Skip to yearly menu bar Skip to main content


Poster

Unscented Autoencoder

Faris Janjoš · Lars Rosenbaum · Maxim Dolgov · J. Marius Zoellner

Exhibit Hall 1 #426
[ ]
[ PDF [ Poster

Abstract:

The Variational Autoencoder (VAE) is a seminal approach in deep generative modeling with latent variables. Interpreting its reconstruction process as a nonlinear transformation of samples from the latent posterior distribution, we apply the Unscented Transform (UT) -- a well-known distribution approximation used in the Unscented Kalman Filter (UKF) from the field of filtering. A finite set of statistics called sigma points, sampled deterministically, provides a more informative and lower-variance posterior representation than the ubiquitous noise-scaling of the reparameterization trick, while ensuring higher-quality reconstruction. We further boost the performance by replacing the Kullback-Leibler (KL) divergence with the Wasserstein distribution metric that allows for a sharper posterior. Inspired by the two components, we derive a novel, deterministic-sampling flavor of the VAE, the Unscented Autoencoder (UAE), trained purely with regularization-like terms on the per-sample posterior. We empirically show competitive performance in Fréchet Inception Distance scores over closely-related models, in addition to a lower training variance than the VAE.

Chat is not available.