Skip to yearly menu bar Skip to main content


Session

Poster Session 2

Abstract:
Chat is not available.


1-bit Adam: Communication Efficient Large-Scale Training with Adam's Convergence Speed

Hanlin Tang · Shaoduo Gan · Ammar Ahmad Awan · Samyam Rajbhandari · Conglong Li · Xiangru Lian · Ji Liu · Ce Zhang · Yuxiong He

Scalable training of large models (like BERT and GPT-3) requires careful optimization rooted in model design, architecture, and system capabilities. From a system standpoint, communication has become a major bottleneck, especially on commodity systems with standard TCP interconnects that offer limited network bandwidth. Communication compression is an important technique to reduce training time on such systems. One of the most effective ways to compress communication is via error compensation compression, which offers robust convergence speed, even under 1-bit compression. However, state-of-the-art error compensation techniques only work with basic optimizers like SGD and momentum SGD, which are linearly dependent on the gradients. They do not work with non-linear gradient-based optimizers like Adam, which offer state-of-the-art convergence efficiency and accuracy for models like BERT. In this paper, we propose 1-bit Adam that reduces the communication volume by up to 5x, offers much better scalability, and provides the same convergence speed as uncompressed Adam. Our key finding is that Adam's variance becomes stable (after a warmup phase) and can be used as a fixed precondition for the rest of the training (compression phase). We performed experiments on up to 256 GPUs and show that 1-bit Adam enables up to 3.3x higher throughput for BERT-Large pre-training and up to 2.9x higher throughput for SQuAD fine-tuning. In addition, we provide theoretical analysis for 1-bit Adam.


Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic Skills

Yevgen Chebotar · Karol Hausman · Yao Lu · Ted Xiao · Dmitry Kalashnikov · Jacob Varley · Alexander Irpan · Benjamin Eysenbach · Ryan C Julian · Chelsea Finn · Sergey Levine

We consider the problem of learning useful robotic skills from previously collected offline data without access to manually specified rewards or additional online exploration, a setting that is becoming increasingly important for scaling robot learning by reusing past robotic data. In particular, we propose the objective of learning a functional understanding of the environment by learning to reach any goal state in a given dataset. We employ goal-conditioned Q-learning with hindsight relabeling and develop several techniques that enable training in a particularly challenging offline setting. We find that our method can operate on high-dimensional camera images and learn a variety of skills on real robots that generalize to previously unseen scenes and objects. We also show that our method can learn to reach long-horizon goals across multiple episodes through goal chaining, and learn rich representations that can help with downstream tasks through pre-training or auxiliary objectives.


ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez

The increasing size of neural network models has been critical for improvements in their accuracy, but device memory is not growing at the same rate. This creates fundamental challenges for training neural networks within limited memory environments. In this work, we propose ActNN, a memory-efficient training framework that stores randomly quantized activations for back propagation. We prove the convergence of ActNN for general network architectures, and we characterize the impact of quantization on the convergence via an exact expression for the gradient variance. Using our theory, we propose novel mixed-precision quantization strategies that exploit the activation's heterogeneity across feature dimensions, samples, and layers. These techniques can be readily applied to existing dynamic graph frameworks, such as PyTorch, simply by substituting the layers. We evaluate ActNN on mainstream computer vision models for classification, detection, and segmentation tasks. On all these tasks, ActNN compresses the activation to 2 bits on average, with negligible accuracy loss. ActNN reduces the memory footprint of the activation by 12x, and it enables training with a 6.6x to 14x larger batch size.


AlphaNet: Improved Training of Supernets with Alpha-Divergence

Dilin Wang · Chengyue Gong · Meng Li · Qiang Liu · Vikas Chandra

Weight-sharing neural architecture search (NAS) is an effective technique for automating efficient neural architecture design. Weight-sharing NAS builds a supernet that assembles all the architectures as its sub-networks and jointly trains the supernet with the sub-networks. The success of weight-sharing NAS heavily relies on distilling the knowledge of the supernet to the sub-networks. However, we find that the widely used distillation divergence, i.e., KL divergence, may lead to student sub-networks that over-estimate or under-estimate the uncertainty of the teacher supernet, leading to inferior performance of the sub-networks. In this work, we propose to improve the supernet training with a more generalized alpha-divergence. By adaptively selecting the alpha-divergence, we simultaneously prevent the over-estimation or under-estimation of the uncertainty of the teacher model. We apply the proposed alpha-divergence based supernets training to both slimmable neural networks and weight-sharing NAS, and demonstrate significant improvements. Specifically, our discovered model family, AlphaNet, outperforms prior-art models on a wide range of FLOPs regimes, including BigNAS, Once-for-All networks, and AttentiveNAS. We achieve ImageNet top-1 accuracy of 80.0% with only 444M FLOPs. Our code and pretrained models are available at https://github.com/facebookresearch/AlphaNet.


A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance

Minhui Huang · Shiqian Ma · Lifeng Lai

The Wasserstein distance has become increasingly important in machine learning and deep learning. Despite its popularity, the Wasserstein distance is hard to approximate because of the curse of dimensionality. A recently proposed approach to alleviate the curse of dimensionality is to project the sampled data from the high dimensional probability distribution onto a lower-dimensional subspace, and then compute the Wasserstein distance between the projected data. However, this approach requires to solve a max-min problem over the Stiefel manifold, which is very challenging in practice. In this paper, we propose a Riemannian block coordinate descent (RBCD) method to solve this problem, which is based on a novel reformulation of the regularized max-min problem over the Stiefel manifold. We show that the complexity of arithmetic operations for RBCD to obtain an $\epsilon$-stationary point is $O(\epsilon^{-3})$, which is significantly better than the complexity of existing methods. Numerical results on both synthetic and real datasets demonstrate that our method is more efficient than existing methods, especially when the number of sampled data is very large.


Augmented World Models Facilitate Zero-Shot Dynamics Generalization From a Single Offline Environment

Philip Ball · Cong Lu · Jack Parker-Holder · Stephen Roberts

Reinforcement learning from large-scale offline datasets provides us with the ability to learn policies without potentially unsafe or impractical exploration. Significant progress has been made in the past few years in dealing with the challenge of correcting for differing behavior between the data collection and learned policies. However, little attention has been paid to potentially changing dynamics when transferring a policy to the online setting, where performance can be up to 90% reduced for existing methods. In this paper we address this problem with Augmented World Models (AugWM). We augment a learned dynamics model with simple transformations that seek to capture potential changes in physical properties of the robot, leading to more robust policies. We not only train our policy in this new setting, but also provide it with the sampled augmentation as a context, allowing it to adapt to changes in the environment. At test time we learn the context in a self-supervised fashion by approximating the augmentation which corresponds to the new environment. We rigorously evaluate our approach on over 100 different changed dynamics settings, and show that this simple approach can significantly improve the zero-shot generalization of a recent state-of-the-art baseline, often achieving successful policies where the baseline fails.


A Wasserstein Minimax Framework for Mixed Linear Regression

Theo Diamandis · Yonina Eldar · Alireza Fallah · Farzan Farnia · Asuman Ozdaglar

Multi-modal distributions are commonly used to model clustered data in statistical learning tasks. In this paper, we consider the Mixed Linear Regression (MLR) problem. We propose an optimal transport-based framework for MLR problems, Wasserstein Mixed Linear Regression (WMLR), which minimizes the Wasserstein distance between the learned and target mixture regression models. Through a model-based duality analysis, WMLR reduces the underlying MLR task to a nonconvex-concave minimax optimization problem, which can be provably solved to find a minimax stationary point by the Gradient Descent Ascent (GDA) algorithm. In the special case of mixtures of two linear regression models, we show that WMLR enjoys global convergence and generalization guarantees. We prove that WMLR’s sample complexity grows linearly with the dimension of data. Finally, we discuss the application of WMLR to the federated learning task where the training samples are collected by multiple agents in a network. Unlike the Expectation-Maximization algorithm, WMLR directly extends to the distributed, federated learning setting. We support our theoretical results through several numerical experiments, which highlight our framework’s ability to handle the federated learning setting with mixture models.


BASGD: Buffered Asynchronous SGD for Byzantine Learning

Yi-Rui Yang · Wu-Jun Li

Distributed learning has become a hot research topic due to its wide application in cluster-based large-scale learning, federated learning, edge computing and so on. Most traditional distributed learning methods typically assume no failure or attack. However, many unexpected cases, such as communication failure and even malicious attack, may happen in real applications. Hence, Byzantine learning (BL), which refers to distributed learning with failure or attack, has recently attracted much attention. Most existing BL methods are synchronous, which are impractical in some applications due to heterogeneous or offline workers. In these cases, asynchronous BL (ABL) is usually preferred. In this paper, we propose a novel method, called buffered asynchronous stochastic gradient descent (BASGD), for ABL. To the best of our knowledge, BASGD is the first ABL method that can resist malicious attack without storing any instances on server. Compared with those methods which need to store instances on server, BASGD has a wider scope of application. BASGD is proved to be convergent, and be able to resist failure or attack. Empirical results show that BASGD significantly outperforms vanilla asynchronous stochastic gradient descent (ASGD) and other ABL baselines when there exists failure or attack on workers.


CATE: Computation-aware Neural Architecture Encoding with Transformers

Shen Yan · Kaiqiang Song · Fei Liu · Mi Zhang

Recent works (White et al., 2020a; Yan et al., 2020) demonstrate the importance of architecture encodings in Neural Architecture Search (NAS). These encodings encode either structure or computation information of the neural architectures. Compared to structure-aware encodings, computation-aware encodings map architectures with similar accuracies to the same region, which improves the downstream architecture search performance (Zhang et al., 2019; White et al., 2020a). In this work, we introduce a Computation-Aware Transformer-based Encoding method called CATE. Different from existing computation-aware encodings based on fixed transformation (e.g. path encoding), CATE employs a pairwise pre-training scheme to learn computation-aware encodings using Transformers with cross-attention. Such learned encodings contain dense and contextualized computation information of neural architectures. We compare CATE with eleven encodings under three major encoding-dependent NAS subroutines in both small and large search spaces. Our experiments show that CATE is beneficial to the downstream search, especially in the large search space. Moreover, the outside search space experiment demonstrates its superior generalization ability beyond the search space on which it was trained. Our code is available at: https://github.com/MSU-MLSys-Lab/CATE.


Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Ziheng Jiang · Chiyuan Zhang · Kunal Talwar · Michael Mozer

Humans are accustomed to environments that contain both regularities and exceptions. For example, at most gas stations, one pays prior to pumping, but the occasional rural station does not accept payment in advance. Likewise, deep neural networks can generalize across instances that share common patterns or structures, yet have the capacity to memorize rare or irregular forms. We analyze how individual instances are treated by a model via a consistency score. The score characterizes the expected accuracy for a held-out instance given training sets of varying size sampled from the data distribution. We obtain empirical estimates of this score for individual instances in multiple data sets, and we show that the score identifies out-of-distribution and mislabeled examples at one end of the continuum and strongly regular examples at the other end. We identify computationally inexpensive proxies to the consistency score using statistics collected during training. We apply the score toward understanding the dynamics of representation learning and to filter outliers during training.


CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints

Anselm Paulus · Michal Rolinek · Vit Musil · Brandon Amos · Georg Martius

Bridging logical and algorithmic reasoning with modern machine learning techniques is a fundamental challenge with potentially transformative impact. On the algorithmic side, many NP-hard problems can be expressed as integer programs, in which the constraints play the role of their 'combinatorial specification'. In this work, we aim to integrate integer programming solvers into neural network architectures as layers capable of learning both the cost terms and the constraints. The resulting end-to-end trainable architectures jointly extract features from raw data and solve a suitable (learned) combinatorial problem with state-of-the-art integer programming solvers. We demonstrate the potential of such layers with an extensive performance analysis on synthetic data and with a demonstration on a competitive computer vision keypoint matching benchmark.


Cooperative Exploration for Multi-Agent Deep Reinforcement Learning

Iou-Jen Liu · Unnat Jain · Raymond Yeh · Alex Schwing

Exploration is critical for good results in deep reinforcement learning and has attracted much attention. However, existing multi-agent deep reinforcement learning algorithms still use mostly noise-based techniques. Very recently, exploration methods that consider cooperation among multiple agents have been developed. However, existing methods suffer from a common challenge: agents struggle to identify states that are worth exploring, and hardly coordinate exploration efforts toward those states. To address this shortcoming, in this paper, we propose cooperative multi-agent exploration (CMAE): agents share a common goal while exploring. The goal is selected from multiple projected state spaces by a normalized entropy-based technique. Then, agents are trained to reach the goal in a coordinated manner. We demonstrate that CMAE consistently outperforms baselines on various tasks, including a sparse-reward version of multiple-particle environment (MPE) and the Starcraft multi-agent challenge (SMAC).


Data augmentation for deep learning based accelerated MRI reconstruction with limited data

Zalan Fabian · Reinhard Heckel · Mahdi Soltanolkotabi

Deep neural networks have emerged as very successful tools for image restoration and reconstruction tasks. These networks are often trained end-to-end to directly reconstruct an image from a noisy or corrupted measurement of that image. To achieve state-of-the-art performance, training on large and diverse sets of images is considered critical. However, it is often difficult and/or expensive to collect large amounts of training images. Inspired by the success of Data Augmentation (DA) for classification problems, in this paper, we propose a pipeline for data augmentation for accelerated MRI reconstruction and study its effectiveness at reducing the required training data in a variety of settings. Our DA pipeline, MRAugment, is specifically designed to utilize the invariances present in medical imaging measurements as naive DA strategies that neglect the physics of the problem fail. Through extensive studies on multiple datasets we demonstrate that in the low-data regime DA prevents overfitting and can match or even surpass the state of the art while using significantly fewer training data, whereas in the high-data regime it has diminishing returns. Furthermore, our findings show that DA improves the robustness of the model against various shifts in the test distribution.


Data Augmentation for Meta-Learning

Renkun Ni · Micah Goldblum · Amr Sharaf · Kezhi Kong · Tom Goldstein

Conventional image classifiers are trained by randomly sampling mini-batches of images. To achieve state-of-the-art performance, practitioners use sophisticated data augmentation schemes to expand the amount of training data available for sampling. In contrast, meta-learning algorithms sample support data, query data, and tasks on each training step. In this complex sampling scenario, data augmentation can be used not only to expand the number of images available per class, but also to generate entirely new classes/tasks. We systematically dissect the meta-learning pipeline and investigate the distinct ways in which data augmentation can be integrated at both the image and class levels. Our proposed meta-specific data augmentation significantly improves the performance of meta-learners on few-shot classification benchmarks.


DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

Wei-Fang Sun · Cheng-Kuang Lee · Chun-Yi Lee

In fully cooperative multi-agent reinforcement learning (MARL) settings, the environments are highly stochastic due to the partial observability of each agent and the continuously changing policies of the other agents. To address the above issues, we integrate distributional RL and value function factorization methods by proposing a Distributional Value Function Factorization (DFAC) framework to generalize expected value function factorization methods to their distributional variants. DFAC extends the individual utility functions from deterministic variables to random variables, and models the quantile function of the total return as a quantile mixture. To validate DFAC, we demonstrate DFAC's ability to factorize a simple two-step matrix game with stochastic rewards and perform experiments on all Super Hard tasks of StarCraft Multi-Agent Challenge, showing that DFAC is able to outperform expected value function factorization baselines.


Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision

Felix Petersen · Christian Borgelt · Hilde Kuehne · Oliver Deussen

Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve stable training on large input sets of up to 1024 elements.


Differentiable Spatial Planning using Transformers

Devendra Singh Chaplot · Deepak Pathak · Jitendra Malik

We consider the problem of spatial path planning. In contrast to the classical solutions which optimize a new plan from scratch and assume access to the full map with ground truth obstacle locations, we learn a planner from the data in a differentiable manner that allows us to leverage statistical regularities from past data. We propose Spatial Planning Transformers (SPT), which given an obstacle map learns to generate actions by planning over long-range spatial dependencies, unlike prior data-driven planners that propagate information locally via convolutional structure in an iterative manner. In the setting where the ground truth map is not known to the agent, we leverage pre-trained SPTs in an end-to-end framework that has the structure of mapper and planner built into it which allows seamless generalization to out-of-distribution maps and goals. SPTs outperform prior state-of-the-art differentiable planners across all the setups for both manipulation and navigation tasks, leading to an absolute improvement of 7-19\%.


DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning

Daochen Zha · Jingru Xie · Wenye Ma · Sheng Zhang · Xiangru Lian · Xia Hu · Ji Liu

Games are abstractions of the real world, where artificial agents learn to compete and cooperate with other agents. While significant achievements have been made in various perfect- and imperfect-information games, DouDizhu (a.k.a. Fighting the Landlord), a three-player card game, is still unsolved. DouDizhu is a very challenging domain with competition, collaboration, imperfect information, large state space, and particularly a massive set of possible actions where the legal actions vary significantly from turn to turn. Unfortunately, modern reinforcement learning algorithms mainly focus on simple and small action spaces, and not surprisingly, are shown not to make satisfactory progress in DouDizhu. In this work, we propose a conceptually simple yet effective DouDizhu AI system, namely DouZero, which enhances traditional Monte-Carlo methods with deep neural networks, action encoding, and parallel actors. Starting from scratch in a single server with four GPUs, DouZero outperformed all the existing DouDizhu AI programs in days of training and was ranked the first in the Botzone leaderboard among 344 AI agents. Through building DouZero, we show that classic Monte-Carlo methods can be made to deliver strong results in a hard domain with a complex action space. The code and an online demo are released at https://github.com/kwai/DouZero with the hope that this insight could motivate future work.


Equivariant message passing for the prediction of tensorial properties and molecular spectra

Kristof T Schütt · Oliver Unke · Michael Gastegger

Message passing neural networks have become a method of choice for learning on graphs, in particular the prediction of chemical properties and the acceleration of molecular dynamics studies. While they readily scale to large training data sets, previous approaches have proven to be less data efficient than kernel methods. We identify limitations of invariant representations as a major reason and extend the message passing formulation to rotationally equivariant representations. On this basis, we propose the polarizable atom interaction neural network (PaiNN) and improve on common molecule benchmarks over previous networks, while reducing model size and inference time. We leverage the equivariant atomwise representations obtained by PaiNN for the prediction of tensorial properties. Finally, we apply this to the simulation of molecular spectra, achieving speedups of 4-5 orders of magnitude compared to the electronic structure reference.


Fast Stochastic Bregman Gradient Methods: Sharp Analysis and Variance Reduction

Radu Alexandru Dragomir · Mathieu Even · Hadrien Hendrikx

We study the problem of minimizing a relatively-smooth convex function using stochastic Bregman gradient methods. We first prove the convergence of Bregman Stochastic Gradient Descent (BSGD) to a region that depends on the noise (magnitude of the gradients) at the optimum. In particular, BSGD quickly converges to the exact minimizer when this noise is zero (interpolation setting, in which the data is fit perfectly). Otherwise, when the objective has a finite sum structure, we show that variance reduction can be used to counter the effect of noise. In particular, fast convergence to the exact minimizer can be obtained under additional regularity assumptions on the Bregman reference function. We illustrate the effectiveness of our approach on two key applications of relative smoothness: tomographic reconstruction with Poisson noise and statistical preconditioning for distributed optimization.


Federated Composite Optimization

Honglin Yuan · Manzil Zaheer · Sashank Jakkam Reddi

Federated Learning (FL) is a distributed learning paradigm that scales on-device learning collaboratively and privately. Standard FL algorithms such as FᴇᴅAᴠɢ are primarily geared towards smooth unconstrained settings. In this paper, we study the Federated Composite Optimization (FCO) problem, in which the loss function contains a non-smooth regularizer. Such problems arise naturally in FL applications that involve sparsity, low-rank, monotonicity, or more general constraints. We first show that straightforward extensions of primal algorithms such as FedAvg are not well-suited for FCO since they suffer from the "curse of primal averaging," resulting in poor convergence. As a solution, we propose a new primal-dual algorithm, Federated Dual Averaging (FedDualAvg), which by employing a novel server dual averaging procedure circumvents the curse of primal averaging. Our theoretical analysis and empirical experiments demonstrate that FedDualAvg outperforms the other baselines.


From Local to Global Norm Emergence: Dissolving Self-reinforcing Substructures with Incremental Social Instruments

Yiwei Liu · Jiamou Liu · Kaibin Wan · Zhan Qin · Zijian Zhang · Bakhadyr Khoussainov · Liehuang Zhu

Norm emergence is a process where agents in a multi-agent system establish self-enforcing conformity through repeated interactions. When such interactions are confined to a social topology, several self-reinforcing substructures (SRS) may emerge within the population. This prevents a formation of a global norm. We propose incremental social instruments (ISI) to dissolve these SRSs by creating ties between agents. Establishing ties requires some effort and cost. Hence, it is worth to design methods that build a small number of ties yet dissolve the SRSs. By using the notion of information entropy, we propose an indicator called the BA-ratio that measures the current SRSs. We find that by building ties with minimal BA-ratio, our ISI is effective in facilitating the global norm emergence. We explain this through our experiments and theoretical results. Furthermore, we propose the small-degree principle in minimising the BA-ratio that helps us to design efficient ISI algorithms for finding the optimal ties. Experiments on both synthetic and real-world network topologies demonstrate that our adaptive ISI is efficient at dissolving SRS.


From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization

Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls

In this paper we investigate the Follow the Regularized Leader dynamics in sequential imperfect information games (IIG). We generalize existing results of Poincaré recurrence from normal-form games to zero-sum two-player imperfect information games and other sequential game settings. We then investigate how adapting the reward (by adding a regularization term) of the game can give strong convergence guarantees in monotone games. We continue by showing how this reward adaptation technique can be leveraged to build algorithms that converge exactly to the Nash equilibrium. Finally, we show how these insights can be directly used to build state-of-the-art model-free algorithms for zero-sum two-player Imperfect Information Games (IIG).


