Workshop
Next Generation of AI Safety
Ian Kivlichan · Shibani Santurkar · Alex Beutel · Aleksander Madry · Preethi Lahoti · Ahmad Beirami · Adina Williams · Beyza Ermis · Tatsunori Hashimoto
Hall A1
Fri 26 Jul, midnight PDT
In recent years, general-purpose AI has experienced a meteoric rise in capabilities and applications. This rise has continued to bring forth new safety challenges, requiring mitigation to ensure AI systems meet trustworthiness standards. In this workshop, we take a proactive approach to safety and focus on five emerging trends in AI and explore the challenges associated with deploying these technologies safely:1. Agentic AI: As AI agents become more autonomous, concerns about unintended consequences, ethical issues, and adversary exploitation emerge. How do we ensure these agents respect privacy, and adhere to safety protocols?2. Multimodal: With the evolution of AI systems to process and generate diverse modalities like audio, video, and images, concerns around content appropriateness, privacy, bias, and misinformation arise. How do we craft robust guidelines and security measures to tackle these challenges?3. Personalized Interactions: As conversational agents evolve for social and personal interaction, risks like data privacy breaches and echo chambers grow. How do we balance tailored experiences with user safety?4. Sensitive Applications: With AI’s integration into high-risk domains like legal, medical, and mental health, the stakes rise with risks such as overreliance on automation and potential catastrophic errors. How do we ensure that AI systems in these critical areas enhance decision-making without compromising human expertise and judgment? 5. Dangerous Capabilities: As AI's knowledge and understanding capabilities improve, these systems could be leveraged to extract or generate information about harmful applications or technologies, including bioweapons or cyber attack methods. How do we ensure that AI systems are designed with safeguards to prevent their misuse in creating or disseminating dangerous knowledge, while still allowing for beneficial research and innovation?We believe this next frontier of capabilities and applications raises new research questions: What does the next frontier in AI safety look like? How do we evaluate it? And how can we develop strong safeguards for tomorrow’s AI systems?Combatting the novel challenges of next generation AI systems necessitates new safety techniques, spanning areas such as synthetic data generation and utilization, content moderation, and model training methodologies. The proliferation of open-source and personalized models tailored for various applications widens the scope of deployments, and amplifies the already-urgent need for robust safety tools. Moreover, this diverse range of potential deployments entails complex trade-offs between safety objectives and operational efficiency. Taken together, there is a broad set of urgent and unique research challenges and opportunities to ensure the safety of the AI systems of tomorrow.Goal: In this workshop, we will bring together researchers across academia and industry working on improving safety and alignment of state-of-the-art AI systems as they are deployed. We aim for the event to facilitate sharing of challenges, best practices, new research ideas, data, and evaluations, that both practically aid development and spur progress in this area.
Schedule
Fri 12:00 a.m. - 12:45 a.m.
|
Invited Talk: Kamalika Chaudhuri
SlidesLive Video |
🔗 |
Fri 12:45 a.m. - 1:30 a.m.
|
Invited Talk: Inioluwa Deborah Raji
SlidesLive Video |
🔗 |
Fri 1:30 a.m. - 2:00 a.m.
|
Oral Session #1
SlidesLive Video |
🔗 |
Fri 2:00 a.m. - 2:45 a.m.
|
Invited Talk: Joelle Pineau
SlidesLive Video |
🔗 |
Fri 2:45 a.m. - 3:30 a.m.
|
Panel
SlidesLive Video |
🔗 |
Fri 6:00 a.m. - 6:30 a.m.
|
Oral Session #2
SlidesLive Video |
🔗 |
Fri 7:30 a.m. - 8:00 a.m.
