasting. Extensive experiments on node and graph classification benchmarks demonstrate that our technique consistently outperforms pre-defined and adaptive augmentation approaches to achieve state-of-the-art results.


#732
Hierarchical Diffusion for Offline Decision Making

Wenhao Li · Xiangfeng Wang · Bo Jin · Hongyuan Zha

Offline reinforcement learning typically introduces a hierarchical structure to solve the long-horizon problem so as to address its thorny issue of variance accumulation. Problems of deadly triad, limited data and reward sparsity, however, still remain, rendering the design of effective, hierarchical offline RL algorithms for general-purpose policy learning a formidable challenge. In this paper, we first formulate the problem of offline long-horizon decision-$\mathbf{M}$ak$\mathbf{I}$ng from the perspective of conditional generative modeling by incorporating goals into the control-as-inference graphic models. A $\mathbf{H}$ierarchical trajectory-level $\mathbf{D}$iffusion probabilistic model is then proposed with classifier-free guidance. HDMI employs a cascade framework that utilizes the reward-conditional goal diffuser for the subgoal discovery and the goal-conditional trajectory diffuser for generating the corresponding action sequence of subgoals. Planning-based subgoal extraction and transformer-based diffusion are employed to deal with the sub-optimal data pollution and long-range subgoal dependencies in the goal diffusion. Numerical experiments verify the advantages of HDMI on long-horizon decision-making compared to SOTA offline RL methods and conditional generative models.


#733
The Unreasonable Effectiveness of Few-shot Learning for Machine Translation

Xavier Garcia · Yamini Bansal · Colin Cherry · George Foster · Maxim Krikun · Melvin Johnson · Orhan Firat

We demonstrate the potential of few-shot translation systems, trained with unpaired language data, for both high and low-resource language pairs. We show that with only 5 examples of high-quality translation data shown at inference, a transformer decoder-only model trained solely with self-supervised learning, is able to match specialized supervised state-of-the-art models as well as more general commercial translation systems. In particular, we outperform the best performing system on the WMT'21 English-Chinese news translation task by only using five examples of English-Chinese parallel data at inference. Furthermore, the resulting models are two orders of magnitude smaller than state-of-the-art language models. We then analyze the factors which impact the performance of few-shot translation systems, and highlight that the quality of the few-shot demonstrations heavily determines the quality of the translations generated by our models. Finally, we show that the few-shot paradigm also provides a way to control certain attributes of the translation --- we show that we are able to control for regional varieties and formality using only a five examples at inference, paving the way towards controllable machine translation systems.


#734
Understand and Modularize Generator Optimization in ELECTRA-style Pretraining

Chengyu Dong · Liyuan Liu · Hao Cheng · Jingbo Shang · Jianfeng Gao · Xiaodong Liu

Despite the effectiveness of ELECTRA-style pre-training, their performance is dependent on the careful selection of the model size for the auxiliary generator, leading to high trial-and-error costs. In this paper, we present the first systematic study of this problem. Our theoretical investigation highlights the importance of controlling the generator capacity in ELECTRA-style training. Meanwhile, we found it is not handled properly in the original ELECTRA design, leading to the sensitivity issue. Specifically, since adaptive optimizers like Adam will cripple the weighing of individual losses in the joint optimization, the original design fails to control the generator training effectively. To regain control over the generator, we modularize the generator optimization by decoupling the generator optimizer and discriminator optimizer completely, instead of simply relying on the weighted objective combination. Our simple technique reduced the sensitivity of ELECTRA training significantly and obtains considerable performance gain compared to the original design.


#735
Distribution Free Domain Generalization

Peifeng Tong · Wu Su · He Li · Jialin Ding · zhan haoxiang · Song Chen

Accurate prediction of the out-of-distribution data is desired for a learning algorithm. In domain generalization, training data from source domains tend to have different distributions from that of the target domain, while the target data are absence in the training process. We propose a Distribution Free Domain Generalization (DFDG) procedure for classification by conducting standardization to avoid the dominance of a few domains in the training process. The essence of the DFDG is its reformulating the cross domain/class discrepancy by pairwise two sample test statistics, and equally weights their importance or the covariance structures to avoid dominant domain/class. A theoretical generalization bound is established for the multi-class classification problem. The DFDG is shown to offer a superior performance in empirical studies with fewer hyperparameters, which means faster and easier implementation.