Generalizable Episodic Memory for Deep Reinforcement Learning

Hao Hu · Jianing Ye · Guangxiang Zhu · Zhizhou Ren · Chongjie Zhang

Episodic memory-based methods can rapidly latch onto past successful strategies by a non-parametric memory and improve sample efficiency of traditional reinforcement learning. However, little effort is put into the continuous domain, where a state is never visited twice, and previous episodic methods fail to efficiently aggregate experience across trajectories. To address this problem, we propose Generalizable Episodic Memory (GEM), which effectively organizes the state-action values of episodic memory in a generalizable manner and supports implicit planning on memorized trajectories. GEM utilizes a double estimator to reduce the overestimation bias induced by value propagation in the planning process. Empirical evaluation shows that our method significantly outperforms existing trajectory-based methods on various MuJoCo continuous control tasks. To further show the general applicability, we evaluate our method on Atari games with discrete action space, which also shows a significant improvement over baseline algorithms.


Generating images with sparse representations

Charlie Nash · Jacob Menick · Sander Dieleman · Peter Battaglia

The high dimensionality of images presents architecture and sampling-efficiency challenges for likelihood-based generative models. Previous approaches such as VQ-VAE use deep autoencoders to obtain compact representations, which are more practical as inputs for likelihood-based models. We present an alternative approach, inspired by common image compression methods like JPEG, and convert images to quantized discrete cosine transform (DCT) blocks, which are represented sparsely as a sequence of DCT channel, spatial location, and DCT coefficient triples. We propose a Transformer-based autoregressive architecture, which is trained to sequentially predict the conditional distribution of the next element in such sequences, and which scales effectively to high resolution images. On a range of image datasets, we demonstrate that our approach can generate high quality, diverse images, with sample metric scores competitive with state of the art methods. We additionally show that simple modifications to our method yield effective image colorization and super-resolution models.


GMAC: A Distributional Perspective on Actor-Critic Framework

Daniel Nam · Younghoon Kim · Chan Youn Park

In this paper, we devise a distributional framework on actor-critic as a solution to distributional instability, action type restriction, and conflation between samples and statistics. We propose a new method that minimizes the Cramér distance with the multi-step Bellman target distribution generated from a novel Sample-Replacement algorithm denoted SR(\lambda), which learns the correct value distribution under multiple Bellman operations. Parameterizing a value distribution with Gaussian Mixture Model further improves the efficiency and the performance of the method, which we name GMAC. We empirically show that GMAC captures the correct representation of value distributions and improves the performance of a conventional actor-critic method with low computational cost, in both discrete and continuous action spaces using Arcade Learning Environment (ALE) and PyBullet environment.


GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training

Tianle Cai · Shengjie Luo · Keyulu Xu · Di He · Tie-Yan Liu · Liwei Wang

Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.


Householder Sketch for Accurate and Accelerated Least-Mean-Squares Solvers

Jyotikrishna Dass · Rabi Mahapatra

Least-Mean-Squares (\textsc{LMS}) solvers comprise a class of fundamental optimization problems such as linear regression, and regularized regressions such as Ridge, LASSO, and Elastic-Net. Data summarization techniques for big data generate summaries called coresets and sketches to speed up model learning under streaming and distributed settings. For example, \citep{nips2019} design a fast and accurate Caratheodory set on input data to boost the performance of existing \textsc{LMS} solvers. In retrospect, we explore classical Householder transformation as a candidate for sketching and accurately solving LMS problems. We find it to be a simpler, memory-efficient, and faster alternative that always existed to the above strong baseline. We also present a scalable algorithm based on the construction of distributed Householder sketches to solve \textsc{LMS} problem across multiple worker nodes. We perform thorough empirical analysis with large synthetic and real datasets to evaluate the performance of Householder sketch and compare with \citep{nips2019}. Our results show Householder sketch speeds up existing \textsc{LMS} solvers in the scikit-learn library up to $100$x-$400$x. Also, it is $10$x-$100$x faster than the above baseline with similar numerical stability. The distributed algorithm demonstrates linear scalability with a near-negligible communication overhead.


Instance Specific Approximations for Submodular Maximization

Eric Balkanski · Sharon Qian · Yaron Singer

The predominant measure for the performance of an algorithm is its worst-case approximation guarantee. While worst-case approximations give desirable robustness guarantees, they can differ significantly from the performance of an algorithm in practice. For the problem of monotone submodular maximization under a cardinality constraint, the greedy algorithm is known to obtain a 1-1/e approximation guarantee, which is optimal for a polynomial-time algorithm. However, very little is known about the approximation achieved by greedy and other submodular maximization algorithms on real instances.

We develop an algorithm that gives an instance-specific approximation for any solution of an instance of monotone submodular maximization under a cardinality constraint. This algorithm uses a novel dual approach to submodular maximization. In particular, it relies on the construction of a lower bound to the dual objective that can also be exactly minimized. We use this algorithm to show that on a wide variety of real-world datasets and objectives, greedy and other algorithms find solutions that approximate the optimal solution significantly better than the 1-1/e ~ 0.63 worst-case approximation guarantee, often exceeding 0.9.


Is Pessimism Provably Efficient for Offline RL?

Ying Jin · Zhuoran Yang · Zhaoran Wang

We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori. Due to the lack of further interactions with the environment, offline RL suffers from the insufficient coverage of the dataset, which eludes most existing theoretical analysis. In this paper, we propose a pessimistic variant of the value iteration algorithm (PEVI), which incorporates an uncertainty quantifier as the penalty function. Such a penalty function simply flips the sign of the bonus function for promoting exploration in online RL, which makes it easily implementable and compatible with general function approximators.

Without assuming the sufficient coverage of the dataset, we establish a data-dependent upper bound on the suboptimality of PEVI for general Markov decision processes (MDPs). When specialized to linear MDPs, it matches the information-theoretic lower bound up to multiplicative factors of the dimension and horizon. In other words, pessimism is not only provably efficient but also minimax optimal. In particular, given the dataset, the learned policy serves as the best effort'' among all policies, as no other policies can do better. Our theoretical analysis identifies the critical role of pessimism in eliminating a notion of spurious correlation, which emerges from theirrelevant'' trajectories that are less covered by the dataset and not informative for the optimal policy.


Just Train Twice: Improving Group Robustness without Training Group Information

Evan Liu · Behzad Haghgoo · Annie Chen · Aditi Raghunathan · Pang Wei Koh · Shiori Sagawa · Percy Liang · Chelsea Finn

Standard training via empirical risk minimization (ERM) can produce models that achieve low error on average but high error on minority groups, especially in the presence of spurious correlations between the input and label. Prior approaches to this problem, like group distributionally robust optimization (group DRO), generally require group annotations for every training point. On the other hand, approaches that do not use group annotations generally do not improve minority performance. For example, we find that joint DRO, which dynamically upweights examples with high training loss, tends to optimize for examples that are irrelevant to the specific groups we seek to do well on. In this paper, we propose a simple two-stage approach, JTT, that achieves comparable performance to group DRO while only requiring group annotations on a significantly smaller validation set. JTT first attempts to identify informative training examples, which are often minority examples, by training an initial ERM classifier and selecting the examples with high training loss. Then, it trains a final classifier by upsampling the selected examples. Crucially, unlike joint DRO, JTT does not iteratively upsample examples that have high loss under the final classifier. On four image classification and natural language processing tasks with spurious correlations, we show that JTT closes 85% of the gap in accuracy on the worst group between ERM and group DRO.


LARNet: Lie Algebra Residual Network for Face Recognition

Xiaolong Yang · Xiaohong Jia · Dihong Gong · Dong-Ming Yan · Zhifeng Li · Wei Liu

Face recognition is an important yet challenging problem in computer vision. A major challenge in practical face recognition applications lies in significant variations between profile and frontal faces. Traditional techniques address this challenge either by synthesizing frontal faces or by pose invariant learning. In this paper, we propose a novel method with Lie algebra theory to explore how face rotation in the 3D space affects the deep feature generation process of convolutional neural networks (CNNs). We prove that face rotation in the image space is equivalent to an additive residual component in the feature space of CNNs, which is determined solely by the rotation. Based on this theoretical finding, we further design a Lie Algebraic Residual Network (LARNet) for tackling pose robust face recognition. Our LARNet consists of a residual subnet for decoding rotation information from input face images, and a gating subnet to learn rotation magnitude for controlling the strength of the residual component contributing to the feature learning process. Comprehensive experimental evaluations on both frontal-profile face datasets and general face recognition datasets convincingly demonstrate that our method consistently outperforms the state-of-the-art ones.


Learning and Planning in Average-Reward Markov Decision Processes

Yi Wan · Abhishek Naik · Richard Sutton

We introduce learning and planning algorithms for average-reward MDPs, including 1) the first general proven-convergent off-policy model-free control algorithm without reference states, 2) the first proven-convergent off-policy model-free prediction algorithm, and 3) the first off-policy learning algorithm that converges to the actual value function rather than to the value function plus an offset. All of our algorithms are based on using the temporal-difference error rather than the conventional error when updating the estimate of the average reward. Our proof techniques are a slight generalization of those by Abounadi, Bertsekas, and Borkar (2001). In experiments with an Access-Control Queuing Task, we show some of the difficulties that can arise when using methods that rely on reference states and argue that our new algorithms are significantly easier to use.


Learning Fair Policies in Decentralized Cooperative Multi-Agent Reinforcement Learning

Matthieu Zimmer · Claire Glanois · Umer Siddique · Paul Weng

We consider the problem of learning fair policies in (deep) cooperative multi-agent reinforcement learning (MARL). We formalize it in a principled way as the problem of optimizing a welfare function that explicitly encodes two important aspects of fairness: efficiency and equity. We provide a theoretical analysis of the convergence of policy gradient for this problem. As a solution method, we propose a novel neural network architecture, which is composed of two sub-networks specifically designed for taking into account these two aspects of fairness. In experiments, we demonstrate the importance of the two sub-networks for fair optimization. Our overall approach is general as it can accommodate any (sub)differentiable welfare function. Therefore, it is compatible with various notions of fairness that have been proposed in the literature (e.g., lexicographic maximin, generalized Gini social welfare function, proportional fairness). Our method is generic and can be implemented in various MARL settings: centralized training and decentralized execution, or fully decentralized. Finally, we experimentally validate our approach in various domains and show that it can perform much better than previous methods, both in terms of efficiency and equity.


Lipschitz normalization for self-attention layers with application to graph neural networks

George Dasoulas · Kevin Scaman · Aladin Virmaux

Attention based neural networks are state of the art in a large range of applications. However, their performance tends to degrade when the number of layers increases. In this work, we show that enforcing Lipschitz continuity by normalizing the attention scores can significantly improve the performance of deep attention models. First, we show that, for deep graph attention networks (GAT), gradient explosion appears during training, leading to poor performance of gradient-based training algorithms. To address this issue, we derive a theoretical analysis of the Lipschitz continuity of attention modules and introduce LipschitzNorm, a simple and parameter-free normalization for self-attention mechanisms that enforces the model to be Lipschitz continuous. We then apply LipschitzNorm to GAT and Graph Transformers and show that their performance is substantially improved in the deep setting (10 to 30 layers). More specifically, we show that a deep GAT model with LipschitzNorm achieves state of the art results for node label prediction tasks that exhibit long-range dependencies, while showing consistent improvements over their unnormalized counterparts in benchmark node classification tasks.


Moreau-Yosida $f$-divergences

Dávid Terjék

Variational representations of $f$-divergences are central to many machine learning algorithms, with Lipschitz constrained variants recently gaining attention. Inspired by this, we define the Moreau-Yosida approximation of $f$-divergences with respect to the Wasserstein-$1$ metric. The corresponding variational formulas provide a generalization of a number of recent results, novel special cases of interest and a relaxation of the hard Lipschitz constraint. Additionally, we prove that the so-called tight variational representation of $f$-divergences can be to be taken over the quotient space of Lipschitz functions, and give a characterization of functions achieving the supremum in the variational representation. On the practical side, we propose an algorithm to calculate the tight convex conjugate of $f$-divergences compatible with automatic differentiation frameworks. As an application of our results, we propose the Moreau-Yosida $f$-GAN, providing an implementation of the variational formulas for the Kullback-Leibler, reverse Kullback-Leibler, $\chi^2$, reverse $\chi^2$, squared Hellinger, Jensen-Shannon, Jeffreys, triangular discrimination and total variation divergences as GANs trained on CIFAR-10, leading to competitive results and a simple solution to the problem of uniqueness of the optimal critic.


MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven Reinforcement Learning

Kevin Li · Abhishek Gupta · Ashwin D Reddy · Vitchyr Pong · Aurick Zhou · Justin Yu · Sergey Levine

Exploration in reinforcement learning is, in general, a challenging problem. A common technique to make learning easier is providing demonstrations from a human supervisor, but such demonstrations can be expensive and time-consuming to acquire. In this work, we study a more tractable class of reinforcement learning problems defined simply by examples of successful outcome states, which can be much easier to provide while still making the exploration problem more tractable. In this problem setting, the reward function can be obtained automatically by training a classifier to categorize states as successful or not. However, as we will show, this requires the classifier to make uncertainty-aware predictions that are very difficult using standard techniques for training deep networks. To address this, we propose a novel mechanism for obtaining calibrated uncertainty based on an amortized technique for computing the normalized maximum likelihood (NML) distribution, leveraging tools from meta-learning to make this distribution tractable. We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions, while also providing more effective guidance towards the goal. We demonstrate that our algorithm solves a number of challenging navigation and robotic manipulation tasks which prove difficult or impossible for prior methods.


On a Combination of Alternating Minimization and Nesterov's Momentum

Sergey Guminov · Pavel Dvurechenskii · Nazarii Tupitsa · Alexander Gasnikov

Alternating minimization (AM) procedures are practically efficient in many applications for solving convex and non-convex optimization problems. On the other hand, Nesterov's accelerated gradient is theoretically optimal first-order method for convex optimization. In this paper we combine AM and Nesterov's acceleration to propose an accelerated alternating minimization algorithm. We prove $1/k^2$ convergence rate in terms of the objective for convex problems and $1/k$ in terms of the squared gradient norm for non-convex problems, where $k$ is the iteration counter. Our method does not require any knowledge of neither convexity of the problem nor function parameters such as Lipschitz constant of the gradient, i.e. it is adaptive to convexity and smoothness and is uniformly optimal for smooth convex and non-convex problems. Further, we develop its primal-dual modification for strongly convex problems with linear constraints and prove the same $1/k^2$ for the primal objective residual and constraints feasibility.


On Characterizing GAN Convergence Through Proximal Duality Gap

Sahil Sidheekh · Aroof Aimen · Narayanan Chatapuram Krishnan

Despite the accomplishments of Generative Adversarial Networks (GANs) in modeling data distributions, training them remains a challenging task. A contributing factor to this difficulty is the non-intuitive nature of the GAN loss curves, which necessitates a subjective evaluation of the generated output to infer training progress. Recently, motivated by game theory, Duality Gap has been proposed as a domain agnostic measure to monitor GAN training. However, it is restricted to the setting when the GAN converges to a Nash equilibrium. But GANs need not always converge to a Nash equilibrium to model the data distribution. In this work, we extend the notion of duality gap to proximal duality gap that is applicable to the general context of training GANs where Nash equilibria may not exist. We show theoretically that the proximal duality gap can monitor the convergence of GANs to a broader spectrum of equilibria that subsumes Nash equilibria. We also theoretically establish the relationship between the proximal duality gap and the divergence between the real and generated data distributions for different GAN formulations. Our results provide new insights into the nature of GAN convergence. Finally, we validate experimentally the usefulness of proximal duality gap for monitoring and influencing GAN training.


On the price of explainability for some clustering problems

Eduardo Laber · Lucas Murtinho

The price of explainability for a clustering task can be defined as the unavoidable loss, in terms of the objective function, if we force the final partition to be explainable. Here, we study this price for the following clustering problems: $k$-means, $k$-medians, $k$-centers and maximum-spacing. We provide upper and lower bounds for a natural model where explainability is achieved via decision trees. For the $k$-means and $k$-medians problems our upper bounds improve those obtained by [Dasgupta et. al, ICML 20] for low dimensions. Another contribution is a simple and efficient algorithm for building explainable clusterings for the $k$-means problem. We provide empirical evidence that its performance is better than the current state of the art for decision-tree based explainable clustering.


OptiDICE: Offline Policy Optimization via Stationary Distribution Correction Estimation

Jongmin Lee · Wonseok Jeon · Byung-Jun Lee · Joelle Pineau · Kee-Eung Kim

We consider the offline reinforcement learning (RL) setting where the agent aims to optimize the policy solely from the data without further environment interactions. In offline RL, the distributional shift becomes the primary source of difficulty, which arises from the deviation of the target policy being optimized from the behavior policy used for data collection. This typically causes overestimation of action values, which poses severe problems for model-free algorithms that use bootstrapping. To mitigate the problem, prior offline RL algorithms often used sophisticated techniques that encourage underestimation of action values, which introduces an additional set of hyperparameters that need to be tuned properly. In this paper, we present an offline RL algorithm that prevents overestimation in a more principled way. Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy and does not rely on policy-gradients, unlike previous offline RL algorithms. Using an extensive set of benchmark datasets for offline RL, we show that OptiDICE performs competitively with the state-of-the-art methods.


Optimal regret algorithm for Pseudo-1d Bandit Convex Optimization

Aadirupa Saha · Nagarajan Natarajan · Praneeth Netrapalli · Prateek Jain

We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions $\f_t$ admit a "pseudo-1d" structure, i.e. $\f_t(\w) = \loss_t(\pred_t(\w))$ where the output of $\pred_t$ is one-dimensional. At each round, the learner observes context $\x_t$, plays prediction $\pred_t(\w_t; \x_t)$ (e.g. $\pred_t(\cdot)=\langle \x_t, \cdot\rangle$) for some $\w_t \in \mathbb{R}^d$ and observes loss $\loss_t(\pred_t(\w_t))$ where $\loss_t$ is a convex Lipschitz-continuous function. The goal is to minimize the standard regret metric. This pseudo-1d bandit convex optimization problem (\SBCO) arises frequently in domains such as online decision-making or parameter-tuning in large systems. For this problem, we first show a regret lower bound of $\min(\sqrt{dT}, T^{3/4})$ for any algorithm, where $T$ is the number of rounds. We propose a new algorithm \sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively, guaranteeing the {\em optimal} regret bound mentioned above, up to additional logarithmic factors. In contrast, applying state-of-the-art online convex optimization methods leads to $\tilde{O}\left(\min\left(d^{9.5}\sqrt{T},\sqrt{d}T^{3/4}\right)\right)$ regret, that is significantly suboptimal in terms of $d$.


Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth

Keyulu Xu · Mozhi Zhang · Stefanie Jegelka · Kenji Kawaguchi

Graph Neural Networks (GNNs) have been studied through the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.


Partially Observed Exchangeable Modeling

Yang Li · Junier Oliva

Modeling dependencies among features is fundamental for many machine learning tasks. Although there are often multiple related instances that may be leveraged to inform conditional dependencies, typical approaches only model conditional dependencies over individual instances. In this work, we propose a novel framework, partially observed exchangeable modeling (POEx) that takes in a set of related partially observed instances and infers the conditional distribution for the unobserved dimensions over multiple elements. Our approach jointly models the intra-instance (among features in a point) and inter-instance (among multiple points in a set) dependencies in data. POEx is a general framework that encompasses many existing tasks such as point cloud expansion and few-shot generation, as well as new tasks like few-shot imputation. Despite its generality, extensive empirical evaluations show that our model achieves state-of-the-art performance across a range of applications.


Poolingformer: Long Document Modeling with Pooling Attention

Hang ZHANG · Yeyun Gong · Yelong Shen · Weisheng Li · Jiancheng Lv · Nan Duan · Weizhu Chen

In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.


Prioritized Level Replay

Minqi Jiang · Edward Grefenstette · Tim Rocktäschel

Environments with procedurally generated content serve as important benchmarks for testing systematic generalization in deep reinforcement learning. In this setting, each level is an algorithmically created environment instance with a unique configuration of its factors of variation. Training on a prespecified subset of levels allows for testing generalization to unseen levels. What can be learned from a level depends on the current policy, yet prior work defaults to uniform sampling of training levels independently of the policy. We introduce Prioritized Level Replay (PLR), a general framework for selectively sampling the next training level by prioritizing those with higher estimated learning potential when revisited in the future. We show TD-errors effectively estimate a level's future learning potential and, when used to guide the sampling procedure, induce an emergent curriculum of increasingly difficult levels. By adapting the sampling of training levels, PLR significantly improves sample-efficiency and generalization on Procgen Benchmark—matching the previous state-of-the-art in test return—and readily combines with other methods. Combined with the previous leading method, PLR raises the state-of-the-art to over 76% improvement in test return relative to standard RL baselines.


PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning

Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar

We study reinforcement learning (RL) with no-reward demonstrations, a setting in which an RL agent has access to additional data from the interaction of other agents with the same environment. However, it has no access to the rewards or goals of these agents, and their objectives and levels of expertise may vary widely. These assumptions are common in multi-agent settings, such as autonomous driving. To effectively use this data, we turn to the framework of successor features. This allows us to disentangle shared features and dynamics of the environment from agent-specific rewards and policies. We propose a multi-task inverse reinforcement learning (IRL) algorithm, called \emph{inverse temporal difference learning} (ITD), that learns shared state features, alongside per-agent successor features and preference vectors, purely from demonstrations without reward labels. We further show how to seamlessly integrate ITD with learning from online environment interactions, arriving at a novel algorithm for reinforcement learning with demonstrations, called $\Psi \Phi$-learning (pronounced `Sci-Fi'). We provide empirical evidence for the effectiveness of $\Psi \Phi$-learning as a method for improving RL, IRL, imitation, and few-shot transfer, and derive worst-case bounds for its performance in zero-shot transfer to new tasks.


