Spotlights

Various gradient compression schemes have been proposed to mitigate the communication cost in distributed training of large scale machine learning models. Sign-based methods, such as signSGD (Bernstein et al., 2018), have recently been gaining popularity because of their simple compression rule and connection to adaptive gradient methods, like ADAM.
In this paper, we analyze sign-based methods for non-convex optimization in three key settings: (i) standard single node, (ii) parallel with shared data and (iii) distributed with partitioned data. For single machine case, we generalize the previous analysis of signSGD relying on intuitive bounds on success probabilities and allowing even biased estimators. Furthermore, we extend the analysis to parallel setting within a parameter server framework, where exponentially fast noise reduction is guaranteed with respect to number of nodes, maintaining $1$-bit compression in both directions and using small mini-batch sizes. Next, we identify a fundamental issue with signSGD to converge in distributed environment. To resolve this issue, we propose a new sign-based method, {\em Stochastic Sign Descent with Momentum (SSDM)}, which converges under standard bounded variance assumption with the optimal asymptotic rate. We validate several aspects of our theoretical findings with numerical experiments.

Optimal transport (OT) measures distances between distributions in a way that depends on the geometry of the sample space. In light of recent advances in computational OT, OT distances are widely used as loss functions in machine learning. Despite their prevalence and advantages, OT loss functions can be extremely sensitive to outliers. In fact, a single adversarially-picked outlier can increase the standard $W_2$-distance arbitrarily. To address this issue, we propose an outlier-robust formulation of OT. Our formulation is convex but challenging to scale at a first glance. Our main contribution is deriving an \emph{equivalent} formulation based on cost truncation that is easy to incorporate into modern algorithms for computational OT. We demonstrate the benefits of our formulation in mean estimation problems under the Huber contamination model in simulations and outlier detection tasks on real data.

Networks with node covariates are commonplace: for example, people in a social network have interests, or product preferences, etc. If we know the covariates for some nodes, can we infer them for the remaining nodes? In this paper we propose a new similarity measure between two nodes based on the patterns of their 2-hop neighborhoods. We show that a simple algorithm (CN-VEC) like nearest neighbor regression with this metric is consistent for a wide range of models when the degree grows faster than $n^{1/3}$ up-to logarithmic factors, where $n$ is the number of nodes. For "low-rank" latent variable models, the natural contender will be to estimate the latent variables using SVD and use them for non-parametric regression. While we show consistency of this method under less stringent sparsity conditions, our experimental results suggest that the simple local CN-VEC method either outperforms the global SVD-RBF method, or has comparable performance for low rank models. We also present simulated and real data experiments to show the effectiveness of our algorithms compared to the state of the art.

Recently, local SGD has got much attention and been extensively studied in the distributed learning community to overcome the communication bottleneck problem. However, the superiority of local SGD to minibatch SGD only holds in quite limited situations. In this paper, we study a new local algorithm called Bias-Variance Reduced Local SGD (BVR-L-SGD) for nonconvex distributed optimization. Algorithmically, our proposed bias and variance reduced local gradient estimator fully utilizes small second-order heterogeneity of local objectives and suggests randomly picking up one of the local models instead of taking the average of them when workers are synchronized. Theoretically, under small heterogeneity of local objectives, we show that BVR-L-SGD achieves better communication complexity than both the previous non-local and local methods under mild conditions, and particularly BVR-L-SGD is the first method that breaks the barrier of communication complexity $\Theta(1/\varepsilon)$ for general nonconvex smooth objectives when the heterogeneity is small and the local computation budget is large. Numerical results are given to verify the theoretical findings and give empirical evidence of the superiority of our method.

This paper considers decentralized stochastic optimization over a network of $n$ nodes, where each node possesses a smooth non-convex local cost function and the goal of the networked nodes is to find an $\epsilon$-accurate first-order stationary point of the sum of the local costs. We focus on an online setting, where each node accesses its local cost only by means of a stochastic first-order oracle that returns a noisy version of the exact gradient. In this context, we propose a novel single-loop decentralized hybrid variance-reduced stochastic gradient method, called GT-HSGD, that outperforms the existing approaches in terms of both the oracle complexity and practical implementation. The GT-HSGD algorithm implements specialized local hybrid stochastic gradient estimators that are fused over the network to track the global gradient. Remarkably, GT-HSGD achieves a network topology-independent oracle complexity of $O(n^{-1}\epsilon^{-3})$ when the required error tolerance $\epsilon$ is small enough, leading to a linear speedup with respect to the centralized optimal online variance-reduced approaches that operate on a single node. Numerical experiments are provided to illustrate our main technical results.

Since the Message Passing (Graph) Neural Networks (MPNNs) have a linear complexity with respect to the number of nodes when applied to sparse graphs, they have been widely implemented and still raise a lot of interest even though their theoretical expressive power is limited to the first order Weisfeiler-Lehman test (1-WL). In this paper, we show that if the graph convolution supports are designed in spectral-domain by a non-linear custom function of eigenvalues and masked with an arbitrary large receptive field, the MPNN is theoretically more powerful than the 1-WL test and experimentally as powerful as a 3-WL existing models, while remaining spatially localized. Moreover, by designing custom filter functions, outputs can have various frequency components that allow the convolution process to learn different relationships between a given input graph signal and its associated properties.
So far, the best 3-WL equivalent graph neural networks have a computational complexity in $\mathcal{O}(n^3)$ with memory usage in $\mathcal{O}(n^2)$, consider non-local update mechanism and do not provide the spectral richness of output profile. The proposed method overcomes all these aforementioned problems and reaches state-of-the-art results in many downstream tasks.

We propose a distributed cubic regularization of the Newton method for solving (constrained) empirical risk minimization problems over a network of agents, modeled as undirected graph. The algorithm employs an inexact, preconditioned Newton step at each agent's side: the gradient of the centralized loss is iteratively estimated via a gradient-tracking consensus mechanism and the Hessian is subsampled over the local data sets. No Hessian matrices are exchanged over the network. We derive global complexity bounds for convex and strongly convex losses. Our analysis reveals an interesting interplay between sample and iteration/communication complexity: statistically accurate solutions are achievable in roughly the same number of iterations of the centralized cubic Newton, with a communication cost per iteration of the order of $\widetilde{\mathcal{O}}\big(1/\sqrt{1-\rho}\big)$, where $\rho$ characterizes the connectivity of the network. This represents a significant improvement with respect to existing, statistically oblivious, distributed Newton-based methods over networks.

`TimeSformer,'' adapts the standard Transformer architecture to video by enabling spatiotemporal feature learning directly from a sequence of frame-level patches. Our experimental study compares different self-attention schemes and suggests that`

divided attention,'' where temporal attention and spatial attention are separately applied within each block, leads to the best video classification accuracy among the design choices considered. Despite the radically new design, TimeSformer achieves state-of-the-art results on several action recognition benchmarks, including the best reported accuracy on Kinetics-400 and Kinetics-600. Finally, compared to 3D convolutional networks, our model is faster to train, it can achieve dramatically higher test efficiency (at a small drop in accuracy), and it can also be applied to much longer video clips (over one minute long). Code and models are available at: https://github.com/facebookresearch/TimeSformer.

We address the problem of convex optimization with preference (dueling) feedback. Like the traditional optimization objective, the goal is to find the optimal point with the least possible query complexity, however, without the luxury of even a zeroth order feedback. Instead, the learner can only observe a single noisy bit which is win-loss feedback for a pair of queried points based on their function values.
%
The problem is certainly of great practical relevance as in many real-world scenarios, such as recommender systems or learning from customer preferences, where the system feedback is often restricted to just one binary-bit preference information.
%
We consider the problem of online convex optimization (OCO) solely by actively querying $\{0,1\}$ noisy-comparison feedback of decision point pairs, with the objective of finding a near-optimal point (function minimizer) with the least possible number of queries. %a very general class of monotonic, non-decreasing transfer functions, and analyze the problem for any $d$-dimensional smooth convex function.
%
For the non-stationary OCO setup, where the underlying convex function may change over time, we prove an impossibility result towards achieving the above objective.
We next focus only on the stationary OCO problem, and our main contribution lies in designing a …

Collecting and aggregating information from several probability measures or histograms is a fundamental task in machine learning. One of the popular solution methods for this task is to compute the barycenter of the probability measures under the Wasserstein metric. However, approximating the Wasserstein barycenter is numerically challenging because of the curse of dimensionality. This paper proposes the projection robust Wasserstein barycenter (PRWB) that has the potential to mitigate the curse of dimensionality, and a relaxed PRWB (RPRWB) model that is computationally more tractable. By combining the iterative Bregman projection algorithm and Riemannian optimization, we propose two algorithms for computing the RPRWB, which is a max-min problem over the Stiefel manifold. The complexity of arithmetic operations of the proposed algorithms for obtaining an $\epsilon$-stationary solution is analyzed. We incorporate the RPRWB into a discrete distribution clustering algorithm, and the numerical results on real text datasets confirm that our RPRWB model helps improve the clustering performance significantly.