#736
Secure Federated Correlation Test and Entropy Estimation

Qi Pang · Lun Wang · Shuai Wang · Wenting Zheng · Dawn Song

We propose the first federated correlation test framework compatible with secure aggregation, namely FED-$\chi^2$. In our protocol, the statistical computations are recast as frequency moment estimation problems, where the clients collaboratively generate a shared projection matrix and then use stable projection to encode the local information in a compact vector. As such encodings can be linearly aggregated, secure aggregation can be applied to conceal the individual updates. We formally establish the security guarantee of FED-$\chi^2$ by proving that only the minimum necessary information (i.e., the correlation statistics) is revealed to the server. We show that our protocol can be naturally extended to estimate other statistics that can be recast as frequency moment estimations. By accommodating Shannon'e Entropy in FED-$\chi^2$, we further propose the first secure federated entropy estimation protocol, FED-$H$. The evaluation results demonstrate that FED-$\chi^2$ and FED-$H$ achieve good performance with small client-side computation overhead in several real-world case studies.


#737
Computational Doob h-transforms for Online Filtering of Discretely Observed Diffusions

Nicolas Chopin · Andras Fulop · Jeremy Heng · Alex Thiery

This paper is concerned with online filtering of discretely observed nonlinear diffusion processes. Our approach is based on the fully adapted auxiliary particle filter, which involves Doob's $h$-transforms that are typically intractable. We propose a computational framework to approximate these $h$-transforms by solving the underlying backward Kolmogorov equations using nonlinear Feynman-Kac formulas and neural networks. The methodology allows one to train a locally optimal particle filter prior to the data-assimilation procedure. Numerical experiments illustrate that the proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters in the regime of highly informative observations, when the observations are extreme under the model, and if the state dimension is large.


#738
Rethinking Warm-Starts with Predictions: Learning Predictions Close to Sets of Optimal Solutions for Faster $\text{L}$-/$\text{L}^\natural$-Convex Function Minimization

Shinsaku Sakaue · Taihei Oki

An emerging line of work has shown that machine-learned predictions are useful to warm-start algorithms for discrete optimization problems, such as bipartite matching. Previous studies have shown time complexity bounds proportional to some distance between a prediction and an optimal solution, which we can approximately minimize by learning predictions from past optimal solutions. However, such guarantees may not be meaningful when multiple optimal solutions exist. Indeed, the dual problem of bipartite matching and, more generally, *$\text{L}$-/$\text{L}^\natural$-convex function minimization* have *arbitrarily many* optimal solutions, making such prediction-dependent bounds arbitrarily large. To resolve this theoretically critical issue, we present a new warm-start-with-prediction framework for $\text{L}$-/$\text{L}^\natural$-convex function minimization. Our framework offers time complexity bounds proportional to the distance between a prediction and the *set of all optimal solutions*. The main technical difficulty lies in learning predictions that are provably close to sets of all optimal solutions, for which we present an online-gradient-descent-based method. We thus give the first polynomial-time learnability of predictions that can provably warm-start algorithms regardless of multiple optimal solutions.


#739
Partially Observable Multi-agent RL with (Quasi-)Efficiency: The Blessing of Information Sharing

Xiangyu Liu · Kaiqing Zhang

We study provable multi-agent reinforcement learning (MARL) in the general framework of partially observable stochastic games (POSGs). To circumvent the known hardness results and the use of computationally intractable oracles, we propose to leverage the potential information-sharing among agents, a standard practice in empirical MARL and a common model for multi-agent control systems with communications. We first establish several computation complexity results to justify the necessity of information-sharing, as well as the observability assumption that has enabled quasi-efficient single-agent RL with partial observations, for computational efficiency in solving POSGs. We then propose to further approximate the shared common information to construct an approximate model of the POSG, in which planning an approximate equilibrium (in terms of solving the original POSG) can be quasi-efficient, i.e., of quasi-polynomial-time, under the aforementioned assumptions. Furthermore, we develop a partially observable MARL algorithm that is both statistically and computationally quasi-efficient. We hope our study can open up the possibilities of leveraging and even designing different information structures, for developing both sample- and computation-efficient partially observable MARL.