Quantitative Understanding of VAE as a Non-linearly Scaled Isometric Embedding

Akira Nakagawa · Keizo Kato · Taiji Suzuki

Variational autoencoder (VAE) estimates the posterior parameters (mean and variance) of latent variables corresponding to each input data. While it is used for many tasks, the transparency of the model is still an underlying issue. This paper provides a quantitative understanding of VAE property through the differential geometric and information-theoretic interpretations of VAE. According to the Rate-distortion theory, the optimal transform coding is achieved by using an orthonormal transform with PCA basis where the transform space is isometric to the input. Considering the analogy of transform coding to VAE, we clarify theoretically and experimentally that VAE can be mapped to an implicit isometric embedding with a scale factor derived from the posterior parameter. As a result, we can estimate the data probabilities in the input space from the prior, loss metrics, and corresponding posterior parameters, and further, the quantitative importance of each latent variable can be evaluated like the eigenvalue of PCA.


Randomized Algorithms for Submodular Function Maximization with a $k$-System Constraint

Shuang Cui · Kai Han · Tianshuai Zhu · Jing Tang · Benwei Wu · He Huang

Submodular optimization has numerous applications such as crowdsourcing and viral marketing. In this paper, we study the problem of non-negative submodular function maximization subject to a $k$-system constraint, which generalizes many other important constraints in submodular optimization such as cardinality constraint, matroid constraint, and $k$-extendible system constraint. The existing approaches for this problem are all based on deterministic algorithmic frameworks, and the best approximation ratio achieved by these algorithms (for a general submodular function) is $k+2\sqrt{k+2}+3$. We propose a randomized algorithm with an improved approximation ratio of $(1+\sqrt{k})^2$, while achieving nearly-linear time complexity significantly lower than that of the state-of-the-art algorithm. We also show that our algorithm can be further generalized to address a stochastic case where the elements can be adaptively selected, and propose an approximation ratio of $(1+\sqrt{k+1})^2$ for the adaptive optimization case. The empirical performance of our algorithms is extensively evaluated in several applications related to data mining and social computing, and the experimental results demonstrate the superiorities of our algorithms in terms of both utility and efficiency.


Recomposing the Reinforcement Learning Building Blocks with Hypernetworks

Elad Sarafian · Shai Keynan · Sarit Kraus

The Reinforcement Learning (RL) building blocks, i.e. $Q$-functions and policy networks, usually take elements from the cartesian product of two domains as input. In particular, the input of the $Q$-function is both the state and the action, and in multi-task problems (Meta-RL) the policy can take a state and a context. Standard architectures tend to ignore these variables' underlying interpretations and simply concatenate their features into a single vector. In this work, we argue that this choice may lead to poor gradient estimation in actor-critic algorithms and high variance learning steps in Meta-RL algorithms. To consider the interaction between the input variables, we suggest using a Hypernetwork architecture where a primary network determines the weights of a conditional dynamic network. We show that this approach improves the gradient approximation and reduces the learning step variance, which both accelerates learning and improves the final performance. We demonstrate a consistent improvement across different locomotion tasks and different algorithms both in RL (TD3 and SAC) and in Meta-RL (MAML and PEARL).


Regularized Submodular Maximization at Scale

Ehsan Kazemi · shervin minaee · Moran Feldman · Amin Karbasi

In this paper, we propose scalable methods for maximizing a regularized submodular function $f \triangleq g-\ell$ expressed as the difference between a monotone submodular function $g$ and a modular function $\ell$. Submodularity is inherently related to the notions of diversity, coverage, and representativeness. In particular, finding the mode (i.e., the most likely configuration) of many popular probabilistic models of diversity, such as determinantal point processes and strongly log-concave distributions, involves maximization of (regularized) submodular functions. Since a regularized function $f$ can potentially take on negative values, the classic theory of submodular maximization, which heavily relies on the non-negativity assumption of submodular functions, is not applicable. To circumvent this challenge, we develop the first one-pass streaming algorithm for maximizing a regularized submodular function subject to a $k$-cardinality constraint. Furthermore, we develop the first distributed algorithm that returns a solution $S$ in $O(1/ \epsilon)$ rounds of MapReduce computation. We highlight that our result, even for the unregularized case where the modular term $\ell$ is zero, improves the memory and communication complexity of the state-of-the-art by a factor of $O(1/ \epsilon)$ while arguably provides a simpler distributed algorithm and a unifying analysis. We empirically study the performance of our scalable methods on a set of real-life applications, including finding the mode of negatively correlated distributions, vertex cover of social networks, and several data summarization tasks.


Reinforcement Learning Under Moral Uncertainty

Adrien Ecoffet · Joel Lehman

An ambitious goal for machine learning is to create agents that behave ethically: The capacity to abide by human moral norms would greatly expand the context in which autonomous agents could be practically and safely deployed, e.g. fully autonomous vehicles will encounter charged moral decisions that complicate their deployment. While ethical agents could be trained by rewarding correct behavior under a specific moral theory (e.g. utilitarianism), there remains widespread disagreement about the nature of morality. Acknowledging such disagreement, recent work in moral philosophy proposes that ethical behavior requires acting under moral uncertainty, i.e. to take into account when acting that one's credence is split across several plausible ethical theories. This paper translates such insights to the field of reinforcement learning, proposes two training methods that realize different points among competing desiderata, and trains agents in simple environments to act under moral uncertainty. The results illustrate (1) how such uncertainty can help curb extreme behavior from commitment to single theories and (2) several technical complications arising from attempting to ground moral philosophy in RL (e.g. how can a principled trade-off between two competing but incomparable reward functions be reached). The aim is to catalyze progress towards morally-competent agents and highlight the potential of RL to contribute towards the computational grounding of moral philosophy.


Representation Matters: Offline Pretraining for Sequential Decision Making

Mengjiao Yang · Ofir Nachum

The recent success of supervised learning methods on ever larger offline datasets has spurred interest in the reinforcement learning (RL) field to investigate whether the same paradigms can be translated to RL algorithms. This research area, known as offline RL, has largely focused on offline policy optimization, aiming to find a return-maximizing policy exclusively from offline data. In this paper, we consider a slightly different approach to incorporating offline data into sequential decision-making. We aim to answer the question, what unsupervised objectives applied to offline datasets are able to learn state representations which elevate performance on downstream tasks, whether those downstream tasks be online RL, imitation learning from expert demonstrations, or even offline policy optimization based on the same offline dataset? Through a variety of experiments utilizing standard offline RL datasets, we find that the use of pretraining with unsupervised learning objectives can dramatically improve the performance of policy learning algorithms that otherwise yield mediocre performance on their own. Extensive ablations further provide insights into what components of these unsupervised objectives – e.g., reward prediction, continuous or discrete representations, pretraining or finetuning – are most important and in which settings.


Re-understanding Finite-State Representations of Recurrent Policy Networks

Mohamad H Danesh · Anurag Koul · Alan Fern · Saeed Khorram

We introduce an approach for understanding control policies represented as recurrent neural networks. Recent work has approached this problem by transforming such recurrent policy networks into finite-state machines (FSM) and then analyzing the equivalent minimized FSM. While this led to interesting insights, the minimization process can obscure a deeper understanding of a machine's operation by merging states that are semantically distinct. To address this issue, we introduce an analysis approach that starts with an unminimized FSM and applies more-interpretable reductions that preserve the key decision points of the policy. We also contribute an attention tool to attain a deeper understanding of the role of observations in the decisions. Our case studies on 7 Atari games and 3 control benchmarks demonstrate that the approach can reveal insights that have not been previously noticed.


Revisiting Peng's Q($\lambda$) for Modern Reinforcement Learning

Tadashi Kozuno · Yunhao Tang · Mark Rowland · Remi Munos · Steven Kapturowski · Will Dabney · Michal Valko · David Abel

Off-policy multi-step reinforcement learning algorithms consist of conservative and non-conservative algorithms: the former actively cut traces, whereas the latter do not. Recently, Munos et al. (2016) proved the convergence of conservative algorithms to an optimal Q-function. In contrast, non-conservative algorithms are thought to be unsafe and have a limited or no theoretical guarantee. Nonetheless, recent studies have shown that non-conservative algorithms empirically outperform conservative ones. Motivated by the empirical results and the lack of theory, we carry out theoretical analyses of Peng's Q($\lambda$), a representative example of non-conservative algorithms. We prove that \emph{it also converges to an optimal policy} provided that the behavior policy slowly tracks a greedy policy in a way similar to conservative policy iteration. Such a result has been conjectured to be true but has not been proven. We also experiment with Peng's Q($\lambda$) in complex continuous control tasks, confirming that Peng's Q($\lambda$) often outperforms conservative algorithms despite its simplicity. These results indicate that Peng's Q($\lambda$), which was thought to be unsafe, is a theoretically-sound and practically effective algorithm.


Safe Reinforcement Learning with Linear Function Approximation

Sanae Amani Geshnigani · Christos Thrampoulidis · Lin Yang

Safety in reinforcement learning has become increasingly important in recent years. Yet, existing solutions either fail to strictly avoid choosing unsafe actions, which may lead to catastrophic results in safety-critical systems, or fail to provide regret guarantees for settings where safety constraints need to be learned. In this paper, we address both problems by first modeling safety as an unknown linear cost function of states and actions, which must always fall below a certain threshold. We then present algorithms, termed SLUCB-QVI and RSLUCB-QVI, for episodic Markov decision processes (MDPs) with linear function approximation. We show that SLUCB-QVI and RSLUCB-QVI, while with \emph{no safety violation}, achieve a $\tilde{\mathcal{O}}\left(\kappa\sqrt{d^3H^3T}\right)$ regret, nearly matching that of state-of-the-art unsafe algorithms, where $H$ is the duration of each episode, $d$ is the dimension of the feature mapping, $\kappa$ is a constant characterizing the safety constraints, and $T$ is the total number of action plays. We further present numerical simulations that corroborate our theoretical findings.


Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts

Bahar Taskesen · Man-Chung Yue · Jose Blanchet · Daniel Kuhn · Viet Anh Nguyen

Least squares estimators, when trained on few target domain samples, may predict poorly. Supervised domain adaptation aims to improve the predictive accuracy by exploiting additional labeled training samples from a source distribution that is close to the target distribution. Given available data, we investigate novel strategies to synthesize a family of least squares estimator experts that are robust with regard to moment conditions. When these moment conditions are specified using Kullback-Leibler or Wasserstein-type divergences, we can find the robust estimators efficiently using convex optimization. We use the Bernstein online aggregation algorithm on the proposed family of robust experts to generate predictions for the sequential stream of target test samples. Numerical experiments on real data show that the robust strategies systematically outperform non-robust interpolations of the empirical least squares estimators.


Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Sungryull Sohn · Sungtae Lee · Jongwook Choi · Harm van Seijen · Mehdi Fatemi · Honglak Lee

We propose the k-Shortest-Path (k-SP) constraint: a novel constraint on the agent’s trajectory that improves the sample efficiency in sparse-reward MDPs. We show that any optimal policy necessarily satisfies the k-SP constraint. Notably, the k-SP constraint prevents the policy from exploring state-action pairs along the non-k-SP trajectories (e.g., going back and forth). However, in practice, excluding state-action pairs may hinder the convergence of RL algorithms. To overcome this, we propose a novel cost function that penalizes the policy violating SP constraint, instead of completely excluding it. Our numerical experiment in a tabular RL setting demonstrates that the SP-constraint can significantly reduce the trajectory space of policy. As a result, our constraint enables more sample efficient learning by suppressing redundant exploration and exploitation. Our experiments on MiniGrid, DeepMind Lab, Atari, and Fetch show that the proposed method significantly improves proximal policy optimization (PPO) and outperforms existing novelty-seeking exploration methods including count-based exploration even in continuous control tasks, indicating that it improves the sample efficiency by preventing the agent from taking redundant actions.


Soft then Hard: Rethinking the Quantization in Neural Image Compression

Zongyu Guo · Zhizheng Zhang · Runsen Feng · Zhibo Chen

Quantization is one of the core components in lossy image compression. For neural image compression, end-to-end optimization requires differentiable approximations of quantization, which can generally be grouped into three categories: additive uniform noise, straight-through estimator and soft-to-hard annealing. Training with additive uniform noise approximates the quantization error variationally but suffers from the train-test mismatch. The other two methods do not encounter this mismatch but, as shown in this paper, hurt the rate-distortion performance since the latent representation ability is weakened. We thus propose a novel soft-then-hard quantization strategy for neural image compression that first learns an expressive latent space softly, then closes the train-test mismatch with hard quantization. In addition, beyond the fixed integer-quantization, we apply scaled additive uniform noise to adaptively control the quantization granularity by deriving a new variational upper bound on actual rate. Experiments demonstrate that our proposed methods are easy to adopt, stable to train, and highly effective especially on complex compression models.


Structured Convolutional Kernel Networks for Airline Crew Scheduling

Yassine Yaakoubi · Francois Soumis · Simon Lacoste-Julien

Motivated by the needs from an airline crew scheduling application, we introduce structured convolutional kernel networks (Struct-CKN), which combine CKNs from Mairal et al. (2014) in a structured prediction framework that supports constraints on the outputs. CKNs are a particular kind of convolutional neural networks that approximate a kernel feature map on training data, thus combining properties of deep learning with the non-parametric flexibility of kernel methods. Extending CKNs to structured outputs allows us to obtain useful initial solutions on a flight-connection dataset that can be further refined by an airline crew scheduling solver. More specifically, we use a flight-based network modeled as a general conditional random field capable of incorporating local constraints in the learning process. Our experiments demonstrate that this approach yields significant improvements for the large-scale crew pairing problem (50,000 flights per month) over standard approaches, reducing the solution cost by 17% (a gain of millions of dollars) and the cost of global constraints by 97%.


Taylor Expansion of Discount Factors

Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko

In practical reinforcement learning (RL), the discount factor used for estimating value functions often differs from that used for defining the evaluation objective. In this work, we study the effect that this discrepancy of discount factors has during learning, and discover a family of objectives that interpolate value functions of two distinct discount factors. Our analysis suggests new ways for estimating value functions and performing policy optimization updates, which demonstrate empirical performance gains. This framework also leads to new insights on commonly-used deep RL heuristic modifications to policy optimization algorithms.


Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

Xingchen Wan · Vu Nguyen · Huong Ha · Binxin Ru · Cong Lu · Michael A Osborne

High-dimensional black-box optimisation remains an important yet notoriously challenging problem. Despite the success of Bayesian optimisation methods on continuous domains, domains that are categorical, or that mix continuous and categorical variables, remain challenging. We propose a novel solution---we combine local optimisation with a tailored kernel design, effectively handling high-dimensional categorical and mixed search spaces, whilst retaining sample efficiency. We further derive convergence guarantee for the proposed approach. Finally, we demonstrate empirically that our method outperforms the current baselines on a variety of synthetic and real-world tasks in terms of performance, computational costs, or both.


Towards Domain-Agnostic Contrastive Learning

Vikas Verma · Thang Luong · Kenji Kawaguchi · Hieu Pham · Quoc Le

Despite recent successes, most contrastive self-supervised learning methods are domain-specific, relying heavily on data augmentation techniques that require knowledge about a particular domain, such as image cropping and rotation. To overcome such limitation, we propose a domain-agnostic approach to contrastive learning, named DACL, that is applicable to problems where domain-specific data augmentations are not readily available. Key to our approach is the use of Mixup noise to create similar and dissimilar examples by mixing data samples differently either at the input or hidden-state levels. We theoretically analyze our method and show advantages over the Gaussian-noise based contrastive learning approach. To demonstrate the effectiveness of DACL, we conduct experiments across various domains such as tabular data, images, and graphs. Our results show that DACL not only outperforms other domain-agnostic noising methods, such as Gaussian-noise, but also combines well with domain-specific methods, such as SimCLR, to improve self-supervised visual representation learning.


Training Graph Neural Networks with 1000 Layers

Guohao Li · Matthias Müller · Bernard Ghanem · Vladlen Koltun

Deep graph neural networks (GNNs) have achieved excellent results on various tasks on increasingly large graph datasets with millions of nodes and edges. However, memory complexity has become a major obstacle when training deep GNNs for practical applications due to the immense number of nodes, edges, and intermediate activations. To improve the scalability of GNNs, prior works propose smart graph sampling or partitioning strategies to train GNNs with a smaller set of nodes or sub-graphs. In this work, we study reversible connections, group convolutions, weight tying, and equilibrium models to advance the memory and parameter efficiency of GNNs. We find that reversible connections in combination with deep network architectures enable the training of overparameterized GNNs that significantly outperform existing methods on multiple datasets. Our models RevGNN-Deep (1001 layers with 80 channels each) and RevGNN-Wide (448 layers with 224 channels each) were both trained on a single commodity GPU and achieve an ROC-AUC of 87.74 ± 0.13 and 88.14 ± 0.15 on the ogbn-proteins dataset. To the best of our knowledge, RevGNN-Deep is the deepest GNN in the literature by one order of magnitude.


Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

Burak Bartan · Mert Pilanci

Neural networks (NNs) have been extremely successful across many tasks in machine learning. Quantization of NN weights has become an important topic due to its impact on their energy efficiency, inference time and deployment on hardware. Although post-training quantization is well-studied, training optimal quantized NNs involves combinatorial non-convex optimization problems which appear intractable. In this work, we introduce a convex optimization strategy to train quantized NNs with polynomial activations. Our method leverages hidden convexity in two-layer neural networks from the recent literature, semidefinite lifting, and Grothendieck's identity. Surprisingly, we show that certain quantized NN problems can be solved to global optimality provably in polynomial time in all relevant parameters via tight semidefinite relaxations. We present numerical examples to illustrate the effectiveness of our method.


Outstanding Paper
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Paul Vicol · Luke Metz · Jascha Sohl-Dickstein

Unrolled computation graphs arise in many scenarios, including training RNNs, tuning hyperparameters through unrolled optimization, and training learned optimizers. Current approaches to optimizing parameters in such computation graphs suffer from high variance gradients, bias, slow updates, or large memory usage. We introduce a method called Persistent Evolution Strategies (PES), which divides the computation graph into a series of truncated unrolls, and performs an evolution strategies-based update step after each unroll. PES eliminates bias from these truncations by accumulating correction terms over the entire sequence of unrolls. PES allows for rapid parameter updates, has low memory usage, is unbiased, and has reasonable variance characteristics. We experimentally demonstrate the advantages of PES compared to several other methods for gradient estimation on synthetic tasks, and show its applicability to training learned optimizers and tuning hyperparameters.


Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement Learning

Jongwook Choi · Archit Sharma · Honglak Lee · Sergey Levine · Shixiang Gu

Learning to reach goal states and learning diverse skills through mutual information maximization have been proposed as principled frameworks for unsupervised reinforcement learning, allowing agents to acquire broadly applicable multi-task policies with minimal reward engineering. In this paper, we discuss how these two approaches — goal-conditioned RL (GCRL) and MI-based RL — can be generalized into a single family of methods, interpreting mutual information maximization and variational empowerment as representation learning methods that acquire function-ally aware state representations for goal reaching.Starting from a simple observation that the standard GCRL is encapsulated by the optimization objective of variational empowerment, we can derive novel variants of GCRL and variational empowerment under a single, unified optimization objective, such as adaptive-variance GCRL and linear-mapping GCRL, and study the characteristics of representation learning each variant provides. Furthermore, through the lens of GCRL, we show that adapting powerful techniques fromGCRL such as goal relabeling into the variationalMI context as well as proper regularization on the variational posterior provides substantial gains in algorithm performance, and propose a novel evaluation metric named latent goal reaching (LGR)as an objective measure for evaluating empowerment algorithms akin to goal-based RL. Through principled mathematical derivations and careful experimental validations, our work lays a novel foundation from which representation learning can be evaluated and analyzed in goal-based RL


What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?

Weijian Deng · Stephen Gould · Liang Zheng

Understanding classifier decision under novel environments is central to the community, and a common practice is evaluating it on labeled test sets. However, in real-world testing, image annotations are difficult and expensive to obtain, especially when the test environment is changing. A natural question then arises: given a trained classifier, can we evaluate its accuracy on varying unlabeled test sets? In this work, we train semantic classification and rotation prediction in a multi-task way. On a series of datasets, we report an interesting finding, i.e., the semantic classification accuracy exhibits a strong linear relationship with the accuracy of the rotation prediction task (Pearson's Correlation r > 0.88). This finding allows us to utilize linear regression to estimate classifier performance from the accuracy of rotation prediction which can be obtained on the test set through the freely generated rotation labels.


Whitening and Second Order Optimization Both Make Information in the Dataset Unusable During Training, and Can Reduce or Prevent Generalization

Neha Wadia · Daniel Duckworth · Samuel Schoenholz · Ethan Dyer · Jascha Sohl-Dickstein

Machine learning is predicated on the concept of generalization: a model achieving low error on a sufficiently large training set should also perform well on novel samples from the same distribution. We show that both data whitening and second order optimization can harm or entirely prevent generalization. In general, model training harnesses information contained in the sample-sample second moment matrix of a dataset. For a general class of models, namely models with a fully connected first layer, we prove that the information contained in this matrix is the only information which can be used to generalize. Models trained using whitened data, or with certain second order optimization schemes, have less access to this information, resulting in reduced or nonexistent generalization ability. We experimentally verify these predictions for several architectures, and further demonstrate that generalization continues to be harmed even when theoretical requirements are relaxed. However, we also show experimentally that regularized second order optimization can provide a practical tradeoff, where training is accelerated but less information is lost, and generalization can in some circumstances even improve.