In this paper we consider the problem of learning an $\epsilon$-optimal policy for a discounted Markov Decision Process (MDP). Given an MDP with $S$ states, $A$ actions, the discount factor $\gamma \in (0,1)$, and an approximation threshold $\epsilon > 0$, we provide a model-free algorithm to learn an $\epsilon$-optimal policy with sample complexity $\tilde{O}(\frac{SA\ln(1/p)}{\epsilon^2(1-\gamma)^{5.5}})$ \footnote{In this work, the notation $\tilde{O}(\cdot)$ hides poly-logarithmic factors of $S,A,1/(1-\gamma)$, and $1/\epsilon$.} and success probability $(1-p)$. For small enough $\epsilon$, we show an improved algorithm with sample complexity $\tilde{O}(\frac{SA\ln(1/p)}{\epsilon^2(1-\gamma)^{3}})$. While the first bound improves upon all known model-free algorithms and model-based ones with tight dependence on $S$, our second algorithm beats all known sample complexity bounds and matches the information theoretic lower bound up to logarithmic factors.

Understanding the fundamental mechanism behind the success of deep neural networks is one of the key challenges in the modern machine learning literature. Despite numerous attempts, a solid theoretical analysis is yet to be developed. In this paper, we develop a novel unified framework to reveal a hidden regularization mechanism through the lens of convex optimization. We first show that the training of multiple three-layer ReLU sub-networks with weight decay regularization can be equivalently cast as a convex optimization problem in a higher dimensional space, where sparsity is enforced via a group $\ell_1$-norm regularization. Consequently, ReLU networks can be interpreted as high dimensional feature selection methods. More importantly, we then prove that the equivalent convex problem can be globally optimized by a standard convex optimization solver with a polynomial-time complexity with respect to the number of samples and data dimension when the width of the network is fixed. Finally, we numerically validate our theoretical results via experiments involving both synthetic and real datasets.

[ Virtual ]

While deep neural networks provide good performance for a range of challenging tasks, calibration and uncertainty estimation remain major challenges, especially under distribution shift. In this paper, we propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation, calibration, and out-of-distribution robustness with deep networks. Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle, but is computationally intractable to evaluate exactly for all but the simplest of model classes. We propose to use approximate Bayesian inference technqiues to produce a tractable approximation to the CNML distribution. Our approach can be combined with any approximate inference algorithm that provides tractable posterior densities over model parameters. We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration when faced with distribution shift.

Deep learning has made revolutionary advances to diverse applications in the presence of large-scale labeled datasets. However, it is prohibitively time-costly and labor-expensive to collect sufficient labeled data in most realistic scenarios. To mitigate the requirement for labeled data, semi-supervised learning (SSL) focuses on simultaneously exploring both labeled and unlabeled data, while transfer learning (TL) popularizes a favorable practice of fine-tuning a pre-trained model to the target data. A dilemma is thus encountered: Without a decent pre-trained model to provide an implicit regularization, SSL through self-training from scratch will be easily misled by inaccurate pseudo-labels, especially in large-sized label space; Without exploring the intrinsic structure of unlabeled data, TL through fine-tuning from limited labeled data is at risk of under-transfer caused by model shift. To escape from this dilemma, we present Self-Tuning to enable data-efficient deep learning by unifying the exploration of labeled and unlabeled data and the transfer of a pre-trained model, as well as a Pseudo Group Contrast (PGC) mechanism to mitigate the reliance on pseudo-labels and boost the tolerance to false labels. Self-Tuning outperforms its SSL and TL counterparts on five tasks by sharp margins, e.g. it doubles the accuracy of fine-tuning on Cars with $15\%$ labels.

The convergence rate of Value Iteration (VI), a fundamental procedure in dynamic programming and reinforcement learning, for solving MDPs can be slow when the discount factor is close to one. We propose modifications to VI in order to potentially accelerate its convergence behaviour. The key insight is the realization that the evolution of the value function approximations $(V_k)_{k \geq 0}$ in the VI procedure can be seen as a dynamical system. This opens up the possibility of using techniques from \emph{control theory} to modify, and potentially accelerate, this dynamics. We present such modifications based on simple controllers, such as PD (Proportional-Derivative), PI (Proportional-Integral), and PID. We present the error dynamics of these variants of VI, and provably (for certain classes of MDPs) and empirically (for more general classes) show that the convergence rate can be significantly improved. We also propose a gain adaptation mechanism in order to automatically select the controller gains, and empirically show the effectiveness of this procedure.

We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with $d$ states.
We propose a data-driven distributionally robust optimization model to estimate the problem's objective function and optimal solution. By leveraging results from large deviations theory, we derive statistical guarantees on the quality of these estimators. The underlying worst-case expectation problem is nonconvex and involves $\mathcal O(d^2)$ decision variables. Thus, it cannot be solved efficiently for large $d$. By exploiting the structure of this problem, we devise a customized Frank-Wolfe algorithm with convex direction-finding subproblems of size $\mathcal O(d)$. We prove that this algorithm finds a stationary point efficiently under mild conditions. The efficiency of the method is predicated on a dimensionality reduction enabled by a dual reformulation. Numerical experiments indicate that our approach has better computational and statistical properties than the state-of-the-art methods.

`best response" and the`

dual program", that can efficiently screen the potential indices of the nonzero elements of the original program. We show that the proposed methods are competitive with the existing screening methods in the current sparse regression literature, and it is particularly fast on instances with high number of measurements in experiments with both synthetic and real datasets.

We consider the problem of controlling a partially-observed dynamic process on a graph by a limited number of interventions. This problem naturally arises in contexts such as scheduling virus tests to curb an epidemic; targeted marketing in order to promote a product; and manually inspecting posts to detect fake news spreading on social networks.

We formulate this setup as a sequential decision problem over a temporal graph process. In face of an exponential state space, combinatorial action space and partial observability, we design a novel tractable scheme to control dynamical processes on temporal graphs. We successfully apply our approach to two popular problems that fall into our framework: prioritizing which nodes should be tested in order to curb the spread of an epidemic, and influence maximization on a graph.

Efficient gradient computation of the Jacobian determinant term is a core problem in many machine learning settings, and especially so in the normalizing flow framework. Most proposed flow models therefore either restrict to a function class with easy evaluation of the Jacobian determinant, or an efficient estimator thereof. However, these restrictions limit the performance of such density models, frequently requiring significant depth to reach desired performance levels. In this work, we propose \emph{Self Normalizing Flows}, a flexible framework for training normalizing flows by replacing expensive terms in the gradient by learned approximate inverses at each layer. This reduces the computational complexity of each layer's exact update from $\mathcal{O}(D^3)$ to $\mathcal{O}(D^2)$, allowing for the training of flow architectures which were otherwise computationally infeasible, while also providing efficient sampling. We show experimentally that such models are remarkably stable and optimize to similar data likelihood values as their exact gradient counterparts, while training more quickly and surpassing the performance of functionally constrained counterparts.

`locality'' property of gradient descent algorithms, we propose a new framework, termed`

sequential coreset'', which effectively avoids these obstacles. Moreover, our method is particularly suitable for sparse optimization whence the coreset size can be further reduced to be only poly-logarithmically dependent on the dimension. In practice, the experimental results suggest that our method can save a large amount of running time compared with the baseline algorithms.

We study a class of convex-concave saddle-point problems of the form
$\min_x\max_y \langle Kx,y\rangle+f_{\cal P}(x)-h^*(y)$ where $K$ is
a linear operator, $f_{\cal P}$ is the sum of a convex function $f$
with a Lipschitz-continuous gradient and the indicator function of a
bounded convex polytope ${\cal P}$, and $h^\ast$ is a convex (possibly
nonsmooth) function. Such problem arises, for example, as a
Lagrangian relaxation of various discrete optimization problems. Our
main assumptions are the existence of an efficient {\em linear
minimization oracle} ($lmo$) for $f_{\cal P}$ and an efficient {\em
proximal map} ($prox$) for $h^*$ which motivate the solution via
a blend of proximal primal-dual algorithms and Frank-Wolfe
algorithms. In case $h^*$ is the indicator function of a linear
constraint and function $f$ is quadratic, we show a $O(1/n^2)$
convergence rate on the dual objective, requiring $O(n \log n)$
calls of $lmo$. If the problem comes from the constrained
optimization problem $\min_{x\in\mathbb
R^d}\{f_{\cal P}(x)\:|\:Ax-b=0\}$ then we additionally get bound
$O(1/n^2)$ both on the primal gap and on the infeasibility gap. In
the most general case, we show a $O(1/n)$ convergence rate of the
primal-dual gap again requiring $O(n\log n)$ calls of $lmo$. To the
best of our knowledge, this improves on …

We investigate the distributions of Conjugate Kernel (CK) and Neural Tangent Kernel (NTK) for ReLU networks with random initialization. We derive the precise distributions and moments of the diagonal elements of these kernels. For a feedforward network, these values converge in law to a log-normal distribution when the network depth $d$ and width $n$ simultaneously tend to infinity and the variance of log diagonal elements is proportional to ${d}/{n}$. For the residual network, in the limit that number of branches $m$ increases to infinity and the width $n$ remains fixed, the diagonal elements of Conjugate Kernel converge in law to a log-normal distribution where the variance of log value is proportional to ${1}/{n}$, and the diagonal elements of NTK converge in law to a log-normal distributed variable times the conjugate kernel of one feedforward network. Our new theoretical analysis results suggest that residual network remains trainable in the limit of infinite branches and fixed network width. The numerical experiments are conducted and all results validate the soundness of our theoretical analysis.

