Spotlight

TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models

Zhuohan Li · Siyuan Zhuang · Shiyuan Guo · Danyang Zhuo · Hao Zhang · Dawn Song · Ion Stoica

[ Abstract ] [ Livestream: Visit Optimization and Algorithms 1 ] [ Paper ]
Tue 20 Jul 5:20 p.m. — 5:25 p.m. PDT

Model parallelism has become a necessity for training modern large-scale deep language models. In this work, we identify a new and orthogonal dimension from existing model parallel approaches: it is possible to perform pipeline parallelism within a single training sequence for Transformer-based language models thanks to its autoregressive property. This enables a more fine-grained pipeline compared with previous work. With this key idea, we design TeraPipe, a high-performance token-level pipeline parallel algorithm for synchronous model-parallel training of Transformer-based language models. We develop a novel dynamic programming-based algorithm to calculate the optimal pipelining execution scheme given a specific model and cluster configuration. We show that TeraPipe can speed up the training by 5.0x for the largest GPT-3 model with 175 billion parameters on an AWS cluster with 48 p3.16xlarge instances compared with state-of-the-art model-parallel methods. The code for reproduction can be found at https://github.com/zhuohan123/terapipe

Chat is not available.