|
Invited Talk: Lilian Weng
SlidesLive Video |
🔗 |
-
|
Gone With the Bits: Benchmarking Bias in Facial Phenotype Degradation Under Low-Rate Neural Compression ( Poster ) > link | Tian Qiu · Arjun Nichani · Rasta Tadayon · Haewon Jeong 🔗 |
-
|
AI Alignment with Changing and Influenceable Reward Functions ( Poster ) > link | Micah Carroll · Davis Foote · Anand Siththaranjan · Stuart Russell · Anca Dragan 🔗 |
-
|
CoSy: Evaluating Textual Explanations of Neurons ( Poster ) > link | Laura Kopf · Philine Bommer · Anna Hedström · Sebastian Lapuschkin · Marina Höhne · Kirill Bykov 🔗 |
-
|
Eliciting Black-Box Representations from LLMs through Self-Queries ( Poster ) > link | Dylan Sam · Marc Finzi 🔗 |
-
|
Unfamiliar Finetuning Examples Control How Language Models Hallucinate ( Poster ) > link | Katie Kang · Eric Wallace · Claire Tomlin · Aviral Kumar · Sergey Levine 🔗 |
-
|
Distillation based Robustness Verification with PAC Guarantees ( Poster ) > link | Patrick Indri · Peter Blohm · Anagha Athavale · Ezio Bartocci · Georg Weissenbacher · Matteo Maffei · Dejan Nickovic · Thomas Gärtner · SAGAR MALHOTRA 🔗 |
-
|
Accuracy on the wrong line: On the pitfalls of noisy data for OOD generalisation ( Poster ) > link | Amartya Sanyal · Yaxi Hu · Yaodong Yu · Yian Ma · Yixin Wang · Bernhard Schölkopf 🔗 |
-
|
Open LLMs are Necessary for Private Adaptations and Outperform their Closed Alternatives ( Poster ) > link | Vincent Hanke · Tom Blanchard · Franziska Boenisch · Iyiola Emmanuel Olatunji · Michael Backes · Adam Dziedzic 🔗 |
-
|
Talking Nonsense: Probing Large Language Models' Understanding of Adversarial Gibberish Inputs ( Poster ) > link | Valeriia Cherepanova · James Zou 🔗 |
-
|
Weak-to-Strong Jailbreaking on Large Language Models ( Poster ) > link | Xuandong Zhao · Xianjun Yang · Tianyu Pang · Chao Du · Lei Li · Yu-Xiang Wang · William Wang 🔗 |
-
|
Certifiably Robust RAG against Retrieval Corruption ( Poster ) > link | Chong Xiang · Tong Wu · Zexuan Zhong · David Wagner · Danqi Chen · Prateek Mittal 🔗 |
-
|
On the Calibration of Conditional-Value-at-Risk ( Poster ) > link | Rajeev Verma · Volker Fischer · Eric Nalisnick 🔗 |
-
|
Safer Reinforcement Learning by Going Off-policy: a Benchmark ( Poster ) > link | Igor Kuznetsov 🔗 |
-
|
Fairness Through Controlled (Un)Awareness in Node Embeddings ( Poster ) > link | Dennis Vetter · Jasper Forth · Gemma Roig · Holger Dell 🔗 |
-
|
A statistical framework for weak-to-strong generalization ( Poster ) > link | Seamus Somerstep · Felipe Maia Polo · Moulinath Banerjee · Yaacov Ritov · Mikhail Yurochkin · Yuekai Sun 🔗 |
-
|
Automatic Pseudo-Harmful Prompt Generation for Evaluating False Refusals in Large Language Models ( Poster ) > link | Bang An · Sicheng Zhu · Ruiyi Zhang · Michael-Andrei Panaitescu-Liess · Yuancheng Xu · Furong Huang 🔗 |
-
|
Consistency Checks for Language Model Forecasters ( Poster ) > link | Abhimanyu Pallavi Sudhir · Alejandro Alvarez · Adam Shen · Daniel Paleka 🔗 |
-
|
A Sim2Real Approach for Identifying Task-Relevant Properties in Interpretable Machine Learning ( Poster ) > link | Eura Nofshin · Esther Brown · Brian Lim · Weiwei Pan · Finale Doshi-Velez 🔗 |
-
|
Chained Tuning Leads to Biased Forgetting ( Poster ) > link | Megan Ung · Alicia Sun · Samuel Bell · Levent Sagun · Adina Williams 🔗 |
-
|