*Learning*AOSR.

Neural differential equations may be trained by backpropagating gradients via the adjoint method, which is another differential equation typically solved using an adaptive-step-size numerical differential equation solver. A proposed step is accepted if its error, \emph{relative to some norm}, is sufficiently small; else it is rejected, the step is shrunk, and the process is repeated. Here, we demonstrate that the particular structure of the adjoint equations makes the usual choices of norm (such as $L^2$) unnecessarily stringent. By replacing it with a more appropriate (semi)norm, fewer steps are unnecessarily rejected and the backpropagation is made faster. This requires only minor code modifications.
Experiments on a wide range of tasks---including time series, generative modeling, and physical control---demonstrate a median improvement of 40\% fewer function evaluations. On some problems we see as much as 62\% fewer function evaluations, so that the overall training time is roughly halved.

*batch*connections.

The dot product self-attention is known to be central and indispensable to state-of-the-art Transformer models. But is it really required? This paper investigates the true importance and contribution of the dot product-based self-attention mechanism on the performance of Transformer models. Via extensive experiments, we find that (1) random alignment matrices surprisingly perform quite competitively and (2) learning attention weights from token-token (query-key) interactions is useful but not that important after all. To this end, we propose \textsc{Synthesizer}, a model that learns synthetic attention weights without token-token interactions. In our experiments, we first show that simple Synthesizers achieve highly competitive performance when compared against vanilla Transformer models across a range of tasks, including machine translation, language modeling, text generation and GLUE/SuperGLUE benchmarks. When composed with dot product attention, we find that Synthesizers consistently outperform Transformers. Moreover, we conduct additional comparisons of Synthesizers against Dynamic Convolutions, showing that simple Random Synthesizer is not only $60\%$ faster but also improves perplexity by a relative $3.5\%$. Finally, we show that simple factorized Synthesizers can outperform Linformers on encoding only tasks.

We address the problem of teaching a deep reinforcement learning (RL) agent to follow instructions in multi-task environments. Instructions are expressed in a well-known formal language – linear temporal logic (LTL) – and can specify a diversity of complex, temporally extended behaviours, including conditionals and alternative realizations. Our proposed learning approach exploits the compositional syntax and the semantics of LTL, enabling our RL agent to learn task-conditioned policies that generalize to new instructions, not observed during training. To reduce the overhead of learning LTL semantics, we introduce an environment-agnostic LTL pretraining scheme which improves sample-efficiency in downstream environments. Experiments on discrete and continuous domains target combinatorial task sets of up to $\sim10^{39}$ unique tasks and demonstrate the strength of our approach in learning to solve (unseen) tasks, given LTL instructions.

Low-dimensional node embeddings play a key role in analyzing graph datasets.
However, little work studies exactly what information is encoded by popular embedding methods, and how this information correlates with performance in downstream learning tasks.
We tackle this question by studying whether embeddings can be inverted to (approximately) recover the graph used to generate them.
Focusing on a variant of the popular DeepWalk method \cite{PerozziAl-RfouSkiena:2014, QiuDongMa:2018}, we present algorithms for accurate embedding inversion -- i.e., from the low-dimensional embedding of a graph $G$, we can find a graph $\tilde G$ with a very similar embedding. We perform numerous experiments on real-world networks, observing that significant information about $G$, such as specific edges and bulk properties like triangle density, is often lost in $\tilde G$. However, community structure is often preserved or even enhanced. Our findings are a step towards a more rigorous understanding of exactly what information embeddings encode about the input graph, and why this information is useful for learning tasks.

The predominant measure for the performance of an algorithm is its worst-case approximation guarantee. While worst-case approximations give desirable robustness guarantees, they can differ significantly from the performance of an algorithm in practice. For the problem of monotone submodular maximization under a cardinality constraint, the greedy algorithm is known to obtain a 1-1/e approximation guarantee, which is optimal for a polynomial-time algorithm. However, very little is known about the approximation achieved by greedy and other submodular maximization algorithms on real instances.

We develop an algorithm that gives an instance-specific approximation for any solution of an instance of monotone submodular maximization under a cardinality constraint. This algorithm uses a novel dual approach to submodular maximization. In particular, it relies on the construction of a lower bound to the dual objective that can also be exactly minimized. We use this algorithm to show that on a wide variety of real-world datasets and objectives, greedy and other algorithms find solutions that approximate the optimal solution significantly better than the 1-1/e ~ 0.63 worst-case approximation guarantee, often exceeding 0.9.

Safety in reinforcement learning has become increasingly important in recent years. Yet, existing solutions either fail to strictly avoid choosing unsafe actions, which may lead to catastrophic results in safety-critical systems, or fail to provide regret guarantees for settings where safety constraints need to be learned. In this paper, we address both problems by first modeling safety as an unknown linear cost function of states and actions, which must always fall below a certain threshold. We then present algorithms, termed SLUCB-QVI and RSLUCB-QVI, for episodic Markov decision processes (MDPs) with linear function approximation. We show that SLUCB-QVI and RSLUCB-QVI, while with \emph{no safety violation}, achieve a $\tilde{\mathcal{O}}\left(\kappa\sqrt{d^3H^3T}\right)$ regret, nearly matching that of state-of-the-art unsafe algorithms, where $H$ is the duration of each episode, $d$ is the dimension of the feature mapping, $\kappa$ is a constant characterizing the safety constraints, and $T$ is the total number of action plays. We further present numerical simulations that corroborate our theoretical findings.

Although ubiquitous in the sciences, histogram data have not received much attention by the Deep Learning community. Whilst regression and classification tasks for scalar and vector data are routinely solved by neural networks, a principled approach for estimating histogram labels as a function of an input vector or image is lacking in the literature. We present a dedicated method for Deep Learning-based histogram regression, which incorporates cross-bin information and yields distributions over possible histograms, expressed by $\tau$-quantiles of the cumulative histogram in each bin. The crux of our approach is a new loss function obtained by applying the pinball loss to the cumulative histogram, which for 1D histograms reduces to the Earth Mover's distance (EMD) in the special case of the median ($\tau = 0.5$), and generalizes it to arbitrary quantiles. We validate our method with an illustrative toy example, a football-related task, and an astrophysical computer vision problem. We show that with our loss function, the accuracy of the predicted median histograms is very similar to the standard EMD case (and higher than for per-bin loss functions such as cross-entropy), while the predictions become much more informative at almost no additional computational cost.

We consider the adversarial multi-armed bandit problem under delayed feedback. We analyze variants of the Exp3 algorithm that tune their step size using only information (about the losses and delays) available at the time of the decisions, and obtain regret guarantees that adapt to the observed (rather than the worst-case) sequences of delays and/or losses. First, through a remarkably simple proof technique, we show that with proper tuning of the step size, the algorithm achieves an optimal (up to logarithmic factors) regret of order $\sqrt{\log(K)(TK + D)}$ both in expectation and in high probability, where $K$ is the number of arms, $T$ is the time horizon, and $D$ is the cumulative delay. The high-probability version of the bound, which is the first high-probability delay-adaptive bound in the literature, crucially depends on the use of implicit exploration in estimating the losses. Then, following Zimmert and Seldin (2019), we extend these results so that the algorithm can ``skip'' rounds with large delays, resulting in regret bounds of order $\sqrt{TK\log(K)} + |R| + \sqrt{D_{\bar{R}}\log(K)}$, where $R$ is an arbitrary set of rounds (which are skipped) and $D_{\bar{R}}$ is the cumulative delay of the feedback for other rounds. Finally, we present another, data-adaptive (AdaGrad-style) …

The method of random projection (RP) is the standard technique for dimensionality reduction, approximate near neighbor search, compressed sensing, etc., which provides a simple and effective scheme for approximating pairwise inner products and Euclidean distances in massive data. Closely related to RP, the method of random Fourier features (RFF) has also become popular for approximating the (nonlinear) Gaussian kernel. RFF applies a specific nonlinear transformation on the projected data from RP. In practice, using the Gaussian kernel often leads to better performance than the linear kernel (inner product).
After random projections, quantization is an important step for efficient data storage, computation and transmission. Quantization for RP has been extensively studied in the literature. In this paper, we focus on developing quantization algorithms for RFF. The task is in a sense challenging due to the tuning parameter $\gamma$ in the Gaussian kernel. For example, the quantizer and the quantized data might be tied to each specific Gaussian kernel parameter $\gamma$. Our contribution begins with the analysis on the probability distributions of RFF, and an interesting discovery that the marginal distribution of RFF is free of the parameter $\gamma$. This significantly simplifies the design of the Lloyd-Max (LM) quantization scheme for RFF …

The Reinforcement Learning (RL) building blocks, i.e. $Q$-functions and policy networks, usually take elements from the cartesian product of two domains as input. In particular, the input of the $Q$-function is both the state and the action, and in multi-task problems (Meta-RL) the policy can take a state and a context. Standard architectures tend to ignore these variables' underlying interpretations and simply concatenate their features into a single vector. In this work, we argue that this choice may lead to poor gradient estimation in actor-critic algorithms and high variance learning steps in Meta-RL algorithms. To consider the interaction between the input variables, we suggest using a Hypernetwork architecture where a primary network determines the weights of a conditional dynamic network. We show that this approach improves the gradient approximation and reduces the learning step variance, which both accelerates learning and improves the final performance. We demonstrate a consistent improvement across different locomotion tasks and different algorithms both in RL (TD3 and SAC) and in Meta-RL (MAML and PEARL).

