Workshop
2nd ICML Workshop on Machine Learning for Astrophysics
Francois Lanusse · Marc Huertas-Company · Brice Menard · Laurence Perreault-Levasseur · J. Xavier Prochaska · Uros Seljak · Francisco Villaescusa-Navarro · Ashley Villar
Meeting Room 317 B
Sat 29 Jul, noon PDT
As modern astrophysical surveys deliver an unprecedented amount of data, from the imaging of hundreds of millions of distant galaxies to the mapping of cosmic radiation fields at ultra-high resolution, conventional data analysis methods are reaching their limits in both computational complexity and optimality. Deep Learning has rapidly been adopted by the astronomical community as a promising way of exploiting these forthcoming big-data datasets and of extracting the physical principles that underlie these complex observations. This has led to an unprecedented exponential growth of publications combining Machine Learning and astrophysics. Yet, many of these works remain at an exploratory level and have not been translated into real scientific breakthroughs.Following a successful initial iteration of this workshop at ICML 2022, our continued goal for this workshop series is to bring together Machine Learning researchers and domain experts in the field of Astrophysics to discuss the key open issues which hamper the use of Deep Learning for scientific discovery.
Schedule
Sat 12:00 p.m. - 12:05 p.m.
|
Welcome
(
Opening Remarks
)
>
SlidesLive Video |
Francois Lanusse 🔗 |
Sat 12:05 p.m. - 12:35 p.m.
|
Keynote I: Detecting and Adapting to Distribution Shift
(
Keynote presentation
)
>
SlidesLive Video |
Chelsea Finn 🔗 |
Sat 12:35 p.m. - 12:50 p.m.
|
Shared Stochastic Gaussian process Decoders: A Probabilistic Generative model for Quasar Spectra
(
Oral
)
>
SlidesLive Video |
Vidhi Ramesh · Anna-Christina Eilers 🔗 |
Sat 12:50 p.m. - 1:05 p.m.
|
Disentangling gamma-ray observations of the Galactic Center using differentiable probabilistic programming
(
Oral
)
>
link
SlidesLive Video |
Yitian Sun · Siddharth Mishra-Sharma · Tracy Slatyer · Yuqing Wu 🔗 |
Sat 1:05 p.m. - 1:30 p.m.
|
Morning Coffee Break
|
🔗 |
Sat 1:30 p.m. - 2:00 p.m.
|
Keynote II: Foundation Models for Radio Astronomy
(
Keynote presentation
)
>
SlidesLive Video |
Anna Scaife 🔗 |
Sat 2:00 p.m. - 2:15 p.m.
|
Positional Encodings for Light Curve Transformers: Playing with Positions and Attention
(
Oral
)
>
SlidesLive Video |
Guillermo Cabrera-Vives · Daniel Moreno-Cartagena · Pavlos Protopapas · Cristobal Donoso · Manuel Perez-Carrasco · Martina Cádiz-Leyton 🔗 |
Sat 2:15 p.m. - 2:30 p.m.
|
Detecting Tidal Features using Self-Supervised Learning
(
Oral
)
>
SlidesLive Video |
Alice Desmons · Sarah Brough · Francois Lanusse 🔗 |
Sat 2:30 p.m. - 2:45 p.m.
|
Flow Matching for Scalable Simulation-Based Inference
(
Oral
)
>
SlidesLive Video |
Jonas Wildberger · Maximilian Dax · Simon Buchholz · Stephen R. Green · Jakob Macke · Bernhard Schölkopf 🔗 |
Sat 2:45 p.m. - 3:00 p.m.
|
Time Delay Cosmography with a Neural Ratio Estimator
(
Oral
)
>
SlidesLive Video |
Ève Campeau-Poirier · Laurence Perreault-Levasseur · Adam Coogan · Yashar Hezaveh 🔗 |
Sat 3:00 p.m. - 4:00 p.m.
|
Lunch Break
|
🔗 |
Sat 4:00 p.m. - 4:30 p.m.
|
Keynote III: Astrophysics Meets MLOps
(
Keynote presentation
)
>
SlidesLive Video |
Dmitry Duev 🔗 |
Sat 4:30 p.m. - 4:45 p.m.
|
Diffusion generative modeling for galaxy surveys: emulating clustering for inference at the field level
(
Oral
)
>
SlidesLive Video |
Carolina Cuesta · Siddharth Mishra-Sharma 🔗 |
Sat 4:45 p.m. - 5:00 p.m.
|
Field-Level Inference with Microcanonical Langevin Monte Carlo
(
Oral
)
>
SlidesLive Video |
Adrian Bayer · Uros Seljak · Chirag Modi 🔗 |
Sat 5:00 p.m. - 5:15 p.m.