ProFeAT: Projected Feature Adversarial Training for Self-Supervised Learning of Robust Representations ( Poster ) > link | Sravanti Addepalli · Priyam Dey · Venkatesh Babu Radhakrishnan 🔗 |
-
|
Private Attribute Inference from Images with Vision-Language Models ( Poster ) > link | Batuhan Tömekçe · Mark Vero · Robin Staab · Martin Vechev 🔗 |
-
|
Leveraging Multi-Color Spaces as a Defense Mechanism Against Model Inversion Attack ( Poster ) > link | Sofiane Ouaari · Ali Burak Ünal · Mete Akgün · Nico Pfeifer 🔗 |
-
|
JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models ( Poster ) > link |
12 presentersPatrick Chao · Edoardo Debenedetti · Alex Robey · Maksym Andriushchenko · Francesco Croce · Vikash Sehwag · Edgar Dobriban · Nicolas Flammarion · George J. Pappas · Florian Tramer · Hamed Hassani · Eric Wong |
-
|
Alignment Calibration: Machine Unlearning for Contrastive Learning under Auditing ( Poster ) > link | Yihan Wang · Yiwei Lu · Guojun Zhang · Franziska Boenisch · Adam Dziedzic · Yaoliang Yu · Xiao-Shan Gao 🔗 |
-
|
Adversarial Robustness Limits via Scaling-Law and Human-Alignment Studies ( Poster ) > link | Brian Bartoldson · James Diffenderfer · Konstantinos Parasyris · Bhavya Kailkhura 🔗 |
-
|
Enhancing the Resilience of LLMs Against Grey-box Extractions ( Poster ) > link | Hanbo Huang · Yihan Li · Bowen Jiang · Bo Jiang · Lin Liu · Zhuotao Liu · Ruoyu Sun · Shiyu Liang 🔗 |
-
|
Robust Knowledge Unlearning via Mechanistic Localizations ( Poster ) > link | Phillip Guo · Aaquib Syed · Abhay Sheshadri · Aidan Ewart · Gintare Karolina Dziugaite 🔗 |
-
|
Using Large Language Models for Humanitarian Frontline Negotiation: Opportunities and Considerations ( Poster ) > link |
15 presentersZilin Ma · Susannah (Cheng) Su · Nathan Zhao · Linn Bieske · Blake Bullwinkel · Jinglun Gao · Gekai Liao · Siyao Li · Ziqing Luo · Boxiang Wang · Zihan Wen · Yanrui Yang · Yanyi Zhang · Claude Bruderlein · Weiwei Pan |
-
|
Fairness through partial awareness: Evaluation of the addition of demographic information for bias mitigation methods ( Poster ) > link | Chung Peng Lee · Rachel Hong · Jamie Morgenstern 🔗 |
-
|
FairPFN: Transformers can do Counterfactual Fairness ( Poster ) > link | Jake Robertson · Noah Hollmann · Noor Awad · Frank Hutter 🔗 |
-
|
Marginal Fairness Sliced Wasserstein Barycenter ( Poster ) > link | Khai Nguyen · Hai Nguyen · Nhat Ho 🔗 |
-
|
Exploiting LLM Quantization ( Poster ) > link | Kazuki Egashira · Mark Vero · Robin Staab · Jingxuan He · Martin Vechev 🔗 |
-
|
AI Agents with Formal Security Guarantees ( Poster ) > link | Mislav Balunovic · Luca Beurer-Kellner · Marc Fischer · Martin Vechev 🔗 |
-
|
A Geometric Framework for Understanding Memorization in Generative Models ( Poster ) > link | Brendan Ross · Hamidreza Kamkari · Zhaoyan Liu · Tongzi Wu · George Stein · Gabriel Loaiza-Ganem · Jesse Cresswell 🔗 |
-
|
On the Robustness of Neural Networks Quantization against Data Poisoning Attacks ( Poster ) > link | Yiwei Lu · Yihan Wang · Guojun Zhang · Yaoliang Yu 🔗 |
-
|
Is My Data Safe? Predicting Membership Inference Success for Individual Instances ( Poster ) > link | Tobias Leemann · Bardh Prenkaj · Gjergji Kasneci 🔗 |
-
|
DiveR-CT: Diversity-enhanced Red Teaming with Relaxing Constraints ( Poster ) > link | Andrew Zhao · Quentin Xu · Matthieu Lin · Shenzhi Wang · Yong-Jin Liu · Zilong Zheng · Gao Huang 🔗 |