In this paper, we study mixtures of two Mallows models for top-$k$ rankings with equal location parameters but with different scale parameters (a mixture of concentric Mallows models). These models arise when we have a heterogeneous population of voters formed by two populations, one of which is a subpopulation of expert voters. We show the identifiability of both components and the learnability of their respective parameters. These results are based upon, first, bounding the sample complexity for the Borda algorithm with top-$k$ rankings. Second, we characterize the distances between rankings, showing that an off-the-shelf clustering algorithm separates the rankings by components with high probability -provided the scales are well-separated.As a by-product, we include an efficient sampling algorithm for Mallows top-$k$ rankings. Finally, since the rank aggregation will suffer from a large amount of noise introduced by the non-expert voters, we adapt the Borda algorithm to be able to recover the ground truth consensus ranking which is especially consistent with the expert rankings.

https://drive.google.com/file/d/1lRV72XaKoxZjgQrLXBJhsM82x54_1Vc4/view?usp=sharing

In this work, we explore the unique challenges---and opportunities---of unsupervised federated learning (FL). We develop and analyze a one-shot federated clustering scheme, kfed, based on the widely-used Lloyd's method for $k$-means clustering. In contrast to many supervised problems, we show that the issue of statistical heterogeneity in federated networks can in fact benefit our analysis. We analyse kfed under a center separation assumption and compare it to the best known requirements of its centralized counterpart. Our analysis shows that in heterogeneous regimes where the number of clusters per device $(k')$ is smaller than the total number of clusters over the network $k$, $(k'\le \sqrt{k})$, we can use heterogeneity to our advantage---significantly weakening the cluster separation requirements for kfed. From a practical viewpoint, kfed also has many desirable properties: it requires only round of communication, can run asynchronously, and can handle partial participation or node/network failures. We motivate our analysis with experiments on common FL benchmarks, and highlight the practical utility of one-shot clustering through use-cases in personalized FL and device sampling.

In this paper, we propose scalable methods for maximizing a regularized submodular function $f \triangleq g-\ell$ expressed as the difference between a monotone submodular function $g$ and a modular function $\ell$. Submodularity is inherently related to the notions of diversity, coverage, and representativeness. In particular, finding the mode (i.e., the most likely configuration) of many popular probabilistic models of diversity, such as determinantal point processes and strongly log-concave distributions, involves maximization of (regularized) submodular functions. Since a regularized function $f$ can potentially take on negative values, the classic theory of submodular maximization, which heavily relies on the non-negativity assumption of submodular functions, is not applicable. To circumvent this challenge, we develop the first one-pass streaming algorithm for maximizing a regularized submodular function subject to a $k$-cardinality constraint. Furthermore, we develop the first distributed algorithm that returns a solution $S$ in $O(1/ \epsilon)$ rounds of MapReduce computation. We highlight that our result, even for the unregularized case where the modular term $\ell$ is zero, improves the memory and communication complexity of the state-of-the-art by a factor of $O(1/ \epsilon)$ while arguably provides a simpler distributed algorithm and a unifying analysis. We empirically study the performance of our scalable methods on a …

In recent years, various notions of capacity and complexity have been proposed for characterizing the generalization properties of stochastic gradient descent (SGD) in deep learning. Some of the popular notions that correlate well with the performance on unseen data are (i) the `flatness' of the local minimum found by SGD, which is related to the eigenvalues of the Hessian, (ii) the ratio of the stepsize $\eta$ to the batch-size $b$, which essentially controls the magnitude of the stochastic gradient noise, and (iii) the `tail-index', which measures the heaviness of the tails of the network weights at convergence. In this paper, we argue that these three seemingly unrelated perspectives for generalization are deeply linked to each other. We claim that depending on the structure of the Hessian of the loss at the minimum, and the choices of the algorithm parameters $\eta$ and $b$, the SGD iterates will converge to a \emph{heavy-tailed} stationary distribution. We rigorously prove this claim in the setting of quadratic optimization: we show that even in a simple linear regression problem with independent and identically distributed data whose distribution has finite moments of all order, the iterates can be heavy-tailed with infinite variance. We further characterize the behavior …

*decouple* robust representation learning from policy optimization. Specifically, an expert policy is first trained by RL from scratch with weak augmentations. A student network then learns to mimic the expert policy by supervised learning with strong augmentations, making its representation more robust against visual variations compared to the expert.
Extensive experiments demonstrate that SECANT significantly advances the state of the art in zero-shot generalization across 4 challenging domains. Our average reward improvements over prior SOTAs are: DeepMind Control (+26.5%), robotic manipulation (+337.8%), vision-based autonomous driving (+47.7%), and indoor object navigation (+15.8%). Code release and video are available at https://linxifan.github.io/secant-site/.

We study distributed computing of the truncated singular value decomposition (SVD).
We develop an algorithm that we call \texttt{LocalPower} for improving communication efficiency.
Specifically, we uniformly partition the dataset among $m$ nodes and alternate between multiple (precisely $p$) local power iterations and one global aggregation.
In the aggregation, we propose to weight each local eigenvector matrix with orthogonal Procrustes transformation (OPT).
As a practical surrogate of OPT, sign-fixing, which uses a diagonal matrix with $\pm 1$ entries as weights, has better computation complexity and stability in experiments.
We theoretically show that under certain assumptions \texttt{LocalPower} lowers the required number of communications by a factor of $p$ to reach a constant accuracy.
We also show that the strategy of periodically decaying $p$ helps obtain high-precision solutions.
We conduct experiments to demonstrate the effectiveness of \texttt{LocalPower}.

A Random Utility Model (RUM) is a distribution on permutations over a universe of items. For each subset of the universe, a RUM induces a natural distribution of the winner in the subset: choose a permutation according to the RUM distribution and pick the maximum item in the subset according to the chosen permutation. RUMs are widely used in the theory of discrete choice.
In this paper we consider the question of the (lossy) compressibility of RUMs on a universe of size $n$, i.e., the minimum number of bits required to approximate the winning probabilities of each slate. Our main result is that RUMs can be approximated using $\tilde{O}(n^2)$ bits, an exponential improvement over the standard representation; furthermore, we show that this bound is optimal.
En route, we sharpen the classical existential result of McFadden and Train (2000) by showing that the minimum size of a mixture of multinomial logits required to can approximate a general RUM is $\tilde{\Theta}(n)$.

The Wasserstein distance has become increasingly important in machine learning and deep learning. Despite its popularity, the Wasserstein distance is hard to approximate because of the curse of dimensionality. A recently proposed approach to alleviate the curse of dimensionality is to project the sampled data from the high dimensional probability distribution onto a lower-dimensional subspace, and then compute the Wasserstein distance between the projected data. However, this approach requires to solve a max-min problem over the Stiefel manifold, which is very challenging in practice. In this paper, we propose a Riemannian block coordinate descent (RBCD) method to solve this problem, which is based on a novel reformulation of the regularized max-min problem over the Stiefel manifold. We show that the complexity of arithmetic operations for RBCD to obtain an $\epsilon$-stationary point is $O(\epsilon^{-3})$, which is significantly better than the complexity of existing methods. Numerical results on both synthetic and real datasets demonstrate that our method is more efficient than existing methods, especially when the number of sampled data is very large.

The growing need to deal with massive instances motivates the design of algorithms balancing the quality of the solution with applicability. For the latter, an important measure is the \emph{adaptive complexity}, capturing the number of sequential rounds of parallel computation needed. In this work we obtain the first \emph{constant factor} approximation algorithm for non-monotone submodular maximization subject to a knapsack constraint with \emph{near-optimal} $O(\log n)$ adaptive complexity. Low adaptivity by itself, however, is not enough: one needs to account for the total number of function evaluations (or value queries) as well. Our algorithm asks $\tilde{O}(n^2)$ value queries, but can be modified to run with only $\tilde{O}(n)$ instead, while retaining a low adaptive complexity of $O(\log^2n)$. Besides the above improvement in adaptivity, this is also the first \emph{combinatorial} approach with sublinear adaptive complexity for the problem and yields algorithms comparable to the state-of-the-art even for the special cases of cardinality constraints or monotone objectives. Finally, we showcase our algorithms' applicability on real-world datasets.

Submodular optimization has numerous applications such as crowdsourcing and viral marketing. In this paper, we study the problem of non-negative submodular function maximization subject to a $k$-system constraint, which generalizes many other important constraints in submodular optimization such as cardinality constraint, matroid constraint, and $k$-extendible system constraint. The existing approaches for this problem are all based on deterministic algorithmic frameworks, and the best approximation ratio achieved by these algorithms (for a general submodular function) is $k+2\sqrt{k+2}+3$. We propose a randomized algorithm with an improved approximation ratio of $(1+\sqrt{k})^2$, while achieving nearly-linear time complexity significantly lower than that of the state-of-the-art algorithm. We also show that our algorithm can be further generalized to address a stochastic case where the elements can be adaptively selected, and propose an approximation ratio of $(1+\sqrt{k+1})^2$ for the adaptive optimization case. The empirical performance of our algorithms is extensively evaluated in several applications related to data mining and social computing, and the experimental results demonstrate the superiorities of our algorithms in terms of both utility and efficiency.