#741
Fair and Robust Estimation of Heterogeneous Treatment Effects for Policy Learning

Kwangho Kim · Jose Zubizarreta

We propose a simple and general framework for nonparametric estimation of heterogeneous treatment effects under fairness constraints. Under standard regularity conditions, we show that the resulting estimators possess the double robustness property. We use this framework to characterize the trade-off between fairness and the maximum welfare achievable by the optimal policy. We evaluate the methods in a simulation study and illustrate them in a real-world case study.


#742
Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression

Mo Zhou · Rong Ge

In deep learning, often the training process finds an interpolator (a solution with 0 training loss), but the test loss is still low. This phenomenon, known as *benign overfitting*, is a major mystery that received a lot of recent attention. One common mechanism for benign overfitting is *implicit regularization*, where the training process leads to additional properties for the interpolator, often characterized by minimizing certain norms. However, even for a simple sparse linear regression problem $y = \beta^{\ast\top} x +\xi$ with sparse $\beta^{\ast}$, neither minimum $\ell_1$ or $\ell_2$ norm interpolator gives the optimal test loss. In this work, we give a different parametrization of the model which leads to a new implicit regularization effect that combines the benefit of $\ell_1$ and $\ell_2$ interpolators. We show that training our new model via gradient descent leads to an interpolator with near-optimal test loss. Our result is based on careful analysis of the training dynamics and provides another example of implicit regularization effect that goes beyond norm minimization.


#743
Is Consensus Acceleration Possible in Decentralized Optimization over Slowly Time-Varying Networks?

Dmitry Metelev · Alexander Rogozin · Dmitry Kovalev · Alexander Gasnikov

We consider decentralized optimization problems where one aims to minimize a sum of convex smooth objective functions distributed between nodes in the network. The links in the network can change from time to time. For the setting when the amount of changes is arbitrary, lower complexity bounds and corresponding optimal algorithms are known, and the consensus acceleration is not possible. However, in practice the magnitude of network changes may be limited. We derive lower complexity bounds for several regimes of velocity of networks changes. Moreover, we show how to obtain accelerated communication rates for a certain class of time-varying graphs using a specific consensus algorithm.


#800
On Coresets for Clustering in Small Dimensional Euclidean spaces

Lingxiao Huang · Ruiyuan Huang · Zengfeng Huang · Xuan Wu

We consider the problem of constructing small coresets for $k$-Median in Euclidean spaces. Given a large set of data points $P\subset \mathbb{R}^d$, a coreset is a much smaller set $S\subset \mathbb{R}^d$, so that the $k$-Median costs of any $k$ centers w.r.t. $P$ and $S$ are close. Existing literature mainly focuses on the high-dimension case and there has been great success in obtaining dimension-independent bounds, whereas the case for small $d$ is largely unexplored. Considering many applications of Euclidean clustering algorithms are in small dimensions and the lack of systematic studies in the current literature, this paper investigates coresets for $k$-Median in small dimensions. For small $d$, a natural question is whether existing near-optimal dimension-independent bounds can be significantly improved. We provide affirmative answers to this question for a range of parameters. Moreover, new lower bound results are also proved, which are the highest for small $d$. In particular, we completely settle the coreset size bound for $1$-d $k$-Median (up to log factors). Interestingly, our results imply a strong separation between $1$-d $1$-Median and $1$-d $2$-Median. As far as we know, this is the first such separation between $k=1$ and $k=2$ in any dimension.


#801
Regret-Minimizing Double Oracle for Extensive-Form Games

Xiaohang Tang · Le Cong Dinh · Stephen Mcaleer · Yaodong Yang

By incorporating regret minimization, double oracle methods have demonstrated rapid convergence to Nash Equilibrium (NE) in normal-form games and extensive-form games, through algorithms such as online double oracle (ODO) and extensive-form double oracle (XDO), respectively. In this study, we further examine the theoretical convergence rate and sample complexity of such regret minimization-based double oracle methods, utilizing a unified framework called Regret-Minimizing Double Oracle. Based on this framework, we extend ODO to extensive-form games and determine its sample complexity. Moreover, we demonstrate that the sample complexity of XDO can be exponential in the number of information sets $|S|$, owing to the exponentially decaying stopping threshold of restricted games. To solve this problem, we propose the Periodic Double Oracle (PDO) method, which has the lowest sample complexity among regret minimization-based double oracle methods, being only polynomial in $|S|$. Empirical evaluations on multiple poker and board games show that PDO achieves significantly faster convergence than previous double oracle algorithms and reaches a competitive level with state-of-the-art regret minimization methods.