A Bit More Bayesian: Domain-Invariant Learning with Uncertainty

Zehao Xiao · Jiayi Shen · Xiantong Zhen · Ling Shao · Cees Snoek

Domain generalization is challenging due to the domain shift and the uncertainty caused by the inaccessibility of target domain data. In this paper, we address both challenges with a probabilistic framework based on variational Bayesian inference, by incorporating uncertainty into neural network weights. We couple domain invariance in a probabilistic formula with the variational Bayesian inference. This enables us to explore domain-invariant learning in a principled way. Specifically, we derive domain-invariant representations and classifiers, which are jointly established in a two-layer Bayesian neural network. We empirically demonstrate the effectiveness of our proposal on four widely used cross-domain visual recognition benchmarks. Ablation studies validate the synergistic benefits of our Bayesian treatment when jointly learning domain-invariant representations and classifiers for domain generalization. Further, our method consistently delivers state-of-the-art mean accuracy on all benchmarks.


Accelerate CNNs from Three Dimensions: A Comprehensive Pruning Framework

Wenxiao Wang · Minghao Chen · Shuai Zhao · Long Chen · Jinming Hu · Haifeng Liu · Deng Cai · Xiaofei He · Wei Liu

Most neural network pruning methods, such as filter-level and layer-level prunings, prune the network model along one dimension (depth, width, or resolution) solely to meet a computational budget. However, such a pruning policy often leads to excessive reduction of that dimension, thus inducing a huge accuracy loss. To alleviate this issue, we argue that pruning should be conducted along three dimensions comprehensively. For this purpose, our pruning framework formulates pruning as an optimization problem. Specifically, it first casts the relationships between a certain model's accuracy and depth/width/resolution into a polynomial regression and then maximizes the polynomial to acquire the optimal values for the three dimensions. Finally, the model is pruned along the three optimal dimensions accordingly. In this framework, since collecting too much data for training the regression is very time-costly, we propose two approaches to lower the cost: 1) specializing the polynomial to ensure an accurate regression even with less training data; 2) employing iterative pruning and fine-tuning to collect the data faster. Extensive experiments show that our proposed algorithm surpasses state-of-the-art pruning algorithms and even neural architecture search-based algorithms.


Accelerated Algorithms for Smooth Convex-Concave Minimax Problems with O(1/k^2) Rate on Squared Gradient Norm

TaeHo Yoon · Ernest Ryu

In this work, we study the computational complexity of reducing the squared gradient magnitude for smooth minimax optimization problems. First, we present algorithms with accelerated $\mathcal{O}(1/k^2)$ last-iterate rates, faster than the existing $\mathcal{O}(1/k)$ or slower rates for extragradient, Popov, and gradient descent with anchoring. The acceleration mechanism combines extragradient steps with anchoring and is distinct from Nesterov's acceleration. We then establish optimality of the $\mathcal{O}(1/k^2)$ rate through a matching lower bound.


Accumulated Decoupled Learning with Gradient Staleness Mitigation for Convolutional Neural Networks

Huiping Zhuang · Zhenyu Weng · Fulin Luo · Kar-Ann Toh · Haizhou Li · Zhiping Lin

Gradient staleness is a major side effect in decoupled learning when training convolutional neural networks asynchronously. Existing methods that ignore this effect might result in reduced generalization and even divergence. In this paper, we propose an accumulated decoupled learning (ADL), which includes a module-wise gradient accumulation in order to mitigate the gradient staleness. Unlike prior arts ignoring the gradient staleness, we quantify the staleness in such a way that its mitigation can be quantitatively visualized. As a new learning scheme, the proposed ADL is theoretically shown to converge to critical points in spite of its asynchronism. Extensive experiments on CIFAR-10 and ImageNet datasets are conducted, demonstrating that ADL gives promising generalization results while the state-of-the-art methods experience reduced generalization and divergence. In addition, our ADL is shown to have the fastest training speed among the compared methods.


Accurate Post Training Quantization With Small Calibration Sets

Itay Hubara · Yury Nahshan · Yair Hanani · Ron Banner · Daniel Soudry

Lately, post-training quantization methods have gained considerable attention, as they are simple to use, and require only a small unlabeled calibration set. This small dataset cannot be used to fine-tune the model without significant over-fitting. Instead, these methods only use the calibration set to set the activations' dynamic ranges. However, such methods always resulted in significant accuracy degradation, when used below 8-bits (except on small datasets). Here we aim to break the 8-bit barrier. To this end, we minimize the quantization errors of each layer or block separately by optimizing its parameters over the calibration set. We empirically demonstrate that this approach is: (1) much less susceptible to over-fitting than the standard fine-tuning approaches, and can be used even on a very small calibration set; and (2) more powerful than previous methods, which only set the activations' dynamic ranges. We suggest two flavors for our method, parallel and sequential aim for a fixed and flexible bit-width allocation. For the latter, we demonstrate how to optimally allocate the bit-widths for each layer, while constraining accuracy degradation or model compression by proposing a novel integer programming formulation. Finally, we suggest model global statistics tuning, to correct biases introduced during quantization. Together, these methods yield state-of-the-art results for both vision and text models. For instance, on ResNet50, we obtain less than 1\% accuracy degradation --- with 4-bit weights and activations in all layers, but first and last. The suggested methods are two orders of magnitude faster than the traditional Quantize Aware Training approach used for lower than 8-bit quantization. We open-sourced our code \textit{https://github.com/papers-submission/CalibTIP}.


A Deep Reinforcement Learning Approach to Marginalized Importance Sampling with the Successor Representation

Scott Fujimoto · David Meger · Doina Precup

Marginalized importance sampling (MIS), which measures the density ratio between the state-action occupancy of a target policy and that of a sampling distribution, is a promising approach for off-policy evaluation. However, current state-of-the-art MIS methods rely on complex optimization tricks and succeed mostly on simple toy problems. We bridge the gap between MIS and deep reinforcement learning by observing that the density ratio can be computed from the successor representation of the target policy. The successor representation can be trained through deep reinforcement learning methodology and decouples the reward optimization from the dynamics of the environment, making the resulting algorithm stable and applicable to high-dimensional domains. We evaluate the empirical performance of our approach on a variety of challenging Atari and MuJoCo environments.


Affine Invariant Analysis of Frank-Wolfe on Strongly Convex Sets

Thomas Kerdreux · Lewis Liu · Simon Lacoste-Julien · Damien Scieur

It is known that the Frank-Wolfe (FW) algorithm, which is affine covariant, enjoys faster convergence rates than $\mathcal{O}\left(1/K\right)$ when the constraint set is strongly convex. However, these results rely on norm-dependent assumptions, usually incurring non-affine invariant bounds, in contradiction with FW's affine covariant property. In this work, we introduce new structural assumptions on the problem (such as the directional smoothness) and derive an affine invariant, norm-independent analysis of Frank-Wolfe. We show that our rates are better than any other known convergence rates of FW in this setting. Based on our analysis, we propose an affine invariant backtracking line-search. Interestingly, we show that typical backtracking line-searches using smoothness of the objective function present similar performances than its affine invariant counterpart, despite using affine dependent norms in the step size's computation.


An Identifiable Double VAE For Disentangled Representations

Graziano Mita · Maurizio Filippone · Pietro Michiardi

A large part of the literature on learning disentangled representations focuses on variational autoencoders (VAEs). Recent developments demonstrate that disentanglement cannot be obtained in a fully unsupervised setting without inductive biases on models and data. However, Khemakhem et al., AISTATS, 2020 suggest that employing a particular form of factorized prior, conditionally dependent on auxiliary variables complementing input observations, can be one such bias, resulting in an identifiable model with guarantees on disentanglement. Working along this line, we propose a novel VAE-based generative model with theoretical guarantees on identifiability. We obtain our conditional prior over the latents by learning an optimal representation, which imposes an additional strength on their regularization. We also extend our method to semi-supervised settings. Experimental results indicate superior performance with respect to state-of-the-art approaches, according to several established metrics proposed in the literature on disentanglement.


A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups

Marc Finzi · Max Welling · Andrew Wilson

Symmetries and equivariance are fundamental to the generalization of neural networks on domains such as images, graphs, and point clouds. Existing work has primarily focused on a small number of groups, such as the translation, rotation, and permutation groups. In this work we provide a completely general algorithm for solving for the equivariant layers of matrix groups. In addition to recovering solutions from other works as special cases, we construct multilayer perceptrons equivariant to multiple groups that have never been tackled before, including $\mathrm{O}(1,3)$, $\mathrm{O}(5)$, $\mathrm{Sp}(n)$, and the Rubik's cube group. Our approach outperforms non-equivariant baselines, with applications to particle physics and modeling dynamical systems. We release our software library to enable researchers to construct equivariant layers for arbitrary


A Receptor Skeleton for Capsule Neural Networks

Jintai Chen · Hongyun Yu · Chengde Qian · Danny Z Chen · Jian Wu

In previous Capsule Neural Networks (CapsNets), routing algorithms often performed clustering processes to assemble the child capsules' representations into parent capsules. Such routing algorithms were typically implemented with iterative processes and incurred high computing complexity. This paper presents a new capsule structure, which contains a set of optimizable receptors and a transmitter is devised on the capsule's representation. Specifically, child capsules' representations are sent to the parent capsules whose receptors match well the transmitters of the child capsules' representations, avoiding applying computationally complex routing algorithms. To ensure the receptors in a CapsNet work cooperatively, we build a skeleton to organize the receptors in different capsule layers in a CapsNet. The receptor skeleton assigns a share-out objective for each receptor, making the CapsNet perform as a hierarchical agglomerative clustering process. Comprehensive experiments verify that our approach facilitates efficient clustering processes, and CapsNets with our approach significantly outperform CapsNets with previous routing algorithms on image classification, affine transformation generalization, overlapped object recognition, and representation semantic decoupling.


Asynchronous Distributed Learning : Adapting to Gradient Delays without Prior Knowledge

Rotem Zamir Aviv · Ido Hakimi · Assaf Schuster · Kfir Levy

We consider stochastic convex optimization problems, where several machines act asynchronously in parallel while sharing a common memory. We propose a robust training method for the constrained setting and derive non asymptotic convergence guarantees that do not depend on prior knowledge of update delays, objective smoothness, and gradient variance. Conversely, existing methods for this setting crucially rely on this prior knowledge, which render them unsuitable for essentially all shared-resources computational environments, such as clouds and data centers. Concretely, existing approaches are unable to accommodate changes in the delays which result from dynamic allocation of the machines, while our method implicitly adapts to such changes.


A Tale of Two Efficient and Informative Negative Sampling Distributions

Shabnam Daghaghi · Tharun Medini · Nicholas Meisburger · Beidi Chen · Mengnan Zhao · Anshumali Shrivastava

Softmax classifiers with a very large number of classes naturally occur in many applications such as natural language processing and information retrieval. The calculation of full softmax is costly from the computational and energy perspective. There have been various sampling approaches to overcome this challenge, popularly known as negative sampling (NS). Ideally, NS should sample negative classes from a distribution that is dependent on the input data, the current parameters, and the correct positive class. Unfortunately, due to the dynamically updated parameters and data samples, there is no sampling scheme that is provably adaptive and samples the negative classes efficiently. Therefore, alternative heuristics like random sampling, static frequency-based sampling, or learning-based biased sampling, which primarily trade either the sampling cost or the adaptivity of samples per iteration are adopted. In this paper, we show two classes of distributions where the sampling scheme is truly adaptive and provably generates negative samples in near-constant time. Our implementation in C++ on CPU is significantly superior, both in terms of wall-clock time and accuracy, compared to the most optimized TensorFlow implementations of other popular negative sampling approaches on powerful NVIDIA V100 GPU.


A Unified Generative Adversarial Network Training via Self-Labeling and Self-Attention

Tomoki Watanabe · Paolo Favaro

We propose a novel GAN training scheme that can handle any level of labeling in a unified manner. Our scheme introduces a form of artificial labeling that can incorporate manually defined labels, when available, and induce an alignment between them. To define the artificial labels, we exploit the assumption that neural network generators can be trained more easily to map nearby latent vectors to data with semantic similarities, than across separate categories. We use generated data samples and their corresponding artificial conditioning labels to train a classifier. The classifier is then used to self-label real data. To boost the accuracy of the self-labeling, we also use the exponential moving average of the classifier. However, because the classifier might still make mistakes, especially at the beginning of the training, we also refine the labels through self-attention, by using the labeling of real data samples only when the classifier outputs a high classification probability score. We evaluate our approach on CIFAR-10, STL-10 and SVHN, and show that both self-labeling and self-attention consistently improve the quality of generated data. More surprisingly, we find that the proposed scheme can even outperform class-conditional GANs.


AutoAttend: Automated Attention Representation Search

Chaoyu Guan · Xin Wang · Wenwu Zhu

Self-attention mechanisms have been widely adopted in many machine learning areas, including Natural Language Processing (NLP) and Graph Representation Learning (GRL), etc. However, existing works heavily rely on hand-crafted design to obtain customized attention mechanisms. In this paper, we automate Key, Query and Value representation design, which is one of the most important steps to obtain effective self-attentions. We propose an automated self-attention representation model, AutoAttend, which can automatically search powerful attention representations for downstream tasks leveraging Neural Architecture Search (NAS). In particular, we design a tailored search space for attention representation automation, which is flexible to produce effective attention representation designs. Based on the design prior obtained from attention representations in previous works, we further regularize our search space to reduce the space complexity without the loss of expressivity. Moreover, we propose a novel context-aware parameter sharing mechanism considering special characteristics of each sub-architecture to provide more accurate architecture estimations when conducting parameter sharing in our tailored search space. Experiments show the superiority of our proposed AutoAttend model over previous state-of-the-arts on eight text classification tasks in NLP and four node classification tasks in GRL.


Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators

Yonggan Fu · Yongan Zhang · Yang Zhang · David Cox · Yingyan Lin

While maximizing deep neural networks' (DNNs') acceleration efficiency requires a joint search/design of three different yet highly coupled aspects, including the networks, bitwidths, and accelerators, the challenges associated with such a joint search have not yet been fully understood and addressed. The key challenges include (1) the dilemma of whether to explode the memory consumption due to the huge joint space or achieve sub-optimal designs, (2) the discrete nature of the accelerator design space that is coupled yet different from that of the networks and bitwidths, and (3) the chicken and egg problem associated with network-accelerator co-search, i.e., co-search requires operation-wise hardware cost, which is lacking during search as the optimal accelerator depending on the whole network is still unknown during search. To tackle these daunting challenges towards optimal and fast development of DNN accelerators, we propose a framework dubbed Auto-NBA to enable jointly searching for the Networks, Bitwidths, and Accelerators, by efficiently localizing the optimal design within the huge joint design space for each target dataset and acceleration specification. Our Auto-NBA integrates a heterogeneous sampling strategy to achieve unbiased search with constant memory consumption, and a novel joint-search pipeline equipped with a generic differentiable accelerator search engine. Extensive experiments and ablation studies validate that both Auto-NBA generated networks and accelerators consistently outperform state-of-the-art designs (including co-search/exploration techniques, hardware-aware NAS methods, and DNN accelerators), in terms of search time, task accuracy, and accelerator efficiency. Our codes are available at: https://github.com/RICE-EIC/Auto-NBA.


Bayesian Optimization over Hybrid Spaces

Aryan Deshwal · Syrine Belakaria · Jana Doppa

We consider the problem of optimizing hybrid structures (mixture of discrete and continuous input variables) via expensive black-box function evaluations. This problem arises in many real-world applications. For example, in materials design optimization via lab experiments, discrete and continuous variables correspond to the presence/absence of primitive elements and their relative concentrations respectively. The key challenge is to accurately model the complex interactions between discrete and continuous variables. In this paper, we propose a novel approach referred as Hybrid Bayesian Optimization (HyBO) by utilizing diffusion kernels, which are naturally defined over continuous and discrete variables. We develop a principled approach for constructing diffusion kernels over hybrid spaces by utilizing the additive kernel formulation, which allows additive interactions of all orders in a tractable manner. We theoretically analyze the modeling strength of additive hybrid kernels and prove that it has the universal approximation property. Our experiments on synthetic and six diverse real-world benchmarks show that HyBO significantly outperforms the state-of-the-art methods.


Beyond Variance Reduction: Understanding the True Impact of Baselines on Policy Optimization

Wesley Chung · Valentin Thomas · Marlos C. Machado · Nicolas Le Roux

Bandit and reinforcement learning (RL) problems can often be framed as optimization problems where the goal is to maximize average performance while having access only to stochastic estimates of the true gradient. Traditionally, stochastic optimization theory predicts that learning dynamics are governed by the curvature of the loss function and the noise of the gradient estimates. In this paper we demonstrate that the standard view is too limited for bandit and RL problems. To allow our analysis to be interpreted in light of multi-step MDPs, we focus on techniques derived from stochastic optimization principles~(e.g., natural policy gradient and EXP3) and we show that some standard assumptions from optimization theory are violated in these problems. We present theoretical results showing that, at least for bandit problems, curvature and noise are not sufficient to explain the learning dynamics and that seemingly innocuous choices like the baseline can determine whether an algorithm converges. These theoretical findings match our empirical evaluation, which we extend to multi-state MDPs.


Catformer: Designing Stable Transformers via Sensitivity Analysis

Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang

Transformer architectures are widely used, but training them is non-trivial, requiring custom learning rate schedules, scaling terms, residual connections, careful placement of submodules such as normalization, and so on. In this paper, we improve upon recent analysis of Transformers and formalize a notion of sensitivity to capture the difficulty of training. Sensitivity characterizes how the variance of activation and gradient norms change in expectation when parameters are randomly perturbed. We analyze the sensitivity of previous Transformer architectures and design a new architecture, the Catformer, which replaces residual connections or RNN-based gating mechanisms with concatenation. We prove that Catformers are less sensitive than other Transformer variants and demonstrate that this leads to more stable training. On DMLab30, a suite of high-dimension reinforcement tasks, Catformer outperforms other transformers, including Gated Transformer-XL---the state-of-the-art architecture designed to address stability---by 13%.


Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning

Sumedh Sontakke · Arash Mehrjou · Laurent Itti · Bernhard Schölkopf

Humans show an innate ability to learn the regularities of the world through interaction. By performing experiments in our environment, we are able to discern the causal factors of variation and infer how they affect the dynamics of our world. Analogously, here we attempt to equip reinforcement learning agents with the ability to perform experiments that facilitate a categorization of the rolled-out trajectories, and to subsequently infer the causal factors of the environment in a hierarchical manner. We introduce a novel intrinsic reward, called causal curiosity, and show that it allows our agents to learn optimal sequences of actions, and to discover causal factors in the dynamics. The learned behavior allows the agent to infer a binary quantized representation for the ground-truth causal factors in every environment. Additionally, we find that these experimental behaviors are semantically meaningful (e.g., to differentiate between heavy and light blocks, our agents learn to lift them), and are learnt in a self-supervised manner with approximately 2.5 times less data than conventional supervised planners. We show that these behaviors can be re-purposed and fine-tuned (e.g., from lifting to pushing or other downstream tasks). Finally, we show that the knowledge of causal factor representations aids zero-shot learning for more complex tasks.


Communication-Efficient Distributed Optimization with Quantized Preconditioners

Foivos Alimisis · Peter Davies · Dan Alistarh

We investigate fast and communication-efficient algorithms for the classic problem of minimizing a sum of strongly convex and smooth functions that are distributed among $n$ different nodes, which can communicate using a limited number of bits. Most previous communication-efficient approaches for this problem are limited to first-order optimization, and therefore have \emph{linear} dependence on the condition number in their communication complexity. We show that this dependence is not inherent: communication-efficient methods can in fact have sublinear dependence on the condition number. For this, we design and analyze the first communication-efficient distributed variants of preconditioned gradient descent for Generalized Linear Models, and for Newton's method. Our results rely on a new technique for quantizing both the preconditioner and the descent direction at each step of the algorithms, while controlling their convergence rate. We also validate our findings experimentally, showing faster convergence and reduced communication relative to previous methods.


Communication-Efficient Distributed SVD via Local Power Iterations

Xiang Li · Shusen Wang · Kun Chen · Zhihua Zhang

We study distributed computing of the truncated singular value decomposition (SVD). We develop an algorithm that we call \texttt{LocalPower} for improving communication efficiency. Specifically, we uniformly partition the dataset among $m$ nodes and alternate between multiple (precisely $p$) local power iterations and one global aggregation. In the aggregation, we propose to weight each local eigenvector matrix with orthogonal Procrustes transformation (OPT). As a practical surrogate of OPT, sign-fixing, which uses a diagonal matrix with $\pm 1$ entries as weights, has better computation complexity and stability in experiments. We theoretically show that under certain assumptions \texttt{LocalPower} lowers the required number of communications by a factor of $p$ to reach a constant accuracy. We also show that the strategy of periodically decaying $p$ helps obtain high-precision solutions. We conduct experiments to demonstrate the effectiveness of \texttt{LocalPower}.