Least-Mean-Squares (\textsc{LMS}) solvers comprise a class of fundamental optimization problems such as linear regression, and regularized regressions such as Ridge, LASSO, and Elastic-Net. Data summarization techniques for big data generate summaries called coresets and sketches to speed up model learning under streaming and distributed settings. For example, \citep{nips2019} design a fast and accurate Caratheodory set on input data to boost the performance of existing \textsc{LMS} solvers. In retrospect, we explore classical Householder transformation as a candidate for sketching and accurately solving LMS problems. We find it to be a simpler, memory-efficient, and faster alternative that always existed to the above strong baseline. We also present a scalable algorithm based on the construction of distributed Householder sketches to solve \textsc{LMS} problem across multiple worker nodes. We perform thorough empirical analysis with large synthetic and real datasets to evaluate the performance of Householder sketch and compare with \citep{nips2019}. Our results show Householder sketch speeds up existing \textsc{LMS} solvers in the scikit-learn library up to $100$x-$400$x. Also, it is $10$x-$100$x faster than the above baseline with similar numerical stability. The distributed algorithm demonstrates linear scalability with a near-negligible communication overhead.

Off-policy multi-step reinforcement learning algorithms consist of conservative and non-conservative algorithms: the former actively cut traces, whereas the latter do not. Recently, Munos et al. (2016) proved the convergence of conservative algorithms to an optimal Q-function. In contrast, non-conservative algorithms are thought to be unsafe and have a limited or no theoretical guarantee. Nonetheless, recent studies have shown that non-conservative algorithms empirically outperform conservative ones. Motivated by the empirical results and the lack of theory, we carry out theoretical analyses of Peng's Q($\lambda$), a representative example of non-conservative algorithms. We prove that \emph{it also converges to an optimal policy} provided that the behavior policy slowly tracks a greedy policy in a way similar to conservative policy iteration. Such a result has been conjectured to be true but has not been proven. We also experiment with Peng's Q($\lambda$) in complex continuous control tasks, confirming that Peng's Q($\lambda$) often outperforms conservative algorithms despite its simplicity. These results indicate that Peng's Q($\lambda$), which was thought to be unsafe, is a theoretically-sound and practically effective algorithm.

In this work, we propose a sketching-based central path method for solving linear programmings, whose running time matches the state of the art results [Cohen, Lee, Song STOC 19; Lee, Song, Zhang COLT 19]. Our method opens up the iterations of the central path method and deploys an "iterate and sketch" approach towards the problem by introducing a new coordinate-wise embedding technique, which may be of independent interest. Compare to previous methods, the work [Cohen, Lee, Song STOC 19] enjoys feasibility while being non-oblivious, and [Lee, Song, Zhang COLT 19] is oblivious but infeasible, and relies on $\mathit{dense}$ sketching matrices such as subsampled randomized Hadamard/Fourier transform matrices. Our method enjoys the benefits of being both oblivious and feasible, and can use $\mathit{sparse}$ sketching matrix [Nelson, Nguyen FOCS 13] to speed up the online matrix-vector multiplication. Our framework for solving LP naturally generalizes to a broader class of convex optimization problems including empirical risk minimization.

We investigate fast and communication-efficient algorithms for the classic problem of minimizing a sum of strongly convex and smooth functions that are distributed among $n$ different nodes, which can communicate using a limited number of bits. Most previous communication-efficient approaches for this problem are limited to first-order optimization, and therefore have \emph{linear} dependence on the condition number in their communication complexity.
We show that this dependence is not inherent: communication-efficient methods can in fact have sublinear dependence on the condition number.
For this, we design and analyze the first communication-efficient distributed variants of preconditioned gradient descent for Generalized Linear Models, and for Newton's method.
Our results rely on a new technique for quantizing both the preconditioner and the descent direction at each step of the algorithms, while controlling their convergence rate.
We also validate our findings experimentally, showing faster convergence and reduced communication relative to previous methods.

We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions $\f_t$ admit a "pseudo-1d" structure, i.e. $\f_t(\w) = \loss_t(\pred_t(\w))$ where the output of $\pred_t$ is one-dimensional. At each round, the learner observes context $\x_t$, plays prediction $\pred_t(\w_t; \x_t)$ (e.g. $\pred_t(\cdot)=\langle \x_t, \cdot\rangle$) for some $\w_t \in \mathbb{R}^d$ and observes loss $\loss_t(\pred_t(\w_t))$ where $\loss_t$ is a convex Lipschitz-continuous function. The goal is to minimize the standard regret metric. This pseudo-1d bandit convex optimization problem (\SBCO) arises frequently in domains such as online decision-making or parameter-tuning in large systems. For this problem, we first show a regret lower bound of $\min(\sqrt{dT}, T^{3/4})$ for any algorithm, where $T$ is the number of rounds. We propose a new algorithm \sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively, guaranteeing the {\em optimal} regret bound mentioned above, up to additional logarithmic factors. In contrast, applying state-of-the-art online convex optimization methods leads to $\tilde{O}\left(\min\left(d^{9.5}\sqrt{T},\sqrt{d}T^{3/4}\right)\right)$ regret, that is significantly suboptimal in terms of $d$.

In one-shot weight sharing for NAS, the weights of each operation (at each layer) are supposed to be identical for all architectures (paths) in the supernet. However, this rules out the possibility of adjusting operation weights to cater for different paths, which limits the reliability of the evaluation results. In this paper, instead of counting on a single supernet, we introduce $K$-shot supernets and take their weights for each operation as a dictionary. The operation weight for each path is represented as a convex combination of items in a dictionary with a simplex code.
This enables a matrix approximation of the stand-alone weight matrix with a higher rank ($K>1$). A \textit{simplex-net} is introduced to produce architecture-customized code for each path. As a result, all paths can adaptively learn how to share weights in the $K$-shot supernets and acquire corresponding weights for better evaluation.
$K$-shot supernets and simplex-net can be iteratively trained, and we further extend the search to the channel dimension. Extensive experiments on benchmark datasets validate that K-shot NAS significantly improves the evaluation accuracy of paths and thus brings in impressive performance improvements.

Variational representations of $f$-divergences are central to many machine learning algorithms, with Lipschitz constrained variants recently gaining attention. Inspired by this, we define the Moreau-Yosida approximation of $f$-divergences with respect to the Wasserstein-$1$ metric. The corresponding variational formulas provide a generalization of a number of recent results, novel special cases of interest and a relaxation of the hard Lipschitz constraint. Additionally, we prove that the so-called tight variational representation of $f$-divergences can be to be taken over the quotient space of Lipschitz functions, and give a characterization of functions achieving the supremum in the variational representation. On the practical side, we propose an algorithm to calculate the tight convex conjugate of $f$-divergences compatible with automatic differentiation frameworks. As an application of our results, we propose the Moreau-Yosida $f$-GAN, providing an implementation of the variational formulas for the Kullback-Leibler, reverse Kullback-Leibler, $\chi^2$, reverse $\chi^2$, squared Hellinger, Jensen-Shannon, Jeffreys, triangular discrimination and total variation divergences as GANs trained on CIFAR-10, leading to competitive results and a simple solution to the problem of uniqueness of the optimal critic.

We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori. Due to the lack of further interactions with the environment, offline RL suffers from the insufficient coverage of the dataset, which eludes most existing theoretical analysis. In this paper, we propose a pessimistic variant of the value iteration algorithm (PEVI), which incorporates an uncertainty quantifier as the penalty function. Such a penalty function simply flips the sign of the bonus function for promoting exploration in online RL, which makes it easily implementable and compatible with general function approximators.

Without assuming the sufficient coverage of the dataset, we establish a data-dependent upper bound on the suboptimality of PEVI for general Markov decision processes (MDPs). When specialized to linear MDPs, it matches the information-theoretic lower bound up to multiplicative factors of the dimension and horizon. In other words, pessimism is not only provably efficient but also minimax optimal. In particular, given the dataset, the learned policy serves as the `best effort'' among all policies, as no other policies can do better. Our theoretical analysis identifies the critical role of pessimism in eliminating a notion of spurious correlation, which emerges from the`

irrelevant'' …

It is known that the Frank-Wolfe (FW) algorithm, which is affine covariant, enjoys faster convergence rates than $\mathcal{O}\left(1/K\right)$ when the constraint set is strongly convex. However, these results rely on norm-dependent assumptions, usually incurring non-affine invariant bounds, in contradiction with FW's affine covariant property. In this work, we introduce new structural assumptions on the problem (such as the directional smoothness) and derive an affine invariant, norm-independent analysis of Frank-Wolfe. We show that our rates are better than any other known convergence rates of FW in this setting. Based on our analysis, we propose an affine invariant backtracking line-search. Interestingly, we show that typical backtracking line-searches using smoothness of the objective function present similar performances than its affine invariant counterpart, despite using affine dependent norms in the step size's computation.