#802
GC-Flow: A Graph-Based Flow Network for Effective Clustering

Tianchun Wang · Farzaneh Mirzazadeh · Xiang Zhang · Jie Chen

Graph convolutional networks (GCNs) are *discriminative models* that directly model the class posterior $p(y|\mathbf{x})$ for semi-supervised classification of graph data. While being effective, as a representation learning approach, the node representations extracted from a GCN often miss useful information for effective clustering, because the objectives are different. In this work, we design normalizing flows that replace GCN layers, leading to a *generative model* that models both the class conditional likelihood $p(\mathbf{x}|y)$ and the class prior $p(y)$. The resulting neural network, GC-Flow, retains the graph convolution operations while being equipped with a Gaussian mixture representation space. It enjoys two benefits: it not only maintains the predictive power of GCN, but also produces well-separated clusters, due to the structuring of the representation space. We demonstrate these benefits on a variety of benchmark data sets. Moreover, we show that additional parameterization, such as that on the adjacency matrix used for graph convolutions, yields additional improvement in clustering.


#803
Mitigating Memorization of Noisy Labels by Clipping the Model Prediction

Hongxin Wei · HUIPING ZHUANG · RENCHUNZI XIE · Lei Feng · Gang Niu · Bo An · Sharon Li

In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks. Cross Entropy (CE) loss has been shown to be not robust to noisy labels due to its unboundedness. To alleviate this issue, existing works typically design specialized robust losses with the symmetric condition, which usually lead to the underfitting issue. In this paper, our key idea is to induce a loss bound at the logit level, thus universally enhancing the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which clamps the norm of the logit vector to ensure that it is upper bounded by a constant. In this manner, CE loss equipped with our LogitClip method is effectively bounded, mitigating the overfitting to examples with noisy labels. Moreover, we present theoretical analyses to certify the noise-tolerant ability of LogitClip. Extensive experiments show that LogitClip not only significantly improves the noise robustness of CE loss, but also broadly enhances the generalization performance of popular robust losses.


#804
Refining Generative Process with Discriminator Guidance in Score-based Diffusion Models

Dongjun Kim · Yeongmin Kim · Se Jung Kwon · Wanmo Kang · IL CHUL MOON

The proposed method, Discriminator Guidance, aims to improve sample generation of pre-trained diffusion models. The approach introduces a discriminator that gives explicit supervision to a denoising sample path whether it is realistic or not. Unlike GANs, our approach does not require joint training of score and discriminator networks. Instead, we train the discriminator after score training, making discriminator training stable and fast to converge. In sample generation, we add an auxiliary term to the pre-trained score to deceive the discriminator. This term corrects the model score to the data score at the optimal discriminator, which implies that the discriminator helps better score estimation in a complementary way. Using our algorithm, we achive state-of-the-art results on ImageNet 256x256 with FID 1.83 and recall 0.64, similar to the validation data's FID (1.68) and recall (0.66). We release the code at https://github.com/alsdudrla10/DG.


#805
The SSL Interplay: Augmentations, Inductive Bias, and Generalization

Vivien Cabannnes · Bobak T Kiani · Randall Balestriero · Yann LeCun · Alberto Bietti

Self-supervised learning (SSL) has emerged as a powerful framework to learn representations from raw data without supervision. Yet in practice, engineers face issues such as instability in tuning optimizers and collapse of representations during training. Such challenges motivate the need for a theory to shed light on the complex interplay between the choice of data augmentation, network architecture, and training algorithm. % on the resulting performance in downstream tasks. We study such an interplay with a precise analysis of generalization performance on both pretraining and downstream tasks in kernel regimes, and highlight several insights for SSL practitioners that arise from our theory.