Compositional Video Synthesis with Action Graphs

Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson

Videos of actions are complex signals containing rich compositional structure in space and time. Current video generation methods lack the ability to condition the generation on multiple coordinated and potentially simultaneous timed actions. To address this challenge, we propose to represent the actions in a graph structure called Action Graph and present the new "Action Graph To Video" synthesis task. Our generative model for this task (AG2Vid) disentangles motion and appearance features, and by incorporating a scheduling mechanism for actions facilitates a timely and coordinated video generation. We train and evaluate AG2Vid on CATER and Something-Something V2 datasets, which results in videos that have better visual quality and semantic consistency compared to baselines. Finally, our model demonstrates zero-shot abilities by synthesizing novel compositions of the learned actions.


Concentric mixtures of Mallows models for top-$k$ rankings: sampling and identifiability

Fabien Collas · Ekhine IRUROZKI

In this paper, we study mixtures of two Mallows models for top-$k$ rankings with equal location parameters but with different scale parameters (a mixture of concentric Mallows models). These models arise when we have a heterogeneous population of voters formed by two populations, one of which is a subpopulation of expert voters. We show the identifiability of both components and the learnability of their respective parameters. These results are based upon, first, bounding the sample complexity for the Borda algorithm with top-$k$ rankings. Second, we characterize the distances between rankings, showing that an off-the-shelf clustering algorithm separates the rankings by components with high probability -provided the scales are well-separated.As a by-product, we include an efficient sampling algorithm for Mallows top-$k$ rankings. Finally, since the rank aggregation will suffer from a large amount of noise introduced by the non-expert voters, we adapt the Borda algorithm to be able to recover the ground truth consensus ranking which is especially consistent with the expert rankings.


Connecting Interpretability and Robustness in Decision Trees through Separation

Michal Moshkovitz · Yao-Yuan Yang · Kamalika Chaudhuri

Recent research has recognized interpretability and robustness as essential properties of trustworthy classification. Curiously, a connection between robustness and interpretability was empirically observed, but the theoretical reasoning behind it remained elusive. In this paper, we rigorously investigate this connection. Specifically, we focus on interpretation using decision trees and robustness to l_{\infty}-perturbation. Previous works defined the notion of r-separation as a sufficient condition for robustness. We prove upper and lower bounds on the tree size in case the data is r-separated. We then show that a tighter bound on the size is possible when the data is linearly separated. We provide the first algorithm with provable guarantees both on robustness, interpretability, and accuracy in the context of decision trees. Experiments confirm that our algorithm yields classifiers that are both interpretable and robust and have high accuracy.


Convex Regularization in Monte-Carlo Tree Search

Tuan Q Dam · Carlo D'Eramo · Jan Peters · Joni Pajarinen

Monte-Carlo planning and Reinforcement Learning (RL) are essential to sequential decision making. The recent AlphaGo and AlphaZero algorithms have shown how to successfully combine these two paradigms to solve large-scale sequential decision problems. These methodologies exploit a variant of the well-known UCT algorithm to trade off the exploitation of good actions and the exploration of unvisited states, but their empirical success comes at the cost of poor sample-efficiency and high computation time. In this paper, we overcome these limitations by introducing the use of convex regularization in Monte-Carlo Tree Search (MCTS) to drive exploration efficiently and to improve policy updates. First, we introduce a unifying theory on the use of generic convex regularizers in MCTS, deriving the first regret analysis of regularized MCTS and showing that it guarantees an exponential convergence rate. Second, we exploit our theoretical framework to introduce novel regularized backup operators for MCTS, based on the relative entropy of the policy update and, more importantly, on the Tsallis entropy of the policy, for which we prove superior theoretical guarantees. We empirically verify the consequence of our theoretical results on a toy problem. Finally, we show how our framework can easily be incorporated in AlphaGo and we empirically show the superiority of convex regularization, w.r.t. representative baselines, on well-known RL problems across several Atari games.


Cross-Gradient Aggregation for Decentralized Learning from Non-IID Data

Yasaman Esfandiari · Sin Yong Tan · Zhanhong Jiang · Aditya Balu · Ethan Herron · Chinmay Hegde · Soumik Sarkar

Decentralized learning enables a group of collaborative agents to learn models using a distributed dataset without the need for a central parameter server. Recently, decentralized learning algorithms have demonstrated state-of-the-art results on benchmark data sets, comparable with centralized algorithms. However, the key assumption to achieve competitive performance is that the data is independently and identically distributed (IID) among the agents which, in real-life applications, is often not applicable. Inspired by ideas from continual learning, we propose Cross-Gradient Aggregation (CGA), a novel decentralized learning algorithm where (i) each agent aggregates cross-gradient information, i.e., derivatives of its model with respect to its neighbors' datasets, and (ii) updates its model using a projected gradient based on quadratic programming (QP). We theoretically analyze the convergence characteristics of CGA and demonstrate its efficiency on non-IID data distributions sampled from the MNIST and CIFAR-10 datasets. Our empirical comparisons show superior learning performance of CGA over existing state-of-the-art decentralized learning algorithms, as well as maintaining the improved performance under information compression to reduce peer-to-peer communication overhead. The code is available here on GitHub.


Deep Generative Learning via Schrödinger Bridge

Gefei Wang · Yuling Jiao · Qian Xu · Yang Wang · Can Yang

We propose to learn a generative model via entropy interpolation with a Schrödinger Bridge. The generative learning task can be formulated as interpolating between a reference distribution and a target distribution based on the Kullback-Leibler divergence. At the population level, this entropy interpolation is characterized via an SDE on [0,1] with a time-varying drift term. At the sample level, we derive our Schrödinger Bridge algorithm by plugging the drift term estimated by a deep score estimator and a deep density ratio estimator into the Euler-Maruyama method. Under some mild smoothness assumptions of the target distribution, we prove the consistency of both the score estimator and the density ratio estimator, and then establish the consistency of the proposed Schrödinger Bridge approach. Our theoretical results guarantee that the distribution learned by our approach converges to the target distribution. Experimental results on multimodal synthetic data and benchmark data support our theoretical findings and indicate that the generative model via Schrödinger Bridge is comparable with state-of-the-art GANs, suggesting a new formulation of generative learning. We demonstrate its usefulness in image interpolation and image inpainting.


Dense for the Price of Sparse: Improved Performance of Sparsely Initialized Networks via a Subspace Offset

Ilan Price · Jared Tanner

That neural networks may be pruned to high sparsities and retain high accuracy is well established. Recent research efforts focus on pruning immediately after initialization so as to allow the computational savings afforded by sparsity to extend to the training process. In this work, we introduce a new `DCT plus Sparse' layer architecture, which maintains information propagation and trainability even with as little as 0.01% trainable parameters remaining. We show that standard training of networks built with these layers, and pruned at initialization, achieves state-of-the-art accuracy for extreme sparsities on a variety of benchmark network architectures and datasets. Moreover, these results are achieved using only simple heuristics to determine the locations of the trainable parameters in the network, and thus without having to initially store or compute with the full, unpruned network, as is required by competing prune-at-initialization algorithms. Switching from standard sparse layers to DCT plus Sparse layers does not increase the storage footprint of a network and incurs only a small additional computational overhead.


Density Constrained Reinforcement Learning

Zengyi Qin · Yuxiao Chen · Chuchu Fan

We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical interpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.


Discovering symbolic policies with deep reinforcement learning

Mikel Landajuela Larma · Brenden Petersen · Sookyung Kim · Claudio Santiago · Ruben Glatt · Nathan Mundhenk · Jacob Pettit · Daniel Faissol

Deep reinforcement learning (DRL) has proven successful for many difficult control problems by learning policies represented by neural networks. However, the complexity of neural network-based policies—involving thousands of composed non-linear operators—can render them problematic to understand, trust, and deploy. In contrast, simple policies comprising short symbolic expressions can facilitate human understanding, while also being transparent and exhibiting predictable behavior. To this end, we propose deep symbolic policy, a novel approach to directly search the space of symbolic policies. We use an autoregressive recurrent neural network to generate control policies represented by tractable mathematical expressions, employing a risk-seeking policy gradient to maximize performance of the generated policies. To scale to environments with multi-dimensional action spaces, we propose an "anchoring" algorithm that distills pre-trained neural network-based policies into fully symbolic policies, one action dimension at a time. We also introduce two novel methods to improve exploration in DRL-based combinatorial optimization, building on ideas of entropy regularization and distribution initialization. Despite their dramatically reduced complexity, we demonstrate that discovered symbolic policies outperform seven state-of-the-art DRL algorithms in terms of average rank and average normalized episodic reward across eight benchmark environments.


Ditto: Fair and Robust Federated Learning Through Personalization

Tian Li · Shengyuan Hu · Ahmad Beirami · Virginia Smith

Fairness and robustness are two important concerns for federated learning systems. In this work, we identify that robustness to data and model poisoning attacks and fairness, measured as the uniformity of performance across devices, are competing constraints in statistically heterogeneous networks. To address these constraints, we propose employing a simple, general framework for personalized federated learning, Ditto, that can inherently provide fairness and robustness benefits, and develop a scalable solver for it. Theoretically, we analyze the ability of Ditto to achieve fairness and robustness simultaneously on a class of linear problems. Empirically, across a suite of federated datasets, we show that Ditto not only achieves competitive performance relative to recent personalization methods, but also enables more accurate, robust, and fair models relative to state-of-the-art fair or robust baselines.


EfficientNetV2: Smaller Models and Faster Training

Mingxing Tan · Quoc Le

This paper introduces EfficientNetV2, a new family of convolutional networks that have faster training speed and better parameter efficiency than previous models. To develop these models, we use a combination of training-aware neural architecture search and scaling, to jointly optimize training speed and parameter efficiency. The models were searched from the search space enriched with new ops such as Fused-MBConv. Our experiments show that EfficientNetV2 models train much faster than state-of-the-art models while being up to 6.8x smaller. Our training can be further sped up by progressively increasing the image size during training, but it often causes a drop in accuracy. To compensate for this accuracy drop, we propose an improved method of progressive learning, which adaptively adjusts regularization (e.g. data augmentation) along with image size. With progressive learning, our EfficientNetV2 significantly outperforms previous models on ImageNet and CIFAR/Cars/Flowers datasets. By pretraining on the same ImageNet21k, our EfficientNetV2 achieves 87.3% top-1 accuracy on ImageNet ILSVRC2012, outperforming the recent ViT by 2.0% accuracy while training 5x-11x faster using the same computing resources.


Emergent Social Learning via Multi-agent Reinforcement Learning

Kamal Ndousse · Douglas Eck · Sergey Levine · Natasha Jaques

Social learning is a key component of human and animal intelligence. By taking cues from the behavior of experts in their environment, social learners can acquire sophisticated behavior and rapidly adapt to new circumstances. This paper investigates whether independent reinforcement learning (RL) agents in a multi-agent environment can learn to use social learning to improve their performance. We find that in most circumstances, vanilla model-free RL agents do not use social learning. We analyze the reasons for this deficiency, and show that by imposing constraints on the training environment and introducing a model-based auxiliary loss we are able to obtain generalized social learning policies which enable agents to: i) discover complex skills that are not learned from single-agent training, and ii) adapt online to novel environments by taking cues from experts present in the new environment. In contrast, agents trained with model-free RL or imitation learning generalize poorly and do not succeed in the transfer tasks. By mixing multi-agent and solo training, we can obtain agents that use social learning to gain skills that they can deploy when alone, even out-performing agents trained alone from the start.


Emphatic Algorithms for Deep Reinforcement Learning

Ray Jiang · Tom Zahavy · Zhongwen Xu · Adam White · Matteo Hessel · Charles Blundell · Hado van Hasselt

Off-policy learning allows us to learn about possible policies of behavior from experience generated by a different behavior policy. Temporal difference (TD) learning algorithms can become unstable when combined with function approximation and off-policy sampling---this is known as the ``deadly triad''. Emphatic temporal difference (ETD(λ)) algorithm ensures convergence in the linear case by appropriately weighting the TD(λ) updates. In this paper, we extend the use of emphatic methods to deep reinforcement learning agents. We show that naively adapting ETD(λ) to popular deep reinforcement learning algorithms, which use forward view multi-step returns, results in poor performance. We then derive new emphatic algorithms for use in the context of such algorithms, and we demonstrate that they provide noticeable benefits in small problems designed to highlight the instability of TD methods. Finally, we observed improved performance when applying these algorithms at scale on classic Atari games from the Arcade Learning Environment.


Explore Visual Concept Formation for Image Classification

Shengzhou Xiong · Yihua Tan · Guoyou Wang

Human beings acquire the ability of image classification through visual concept learning, in which the process of concept formation involves intertwined searches of common properties and concept descriptions. However, in most image classification algorithms using deep convolutional neural network (ConvNet), the representation space is constructed under the premise that concept descriptions are fixed as one-hot codes, which limits the mining of properties and the ability of identifying unseen samples. Inspired by this, we propose a learning strategy of visual concept formation (LSOVCF) based on the ConvNet, in which the two intertwined parts of concept formation, i.e. feature extraction and concept description, are learned together. First, LSOVCF takes sample response in the last layer of ConvNet to induct concept description being assumed as Gaussian distribution, which is part of the training process. Second, the exploration and experience loss is designed for optimization, which adopts experience cache pool to speed up convergence. Experiments show that LSOVCF improves the ability of identifying unseen samples on cifar10, STL10, flower17 and ImageNet based on several backbones, from the classic VGG to the SOTA Ghostnet. The code is available at \url{https://github.com/elvintanhust/LSOVCF}.


Federated Deep AUC Maximization for Hetergeneous Data with a Constant Communication Complexity

Zhuoning Yuan · Zhishuai Guo · Yi Xu · Yiming Ying · Tianbao Yang

Deep AUC (area under the ROC curve) Maximization (DAM) has attracted much attention recently due to its great potential for imbalanced data classification. However, the research on Federated Deep AUC Maximization (FDAM) is still limited. Compared with standard federated learning (FL) approaches that focus on decomposable minimization objectives, FDAM is more complicated due to its minimization objective is non-decomposable over individual examples. In this paper, we propose improved FDAM algorithms for heterogeneous data by solving the popular non-convex strongly-concave min-max formulation of DAM in a distributed fashion, which can also be applied to a class of non-convex strongly-concave min-max problems. A striking result of this paper is that the communication complexity of the proposed algorithm is a constant independent of the number of machines and also independent of the accuracy level, which improves an existing result by orders of magnitude. The experiments have demonstrated the effectiveness of our FDAM algorithm on benchmark datasets, and on medical chest X-ray images from different organizations. Our experiment shows that the performance of FDAM using data from multiple hospitals can improve the AUC score on testing data from a single hospital for detecting life-threatening diseases based on chest radiographs.


Few-Shot Neural Architecture Search

Yiyang Zhao · Linnan Wang · Yuandong Tian · Rodrigo Fonseca · Tian Guo

Efficient evaluation of a network architecture drawn from a large search space remains a key challenge in Neural Architecture Search (NAS). Vanilla NAS evaluates each architecture by training from scratch, which gives the true performance but is extremely time-consuming. Recently, one-shot NAS substantially reduces the computation cost by training only one supernetwork, a.k.a. supernet, to approximate the performance of every architecture in the search space via weight-sharing. However, the performance estimation can be very inaccurate due to the co-adaption among operations. In this paper, we propose few-shot NAS that uses multiple supernetworks, called sub-supernet, each covering different regions of the search space to alleviate the undesired co-adaption. Compared to one-shot NAS, few-shot NAS improves the accuracy of architecture evaluation with a small increase of evaluation cost. With only up to 7 sub-supernets, few-shot NAS establishes new SoTAs: on ImageNet, it finds models that reach 80.5% top-1 accuracy at 600 MB FLOPS and 77.5% top-1 accuracy at 238 MFLOPS; on CIFAR10, it reaches 98.72% top-1 accuracy without using extra data or transfer learning. In Auto-GAN, few-shot NAS outperforms the previously published results by up to 20%. Extensive experiments show that few-shot NAS significantly improves various one-shot methods, including 4 gradient-based and 6 search-based methods on 3 different tasks in NasBench-201 and NasBench1-shot-1.


FOP: Factorizing Optimal Joint Policy of Maximum-Entropy Multi-Agent Reinforcement Learning

Tianhao Zhang · yueheng li · Chen Wang · Guangming Xie · Zongqing Lu

Value decomposition recently injects vigorous vitality into multi-agent actor-critic methods. However, existing decomposed actor-critic methods cannot guarantee the convergence of global optimum. In this paper, we present a novel multi-agent actor-critic method, FOP, which can factorize the optimal joint policy induced by maximum-entropy multi-agent reinforcement learning (MARL) into individual policies. Theoretically, we prove that factorized individual policies of FOP converge to the global optimum. Empirically, in the well-known matrix game and differential game, we verify that FOP can converge to the global optimum for both discrete and continuous action spaces. We also evaluate FOP on a set of StarCraft II micromanagement tasks, and demonstrate that FOP substantially outperforms state-of-the-art decomposed value-based and actor-critic methods.


Goal-Conditioned Reinforcement Learning with Imagined Subgoals

Elliot Chane-Sane · Cordelia Schmid · Ivan Laptev

Goal-conditioned reinforcement learning endows an agent with a large variety of skills, but it often struggles to solve tasks that require more temporally extended reasoning. In this work, we propose to incorporate imagined subgoals into policy learning to facilitate learning of complex tasks. Imagined subgoals are predicted by a separate high-level policy, which is trained simultaneously with the policy and its critic. This high-level policy predicts intermediate states halfway to the goal using the value function as a reachability metric. We don’t require the policy to reach these subgoals explicitly. Instead, we use them to define a prior policy, and incorporate this prior into a KL-constrained policy iteration scheme to speed up and regularize learning. Imagined subgoals are used during policy learning, but not during test time, where we only apply the learned policy. We evaluate our approach on complex robotic navigation and manipulation tasks and show that it outperforms existing methods by a large margin.


Heterogeneity for the Win: One-Shot Federated Clustering

Don Kurian Dennis · Tian Li · Virginia Smith

In this work, we explore the unique challenges---and opportunities---of unsupervised federated learning (FL). We develop and analyze a one-shot federated clustering scheme, kfed, based on the widely-used Lloyd's method for $k$-means clustering. In contrast to many supervised problems, we show that the issue of statistical heterogeneity in federated networks can in fact benefit our analysis. We analyse kfed under a center separation assumption and compare it to the best known requirements of its centralized counterpart. Our analysis shows that in heterogeneous regimes where the number of clusters per device $(k')$ is smaller than the total number of clusters over the network $k$, $(k'\le \sqrt{k})$, we can use heterogeneity to our advantage---significantly weakening the cluster separation requirements for kfed. From a practical viewpoint, kfed also has many desirable properties: it requires only round of communication, can run asynchronously, and can handle partial participation or node/network failures. We motivate our analysis with experiments on common FL benchmarks, and highlight the practical utility of one-shot clustering through use-cases in personalized FL and device sampling.


High Confidence Generalization for Reinforcement Learning

James Kostas · Yash Chandak · Scott Jordan · Georgios Theocharous · Philip Thomas

We present several classes of reinforcement learning algorithms that safely generalize to Markov decision processes (MDPs) not seen during training. Specifically, we study the setting in which some set of MDPs is accessible for training. The goal is to generalize safely to MDPs that are sampled from the same distribution, but which may not be in the set accessible for training. For various definitions of safety, our algorithms give probabilistic guarantees that agents can safely generalize to MDPs that are sampled from the same distribution but are not necessarily in the training set. These algorithms are a type of Seldonian algorithm (Thomas et al., 2019), which is a class of machine learning algorithms that return models with probabilistic safety guarantees for user-specified definitions of safety.


High-Performance Large-Scale Image Recognition Without Normalization

Andy Brock · Soham De · Samuel Smith · Karen Simonyan

Batch normalization is a key component of most image classification models, but it has many undesirable properties stemming from its dependence on the batch size and interactions between examples. Although recent work has succeeded in training deep ResNets without normalization layers, these models do not match the test accuracies of the best batch-normalized networks, and are often unstable for large learning rates or strong data augmentations. In this work, we develop an adaptive gradient clipping technique which overcomes these instabilities, and design a significantly improved class of Normalizer-Free ResNets. Our smaller models match the test accuracy of an EfficientNet-B7 on ImageNet while being up to 8.7x faster to train, and our largest models attain a new state-of-the-art top-1 accuracy of 86.5%. In addition, Normalizer-Free models attain significantly better performance than their batch-normalized counterparts when fine-tuning on ImageNet after large-scale pre-training on a dataset of 300 million labeled images, with our best models obtaining an accuracy of 89.2%.


Hyperparameter Selection for Imitation Learning

Léonard Hussenot · Marcin Andrychowicz · Damien Vincent · Robert Dadashi · Anton Raichuk · Sabela Ramos · Nikola Momchev · Sertan Girgin · Raphael Marinier · Lukasz Stafiniak · Emmanuel Orsini · Olivier Bachem · Matthieu Geist · Olivier Pietquin

We address the issue of tuning hyperparameters (HPs) for imitation learning algorithms in the context of continuous-control, when the underlying reward function of the demonstrating expert cannot be observed at any time. The vast literature in imitation learning mostly considers this reward function to be available for HP selection, but this is not a realistic setting. Indeed, would this reward function be available, it could then directly be used for policy training and imitation would not be necessary. To tackle this mostly ignored problem, we propose a number of possible proxies to the external reward. We evaluate them in an extensive empirical study (more than 10'000 agents across 9 environments) and make practical recommendations for selecting HPs. Our results show that while imitation learning algorithms are sensitive to HP choices, it is often possible to select good enough HPs through a proxy to the reward function.


iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients

Miao Zhang · Steven Su · Shirui Pan · Xiaojun Chang · Ehsan Abbasnejad · Reza Haffari

Differentiable ARchiTecture Search(DARTS) has recently become the mainstream in the neural architecture search (NAS) due to its efficiency and simplicity. With a gradient-based bi-level optimization, DARTS alternately optimizes the inner model weights and the outer architecture parameter in a weight-sharing supernet. A key challenge to the scalability and quality of the learned architectures is the need for differentiating through the inner-loop optimisation. While much has been discussed about several potentially fatal factors in DARTS, the architecture gradient, a.k.a. hypergradient, has received less attention. In this paper, we tackle the hypergradient computation in DARTS based on the implicit function theorem, making it only depends on the obtained solution to the inner-loop optimization and agnostic to the optimization path. To further reduce the computational requirements, we formulate a stochastic hypergradient approximation for differentiable NAS, and theoretically show that the architecture optimization with the proposed method is expected to converge to a stationary point. Comprehensive experiments on two NAS benchmark search spaces and the common NAS search space verify the effectiveness of our proposed method. It leads to architectures outperforming, with large margins, those learned by the baseline methods.