Alternating minimization (AM) procedures are practically efficient in many applications for solving convex and non-convex optimization problems. On the other hand, Nesterov's accelerated gradient is theoretically optimal first-order method for convex optimization. In this paper we combine AM and Nesterov's acceleration to propose an accelerated alternating minimization algorithm. We prove $1/k^2$ convergence rate in terms of the objective for convex problems and $1/k$ in terms of the squared gradient norm for non-convex problems, where $k$ is the iteration counter. Our method does not require any knowledge of neither convexity of the problem nor function parameters such as Lipschitz constant of the gradient, i.e. it is adaptive to convexity and smoothness and is uniformly optimal for smooth convex and non-convex problems. Further, we develop its primal-dual modification for strongly convex problems with linear constraints and prove the same $1/k^2$ for the primal objective residual and constraints feasibility.

Approximate bi-level optimization (ABLO) consists of (outer-level) optimization problems, involving numerical (inner-level) optimization loops. While ABLO has many applications across deep learning, it suffers from time and memory complexity proportional to the length $r$ of its inner optimization loop. To address this complexity, an earlier first-order method (FOM) was proposed as a heuristic which omits second derivative terms, yielding significant speed gains and requiring only constant memory. Despite FOM's popularity, there is a lack of theoretical understanding of its convergence properties. We contribute by theoretically characterizing FOM's gradient bias under mild assumptions. We further demonstrate a rich family of examples where FOM-based SGD does not converge to a stationary point of the ABLO objective. We address this concern by proposing an unbiased FOM (UFOM) enjoying constant memory complexity as a function of $r$. We characterize the introduced time-variance tradeoff, demonstrate convergence bounds, and find an optimal UFOM for a given ABLO problem. Finally, we propose an efficient adaptive UFOM scheme.

`perfect' encoder and generator cannot be continuous at the same time, which implies that current framework of encoding GANs is ill-posed and needs rethinking; b) neural networks cannot approximate the underlying encoder and generator precisely at the same time, which explains why we cannot get`

perfect' encoders and generators as promised in previous theories; c) neural networks cannot be stable and accurate at the same time, which demonstrates the difficulty of training and trade-off between fidelity and disentanglement encountered in previous works. Our work may eliminate gaps between previous theories and empirical results, promote the understanding …

In this paper we study the adversarial combinatorial bandit with a known non-linear reward function, extending existing work on adversarial linear combinatorial bandit. {The adversarial combinatorial bandit with general non-linear reward is an important open problem in bandit literature, and it is still unclear whether there is a significant gap from the case of linear reward, stochastic bandit, or semi-bandit feedback.} We show that, with $N$ arms and subsets of $K$ arms being chosen at each of $T$ time periods, the minimax optimal regret is $\widetilde\Theta_{d}(\sqrt{N^d T})$ if the reward function is a $d$-degree polynomial with $d< K$, and $\Theta_K(\sqrt{N^K T})$ if the reward function is not a low-degree polynomial. {Both bounds are significantly different from the bound $O(\sqrt{\mathrm{poly}(N,K)T})$ for the linear case, which suggests that there is a fundamental gap between the linear and non-linear reward structures.} Our result also finds applications to adversarial assortment optimization problem in online recommendation. We show that in the worst-case of adversarial assortment problem, the optimal algorithm must treat each individual $\binom{N}{K}$ assortment as independent.

In this paper, we study meta learning for support (i.e., the set of non-zero entries) recovery in high-dimensional precision matrix estimation where we reduce the sufficient sample complexity in a novel task with the information learned from other auxiliary tasks. In our setup, each task has a different random true precision matrix, each with a possibly different support. We assume that the union of the supports of all the true precision matrices (i.e., the true support union) is small in size. We propose to pool all the samples from different tasks, and \emph{improperly} estimate a single precision matrix by minimizing the $\ell_1$-regularized log-determinant Bregman divergence. We show that with high probability, the support of the \emph{improperly} estimated single precision matrix is equal to the true support union, provided a sufficient number of samples per task $n \in O((\log N)/K)$, for $N$-dimensional vectors and $K$ tasks. That is, one requires less samples per task when more tasks are available. We prove a matching information-theoretic lower bound for the necessary number of samples, which is $n \in \Omega((\log N)/K)$, and thus, our algorithm is minimax optimal. Then for the novel task, we prove that the minimization of the $\ell_1$-regularized log-determinant Bregman divergence …

We give a simple proof for the global convergence of gradient descent in training deep ReLU networks with the standard square loss, and show some of its improvements over the state-of-the-art. In particular, while prior works require all the hidden layers to be wide with width at least $\Omega(N^8)$ ($N$ being the number of training samples), we require a single wide layer of linear, quadratic or cubic width depending on the type of initialization. Unlike many recent proofs based on the Neural Tangent Kernel (NTK), our proof need not track the evolution of the entire NTK matrix, or more generally, any quantities related to the changes of activation patterns during training. Instead, we only need to track the evolution of the output at the last hidden layer, which can be done much more easily thanks to the Lipschitz property of ReLU. Some highlights of our setting: (i) all the layers are trained with standard gradient descent, (ii) the network has standard parameterization as opposed to the NTK one, and (iii) the network has a single wide layer as opposed to having all wide hidden layers as in most of NTK-related results.

We combine two advanced ideas widely used in optimization for machine learning: \textit{shuffling} strategy and \textit{momentum} technique to develop a novel shuffling gradient-based method with momentum, coined \textbf{S}huffling \textbf{M}omentum \textbf{G}radient (SMG), for non-convex finite-sum optimization problems.
While our method is inspired by momentum techniques, its update is fundamentally different from existing momentum-based methods.
We establish state-of-the-art convergence rates of SMG for any shuffling strategy using either constant or diminishing learning rate under standard assumptions (i.e. \textit{$L$-smoothness} and \textit{bounded variance}).
When the shuffling strategy is fixed, we develop another new algorithm that is similar to existing momentum methods,
and prove the same convergence rates for this algorithm under the $L$-smoothness and bounded gradient assumptions.
We demonstrate our algorithms via numerical simulations on standard datasets and compare them with existing shuffling methods.
Our tests have shown encouraging performance of the new algorithms.

We consider a novel challenge: approximating a distribution without the ability to randomly sample from that distribution. We study how such an approximation can be obtained using *weight queries*. Given some data set of examples, a weight query presents one of the examples to an oracle, which returns the probability, according to the target distribution, of observing examples similar to the presented example. This oracle can represent, for instance, counting queries to a database of the target population, or an interface to a search engine which returns the number of results that match a given search.

We propose an interactive algorithm that iteratively selects data set examples and performs corresponding weight queries. The algorithm finds a reweighting of the data set that approximates the weights according to the target distribution, using a limited number of weight queries. We derive an approximation bound on the total variation distance between the reweighting found by the algorithm and the best achievable reweighting. Our algorithm takes inspiration from the UCB approach common in multi-armed bandits problems, and combines it with a new discrepancy estimator and a greedy iterative procedure. In addition to our theoretical guarantees, we demonstrate in experiments the advantages of the …

A recent line of work has analyzed the theoretical properties of deep neural networks via the Neural Tangent Kernel (NTK). In particular, the smallest eigenvalue of the NTK has been related to the memorization capacity, the global convergence of gradient descent algorithms and the generalization of deep nets. However, existing results either provide bounds in the two-layer setting or assume that the spectrum of the NTK matrices is bounded away from 0 for multi-layer networks. In this paper, we provide tight bounds on the smallest eigenvalue of NTK matrices for deep ReLU nets, both in the limiting case of infinite widths and for finite widths. In the finite-width setting, the network architectures we consider are fairly general: we require the existence of a wide layer with roughly order of $N$ neurons, $N$ being the number of data samples; and the scaling of the remaining layer widths is arbitrary (up to logarithmic factors). To obtain our results, we analyze various quantities of independent interest: we give lower bounds on the smallest singular value of hidden feature matrices, and upper bounds on the Lipschitz constant of input-output feature maps.

Multi-agent evaluation aims at the assessment of an agent's strategy on the basis of interaction with others. Typically, existing methods such as $\alpha$-rank and its approximation still require to exhaustively compare all pairs of joint strategies for an accurate ranking, which in practice is computationally expensive. In this paper, we aim to reduce the number of pairwise comparisons in recovering a satisfying ranking for $n$ strategies in two-player meta-games, by exploring the fact that agents with similar skills may achieve similar payoffs against others. Two situations are considered: the first one is when we can obtain the true payoffs; the other one is when we can only access noisy payoff. Based on these formulations, we leverage low-rank matrix completion and design two novel algorithms for noise-free and noisy evaluations respectively. For both of these settings, we theorize that $O(nr \log n)$ ($n$ is the number of agents and $r$ is the rank of the payoff matrix) payoff entries are required to achieve sufficiently well strategy evaluation performance. Empirical results on evaluating the strategies in three synthetic games and twelve real world games demonstrate that strategy evaluation from a few entries can lead to comparable performance to algorithms with full knowledge …

Modern machine learning models with high accuracy are often miscalibrated---the predicted top probability does not reflect the actual accuracy, and tends to be \emph{over-confident}. It is commonly believed that such over-confidence is mainly due to \emph{over-parametrization}, in particular when the model is large enough to memorize the training data and maximize the confidence.

