Skip to yearly menu bar Skip to main content


Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering

Mingqi Yang · Wenjie Feng · Yanming Shen · Bryan Hooi

Exhibit Hall 1 #229
[ ]
[ PDF [ Poster


Proposing an effective and flexible matrix to represent a graph is a fundamental challenge that has been explored from multiple perspectives, e.g., filtering in Graph Fourier Transforms. In this work, we develop a novel and general framework which unifies many existing GNN models from the view of parameterized decomposition and filtering, and show how it helps to enhance the flexibility of GNNs while alleviating the smoothness and amplification issues of existing models. Essentially, we show that the extensively studied spectral graph convolutions with learnable polynomial filters are constrained variants of this formulation, and releasing these constraints enables our model to express the desired decomposition and filtering simultaneously. Based on this generalized framework, we develop models that are simple in implementation but achieve significant improvements and computational efficiency on a variety of graph learning tasks. Code is available at

Chat is not available.