Improved Contrastive Divergence Training of Energy-Based Models

Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch

Contrastive divergence is a popular method of training energy-based models, but is known to have difficulties with training stability. We propose an adaptation to improve contrastive divergence training by scrutinizing a gradient term that is difficult to calculate and is often left out for convenience. We show that this gradient term is numerically significant and in practice is important to avoid training instabilities, while being tractable to estimate. We further highlight how data augmentation and multi-scale processing can be used to improve model robustness and generation quality. Finally, we empirically evaluate stability of model architectures and show improved performance on a host of benchmarks and use cases, such as image generation, OOD detection, and compositional generation.


Improving Breadth-Wise Backpropagation in Graph Neural Networks Helps Learning Long-Range Dependencies.

Denis Lukovnikov · Asja Fischer

In this work, we focus on the ability of graph neural networks (GNNs) to learn long-range patterns in graphs with edge features. Learning patterns that involve longer paths in the graph, requires using deeper GNNs. However, GNNs suffer from a drop in performance with increasing network depth. To improve the performance of deeper GNNs, previous works have investigated normalization techniques and various types of skip connections. While they are designed to improve depth-wise backpropagation between the representations of the same node in successive layers, they do not improve breadth-wise backpropagation between representations of neighbouring nodes. To analyse the consequences, we design synthetic datasets serving as a testbed for the ability of GNNs to learn long-range patterns. Our analysis shows that several commonly used GNN variants with only depth-wise skip connections indeed have problems learning long-range patterns. They are clearly outperformed by an attention-based GNN architecture that we propose for improving both depth- and breadth-wise backpropagation. We also verify that the presented architecture is competitive on real-world data.


Information Obfuscation of Graph Neural Networks

Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov

While the advent of Graph Neural Networks (GNNs) has greatly improved node and graph representation learning in many applications, the neighborhood aggregation scheme exposes additional vulnerabilities to adversaries seeking to extract node-level information about sensitive attributes. In this paper, we study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data. We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance. Our method creates a strong defense against inference attacks, while only suffering small loss in task performance. Theoretically, we analyze the effectiveness of our framework against a worst-case adversary, and characterize an inherent trade-off between maximizing predictive accuracy and minimizing information leakage. Experiments across multiple datasets from recommender systems, knowledge graphs and quantum chemistry demonstrate that the proposed approach provides a robust defense across various graph structures and tasks, while producing competitive GNN encoders for downstream tasks.


Inverse Decision Modeling: Learning Interpretable Representations of Behavior

Daniel Jarrett · Alihan Hüyük · Mihaela van der Schaar

Decision analysis deals with modeling and enhancing decision processes. A principal challenge in improving behavior is in obtaining a transparent description of existing behavior in the first place. In this paper, we develop an expressive, unifying perspective on inverse decision modeling: a framework for learning parameterized representations of sequential decision behavior. First, we formalize the forward problem (as a normative standard), subsuming common classes of control behavior. Second, we use this to formalize the inverse problem (as a descriptive model), generalizing existing work on imitation/reward learning---while opening up a much broader class of research problems in behavior representation. Finally, we instantiate this approach with an example (inverse bounded rational control), illustrating how this structure enables learning (interpretable) representations of (bounded) rationality---while naturally capturing intuitive notions of suboptimal actions, biased beliefs, and imperfect knowledge of environments.


Joining datasets via data augmentation in the label space for neural networks

Junbo Zhao · Mingfeng Ou · linji Xue · Yunkai Cui · Sai Wu · Gang Chen

Most, if not all, modern deep learning systems restrict themselves to a single dataset for neural network training and inference. In this article, we are interested in systematic ways to join datasets that are made of similar purposes. Unlike previous published works that ubiquitously conduct the dataset joining in the uninterpretable latent vectorial space, the core to our method is an augmentation procedure in the label space. The primary challenge to address the label space for dataset joining is the discrepancy between labels: non-overlapping label annotation sets, different labeling granularity or hierarchy and etc. Notably we propose a new technique leveraging artificially created knowledge graph, recurrent neural networks and policy gradient that successfully achieve the dataset joining in the label space. Empirical results on both image and text classification justify the validity of our approach.


Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks

Avi Schwarzschild · Micah Goldblum · Arjun Gupta · John P Dickerson · Tom Goldstein

Data poisoning and backdoor attacks manipulate training data in order to cause models to fail during inference. A recent survey of industry practitioners found that data poisoning is the number one concern among threats ranging from model stealing to adversarial attacks. However, it remains unclear exactly how dangerous poisoning methods are and which ones are more effective considering that these methods, even ones with identical objectives, have not been tested in consistent or realistic settings. We observe that data poisoning and backdoor attacks are highly sensitive to variations in the testing setup. Moreover, we find that existing methods may not generalize to realistic settings. While these existing works serve as valuable prototypes for data poisoning, we apply rigorous tests to determine the extent to which we should fear them. In order to promote fair comparison in future work, we develop standardized benchmarks for data poisoning and backdoor attacks.


Keyframe-Focused Visual Imitation Learning

Chuan Wen · Jierui Lin · Jianing Qian · Yang Gao · Dinesh Jayaraman

Imitation learning trains control policies by mimicking pre-recorded expert demonstrations. In partially observable settings, imitation policies must rely on observation histories, but many seemingly paradoxical results show better performance for policies that only access the most recent observation. Recent solutions ranging from causal graph learning to deep information bottlenecks have shown promising results, but failed to scale to realistic settings such as visual imitation. We propose a solution that outperforms these prior approaches by upweighting demonstration keyframes corresponding to expert action changepoints. This simple approach easily scales to complex visual imitation settings. Our experimental results demonstrate consistent performance improvements over all baselines on image-based Gym MuJoCo continuous control tasks. Finally, on the CARLA photorealistic vision-based urban driving simulator, we resolve a long-standing issue in behavioral cloning for driving by demonstrating effective imitation from observation histories. Supplementary materials and code at: \url{https://tinyurl.com/imitation-keyframes}.


K-shot NAS: Learnable Weight-Sharing for NAS with K-shot Supernets

Xiu Su · Shan You · Mingkai Zheng · Fei Wang · Chen Qian · Changshui Zhang · Chang Xu

In one-shot weight sharing for NAS, the weights of each operation (at each layer) are supposed to be identical for all architectures (paths) in the supernet. However, this rules out the possibility of adjusting operation weights to cater for different paths, which limits the reliability of the evaluation results. In this paper, instead of counting on a single supernet, we introduce $K$-shot supernets and take their weights for each operation as a dictionary. The operation weight for each path is represented as a convex combination of items in a dictionary with a simplex code. This enables a matrix approximation of the stand-alone weight matrix with a higher rank ($K>1$). A \textit{simplex-net} is introduced to produce architecture-customized code for each path. As a result, all paths can adaptively learn how to share weights in the $K$-shot supernets and acquire corresponding weights for better evaluation. $K$-shot supernets and simplex-net can be iteratively trained, and we further extend the search to the channel dimension. Extensive experiments on benchmark datasets validate that K-shot NAS significantly improves the evaluation accuracy of paths and thus brings in impressive performance improvements.


LAMDA: Label Matching Deep Domain Adaptation

Trung Le · Tuan Nguyen · Nhat Ho · Hung Bui · Dinh Phung

Deep domain adaptation (DDA) approaches have recently been shown to perform better than their shallow rivals with better modeling capacity on complex domains (e.g., image, structural data, and sequential data). The underlying idea is to learn domain invariant representations on a latent space that can bridge the gap between source and target domains. Several theoretical studies have established insightful understanding and the benefit of learning domain invariant features; however, they are usually limited to the case where there is no label shift, hence hindering its applicability. In this paper, we propose and study a new challenging setting that allows us to use a Wasserstein distance (WS) to not only quantify the data shift but also to define the label shift directly. We further develop a theory to demonstrate that minimizing the WS of the data shift leads to closing the gap between the source and target data distributions on the latent space (e.g., an intermediate layer of a deep net), while still being able to quantify the label shift with respect to this latent space. Interestingly, our theory can consequently explain certain drawbacks of learning domain invariant features on the latent space. Finally, grounded on the results and guidance of our developed theory, we propose the Label Matching Deep Domain Adaptation (LAMDA) approach that outperforms baselines on real-world datasets for DA problems.


Learning Neural Network Subspaces

Mitchell Wortsman · Maxwell Horton · Carlos Guestrin · Ali Farhadi · Mohammad Rastegari

Recent observations have advanced our understanding of the neural network optimization landscape, revealing the existence of (1) paths of high accuracy containing diverse solutions and (2) wider minima offering improved performance. Previous methods observing diverse paths require multiple training runs. In contrast we aim to leverage both property (1) and (2) with a single method and in a single training run. With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks. These neural network subspaces contain diverse solutions that can be ensembled, approaching the ensemble performance of independently trained networks without the training cost. Moreover, using the subspace midpoint boosts accuracy, calibration, and robustness to label noise, outperforming Stochastic Weight Averaging.


Learning to Weight Imperfect Demonstrations

Yunke Wang · Chang Xu · Bo Du · Honglak Lee

This paper investigates how to weight imperfect expert demonstrations for generative adversarial imitation learning (GAIL). The agent is expected to perform behaviors demonstrated by experts. But in many applications, experts could also make mistakes and their demonstrations would mislead or slow the learning process of the agent. Recently, existing methods for imitation learning from imperfect demonstrations mostly focus on using the preference or confidence scores to distinguish imperfect demonstrations. However, these auxiliary information needs to be collected with the help of an oracle, which is usually hard and expensive to afford in practice. In contrast, this paper proposes a method of learning to weight imperfect demonstrations in GAIL without imposing extensive prior information. We provide a rigorous mathematical analysis, presenting that the weights of demonstrations can be exactly determined by combining the discriminator and agent policy in GAIL. Theoretical analysis suggests that with the estimated weights the agent can learn a better policy beyond those plain expert demonstrations. Experiments in the Mujoco and Atari environments demonstrate that the proposed algorithm outperforms baseline methods in handling imperfect expert demonstrations.


Learning While Playing in Mean-Field Games: Convergence and Optimality

Qiaomin Xie · Zhuoran Yang · Zhaoran Wang · Andreea Minca

We study reinforcement learning in mean-field games. To achieve the Nash equilibrium, which consists of a policy and a mean-field state, existing algorithms require obtaining the optimal policy while fixing any mean-field state. In practice, however, the policy and the mean-field state evolve simultaneously, as each agent is learning while playing. To bridge such a gap, we propose a fictitious play algorithm, which alternatively updates the policy (learning) and the mean-field state (playing) by one step of policy optimization and gradient descent, respectively. Despite the nonstationarity induced by such an alternating scheme, we prove that the proposed algorithm converges to the Nash equilibrium with an explicit convergence rate. To the best of our knowledge, it is the first provably efficient algorithm that achieves learning while playing via alternating updates.


Leveraging Language to Learn Program Abstractions and Search Heuristics

Catherine Wong · Kevin Ellis · Josh Tenenbaum · Jacob Andreas

Inductive program synthesis, or inferring programs from examples of desired behavior, offers a general paradigm for building interpretable, robust, andgeneralizable machine learning systems. Effective program synthesis depends on two key ingredients: a strong library of functions from which to build programs, and an efficient search strategy for finding programs that solve a given task. We introduce LAPS (Language for Abstraction and Program Search), a technique for using natural language annotations to guide joint learning of libraries and neurally-guided search models for synthesis. When integrated into a state-of-the-art library learning system (DreamCoder), LAPS produces higher-quality libraries and improves search efficiency and generalization on three domains – string editing, image composition, and abstract reasoning about scenes – even when no natural language hints are available at test time.


Light RUMs

Flavio Chierichetti · Ravi Kumar · Andrew Tomkins

A Random Utility Model (RUM) is a distribution on permutations over a universe of items. For each subset of the universe, a RUM induces a natural distribution of the winner in the subset: choose a permutation according to the RUM distribution and pick the maximum item in the subset according to the chosen permutation. RUMs are widely used in the theory of discrete choice. In this paper we consider the question of the (lossy) compressibility of RUMs on a universe of size $n$, i.e., the minimum number of bits required to approximate the winning probabilities of each slate. Our main result is that RUMs can be approximated using $\tilde{O}(n^2)$ bits, an exponential improvement over the standard representation; furthermore, we show that this bound is optimal. En route, we sharpen the classical existential result of McFadden and Train (2000) by showing that the minimum size of a mixture of multinomial logits required to can approximate a general RUM is $\tilde{\Theta}(n)$.


LIME: Learning Inductive Bias for Primitives of Mathematical Reasoning

Yuhuai Wu · Markus Rabe · Wenda Li · Jimmy Ba · Roger Grosse · Christian Szegedy

While designing inductive bias in neural architectures has been widely studied, we hypothesize that transformer networks are flexible enough to learn inductive bias from suitable generic tasks. Here, we replace architecture engineering by encoding inductive bias in the form of datasets. Inspired by Peirce's view that deduction, induction, and abduction are the primitives of reasoning, we design three synthetic tasks that are intended to require the model to have these three abilities. We specifically design these tasks to be synthetic and devoid of mathematical knowledge to ensure that only the fundamental reasoning biases can be learned from these tasks. This defines a new pre-training methodology called "LIME" (Learning Inductive bias for Mathematical rEasoning). Models trained with LIME significantly outperform vanilla transformers on four very different large mathematical reasoning benchmarks. Unlike dominating the computation cost as traditional pre-training approaches, LIME requires only a small fraction of the computation cost of the typical downstream task. The code for generating LIME tasks is available at https://github.com/tonywu95/LIME.


Locally Persistent Exploration in Continuous Control Tasks with Sparse Rewards

Susan Amin · Maziar Gomrokchi · Hossein Aboutalebi · Harsh Satija · Doina Precup

A major challenge in reinforcement learning is the design of exploration strategies, especially for environments with sparse reward structures and continuous state and action spaces. Intuitively, if the reinforcement signal is very scarce, the agent should rely on some form of short-term memory in order to cover its environment efficiently. We propose a new exploration method, based on two intuitions: (1) the choice of the next exploratory action should depend not only on the (Markovian) state of the environment, but also on the agent's trajectory so far, and (2) the agent should utilize a measure of spread in the state space to avoid getting stuck in a small region. Our method leverages concepts often used in statistical physics to provide explanations for the behavior of simplified (polymer) chains in order to generate persistent (locally self-avoiding) trajectories in state space. We discuss the theoretical properties of locally self-avoiding walks and their ability to provide a kind of short-term memory through a decaying temporal correlation within the trajectory. We provide empirical evaluations of our approach in a simulated 2D navigation task, as well as higher-dimensional MuJoCo continuous control locomotion tasks with sparse rewards.


Lottery Ticket Preserves Weight Correlation: Is It Desirable or Not?

Ning Liu · Geng Yuan · Zhengping Che · Xuan Shen · Xiaolong Ma · Qing Jin · Jian Ren · Jian Tang · Sijia Liu · Yanzhi Wang

In deep model compression, the recent finding "Lottery Ticket Hypothesis" (LTH) pointed out that there could exist a winning ticket (i.e., a properly pruned sub-network together with original weight initialization) that can achieve competitive performance than the original dense network. However, it is not easy to observe such winning property in many scenarios, where for example, a relatively large learning rate is used even if it benefits training the original dense model. In this work, we investigate the underlying condition and rationale behind the winning property, and find that the underlying reason is largely attributed to the correlation between initialized weights and final-trained weights when the learning rate is not sufficiently large. Thus, the existence of winning property is correlated with an insufficient DNN pretraining, and is unlikely to occur for a well-trained DNN. To overcome this limitation, we propose the "pruning & fine-tuning" method that consistently outperforms lottery ticket sparse training under the same pruning algorithm and the same total training epochs. Extensive experiments over multiple deep models (VGG, ResNet, MobileNet-v2) on different datasets have been conducted to justify our proposals.


Low-Precision Reinforcement Learning: Running Soft Actor-Critic in Half Precision

Johan Björck · Xiangyu Chen · Christopher De Sa · Carla Gomes · Kilian Weinberger

Low-precision training has become a popular approach to reduce compute requirements, memory footprint, and energy consumption in supervised learning. In contrast, this promising approach has not yet enjoyed similarly widespread adoption within the reinforcement learning (RL) community, partly because RL agents can be notoriously hard to train even in full precision. In this paper we consider continuous control with the state-of-the-art SAC agent and demonstrate that a na\"ive adaptation of low-precision methods from supervised learning fails. We propose a set of six modifications, all straightforward to implement, that leaves the underlying agent and its hyperparameters unchanged but improves the numerical stability dramatically. The resulting modified SAC agent has lower memory and compute requirements while matching full-precision rewards, demonstrating that low-precision training can substantially accelerate state-of-the-art RL without parameter tuning.


Marginal Contribution Feature Importance - an Axiomatic Approach for Explaining Data

Amnon Catav · Boyang Fu · Yazeed Zoabi · Ahuva Weiss Meilik · Noam Shomron · Jason Ernst · Sriram Sankararaman · Ran Gilad-Bachrach

In recent years, methods were proposed for assigning feature importance scores to measure the contribution of individual features. While in some cases the goal is to understand a specific model, in many cases the goal is to understand the contribution of certain properties (features) to a real-world phenomenon. Thus, a distinction has been made between feature importance scores that explain a model and scores that explain the data. When explaining the data, machine learning models are used as proxies in settings where conducting many real-world experiments is expensive or prohibited. While existing feature importance scores show great success in explaining models, we demonstrate their limitations when explaining the data, especially in the presence of correlations between features. Therefore, we develop a set of axioms to capture properties expected from a feature importance score when explaining data and prove that there exists only one score that satisfies all of them, the Marginal Contribution Feature Importance (MCI). We analyze the theoretical properties of this score function and demonstrate its merits empirically.


Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

Dongchan Min · Dong Bok Lee · Eunho Yang · Sung Ju Hwang

With rapid progress in neural text-to-speech (TTS) models, personalized speech generation is now in high demand for many applications. For practical applicability, a TTS model should generate high-quality speech with only a few audio samples from the given speaker, that are also short in length. However, existing methods either require to fine-tune the model or achieve low adaptation quality without fine-tuning. In this work, we propose StyleSpeech, a new TTS model which not only synthesizes high-quality speech but also effectively adapts to new speakers. Specifically, we propose Style-Adaptive Layer Normalization (SALN) which aligns gain and bias of the text input according to the style extracted from a reference speech audio. With SALN, our model effectively synthesizes speech in the style of the target speaker even from a single speech audio. Furthermore, to enhance StyleSpeech's adaptation to speech from new speakers, we extend it to Meta-StyleSpeech by introducing two discriminators trained with style prototypes, and performing episodic training. The experimental results show that our models generate high-quality speech which accurately follows the speaker's voice with single short-duration (1-3 sec) speech audio, significantly outperforming baselines.


Monotonic Robust Policy Optimization with Model Discrepancy

yuankun jiang · Chenglin Li · Wenrui Dai · Junni Zou · Hongkai Xiong

State-of-the-art deep reinforcement learning (DRL) algorithms tend to overfit due to the model discrepancy between source and target environments. Though applying domain randomization during training can improve the average performance by randomly generating a sufficient diversity of environments in simulator, the worst-case environment is still neglected without any performance guarantee. Since the average and worst-case performance are both important for generalization in RL, in this paper, we propose a policy optimization approach for concurrently improving the policy's performance in the average and worst-case environment. We theoretically derive a lower bound for the worst-case performance of a given policy by relating it to the expected performance. Guided by this lower bound, we formulate an optimization problem to jointly optimize the policy and sampling distribution, and prove that by iteratively solving it the worst-case performance is monotonically improved. We then develop a practical algorithm, named monotonic robust policy optimization (MRPO). Experimental evaluations in several robot control tasks demonstrate that MRPO can generally improve both the average and worst-case performance in the source environments for training, and facilitate in all cases the learned policy with a better generalization capability in some unseen testing environments.


Multi-Task Reinforcement Learning with Context-based Representations

Shagun Sodhani · Amy Zhang · Joelle Pineau

https://drive.google.com/file/d/1lRV72XaKoxZjgQrLXBJhsM82x54_1Vc4/view?usp=sharing


Network Inference and Influence Maximization from Samples

Wei Chen · Xiaoming Sun · Jialin Zhang · Zhijie Zhang

Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.