-
|
Automatic Jailbreaking of the Text-to-Image Generative AI Systems ( Poster ) > link | Minseon Kim · Hyomin Lee · Boqing Gong · Huishuai Zhang · Sung Ju Hwang 🔗 |
-
|
Robustness Analysis of AI Models in Critical Energy Systems ( Poster ) > link | Panteleimon Tsampikos Dogoulis · matthieu jimenez · Maxime Cordy · Salah GHAMIZI · YVES LE TRAON 🔗 |
-
|
Decomposed evaluations of geographic disparities in text-to-image models ( Poster ) > link | Abhishek Sureddy · Dishant Padalia · Nandhinee Periyakaruppan · Oindrila Saha · Adina Williams · Adriana Romero Soriano · Megan Richards · Polina Kirichenko · Melissa Hall 🔗 |
-
|
Catastrophic Goodhart: regularizing RLHF with KL divergence does not mitigate heavy-tailed reward misspecification ( Poster ) > link | Thomas Kwa · Drake Thomas · Adrià Garriga-Alonso 🔗 |
-
|
Mimicking User Data: On Mitigating Fine-Tuning Risks in Closed Large Language Models ( Poster ) > link | Francisco Eiras · Aleksandar Petrov · Phil Torr · M. Pawan Kumar · Adel Bibi 🔗 |
-
|
ContextCite: Attributing Model Generation to Context ( Poster ) > link | Benjamin Cohen-Wang · Harshay Shah · Kristian Georgiev · Aleksander Madry 🔗 |
-
|
Models That Prove Their Own Correctness ( Poster ) > link | Noga Amit · Shafi Goldwasser · Orr Paradise · Guy Rothblum 🔗 |
-
|
Explaining the Model, Protecting Your Data: Revealing and Mitigating the Data Privacy Risks of Post-Hoc Model Explanations via Membership Inference ( Poster ) > link | Catherine Huang · Martin Pawelczyk · Himabindu Lakkaraju 🔗 |
-
|
Neural Interactive Proofs ( Poster ) > link | Lewis Hammond · Sam Adam-Day 🔗 |
-
|
Towards Adversarially Robust Vision-Language Models: Insights from Design Choices and Prompt Formatting Techniques ( Poster ) > link | Rishika Bhagwatkar · Shravan Nayak · Reza Bayat · Alexis Roger · Daniel Kaplan · Pouya Bashivan · Irina Rish 🔗 |
-
|
Rule Based Rewards for fine-grained LLM Safety ( Poster ) > link | Tong Mu · Alec Helyar · Johannes Heidecke · Joshua Achiam · Andrea Vallone · Ian Kivlichan · Molly Lin · Alex Beutel · John Schulman · Lilian Weng 🔗 |
-
|
AdaptiveBackdoor: Backdoored Language Model Agents that Detect Human Overseers ( Poster ) > link | Heng Wang · Ruiqi Zhong · Jiaxin Wen · Jacob Steinhardt 🔗 |
-
|
Why Has Predicting Downstream Capabilities of Frontier AI Models with Scale Remained Elusive? ( Poster ) > link | Rylan Schaeffer · Hailey Schoelkopf · Brando Miranda · Gabriel Mukobi · Varun Madan · Adam Ibrahim · Herbie Bradley · Stella Biderman · Sanmi Koyejo 🔗 |
-
|
Measuring Goal-Directedness ( Poster ) > link | Matt MacDermott · James Fox · Francesco Belardinelli · Tom Everitt 🔗 |
-
|
Ethical-Lens: Curbing Malicious Usages of Open-Source Text-to-Image Models ( Poster ) > link | Yuzhu Cai · Sheng Yin · Yuxi Wei · Chenxin Xu · Weibo Mao · Felix Juefei-Xu · Siheng Chen · Yanfeng Wang 🔗 |
-
|
Manipulating Feature Visualizations with Gradient Slingshots ( Poster ) > link | Dilyara Bareeva · Marina Höhne · Alexander Warnecke · Lukas Pirch · Klaus-robert Mueller · Konrad Rieck · Kirill Bykov 🔗 |
-
|
Generating Potent Poisons and Backdoors from Scratch with Guided Diffusion ( Poster ) > link | Hossein Souri · Arpit Bansal · Hamid Kazemi · Liam Fowl · Aniruddha Saha · Jonas Geiping · Andrew Wilson · Rama Chellappa · Tom Goldstein · Micah Goldblum 🔗 |
-
|