#806
Emergence of Adaptive Circadian Rhythms in Deep Reinforcement Learning

aqeel labash · Florian Stelzer · Daniel Majoral Lopez · Raul Vicente

Adapting to regularities of the environment is critical for biological organisms to anticipate events and plan. A prominent example is the circadian rhythm corresponding to the internalization by organisms of the $24$-hour period of the Earth's rotation. In this work, we study the emergence of circadian-like rhythms in deep reinforcement learning agents. In particular, we deployed agents in an environment with a reliable periodic variation while solving a foraging task. We systematically characterize the agent's behavior during learning and demonstrate the emergence of a rhythm that is endogenous and entrainable. Interestingly, the internal rhythm adapts to shifts in the phase of the environmental signal without any re-training. Furthermore, we show via bifurcation and phase response curve analyses how artificial neurons develop dynamics to support the internalization of the environmental rhythm. From a dynamical systems view, we demonstrate that the adaptation proceeds by the emergence of a stable periodic orbit in the neuron dynamics with a phase response that allows an optimal phase synchronisation between the agent's dynamics and the environmental rhythm.


#807
Theory on Forgetting and Generalization of Continual Learning

Sen Lin · Peizhong Ju · Yingbin LIANG · Ness Shroff

Continual learning (CL), which aims to learn a sequence of tasks, has attracted significant recent attention. However, most work has focused on the experimental performance of CL, and theoretical studies of CL are still limited. In particular, there is a lack of understanding on what factors are important and how they affect "catastrophic forgetting" and generalization performance. To fill this gap, our theoretical analysis, under overparameterized linear models, provides the first-known explicit form of the expected forgetting and generalization error for a general CL setup with an arbitrary number of tasks. Further analysis of such a key result yields a number of theoretical explanations about how overparameterization, task similarity, and task ordering affect both forgetting and generalization error of CL. More interestingly, by conducting experiments on real datasets using deep neural networks (DNNs), we show that some of these insights even go beyond the linear models and can be carried over to practical setups. In particular, we use concrete examples to show that our results not only explain some interesting empirical observations in recent studies, but also motivate better practical algorithm designs of CL.


#808
Curriculum Co-disentangled Representation Learning across Multiple Environments for Social Recommendation

Xin Wang · Zirui Pan · Yuwei Zhou · Hong Chen · Chendi Ge · Wenwu Zhu

There exist complex patterns behind the decision-making processes of different individuals across different environments. For instance, in a social recommender system, various user behaviors are driven by highly entangled latent factors from two environments, i.e., consuming environment where users consume items and social environment where users connect with each other. Uncovering the disentanglement of these latent factors for users can benefit in enhanced explainability and controllability for recommendation. However, in literature there has been no work on social recommendation capable of disentangling user representations across consuming and social environments. To solve this problem, we study co-disentangled representation learning across different environments via proposing the curriculum co-disentangled representation learning (CurCoDis) model to disentangle the hidden factors for users across both consuming and social environments. To co-disentangle joint representations for user-item consumption and user-user social graph simultaneously, we partition the social graph into equal-size sub-graphs with minimum number of edges being cut, and design a curriculum weighing strategy for subgraph training through measuring the complexity of subgraphs via Descartes' rule of signs. We further develop the prototype-routing optimization mechanism, which achieves co-disentanglement of user representations across consuming and social environments. Extensive experiments for social recommendation demonstrate that our proposed CurCoDis model can significantly outperform state-of-the-art methods on several real-world datasets.


#809
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach

Xuan Son Nguyen · Shuo Yang

Matrix manifolds, such as manifolds of Symmetric Positive Definite (SPD) matrices and Grassmann manifolds, appear in many applications. Recently, by applying the theory of gyrogroups and gyrovector spaces that is a powerful framework for studying hyperbolic geometry, some works have attempted to build principled generalizations of Euclidean neural networks on matrix manifolds. However, due to the lack of many concepts in gyrovector spaces for the considered manifolds, e.g., the inner product and gyroangles, techniques and mathematical tools provided by these works are still limited compared to those developed for studying hyperbolic geometry. In this paper, we generalize some notions in gyrovector spaces for SPD and Grassmann manifolds, and propose new models and layers for building neural networks on these manifolds. We show the effectiveness of our approach in two applications, i.e., human action recognition and knowledge graph completion.