In this paper, we show theoretically that over-parametrization is not the only reason for over-confidence. We prove that \emph{logistic regression is inherently over-confident}, in the realizable, under-parametrized setting where the data is generated from the logistic model, and the sample size is much larger than the number of parameters. Further, this over-confidence happens for general well-specified binary classification problems as long as the activation is symmetric and concave on the positive part. Perhaps surprisingly, we also show that over-confidence is not always the case---there exists another activation function (and a suitable loss function) under which the learned classifier is \emph{under-confident} at some probability values. Overall, our theory provides a precise characterization of calibration in realizable binary classification, which we verify on simulations and real data experiments.

Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity

Rationalizing which parts of a molecule drive the predictions of a molecular graph convolutional neural network (GCNN) can be difficult. To help, we propose two simple regularization techniques to apply during the training of GCNNs: Batch Representation Orthonormalization (BRO) and Gini regularization. BRO, inspired by molecular orbital theory, encourages graph convolution operations to generate orthonormal node embeddings. Gini regularization is applied to the weights of the output layer and constrains the number of dimensions the model can use to make predictions. We show that Gini and BRO regularization can improve the accuracy of state-of-the-art GCNN attribution methods on artificial benchmark datasets. In a real-world setting, we demonstrate that medicinal chemists significantly prefer explanations extracted from regularized models. While we only study these regularizers in the context of GCNNs, both can be applied to other types of neural networks.

Recent work showed that there could be a large gap between the classical uniform convergence bound and the actual test error of zero-training-error predictors (interpolators) such as deep neural networks.
To better understand this gap, we study the uniform convergence in the nonlinear random feature model and perform a precise theoretical analysis on how uniform convergence depends on the sample size and the number of parameters.
We derive and prove analytical expressions for three quantities in this model: 1) classical uniform convergence over norm balls, 2) uniform convergence over interpolators in the norm ball (recently proposed by~\citet{zhou2021uniform}), and 3) the risk of minimum norm interpolator.
We show that, in the setting where the classical uniform convergence bound is vacuous (diverges to $\infty$), uniform convergence over the interpolators still gives a non-trivial bound of the test error of interpolating solutions.
We also showcase a different setting where classical uniform convergence bound is non-vacuous, but uniform convergence over interpolators can give an improved sample complexity guarantee.
Our result provides a first exact comparison between the test errors and uniform convergence bounds for interpolators beyond simple linear models.

Bilevel optimization has arisen as a powerful tool for many machine learning problems such as meta-learning, hyperparameter optimization, and reinforcement learning. In this paper, we investigate the nonconvex-strongly-convex bilevel optimization problem. For deterministic bilevel optimization, we provide a comprehensive convergence rate analysis for two popular algorithms respectively based on approximate implicit differentiation (AID) and iterative differentiation (ITD). For the AID-based method, we orderwisely improve the previous convergence rate analysis due to a more practical parameter selection as well as a warm start strategy, and for the ITD-based method we establish the first theoretical convergence rate. Our analysis also provides a quantitative comparison between ITD and AID based approaches. For stochastic bilevel optimization, we propose a novel algorithm named stocBiO, which features a sample-efficient hypergradient estimator using efficient Jacobian- and Hessian-vector product computations. We provide the convergence rate guarantee for stocBiO, and show that stocBiO outperforms the best known computational complexities orderwisely with respect to the condition number $\kappa$ and the target accuracy $\epsilon$. We further validate our theoretical results and demonstrate the efficiency of bilevel optimization algorithms by the experiments on meta-learning and hyperparameter optimization.

Given $\bx_j = \btheta + \bepsilon_j$, $j=1,...,n$ where $\btheta \in \RR^d$ is an unknown parameter and
$\bepsilon_j$ are i.i.d. Gaussian noise vectors,
we study the estimation of $f(\btheta)$ for a given smooth function $f:\RR^d \rightarrow \RR$ equipped with an additive structure.
We inherit the idea from a recent work which introduced an effective bias reduction technique through iterative bootstrap and derive
a bias-reducing estimator.
By establishing its normal approximation results, we show that the proposed estimator can achieve asymptotic normality with a looser constraint on smoothness compared with general smooth function due to the additive structure.
Such results further imply that the proposed estimator is asymptotically efficient.
Both upper and lower bounds on mean squared error are proved which shows the proposed estimator is minimax optimal for the smooth class considered.
Numerical simulation results are presented to validate our analysis and show its superior performance of the proposed estimator
over the plug-in approach in terms of bias reduction and building confidence~intervals.

*only a few neurons* achieve
near-optimal performance on high-dimensional Gaussian mixture classification
while lazy training approaches such as random features and kernel methods do
not.
Our analysis is based on the derivation of a set of ordinary differential
equations that exactly track the dynamics of the network and thus allow to
extract the asymptotic performance of the network as a function of
regularisation or signal-to-noise ratio.
We also show how over-parametrising the neural network leads to faster convergence, but does not improve its final performance.

The article introduces an elementary cost and storage reduction method for spectral clustering and principal component analysis. The method consists in randomly ``puncturing'' both the data matrix $X\in\mathbb{C}^{p\times n}$ (or $\mathbb{R}^{p\times n}$) and its corresponding kernel (Gram) matrix $K$ through Bernoulli masks: $S\in\{0,1\}^{p\times n}$ for $X$ and $B\in\{0,1\}^{n\times n}$ for $K$. The resulting ``two-way punctured'' kernel is thus given by $K=\frac1p[(X\odot S)^\H (X\odot S)]\odot B$.
We demonstrate that, for $X$ composed of independent columns drawn from a Gaussian mixture model, as $n,p\to\infty$ with $p/n\to c_0\in(0,\infty)$, the spectral behavior of $K$ -- its limiting eigenvalue distribution, as well as its isolated eigenvalues and eigenvectors -- is fully tractable and exhibits a series of counter-intuitive phenomena. We notably prove, and empirically confirm on various image databases, that it is possible to drastically puncture the data, thereby providing possibly huge computational and storage gains, for a virtually constant (clustering or PCA) performance. This preliminary study opens as such the path towards rethinking, from a large dimensional standpoint, computational and storage costs in elementary machine learning models.

We consider an online revenue maximization problem over a finite time horizon subject to lower and upper bounds on cost. At each period, an agent receives a context vector sampled i.i.d. from an unknown distribution and needs to make a decision adaptively. The revenue and cost functions depend on the context vector as well as some fixed but possibly unknown parameter vector to be learned. We propose a novel offline benchmark and a new algorithm that mixes an online dual mirror descent scheme with a generic parameter learning process. When the parameter vector is known, we demonstrate an $O(\sqrt{T})$ regret result as well an $O(\sqrt{T})$ bound on the possible constraint violations. When the parameter is not known and must be learned, we demonstrate that the regret and constraint violations are the sums of the previous $O(\sqrt{T})$ terms plus terms that directly depend on the convergence of the learning process.

Incorporating a so-called ``momentum'' dynamic in gradient descent methods is widely used in neural net training as it has been broadly observed that, at least empirically, it often leads to significantly faster convergence. At the same time, there are very few theoretical guarantees in the literature to explain this apparent acceleration effect. Even for the classical strongly convex quadratic problems, several existing results only show Polyak's momentum has an accelerated linear rate asymptotically. In this paper, we first revisit the quadratic problems and show a non-asymptotic accelerated linear rate of Polyak's momentum. Then, we provably show that Polyak's momentum achieves acceleration for training a one-layer wide ReLU network and a deep linear network, which are perhaps the two most popular canonical models for studying optimization and deep learning in the literature. Prior works (Du et al. 2019) and (Wu et al. 2019) showed that using vanilla gradient descent, and with an use of over-parameterization, the error decays as $(1- \Theta(\frac{1}{ \kappa'}))^t$ after $t$ iterations, where $\kappa'$ is the condition number of a Gram Matrix. Our result shows that with the appropriate choice of parameters Polyak's momentum has a rate of $(1-\Theta(\frac{1}{\sqrt{\kappa'}}))^t$. For the deep linear network, prior work (Hu et …

Inverse reinforcement learning (IRL) is the task of finding a reward function that generates a desired optimal policy for a given Markov Decision Process (MDP). This paper develops an information-theoretic lower bound for the sample complexity of the finite state, finite action IRL problem. A geometric construction of $\beta$-strict separable IRL problems using spherical codes is considered. Properties of the ensemble size as well as the Kullback-Leibler divergence between the generated trajectories are derived. The resulting ensemble is then used along with Fano's inequality to derive a sample complexity lower bound of $O(n \log n)$, where $n$ is the number of states in the MDP.