Neural Rough Differential Equations for Long Time Series

James Morrill · Cristopher Salvi · Patrick Kidger · James Foster

Neural controlled differential equations (CDEs) are the continuous-time analogue of recurrent neural networks, as Neural ODEs are to residual networks, and offer a memory-efficient continuous-time way to model functions of potentially irregular time series. Existing methods for computing the forward pass of a Neural CDE involve embedding the incoming time series into path space, often via interpolation, and using evaluations of this path to drive the hidden state. Here, we use rough path theory to extend this formulation. Instead of directly embedding into path space, we instead represent the input signal over small time intervals through its \textit{log-signature}, which are statistics describing how the signal drives a CDE. This is the approach for solving \textit{rough differential equations} (RDEs), and correspondingly we describe our main contribution as the introduction of Neural RDEs. This extension has a purpose: by generalising the Neural CDE approach to a broader class of driving signals, we demonstrate particular advantages for tackling long time series. In this regime, we demonstrate efficacy on problems of length up to 17k observations and observe significant training speed-ups, improvements in model performance, and reduced memory requirements compared to existing approaches.


Oblivious Sketching-based Central Path Method for Linear Programming

Zhao Song · Zheng Yu

In this work, we propose a sketching-based central path method for solving linear programmings, whose running time matches the state of the art results [Cohen, Lee, Song STOC 19; Lee, Song, Zhang COLT 19]. Our method opens up the iterations of the central path method and deploys an "iterate and sketch" approach towards the problem by introducing a new coordinate-wise embedding technique, which may be of independent interest. Compare to previous methods, the work [Cohen, Lee, Song STOC 19] enjoys feasibility while being non-oblivious, and [Lee, Song, Zhang COLT 19] is oblivious but infeasible, and relies on $\mathit{dense}$ sketching matrices such as subsampled randomized Hadamard/Fourier transform matrices. Our method enjoys the benefits of being both oblivious and feasible, and can use $\mathit{sparse}$ sketching matrix [Nelson, Nguyen FOCS 13] to speed up the online matrix-vector multiplication. Our framework for solving LP naturally generalizes to a broader class of convex optimization problems including empirical risk minimization.


Offline Reinforcement Learning with Fisher Divergence Critic Regularization

Ilya Kostrikov · Rob Fergus · Jonathan Tompson · Ofir Nachum

Many modern approaches to offline Reinforcement Learning (RL) utilize behavior regularization, typically augmenting a model-free actor critic algorithm with a penalty measuring divergence of the policy from the offline data. In this work, we propose an alternative approach to encouraging the learned policy to stay close to the data, namely parameterizing the critic as the log-behavior-policy, which generated the offline data, plus a state-action value offset term, which can be learned using a neural network. Behavior regularization then corresponds to an appropriate regularizer on the offset term. We propose using a gradient penalty regularizer for the offset term and demonstrate its equivalence to Fisher divergence regularization, suggesting connections to the score matching and generative energy-based model literature. We thus term our resulting algorithm Fisher-BRC (Behavior Regularized Critic). On standard offline RL benchmarks, Fisher-BRC achieves both improved performance and faster convergence over existing state-of-the-art methods.


On Estimation in Latent Variable Models

Guanhua Fang · Ping Li

Latent variable models have been playing a central role in statistics, econometrics, machine learning with applications to repeated observation study, panel data inference, user behavior analysis, etc. In many modern applications, the inference based on latent variable models involves one or several of the following features: the presence of complex latent structure, the observed and latent variables being continuous or discrete, constraints on parameters, and data size being large. Therefore, solving an estimation problem for general latent variable models is highly non-trivial. In this paper, we consider a gradient based method via using variance reduction technique to accelerate estimation procedure. Theoretically, we show the convergence results for the proposed method under general and mild model assumptions. The algorithm has better computational complexity compared with the classical gradient methods and maintains nice statistical properties. Various numerical results corroborate our theory.


On Explainability of Graph Neural Networks via Subgraph Explorations

Hao Yuan · Haiyang Yu · Jie Wang · Kang Li · Shuiwang Ji

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.


Online Graph Dictionary Learning

Cédric Vincent-Cuaz · Titouan Vayer · Rémi Flamary · Marco Corneli · Nicolas Courty

Dictionary learning is a key tool for representation learning, that explains the data as linear combination of few basic elements. Yet, this analysis is not amenable in the context of graph learning, as graphs usually belong to different metric spaces. We fill this gap by proposing a new online Graph Dictionary Learning approach, which uses the Gromov Wasserstein divergence for the data fitting term. In our work, graphs are encoded through their nodes' pairwise relations and modeled as convex combination of graph atoms, i.e. dictionary elements, estimated thanks to an online stochastic algorithm, which operates on a dataset of unregistered graphs with potentially different number of nodes. Our approach naturally extends to labeled graphs, and is completed by a novel upper bound that can be used as a fast approximation of Gromov Wasserstein in the embedding space. We provide numerical evidences showing the interest of our approach for unsupervised embedding of graph datasets and for online graph subspace estimation and tracking.


On-Policy Deep Reinforcement Learning for the Average-Reward Criterion

Yiming Zhang · Keith Ross

We develop theory and algorithms for average-reward on-policy Reinforcement Learning (RL). We first consider bounding the difference of the long-term average reward for two policies. We show that previous work based on the discounted return (Schulman et al. 2015, Achiam et al. 2017) results in a non-meaningful lower bound in the average reward setting. By addressing the average-reward criterion directly, we then derive a novel bound which depends on the average divergence between the policies and on Kemeny's constant. Based on this bound, we develop an iterative procedure which produces a sequence of monotonically improved policies for the average reward criterion. This iterative procedure can then be combined with classic Deep Reinforcement Learning (DRL) methods, resulting in practical DRL algorithms that target the long-run average reward criterion. In particular, we demonstrate that Average-Reward TRPO (ATRPO), which adapts the on-policy TRPO algorithm to the average-reward criterion, significantly outperforms TRPO in the most challenging MuJuCo environments.


On Proximal Policy Optimization's Heavy-tailed Gradients

Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar

Modern policy gradient algorithms such as Proximal Policy Optimization (PPO) rely on an arsenal of heuristics, including loss clipping and gradient clipping, to ensure successful learning. These heuristics are reminiscent of techniques from robust statistics, commonly used for estimation in outlier-rich ("heavy-tailed") regimes. In this paper, we present a detailed empirical study to characterize the heavy-tailed nature of the gradients of the PPO surrogate reward function. We demonstrate that the gradients, especially for the actor network, exhibit pronounced heavy-tailedness and that it increases as the agent's policy diverges from the behavioral policy (i.e., as the agent goes further off policy). Further examination implicates the likelihood ratios and advantages in the surrogate reward as the main sources of the observed heavy-tailedness. We then highlight issues arising due to the heavy-tailed nature of the gradients. In this light, we study the effects of the standard PPO clipping heuristics, demonstrating that these tricks primarily serve to offset heavy-tailedness in gradients. Thus motivated, we propose incorporating GMOM, a high-dimensional robust estimator, into PPO as a substitute for three clipping tricks. Despite requiring less hyperparameter tuning, our method matches the performance of PPO (with all heuristics enabled) on a battery of MuJoCo continuous control tasks.


On the Predictability of Pruning Across Scales

Jonathan Rosenfeld · Jonathan Frankle · Michael Carbin · Nir Shavit

We show that the error of iteratively magnitude-pruned networks empirically follows a scaling law with interpretable coefficients that depend on the architecture and task. We functionally approximate the error of the pruned networks, showing it is predictable in terms of an invariant tying width, depth, and pruning level, such that networks of vastly different pruned densities are interchangeable. We demonstrate the accuracy of this approximation over orders of magnitude in depth, width, dataset size, and density. We show that the functional form holds (generalizes) for large scale data (e.g., ImageNet) and architectures (e.g., ResNets). As neural networks become ever larger and costlier to train, our findings suggest a framework for reasoning conceptually and analytically about a standard method for unstructured pruning.


Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search

Vu Nguyen · Tam Le · Makoto Yamada · Michael A Osborne

Neural architecture search (NAS) automates the design of deep neural networks. One of the main challenges in searching complex and non-continuous architectures is to compare the similarity of networks that the conventional Euclidean metric may fail to capture. Optimal transport (OT) is resilient to such complex structure by considering the minimal cost for transporting a network into another. However, the OT is generally not negative definite which may limit its ability to build the positive-definite kernels required in many kernel-dependent frameworks. Building upon tree-Wasserstein (TW), which is a negative definite variant of OT, we develop a novel discrepancy for neural architectures, and demonstrate it within a Gaussian process surrogate model for the sequential NAS settings. Furthermore, we derive a novel parallel NAS, using quality k-determinantal point process on the GP posterior, to select diverse and high-performing architectures from a discrete set of candidates. Empirically, we demonstrate that our TW-based approaches outperform other baselines in both sequential and parallel NAS.


Out-of-Distribution Generalization via Risk Extrapolation (REx)

David Krueger · Ethan Caballero · Joern-Henrik Jacobsen · Amy Zhang · Jonathan Binas · Dinghuai Zhang · Remi Le Priol · Aaron Courville

Distributional shift is one of the major obstacles when transferring machine learning prediction systems from the lab to the real world. To tackle this problem, we assume that variation across training domains is representative of the variation we might encounter at test time, but also that shifts at test time may be more extreme in magnitude. In particular, we show that reducing differences in risk across training domains can reduce a model’s sensitivity to a wide range of extreme distributional shifts, including the challenging setting where the input contains both causal and anti-causal elements. We motivate this approach, Risk Extrapolation (REx), as a form of robust optimization over a perturbation set of extrapolated domains (MM-REx), and propose a penalty on the variance of training risks (V-REx) as a simpler variant. We prove that variants of REx can recover the causal mechanisms of the targets, while also providing robustness to changes in the input distribution (``covariate shift''). By appropriately trading-off robustness to causally induced distributional shifts and covariate shift, REx is able to outperform alternative methods such as Invariant Risk Minimization in situations where these types of shift co-occur.


Parallel and Flexible Sampling from Autoregressive Models via Langevin Dynamics

Vivek Jayaram · John Thickstun

This paper introduces an alternative approach to sampling from autoregressive models. Autoregressive models are typically sampled sequentially, according to the transition dynamics defined by the model. Instead, we propose a sampling procedure that initializes a sequence with white noise and follows a Markov chain defined by Langevin dynamics on the global log-likelihood of the sequence. This approach parallelizes the sampling process and generalizes to conditional sampling. Using an autoregressive model as a Bayesian prior, we can steer the output of a generative model using a conditional likelihood or constraints. We apply these techniques to autoregressive models in the visual and audio domains, with competitive results for audio source separation, super-resolution, and inpainting.


PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via Relabeling Experience and Unsupervised Pre-training

Kimin Lee · Laura Smith · Pieter Abbeel

Conveying complex objectives to reinforcement learning (RL) agents can often be difficult, involving meticulous design of reward functions that are sufficiently informative yet easy enough to provide. Human-in-the-loop RL methods allow practitioners to instead interactively teach agents through tailored feedback; however, such approaches have been challenging to scale since human feedback is very expensive. In this work, we aim to make this process more sample- and feedback-efficient. We present an off-policy, interactive RL algorithm that capitalizes on the strengths of both feedback and off-policy learning. Specifically, we learn a reward model by actively querying a teacher's preferences between two clips of behavior and use it to train an agent. To enable off-policy learning, we relabel all the agent's past experience when its reward model changes. We additionally show that pre-training our agents with unsupervised exploration substantially increases the mileage of its queries. We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods, including a variety of locomotion and robotic manipulation skills. We also show that our method is able to utilize real-time human feedback to effectively prevent reward exploitation and learn new behaviors that are difficult to specify with standard reward functions.


Policy Gradient Bayesian Robust Optimization for Imitation Learning

Zaynah Javed · Daniel Brown · Satvik Sharma · Jerry Zhu · Ashwin Balakrishna · Marek Petrik · Anca Dragan · Ken Goldberg

The difficulty in specifying rewards for many real-world problems has led to an increased focus on learning rewards from human feedback, such as demonstrations. However, there are often many different reward functions that explain the human feedback, leaving agents with uncertainty over what the true reward function is. While most policy optimization approaches handle this uncertainty by optimizing for expected performance, many applications demand risk-averse behavior. We derive a novel policy gradient-style robust optimization approach, PG-BROIL, that optimizes a soft-robust objective that balances expected performance and risk. To the best of our knowledge, PG-BROIL is the first policy optimization algorithm robust to a distribution of reward hypotheses which can scale to continuous MDPs. Results suggest that PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse and outperforms state-of-the-art imitation learning algorithms when learning from ambiguous demonstrations by hedging against uncertainty, rather than seeking to uniquely identify the demonstrator's reward function.


Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning

Hiroki Furuta · Tatsuya Matsushima · Tadashi Kozuno · Yutaka Matsuo · Sergey Levine · Ofir Nachum · Shixiang Gu

Progress in deep reinforcement learning (RL) research is largely enabled by benchmark task environments. However, analyzing the nature of those environments is often overlooked. In particular, we still do not have agreeable ways to measure the difficulty or solvability of a task, given that each has fundamentally different actions, observations, dynamics, rewards, and can be tackled with diverse RL algorithms. In this work, we propose policy information capacity (PIC) -- the mutual information between policy parameters and episodic return -- and policy-optimal information capacity (POIC) -- between policy parameters and episodic optimality -- as two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty. Evaluating our metrics across toy environments as well as continuous control benchmark tasks from OpenAI Gym and DeepMind Control Suite, we empirically demonstrate that these information-theoretic metrics have higher correlations with normalized task solvability scores than a variety of alternatives. Lastly, we show that these metrics can also be used for fast and compute-efficient optimizations of key design parameters such as reward shaping, policy architectures, and MDP properties for better solvability by RL algorithms without ever running full RL experiments.


Probabilistic Sequential Shrinking: A Best Arm Identification Algorithm for Stochastic Bandits with Corruptions

Zixin Zhong · Wang Chi Cheung · Vincent Tan

We consider a best arm identification (BAI) problem for stochastic bandits with adversarial corruptions in the fixed-budget setting of T steps. We design a novel randomized algorithm, Probabilistic Sequential Shrinking(u) (PSS(u)), which is agnostic to the amount of corruptions. When the amount of corruptions per step (CPS) is below a threshold, PSS(u) identifies the best arm or item with probability tending to 1 as T→∞. Otherwise, the optimality gap of the identified item degrades gracefully with the CPS.We argue that such a bifurcation is necessary. In PSS(u), the parameter u serves to balance between the optimality gap and success probability. The injection of randomization is shown to be essential to mitigate the impact of corruptions. To demonstrate this, we design two attack strategies that are applicable to any algorithm. We apply one of them to a deterministic analogue of PSS(u) known as Successive Halving (SH) by Karnin et al. (2013). The attack strategy results in a high failure probability for SH, but PSS(u) remains robust. In the absence of corruptions, PSS(2)'s performance guarantee matches SH's. We show that when the CPS is sufficiently large, no algorithm can achieve a BAI probability tending to 1 as T→∞. Numerical experiments corroborate our theoretical findings.


Quantization Algorithms for Random Fourier Features

Xiaoyun Li · Ping Li

The method of random projection (RP) is the standard technique for dimensionality reduction, approximate near neighbor search, compressed sensing, etc., which provides a simple and effective scheme for approximating pairwise inner products and Euclidean distances in massive data. Closely related to RP, the method of random Fourier features (RFF) has also become popular for approximating the (nonlinear) Gaussian kernel. RFF applies a specific nonlinear transformation on the projected data from RP. In practice, using the Gaussian kernel often leads to better performance than the linear kernel (inner product). After random projections, quantization is an important step for efficient data storage, computation and transmission. Quantization for RP has been extensively studied in the literature. In this paper, we focus on developing quantization algorithms for RFF. The task is in a sense challenging due to the tuning parameter $\gamma$ in the Gaussian kernel. For example, the quantizer and the quantized data might be tied to each specific Gaussian kernel parameter $\gamma$. Our contribution begins with the analysis on the probability distributions of RFF, and an interesting discovery that the marginal distribution of RFF is free of the parameter $\gamma$. This significantly simplifies the design of the Lloyd-Max (LM) quantization scheme for RFF in that there would be only one LM quantizer (regardless of $\gamma$). Detailed theoretical analysis is provided on the kernel estimators and approximation error, and experiments confirm the effectiveness and efficiency of the proposed method.


Randomized Entity-wise Factorization for Multi-Agent Reinforcement Learning

Shariq Iqbal · Christian Schroeder · Bei Peng · Wendelin Boehmer · Shimon Whiteson · Fei Sha

Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities; however, common patterns of behavior often emerge among these agents/entities. Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?'' By posing this counterfactual question, we can recognize state-action trajectories within sub-groups of entities that we may have encountered in another task and use what we learned in that task to inform our prediction in the current one. We then reconstruct a prediction of the full returns as a combination of factors considering these disjoint groups of entities and train thisrandomly factorized" value function as an auxiliary objective for value-based multi-agent reinforcement learning. By doing so, our model can recognize and leverage similarities across tasks to improve learning efficiency in a multi-task setting. Our approach, Randomized Entity-wise Factorization for Imagined Learning (REFIL), outperforms all strong baselines by a significant margin in challenging multi-task StarCraft micromanagement settings.


Reinforcement Learning of Implicit and Explicit Control Flow Instructions

Ethan Brooks · Janarthanan Rajendran · Richard Lewis · Satinder Singh

Learning to flexibly follow task instructions in dynamic environments poses interesting challenges for reinforcement learning agents. We focus here on the problem of learning control flow that deviates from a strict step-by-step execution of instructions—that is, control flow that may skip forward over parts of the instructions or return backward to previously completed or skipped steps. Demand for such flexible control arises in two fundamental ways: explicitly when control is specified in the instructions themselves (such as conditional branching and looping) and implicitly when stochastic environment dynamics require re-completion of instructions whose effects have been perturbed, or opportunistic skipping of instructions whose effects are already present. We formulate an attention-based architecture that meets these challenges by learning, from task reward only, to flexibly attend to and condition behavior on an internal encoding of the instructions. We test the architecture's ability to learn both explicit and implicit control in two illustrative domains---one inspired by Minecraft and the other by StarCraft---and show that the architecture exhibits zero-shot generalization to novel instructions of length greater than those in a training set, at a performance level unmatched by three baseline recurrent architectures and one ablation architecture.


Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives

Da Xu · Chuanwei Ruan · Evren Korpeoglu · Sushant Kumar · Kannan Achan

The recent work by Rendle et al. (2020), based on empirical observations, argues that matrix-factorization collaborative filtering (MCF) compares favorably to neural collaborative filtering (NCF), and conjectures the dot product's superiority over the feed-forward neural network as similarity function. In this paper, we address the comparison rigorously by answering the following questions: 1. what is the limiting expressivity of each model; 2. under the practical gradient descent, to which solution does each optimization path converge; 3. how would the models generalize under the inductive and transductive learning setting. Our results highlight the similar expressivity for the overparameterized NCF and MCF as kernelized predictors, and reveal the relation between their optimization paths. We further show their different generalization behaviors, where MCF and NCF experience specific tradeoff and comparison in the transductive and inductive collaborative filtering setting. Lastly, by showing a novel generalization result, we reveal the critical role of correcting exposure bias for model evaluation in the inductive setting. Our results explain some of the previously observed conflicts, and we provide synthetic and real-data experiments to shed further insights to this topic.


Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss

Xue Yang · Junchi Yan · Qi Ming · Wentao Wang · xiaopeng zhang · Qi Tian

Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design. In this paper, we propose a novel regression loss based on Gaussian Wasserstein distance as a fundamental approach to solve the problem. Specifically, the rotated bounding box is converted to a 2-D Gaussian distribution, which enables to approximate the indifferentiable rotational IoU induced loss by the Gaussian Wasserstein distance (GWD) which can be learned efficiently by gradient back-propagation. GWD can still be informative for learning even there is no overlapping between two rotating bounding boxes which is often the case for small object detection. Thanks to its three unique properties, GWD can also elegantly solve the boundary discontinuity and square-like problem regardless how the bounding box is defined. Experiments on five datasets using different detectors show the effectiveness of our approach, and codes are available at https://github.com/yangxue0827/RotationDetection.


Robust Asymmetric Learning in POMDPs

Andrew Warrington · Jonathan Lavington · Adam Scibior · Mark Schmidt · Frank Wood

Policies for partially observed Markov decision processes can be efficiently learned by imitating expert policies generated using asymmetric information. Unfortunately, existing approaches for this kind of imitation learning have a serious flaw: the expert does not know what the trainee cannot see, and as a result may encourage actions that are sub-optimal or unsafe under partial information. To address this issue, we derive an update which, when applied iteratively to an expert, maximizes the expected reward of the trainee's policy. Using this update, we construct a computationally efficient algorithm, adaptive asymmetric DAgger (A2D), that jointly trains the expert and trainee policies. We then show that A2D allows the trainee to safely imitate the modified expert, and outperforms policies learned either by imitating a fixed expert or through direct reinforcement learning.


RRL: Resnet as representation for Reinforcement Learning

Rutav Shah · Vikash Kumar

The ability to autonomously learn behaviors via direct interactions in uninstrumented environments can lead to generalist robots capable of enhancing productivity or providing care in unstructured settings like homes. Such uninstrumented settings warrant operations only using the robot’s proprioceptive sensor such as onboard cameras, joint encoders, etc which can be challenging for policy learning owing to the high dimensionality and partial observability issues. We propose RRL: Resnet as representation for Reinforcement Learning – a straightforward yet effective approach that can learn complex behaviors directly from proprioceptive inputs. RRL fuses features extracted from pre-trained Resnet into the standard reinforcement learning pipeline and delivers results comparable to learning directly from the state. In a simulated dexterous manipulation benchmark, where the state of the art methods fails to make significant progress, RRL delivers contact rich behaviors. The appeal of RRL lies in its simplicity in bringing together progress from the fields of Representation Learning, Imitation Learning, and Reinforcement Learning. Its effectiveness in learning behaviors directly from visual inputs with performance and sample efficiency matching learning directly from the state, even in complex high dimensional domains, is far from obvious.


