Spotlight

Adapting to misspecification in contextual bandits with offline regression oracles

Sanath Kumar Krishnamurthy · Vitor Hadad · Susan Athey

[ Abstract ] [ Livestream: Visit Bandits 4 ] [ Paper ]
Wed 21 Jul 7:45 p.m. — 7:50 p.m. PDT

Computationally efficient contextual bandits are often based on estimating a predictive model of rewards given contexts and arms using past data. However, when the reward model is not well-specified, the bandit algorithm may incur unexpected regret, so recent work has focused on algorithms that are robust to misspecification. We propose a simple family of contextual bandit algorithms that adapt to misspecification error by reverting to a good safe policy when there is evidence that misspecification is causing a regret increase. Our algorithm requires only an offline regression oracle to ensure regret guarantees that gracefully degrade in terms of a measure of the average misspecification level. Compared to prior work, we attain similar regret guarantees, but we do no rely on a master algorithm, and do not require more robust oracles like online or constrained regression oracles (e.g., Foster et al. (2020), Krishnamurthy et al. (2020)). This allows us to design algorithms for more general function approximation classes.

Chat is not available.