Data subset selection from a large number of training instances has been a successful approach toward efficient and cost-effective machine learning. However, models trained on a smaller subset may show poor generalization ability. In this paper, our goal is to design an algorithm for selecting a subset of the training data, so that the model can be trained quickly, without significantly sacrificing on accuracy. More specifically, we focus on data subset selection for $L_2$ regularized regression problems and provide a novel problem formulation which seeks to minimize the training loss with respect to both the trainable parameters and the subset of training data, subject to error bounds on the validation set. We tackle this problem using several technical innovations. First, we represent this problem with simplified constraints using the dual of the original training problem and show that the objective of this new representation is a monotone and $\alpha$-submodular function, for a wide variety of modeling choices. Such properties lead us to develop SELCON, an efficient majorization-minimization algorithm for data subset selection, that admits an approximation guarantee even when the training provides an imperfect estimate of the trained model. Finally, our experiments on several datasets show that SELCON
trades off …

In this paper, we provide finite-sample convergence guarantees for an off-policy variant of the natural actor-critic (NAC) algorithm based on Importance Sampling. In particular, we show that the algorithm converges to a global optimal policy with a sample complexity of $\mathcal{O}(\epsilon^{-3}\log^2(1/\epsilon))$ under an appropriate choice of stepsizes. In order to overcome the issue of large variance due to Importance Sampling, we propose the $Q$-trace algorithm for the critic, which is inspired by the V-trace algorithm (Espeholt et al., 2018). This enables us to explicitly control the bias and variance, and characterize the trade-off between them. As an advantage of off-policy sampling, a major feature of our result is that we do not need any additional assumptions, beyond the ergodicity of the Markov chain induced by the behavior policy.

Persistence diagrams (PDs) are the most common descriptors used to encode the topology of structured data appearing in challenging learning tasks;~think e.g.~of graphs, time series or point clouds sampled close to a manifold.
Given random objects and the corresponding distribution of PDs, one may want to build a statistical summary---such as a mean---of these random PDs, which is however not a trivial task as the natural geometry of the space of PDs is not linear.
In this article, we study two such summaries, the Expected Persistence Diagram (EPD), and its quantization. The EPD is a measure supported on $\mathbb{R}^2$, which may be approximated by its empirical counterpart. We prove that this estimator is optimal from a minimax standpoint on a large class of models with a parametric rate of convergence. The empirical EPD is simple and efficient to compute, but possibly has a very large support, hindering its use in practice. To overcome this issue, we propose an algorithm to compute a quantization of the empirical EPD, a measure with small support which is shown to approximate with near-optimal rates a quantization of the theoretical EPD.

We consider in this paper the problem of optimal experiment design where a decision maker can choose which points to sample to obtain an estimate $\hat{\beta}$ of the hidden parameter $\beta^{\star}$ of an underlying linear model.
The key challenge of this work lies in the heteroscedasticity assumption that we make, meaning that each covariate has a different and unknown variance.
The goal of the decision maker is then to figure out on the fly the optimal way to allocate the total budget of $T$ samples between covariates, as sampling several times a specific one will reduce the variance of the estimated model around it (but at the cost of a possible higher variance elsewhere).
By trying to minimize the $\ell^2$-loss $\mathbb{E} [\lVert\hat{\beta}-\beta^{\star}\rVert^2]$ the decision maker is actually minimizing the trace of the covariance matrix of the problem, which corresponds then to online A-optimal design.
Combining techniques from bandit and convex optimization we propose a new active sampling algorithm and we compare it with existing ones. We provide theoretical guarantees of this algorithm in different settings, including a $\mathcal{O}(T^{-2})$ regret bound in the case where the covariates form a basis of the feature space, generalizing and improving existing results. Numerical experiments …

The standard problem setting in Dec-POMDPs is self-play, where the goal is to find a set of policies that play optimally together. Policies learned through self-play may adopt arbitrary conventions and implicitly rely on multi-step reasoning based on fragile assumptions about other agents' actions and thus fail when paired with humans or independently trained agents at test time. To address this, we present off-belief learning (OBL). At each timestep OBL agents follow a policy $\pi_1$ that is optimized assuming past actions were taken by a given, fixed policy ($\pi_0$), but assuming that future actions will be taken by $\pi_1$. When $\pi_0$ is uniform random, OBL converges to an optimal policy that does not rely on inferences based on other agents' behavior (an optimal grounded policy). OBL can be iterated in a hierarchy, where the optimal policy from one level becomes the input to the next, thereby introducing multi-level cognitive reasoning in a controlled manner. Unlike existing approaches, which may converge to any equilibrium policy, OBL converges to a unique policy, making it suitable for zero-shot coordination (ZSC). OBL can be scaled to high-dimensional settings with a fictitious transition mechanism and shows strong performance in both a toy-setting and the benchmark …

There has been much interest in recent years in developing learning algorithms that can learn accurate classifiers from data with noisy labels. A widely-studied noise model is that of \emph{class-conditional noise} (CCN), wherein a label $y$ is flipped to a label $\tilde{y}$ with some associated noise probability that depends on both $y$ and $\tilde{y}$. In the multiclass setting, all previously proposed algorithms under the CCN model involve changing the training process, by introducing a `noise-correction' to the surrogate loss to be minimized over the noisy training examples. In this paper, we show that this is really unnecessary: one can simply perform class probability estimation (CPE) on the noisy examples, e.g.\ using a standard (multiclass) logistic regression algorithm, and then apply noise-correction only in the final prediction step. This means that the training algorithm itself does not need any change, and one can simply use standard off-the-shelf implementations with no modification to the code for training. Our approach can handle general multiclass loss matrices, including the usual 0-1 loss but also other losses such as those used for ordinal regression problems. We also provide a quantitative regret transfer bound, which bounds the target regret on the true distribution in terms of …

We present a novel control-theoretic understanding of online optimization and learning in games, via the notion of passivity. Passivity is a fundamental concept in control theory, which abstracts energy conservation and dissipation in physical systems. It has become a standard tool in analysis of general feedback systems, to which game dynamics belong. Our starting point is to show that all continuous-time Follow-the-Regularized-Leader (FTRL) dynamics, which include the well-known Replicator Dynamic, are lossless, i.e. it is passive with no energy dissipation. Interestingly, we prove that passivity implies bounded regret, connecting two fundamental primitives of control theory and online optimization.

The observation of energy conservation in FTRL inspires us to present a family of lossless learning dynamics, each of which has an underlying energy function with a simple gradient structure. This family is closed under convex combination; as an immediate corollary, any convex combination of FTRL dynamics is lossless and thus has bounded regret. This allows us to extend the framework of Fox & Shamma [Games 2013] to prove not just global asymptotic stability results for game dynamics, but Poincaré recurrence results as well. Intuitively, when a lossless game (e.g. graphical constant-sum game) is coupled with lossless learning dynamic, their interconnection is …

We analyze the properties of adversarial training for learning adversarially robust halfspaces in the presence of agnostic label noise. Denoting $\mathsf{OPT}_{p,r}$ as the best classification error achieved by a halfspace that is robust to perturbations of $\ell^{p}$ balls of radius $r$, we show that adversarial training on the standard binary cross-entropy loss yields adversarially robust halfspaces up to classification error $\tilde O(\sqrt{\mathsf{OPT}_{2,r}})$ for $p=2$, and $\tilde O(d^{1/4} \sqrt{\mathsf{OPT}_{\infty, r}})$ when $p=\infty$. Our results hold for distributions satisfying anti-concentration properties enjoyed by log-concave isotropic distributions among others. We additionally show that if one instead uses a non-convex sigmoidal loss, adversarial training yields halfspaces with an improved robust classification error of $O(\mathsf{OPT}_{2,r})$ for $p=2$, and $O(d^{1/4} \mathsf{OPT}_{\infty, r})$ when $p=\infty$. To the best of our knowledge, this is the first work showing that adversarial training provably yields robust classifiers in the presence of noise.

We study reinforcement learning (RL) in episodic tabular MDPs with adversarial corruptions, where some episodes can be adversarially corrupted. When the total number of corrupted episodes is known, we propose an algorithm, Corruption Robust Monotonic Value Propagation (\textsf{CR-MVP}), which achieves a regret bound of $\tilde{O}\left(\left(\sqrt{SAK}+S^2A+CSA)\right)\polylog(H)\right)$, where $S$ is the number of states, $A$ is the number of actions, $H$ is the planning horizon, $K$ is the number of episodes, and $C$ is the corruption level. We also provide a corresponding lower bound, which indicates that our upper bound is tight. Finally, as an application, we study RL with rich observations in the block MDP model. We provide the first algorithm that achieves a $\sqrt{K}$-type regret in this setting and is computationally efficient.

We incorporate group fairness into the algorithmic centroid clustering problem, where $k$ centers are to be located to serve $n$ agents distributed in a metric space. We refine the notion of proportional fairness proposed in [Chen et al., ICML 2019] as {\em core fairness}. A $k$-clustering is in the core if no coalition containing at least $n/k$ agents can strictly decrease their total distance by deviating to a new center together. Our solution concept is motivated by the situation where agents are able to coordinate and utilities are transferable. A string of existence, hardness and approximability results is provided. Particularly, we propose two dimensions to relax core requirements: one is on the degree of distance improvement, and the other is on the size of deviating coalition. For both relaxations and their combination, we study the extent to which relaxed core fairness can be satisfied in metric spaces including line, tree and general metric space, and design approximation algorithms accordingly. We also conduct experiments on synthetic and real-world data to examine the performance of our algorithms.

We propose an algorithm for stochastic and adversarial multiarmed bandits with switching costs, where the algorithm pays a price $\lambda$ every time it switches the arm being played. Our algorithm is based on adaptation of the Tsallis-INF algorithm of Zimmert and Seldin (2021) and requires no prior knowledge of the regime or time horizon. In the oblivious adversarial setting it achieves the minimax optimal regret bound of $ O(