Spotlight

KD3A: Unsupervised Multi-Source Decentralized Domain Adaptation via Knowledge Distillation

Haozhe Feng · Zhaoyang You · Minghao Chen · Tianye Zhang · Minfeng Zhu · Fei Wu · Chao Wu · Wei Chen

[ Abstract ] [ Livestream: Visit Multi-task Learning 1 ] [ Paper ]
Thu 22 Jul 5:20 p.m. — 5:25 p.m. PDT
[ Paper ]

Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. However, this assumption neglects the privacy-preserving policy, where all the data and computations must be kept decentralized. There exist three challenges in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from the source and target domains, while the data on the source domain is not available. (2) The communication cost and privacy security limit the application of existing UMDA methods, such as the domain adversarial training. (3) Since users cannot govern the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. To address the above problems, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. The extensive experiments show that KD3A significantly outperforms state-of-the-art UMDA approaches. Moreover, the KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods.

Chat is not available.