Scalable Normalizing Flows for Permutation Invariant Densities

Marin Biloš · Stephan Günnemann

Modeling sets is an important problem in machine learning since this type of data can be found in many domains. A promising approach defines a family of permutation invariant densities with continuous normalizing flows. This allows us to maximize the likelihood directly and sample new realizations with ease. In this work, we demonstrate how calculating the trace, a crucial step in this method, raises issues that occur both during training and inference, limiting its practicality. We propose an alternative way of defining permutation equivariant transformations that give closed form trace. This leads not only to improvements while training, but also to better final performance. We demonstrate the benefits of our approach on point processes and general set modeling.


SCC: an efficient deep reinforcement learning agent mastering the game of StarCraft II

Xiangjun Wang · Junxiao SONG · Penghui Qi · Peng Peng · Zhenkun Tang · Wei Zhang · Weimin Li · Xiongjun Pi · Jujie He · Chao Gao · Haitao Long · Quan Yuan

AlphaStar, the AI that reaches GrandMaster level in StarCraft II, is a remarkable milestone demonstrating what deep reinforcement learning can achieve in complex Real-Time Strategy (RTS) games. However, the complexities of the game, algorithms and systems, and especially the tremendous amount of computation needed are big obstacles for the community to conduct further research in this direction. We propose a deep reinforcement learning agent, StarCraft Commander (SCC). With order of magnitude less computation, it demonstrates top human performance defeating GrandMaster players in test matches and top professional players in a live event. Moreover, it shows strong robustness to various human strategies and discovers novel strategies unseen from human plays. In this paper, we’ll share the key insights and optimizations on efficient imitation learning and reinforcement learning for StarCraft II full game.


SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies

Jim Fan · Guanzhi Wang · De-An Huang · Zhiding Yu · Li Fei-Fei · Yuke Zhu · Anima Anandkumar

Generalization has been a long-standing challenge for reinforcement learning (RL). Visual RL, in particular, can be easily distracted by irrelevant factors in high-dimensional observation space. In this work, we consider robust policy learning which targets zero-shot generalization to unseen visual environments with large distributional shift. We propose SECANT, a novel self-expert cloning technique that leverages image augmentation in two stages to decouple robust representation learning from policy optimization. Specifically, an expert policy is first trained by RL from scratch with weak augmentations. A student network then learns to mimic the expert policy by supervised learning with strong augmentations, making its representation more robust against visual variations compared to the expert. Extensive experiments demonstrate that SECANT significantly advances the state of the art in zero-shot generalization across 4 challenging domains. Our average reward improvements over prior SOTAs are: DeepMind Control (+26.5%), robotic manipulation (+337.8%), vision-based autonomous driving (+47.7%), and indoor object navigation (+15.8%). Code release and video are available at https://linxifan.github.io/secant-site/.


Signatured Deep Fictitious Play for Mean Field Games with Common Noise

Ming Min · Ruimeng Hu

Existing deep learning methods for solving mean-field games (MFGs) with common noise fix the sampling common noise paths and then solve the corresponding MFGs. This leads to a nested loop structure with millions of simulations of common noise paths in order to produce accurate solutions, which results in prohibitive computational cost and limits the applications to a large extent. In this paper, based on the rough path theory, we propose a novel single-loop algorithm, named signatured deep fictitious play (Sig-DFP), by which we can work with the unfixed common noise setup to avoid the nested loop structure and reduce the computational complexity significantly. The proposed algorithm can accurately capture the effect of common uncertainty changes on mean-field equilibria without further training of neural networks, as previously needed in the existing machine learning algorithms. The efficiency is supported by three applications, including linear-quadratic MFGs, mean-field portfolio game, and mean-field game of optimal consumption and investment. Overall, we provide a new point of view from the rough path theory to solve MFGs with common noise with significantly improved efficiency and an extensive range of applications. In addition, we report the first deep learning work to deal with extended MFGs (a mean-field interaction via both the states and controls) with common noise.


Stabilizing Equilibrium Models by Jacobian Regularization

Shaojie Bai · Vladlen Koltun · Zico Kolter

Deep equilibrium networks (DEQs) are a new class of models that eschews traditional depth in favor of finding the fixed point of a single non-linear layer. These models have been shown to achieve performance competitive with the state-of-the-art deep networks while using significantly less memory. Yet they are also slower, brittle to architectural choices, and introduce potential instability to the model. In this paper, we propose a regularization scheme for DEQ models that explicitly regularizes the Jacobian of the fixed-point update equations to stabilize the learning of equilibrium models. We show that this regularization adds only minimal computational cost, significantly stabilizes the fixed-point convergence in both forward and backward passes, and scales well to high-dimensional, realistic domains (e.g., WikiText-103 language modeling and ImageNet classification). Using this method, we demonstrate, for the first time, an implicit-depth model that runs with approximately the same speed and level of performance as popular conventional deep networks such as ResNet-101, while still maintaining the constant memory footprint and architectural simplicity of DEQs. Code is available https://github.com/locuslab/deq.


Stochastic Iterative Graph Matching

Linfeng Liu · Michael Hughes · Soha Hassoun · Liping Liu

Recent works apply Graph Neural Networks (GNNs) to graph matching tasks and show promising results. Considering that model outputs are complex matchings, we devise several techniques to improve the learning of GNNs and obtain a new model, Stochastic Iterative Graph MAtching (SIGMA). Our model predicts a distribution of matchings, instead of a single matching, for a graph pair so the model can explore several probable matchings. We further introduce a novel multi-step matching procedure, which learns how to refine a graph pair's matching results incrementally. The model also includes dummy nodes so that the model does not have to find matchings for nodes without correspondence. We fit this model to data via scalable stochastic optimization. We conduct extensive experiments across synthetic graph datasets as well as biochemistry and computer vision applications. Across all tasks, our results show that SIGMA can produce significantly improved graph matching results compared to state-of-the-art models. Ablation studies verify that each of our components (stochastic training, iterative matching, and dummy nodes) offers noticeable improvement.


Submodular Maximization subject to a Knapsack Constraint: Combinatorial Algorithms with Near-optimal Adaptive Complexity

Georgios Amanatidis · Federico Fusco · Philip Lazos · Stefano Leonardi · Alberto Marchetti-Spaccamela · Rebecca Reiffenhäuser

The growing need to deal with massive instances motivates the design of algorithms balancing the quality of the solution with applicability. For the latter, an important measure is the \emph{adaptive complexity}, capturing the number of sequential rounds of parallel computation needed. In this work we obtain the first \emph{constant factor} approximation algorithm for non-monotone submodular maximization subject to a knapsack constraint with \emph{near-optimal} $O(\log n)$ adaptive complexity. Low adaptivity by itself, however, is not enough: one needs to account for the total number of function evaluations (or value queries) as well. Our algorithm asks $\tilde{O}(n^2)$ value queries, but can be modified to run with only $\tilde{O}(n)$ instead, while retaining a low adaptive complexity of $O(\log^2n)$. Besides the above improvement in adaptivity, this is also the first \emph{combinatorial} approach with sublinear adaptive complexity for the problem and yields algorithms comparable to the state-of-the-art even for the special cases of cardinality constraints or monotone objectives. Finally, we showcase our algorithms' applicability on real-world datasets.


Temporally Correlated Task Scheduling for Sequence Learning

Xueqing Wu · Lewen Wang · Yingce Xia · Weiqing Liu · Lijun Wu · Shufang Xie · Tao Qin · Tie-Yan Liu

Sequence learning has attracted much research attention from the machine learning community in recent years. In many applications, a sequence learning task is usually associated with multiple temporally correlated auxiliary tasks, which are different in terms of how much input information to use or which future step to predict. For example, (i) in simultaneous machine translation, one can conduct translation under different latency (i.e., how many input words to read/wait before translation); (ii) in stock trend forecasting, one can predict the price of a stock in different future days (e.g., tomorrow, the day after tomorrow). While it is clear that those temporally correlated tasks can help each other, there is a very limited exploration on how to better leverage multiple auxiliary tasks to boost the performance of the main task. In this work, we introduce a learnable scheduler to sequence learning, which can adaptively select auxiliary tasks for training depending on the model status and the current training data. The scheduler and the model for the main task are jointly trained through bi-level optimization. Experiments show that our method significantly improves the performance of simultaneous machine translation and stock trend forecasting.


TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models

Zhuohan Li · Siyuan Zhuang · Shiyuan Guo · Danyang Zhuo · Hao Zhang · Dawn Song · Ion Stoica

Model parallelism has become a necessity for training modern large-scale deep language models. In this work, we identify a new and orthogonal dimension from existing model parallel approaches: it is possible to perform pipeline parallelism within a single training sequence for Transformer-based language models thanks to its autoregressive property. This enables a more fine-grained pipeline compared with previous work. With this key idea, we design TeraPipe, a high-performance token-level pipeline parallel algorithm for synchronous model-parallel training of Transformer-based language models. We develop a novel dynamic programming-based algorithm to calculate the optimal pipelining execution scheme given a specific model and cluster configuration. We show that TeraPipe can speed up the training by 5.0x for the largest GPT-3 model with 175 billion parameters on an AWS cluster with 48 p3.16xlarge instances compared with state-of-the-art model-parallel methods. The code for reproduction can be found at https://github.com/zhuohan123/terapipe


The Earth Mover's Pinball Loss: Quantiles for Histogram-Valued Regression

Florian List

Although ubiquitous in the sciences, histogram data have not received much attention by the Deep Learning community. Whilst regression and classification tasks for scalar and vector data are routinely solved by neural networks, a principled approach for estimating histogram labels as a function of an input vector or image is lacking in the literature. We present a dedicated method for Deep Learning-based histogram regression, which incorporates cross-bin information and yields distributions over possible histograms, expressed by $\tau$-quantiles of the cumulative histogram in each bin. The crux of our approach is a new loss function obtained by applying the pinball loss to the cumulative histogram, which for 1D histograms reduces to the Earth Mover's distance (EMD) in the special case of the median ($\tau = 0.5$), and generalizes it to arbitrary quantiles. We validate our method with an illustrative toy example, a football-related task, and an astrophysical computer vision problem. We show that with our loss function, the accuracy of the predicted median histograms is very similar to the standard EMD case (and higher than for per-bin loss functions such as cross-entropy), while the predictions become much more informative at almost no additional computational cost.


The Emergence of Individuality

Jiechuan Jiang · Zongqing Lu

Individuality is essential in human society. It induces the division of labor and thus improves the efficiency and productivity. Similarly, it should also be a key to multi-agent cooperation. Inspired by that individuality is of being an individual separate from others, we propose a simple yet efficient method for the emergence of individuality (EOI) in multi-agent reinforcement learning (MARL). EOI learns a probabilistic classifier that predicts a probability distribution over agents given their observation and gives each agent an intrinsic reward of being correctly predicted by the classifier. The intrinsic reward encourages the agents to visit their own familiar observations, and learning the classifier by such observations makes the intrinsic reward signals stronger and in turn makes the agents more identifiable. To further enhance the intrinsic reward and promote the emergence of individuality, two regularizers are proposed to increase the discriminability of the classifier. We implement EOI on top of popular MARL algorithms. Empirically, we show that EOI outperforms existing methods in a variety of multi-agent cooperative scenarios.


The Heavy-Tail Phenomenon in SGD

Mert Gurbuzbalaban · Umut Simsekli · Lingjiong Zhu

In recent years, various notions of capacity and complexity have been proposed for characterizing the generalization properties of stochastic gradient descent (SGD) in deep learning. Some of the popular notions that correlate well with the performance on unseen data are (i) the `flatness' of the local minimum found by SGD, which is related to the eigenvalues of the Hessian, (ii) the ratio of the stepsize $\eta$ to the batch-size $b$, which essentially controls the magnitude of the stochastic gradient noise, and (iii) the `tail-index', which measures the heaviness of the tails of the network weights at convergence. In this paper, we argue that these three seemingly unrelated perspectives for generalization are deeply linked to each other. We claim that depending on the structure of the Hessian of the loss at the minimum, and the choices of the algorithm parameters $\eta$ and $b$, the SGD iterates will converge to a \emph{heavy-tailed} stationary distribution. We rigorously prove this claim in the setting of quadratic optimization: we show that even in a simple linear regression problem with independent and identically distributed data whose distribution has finite moments of all order, the iterates can be heavy-tailed with infinite variance. We further characterize the behavior of the tails with respect to algorithm parameters, the dimension, and the curvature. We then translate our results into insights about the behavior of SGD in deep learning. We support our theory with experiments conducted on synthetic data, fully connected, and convolutional neural networks.


The Power of Adaptivity for Stochastic Submodular Cover

Rohan Ghuge · Anupam Gupta · viswanath nagarajan

In the stochastic submodular cover problem, the goal is to select a subset of stochastic items of minimum expected cost to cover a submodular function. Solutions in this setting correspond to a sequential decision process that selects items one by one ``adaptively'' (depending on prior observations). While such adaptive solutions achieve the best objective, the inherently sequential nature makes them undesirable in many applications. We ask: \emph{how well can solutions with only a few adaptive rounds approximate fully-adaptive solutions?} We consider both cases where the stochastic items are independent, and where they are correlated. For both situations, we obtain nearly tight answers, establishing smooth tradeoffs between the number of adaptive rounds and the solution quality, relative to fully adaptive solutions. Experiments on synthetic and real datasets validate the practical performance of our algorithms, showing qualitative improvements in the solutions as we allow more rounds of adaptivity; in practice, solutions using just a few rounds of adaptivity are nearly as good as fully adaptive solutions.


Three Operator Splitting with a Nonconvex Loss Function

Alp Yurtsever · Varun Mangalick · Suvrit Sra

We consider the problem of minimizing the sum of three functions, one of which is nonconvex but differentiable, and the other two are convex but possibly nondifferentiable. We investigate the Three Operator Splitting method (TOS) of Davis & Yin (2017) with an aim to extend its theoretical guarantees for this nonconvex problem template. In particular, we prove convergence of TOS with nonasymptotic bounds on its nonstationarity and infeasibility errors. In contrast with the existing work on nonconvex TOS, our guarantees do not require additional smoothness assumptions on the terms comprising the objective; hence they cover instances of particular interest where the nondifferentiable terms are indicator functions. We also extend our results to a stochastic setting where we have access only to an unbiased estimator of the gradient. Finally, we illustrate the effectiveness of the proposed method through numerical experiments on quadratic assignment problems.


Towards Better Laplacian Representation in Reinforcement Learning with Generalized Graph Drawing

Kaixin Wang · Kuangqi Zhou · Qixin Zhang · Jie Shao · Bryan Hooi · Jiashi Feng

The Laplacian representation recently gains increasing attention for reinforcement learning as it provides succinct and informative representation for states, by taking the eigenvectors of the Laplacian matrix of the state-transition graph as state embeddings. Such representation captures the geometry of the underlying state space and is beneficial to RL tasks such as option discovery and reward shaping. To approximate the Laplacian representation in large (or even continuous) state spaces, recent works propose to minimize a spectral graph drawing objective, which however has infinitely many global minimizers other than the eigenvectors. As a result, their learned Laplacian representation may differ from the ground truth. To solve this problem, we reformulate the graph drawing objective into a generalized form and derive a new learning objective, which is proved to have eigenvectors as its unique global minimizer. It enables learning high-quality Laplacian representations that faithfully approximate the ground truth. We validate this via comprehensive experiments on a set of gridworld and continuous control environments. Moreover, we show that our learned Laplacian representations lead to more exploratory options and better reward shaping.


Trajectory Diversity for Zero-Shot Coordination

Andrei Lupu · Brandon Cui · Hengyuan Hu · Jakob Foerster

We study the problem of zero-shot coordination (ZSC), where agents must independently produce strategies for a collaborative game that are compatible with novel partners not seen during training. Our first contribution is to consider the need for diversity in generating such agents. Because self-play (SP) agents control their own trajectory distribution during training, each policy typically only performs well on this exact distribution. As a result, they achieve low scores in ZSC, since playing with another agent is likely to put them in situations they have not encountered during training. To address this issue, we train a common best response (BR) to a population of agents, which we regulate to be diverse. To this end, we introduce \textit{Trajectory Diversity} (TrajeDi) -- a differentiable objective for generating diverse reinforcement learning policies. We derive TrajeDi as a generalization of the Jensen-Shannon divergence between policies and motivate it experimentally in two simple settings. We then focus on the collaborative card game Hanabi, demonstrating the scalability of our method and improving upon the cross-play scores of both independently trained SP agents and BRs to unregularized populations.


Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh

Offline Reinforcement Learning promises to learn effective policies from previously-collected, static datasets without the need for exploration. However, existing Q-learning and actor-critic based off-policy RL algorithms fail when bootstrapping from out-of-distribution (OOD) actions or states. We hypothesize that a key missing ingredient from the existing methods is a proper treatment of uncertainty in the offline setting. We propose Uncertainty Weighted Actor-Critic (UWAC), an algorithm that detects OOD state-action pairs and down-weights their contribution in the training objectives accordingly. Implementation-wise, we adopt a practical and effective dropout-based uncertainty estimation method that introduces very little overhead over existing RL algorithms. Empirically, we observe that UWAC substantially improves model stability during training. In addition, UWAC out-performs existing offline RL methods on a variety of competitive tasks, and achieves significant performance gains over the state-of-the-art baseline on datasets with sparse demonstrations collected from human experts.


Understanding Failures in Out-of-Distribution Detection with Deep Generative Models

Lily Zhang · Mark Goldstein · Rajesh Ranganath

Deep generative models (DGMs) seem a natural fit for detecting out-of-distribution (OOD) inputs, but such models have been shown to assign higher probabilities or densities to OOD images than images from the training distribution. In this work, we explain why this behavior should be attributed to model misestimation. We first prove that no method can guarantee performance beyond random chance without assumptions on which out-distributions are relevant. We then interrogate the typical set hypothesis, the claim that relevant out-distributions can lie in high likelihood regions of the data distribution, and that OOD detection should be defined based on the data distribution's typical set. We highlight the consequences implied by assuming support overlap between in- and out-distributions, as well as the arbitrariness of the typical set for OOD detection. Our results suggest that estimation error is a more plausible explanation than the misalignment between likelihood-based OOD detection and out-distributions of interest, and we illustrate how even minimal estimation error can lead to OOD detection failures, yielding implications for future work in deep generative modeling and OOD detection.


Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models

Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang

This paper presents new estimates of the score function and its gradient with respect to the model parameters in a general energy-based latent variable model (EBLVM). The score function and its gradient can be expressed as combinations of expectation and covariance terms over the (generally intractable) posterior of the latent variables. New estimates are obtained by introducing a variational posterior to approximate the true posterior in these terms. The variational posterior is trained to minimize a certain divergence (e.g., the KL divergence) between itself and the true posterior. Theoretically, the divergence characterizes upper bounds of the bias of the estimates. In principle, our estimates can be applied to a wide range of objectives, including kernelized Stein discrepancy (KSD), score matching (SM)-based methods and exact Fisher divergence with a minimal model assumption. In particular, these estimates applied to SM-based methods outperform existing methods in learning EBLVMs on several image datasets.


Weight-covariance alignment for adversarially robust neural networks

Panagiotis Eustratiadis · Henry Gouk · Da Li · Timothy Hospedales

Stochastic Neural Networks (SNNs) that inject noise into their hidden layers have recently been shown to achieve strong robustness against adversarial attacks. However, existing SNNs are usually heuristically motivated, and often rely on adversarial training, which is computationally costly. We propose a new SNN that achieves state-of-the-art performance without relying on adversarial training, and enjoys solid theoretical justification. Specifically, while existing SNNs inject learned or hand-tuned isotropic noise, our SNN learns an anisotropic noise distribution to optimize a learning-theoretic bound on adversarial robustness. We evaluate our method on a number of popular benchmarks, show that it can be applied to different architectures, and that it provides robustness to a variety of white-box and black-box attacks, while being simple and fast to train compared to existing alternatives.


What Makes for End-to-End Object Detection?

Peize Sun · Yi Jiang · Enze Xie · Wenqi Shao · Zehuan Yuan · Changhu Wang · Ping Luo

Object detection has recently achieved a breakthrough for removing the last one non-differentiable component in the pipeline, Non-Maximum Suppression (NMS), and building up an end-to-end system. However, what makes for its one-to-one prediction has not been well understood. In this paper, we first point out that one-to-one positive sample assignment is the key factor, while, one-to-many assignment in previous detectors causes redundant predictions in inference. Second, we surprisingly find that even training with one-to-one assignment, previous detectors still produce redundant predictions. We identify that classification cost in matching cost is the main ingredient: (1) previous detectors only consider location cost, (2) by additionally introducing classification cost, previous detectors immediately produce one-to-one prediction during inference. We introduce the concept of score gap to explore the effect of matching cost. Classification cost enlarges the score gap by choosing positive samples as those of highest score in the training iteration and reducing noisy positive samples brought by only location cost. Finally, we demonstrate the advantages of end-to-end object detection on crowded scenes.


Zero-Shot Text-to-Image Generation

Aditya Ramesh · Mikhail Pavlov · Gabriel Goh · Scott Gray · Chelsea Voss · Alec Radford · Mark Chen · Ilya Sutskever

Text-to-image generation has traditionally focused on finding better modeling assumptions for training on a fixed dataset. These assumptions might involve complex architectures, auxiliary losses, or side information such as object part labels or segmentation masks supplied during training. We describe a simple approach for this task based on a transformer that autoregressively models the text and image tokens as a single stream of data. With sufficient data and scale, our approach is competitive with previous domain-specific models when evaluated in a zero-shot fashion.