Skip to yearly menu bar Skip to main content


Workshop

3rd Workshop on Interpretable Machine Learning in Healthcare (IMLH)

Weina Jin · Ramin Zabih · S. Kevin Zhou · Yuyin Zhou · Xiaoxiao Li · Yifan Peng · Zongwei Zhou · Yucheng Tang · Yuzhe Yang · Agni Kumar

Ballroom C

Fri 28 Jul, 12:15 p.m. PDT

Applying machine learning (ML) in healthcare is gaining momentum rapidly. However, the black-box characteristics of the existing ML approach inevitably lead to less interpretability and verifiability in making clinical predictions. To enhance the interpretability of medical intelligence, it becomes critical to develop methodologies to explain predictions as these systems are pervasively being introduced to the healthcare domain, which requires a higher level of safety and security. Such methodologies would make medical decisions more trustworthy and reliable for physicians, which could ultimately facilitate the deployment. In addition, it is essential to develop more interpretable and transparent ML systems. For instance, by exploiting structured knowledge or prior clinical information, one can design models to learn aspects more aligned with clinical reasoning. Also, it may help mitigate biases in the learning process, or identify more relevant variables for making medical decisions.In this workshop, we aim to bring together researchers in ML, computer vision, healthcare, medicine, NLP, public health, computational biology, biomedical informatics, and clinical fields to facilitate discussions including related challenges, definition, formalisms, and evaluation protocols regarding interpretable medical machine intelligence. Our workshop will be in a large-attendance talk format. The expected number of attendees is about 150. The workshop appeals to ICML audiences as interpretability is a major challenge to deploy ML in critical domains such as healthcare. By providing a platform that fosters potential collaborations and discussions between attendees, we hope the workshop is fruitful in offering a step toward building autonomous clinical decision systems with a higher-level understanding of interpretability.

Chat is not available.
Timezone: America/Los_Angeles

Schedule