Skip to yearly menu bar Skip to main content


Principal Component Hierarchy for Sparse Quadratic Programs

Robbie Vreugdenhil · Viet Anh Nguyen · Armin Eftekhari · Peyman Mohajerin Esfahani


We propose a novel approximation hierarchy for cardinality-constrained, convex quadratic programs that exploits the rank-dominating eigenvectors of the quadratic matrix. Each level of approximation admits a min-max characterization whose objective function can be optimized over the binary variables analytically, while preserving convexity in the continuous variables. Exploiting this property, we propose two scalable optimization algorithms, coined as the best response" and thedual program", that can efficiently screen the potential indices of the nonzero elements of the original program. We show that the proposed methods are competitive with the existing screening methods in the current sparse regression literature, and it is particularly fast on instances with high number of measurements in experiments with both synthetic and real datasets.

Chat is not available.