In-Context Learning, Can It Break Safety? ( Poster ) > link | Sophie Xhonneux · David Dobre · Michael Noukhovitch · Jian Tang · Gauthier Gidel · Dhanya Sridhar 🔗 |
-
|
Efficient Differentially Private Fine-Tuning of Diffusion Models ( Poster ) > link | Jing Liu · Andrew Lowy · Toshiaki Koike-Akino · Kieran Parsons · Ye Wang 🔗 |
-
|
Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors ( Poster ) > link | Peter Lorenz · Mario Fernandez · Jens Müller · Ullrich Koethe 🔗 |
-
|
POST: A Framework for Privacy of Soft-prompt Transfer ( Poster ) > link | Xun Wang · Jing Xu · Franziska Boenisch · Michael Backes · Adam Dziedzic 🔗 |
-
|
Uncovering a Culture of AI Grassroots Experimentation by Boston City Employees: Safety Risks and Mitigation ( Poster ) > link | Jude Ha · Audrey Chang 🔗 |
-
|
Black-Box Detection of Language Model Watermarks ( Poster ) > link | Thibaud Gloaguen · Nikola Jovanović · Robin Staab · Martin Vechev 🔗 |
-
|
WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models ( Poster ) > link |
11 presentersLiwei Jiang · Kavel Rao · Seungju Han · Allyson Ettinger · Faeze Brahman · Sachin Kumar · Niloofar Mireshghallah · Ximing Lu · Maarten Sap · Nouha Dziri · Yejin Choi |
-
|
Adversarial Training with Synthesized Data: A Path to Robust and Generalizable Neural Networks ( Poster ) > link | Reza Bayat · Irina Rish 🔗 |
-
|
PrimeGuard: Safe and Helpful LLMs through Tuning-Free Routing ( Poster ) > link | Blazej Manczak · Eric Lin · Eliott Zemour · Vaikkunth Mugunthan 🔗 |
-
|
Improving the Efficiency of Self-Supervised Adversarial Training through Latent Clustering-based Selection ( Poster ) > link | Somrita Ghosh · Yuelin Xu · Xiao Zhang 🔗 |
-
|
Bias Transmission in Large Language Models: Evidence from Gender-Occupation Bias in GPT-4 ( Poster ) > link | Kirsten Morehouse · Weiwei Pan · Juan Manuel Contreras · Mahzarin Banaji 🔗 |
-
|
Large Language Models as Misleading Agents in Conversation ( Poster ) > link | Betty L Hou · Kejian Shi · Jason Phang · Steven Adler · James Aung · Rosie Campbell 🔗 |
-
|
Towards Safe Large Language Models for Medicine ( Poster ) > link | Tessa Han · Aounon Kumar · Chirag Agarwal · Himabindu Lakkaraju 🔗 |
-
|
Towards Adaptive Attacks on Constrained Tabular Machine Learning ( Poster ) > link | Thibault Simonetto · Salah GHAMIZI · Maxime Cordy 🔗 |
-
|
AnonFair: A Flexible Toolkit for Algorithmic Fairness ( Poster ) > link | Eoin Delaney · Zihao Fu · Sandra Wachter · Brent Mittelstadt · Chris Russell 🔗 |
-
|
Can Go AIs be adversarially robust? ( Poster ) > link | Tom Tseng · Euan McLean · Kellin Pelrine · Tony Wang · Adam Gleave 🔗 |
-
|
One-Shot Safety Alignment for Large Language Models via Optimal Dualization ( Poster ) > link | Xinmeng Huang · Shuo Li · Edgar Dobriban · Osbert Bastani · Hamed Hassani · Dongsheng Ding 🔗 |
-
|
Tree of Attacks: Jailbreaking Black-Box LLMs Automatically ( Poster ) > link | Anay Mehrotra · Manolis Zampetakis · Paul Kassianik · Blaine Nelson · Hyrum Anderson · Yaron Singer · Amin Karbasi 🔗 |
-
|
Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs ( Poster ) > link | Ashwinee Panda · Berivan Isik · Xiangyu Qi · Sanmi Koyejo · Tsachy Weissman · Prateek Mittal 🔗 |
-
|
Improved Few-Shot Jailbreaking Can Circumvent Aligned Language Models and Their Defenses ( Poster ) > link | Xiaosen Zheng · Tianyu Pang · Chao Du · Qian Liu · Jing Jiang · Min Lin 🔗 |
