Skip to yearly menu bar Skip to main content


On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients

Difan Zou · Quanquan Gu

Abstract: Hamiltonian Monte Carlo (HMC), built based on the Hamilton's equation, has been witnessed great success in sampling from high-dimensional posterior distributions. However, it also suffers from computational inefficiency, especially for large training datasets. One common idea to overcome this computational bottleneck is using stochastic gradients, which only queries a mini-batch of training data in each iteration. However, unlike the extensive studies on the convergence analysis of HMC using full gradients, few works focus on establishing the convergence guarantees of stochastic gradient HMC algorithms. In this paper, we propose a general framework for proving the convergence rate of HMC with stochastic gradient estimators, for sampling from strongly log-concave and log-smooth target distributions. We show that the convergence to the target distribution in $2$-Wasserstein distance can be guaranteed as long as the stochastic gradient estimator is unbiased and its variance is upper bounded along the algorithm trajectory. We further apply the proposed framework to analyze the convergence rates of HMC with four standard stochastic gradient estimators: mini-batch stochastic gradient (SG), stochastic variance reduced gradient (SVRG), stochastic average gradient (SAGA), and control variate gradient (CVG). Theoretical results explain the inefficiency of mini-batch SG, and suggest that SVRG and SAGA perform better in the tasks with high-precision requirements, while CVG performs better for large dataset. Experiment results verify our theoretical findings.

Chat is not available.