-
|
Can Language Models Safeguard Themselves, Instantly and For Free? ( Poster ) > link | Dyah Adila · Changho Shin · Yijing Zhang · Frederic Sala 🔗 |
-
|
Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks ( Poster ) > link | Maksym Andriushchenko · Francesco Croce · Nicolas Flammarion 🔗 |
-
|
Cascade Reward Sampling for Efficient Decoding-Time Alignment ( Poster ) > link | Bolian Li · Yifan Wang · Ananth Grama · Ruqi Zhang 🔗 |
-
|
Medical Unlearnable Examples: Securing Medical Data from Unauthorized Traning via Sparsity-Aware Local Masking ( Poster ) > link | Weixiang Sun · Yixin Liu · Zhiling Yan · Kaidi Xu · Lichao Sun 🔗 |
-
|
AssistanceZero: Scalably Solving Assistance Games ( Poster ) > link | Cassidy Laidlaw · Eli Bronstein · Timothy Guo · Dylan Feng · Lukas Berglund · Justin Svegliato · Stuart Russell · Anca Dragan 🔗 |
-
|
Can Editing LLMs Inject Harm? ( Poster ) > link |
15 presentersCanyu Chen · Baixiang Huang · Zekun Li · Zhaorun Chen · Shiyang Lai · Xiongxiao Xu · Jia-Chen Gu · Jindong Gu · Huaxiu Yao · Chaowei Xiao · Xifeng Yan · William Wang · Phil Torr · Dawn Song · Kai Shu |
-
|
Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? ( Poster ) > link | Michael-Andrei Panaitescu-Liess · Zora Che · Bang An · Yuancheng Xu · Pankayaraj Pathmanathan · Souradip Chakraborty · Sicheng Zhu · Tom Goldstein · Furong Huang 🔗 |
-
|
Privacy Auditing of Large Language Models ( Poster ) > link | Ashwinee Panda · Xinyu Tang · Milad Nasr · Christopher A. Choquette Choo · Prateek Mittal 🔗 |
-
|
Enhancing Concept-based Learning with Logic ( Poster ) > link | Deepika Vemuri · Gautham Bellamkonda · Vineeth N Balasubramanian 🔗 |
-
|
Certified Robustness in NLP Under Bounded Levenshtein Distance ( Poster ) > link | Elias Abad Rocamora · Grigorios Chrysos · Volkan Cevher 🔗 |
-
|
BELLS: A Framework Towards Future Proof Benchmarks for the Evaluation of LLM Safeguards ( Poster ) > link | Diego Dorn · Alexandre Variengien · Charbel-Raphaël Segerie · Vincent Corruble 🔗 |
-
|
Attacking Large Language Models with Projected Gradient Descent ( Poster ) > link | Simon Markus Geisler · Tom Wollschläger · M. Hesham Abdalla · Johannes Gasteiger · Stephan Günnemann 🔗 |
-
|
Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models ( Poster ) > link | Christian Schlarmann · Naman Singh · Francesco Croce · Matthias Hein 🔗 |
-
|
DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing ( Poster ) > link | June Suk Choi · Kyungmin Lee · Jongheon Jeong · Saining Xie · Jinwoo Shin · Kimin Lee 🔗 |
-
|
$\nabla \tau$: Gradient-based and Task-Agnostic Machine Unlearning ( Poster ) > link | Daniel Trippa · Cesare Campagnano · Maria Sofia Bucarelli · Gabriele Tolomei · Fabrizio Silvestri 🔗 |
-
|
Exploring Scaling Trends in LLM Robustness ( Poster ) > link | Nikolaus Howe · Michał Zając · Ian McKenzie · Oskar Hollinsworth · Pierre-Luc Bacon · Adam Gleave 🔗 |
-
|
Hummer: Towards Limited Competitive Preference Dataset ( Poster ) > link | Li Jiang · Yusen Wu · Junwu Xiong · Jingqing Ruan · Qingpei Guo · zujie wen · JUN ZHOU · Xiaotie Deng 🔗 |
-
|
Generated Audio Detectors Are Not Robust in Real-World Conditions ( Poster ) > link | Soumya Shaw · Ben Nassi · Lea Schönherr 🔗 |
-
|
Is ChatGPT Transforming Academics' Writing Style? ( Poster ) > link | Mingmeng Geng · Roberto Trotta 🔗 |