|
Spotting Hallucinations in Inverse Problems with Data-Driven Priors
(
Oral
)
>
SlidesLive Video |
Matt Sampson · Peter Melchior 🔗 |
Sat 5:15 p.m. - 5:45 p.m.
|
Keynote IV: Teaching LLMs to Reason
(
Keynote presentation
)
>
SlidesLive Video |
Ross Taylor 🔗 |
Sat 5:45 p.m. - 7:00 p.m.
|
Poster session
(
Poster session
)
>
|
🔗 |
Sat 7:00 p.m. - 7:55 p.m.
|
Panel: How will new technologies such as foundation models/generative models/LLMs change the way we do scientific discoveries?
(
Discussion Panel
)
>
SlidesLive Video |
Peter Melchior · Yashar Hezaveh · Megan Ansdell · Yuan-Sen Ting · David W. Hogg · Irina Rish 🔗 |
Sat 7:55 p.m. - 8:00 p.m.
|
Workshop Wrap Up
(
Closing Remarks
)
>
|
🔗 |
-
|
Learning the galaxy-environment connection with graph neural networks
(
Poster
)
>
|
John F. Wu · Christian Jespersen 🔗 |
-
|
Multi-fidelity Emulator for Cosmological Large Scale 21 cm Lightcone Images: a Few-shot Transfer Learning Approach with GAN
(
Poster
)
>
|
Kangning Diao · Yi Mao 🔗 |
-
|
PPDONet: Deep Operator Networks for Fast Prediction of Steady-State Solutions in Disk-Planet Systems
(
Poster
)
>
|
Shunyuan Mao · Ruobing Dong · Lu Lu · Kwang Moo Yi · Sifan Wang · Paris Perdikaris 🔗 |
-
|
Cosmology with Galaxy Photometry Alone
(
Poster
)
>
|
ChangHoon Hahn · Peter Melchior · Francisco Villaescusa-Navarro · Romain Teyssier 🔗 |
-
|
Cosmological Data Compression and Inference with Self-Supervised Machine Learning
(
Poster
)
>
|
Aizhan Akhmetzhanova · Siddharth Mishra-Sharma · Cora Dvorkin 🔗 |
-
|
Neural Astrophysical Wind Models
(
Poster
)
>
|
Dustin Nguyen 🔗 |
-
|
Assessing Summary Statistics with Mutual Information for Cosmological Inference
(
Poster
)
>
|
Ce Sui · xiaosheng zhao · Tao Jing · Yi Mao 🔗 |
-
|
Multi-Class Deep SVDD: Anomaly Detection Approach in Astronomy with Distinct Inlier Categories
(
Poster
)
>
|
Manuel Perez-Carrasco · Guillermo Cabrera-Vives · Lorena Hernandez-García · Paula Sanchez-Saez · Amelia Bayo · Alejandra Muñoz-Arancibia · Nicolás Astorga 🔗 |
-
|
Bayesian Uncertainty Quantification in High-dimensional Stellar Magnetic Field Models
(
Poster
)
>
|
Jennifer Andersson · Oleg Kochukhov · Zheng Zhao · Jens Sjölund 🔗 |
-
|
A Comparative Study on Generative Models for High Resolution Solar Observation Imaging
(
Poster
)
>
|
Mehdi Cherti · Alexander Czernik · Stefan Kesselheim · Frederic Effenberger · Jenia Jitsev 🔗 |
-
|
3D ScatterNet: Inference from 21~cm Light-cones
(
Poster
)
>
|
Xiaosheng Zhao · Yi Mao 🔗 |
-
|
Weisfeiler-Lehman Graph Kernel Method: A New Approach to Weak Chemical Tagging
(
Poster
)
>
|
Yuan-Sen Ting · Bhavesh Sharma 🔗 |
-
|
Population-Level Inference for Galaxy Properties from Broadband Photometry
(
Poster
)
>
|
Jiaxuan Li · Peter Melchior · ChangHoon Hahn · Song Huang 🔗 |
-
|
A cross-modal adversarial learning method for estimating photometric redshift of quasars
(
Poster
)
>
|
Chen Zhang · Yanxia Zhang · Bin Jiang · Meixia Qu · Wenyu Wang 🔗 |
-
|
Harnessing the Power of Adversarial Prompting and Large Language Models for Robust Hypothesis Generation in Astronomy
(
Poster
)
>
|
Ioana Ciuca · Yuan-Sen Ting · Sandor Kruk · Kartheik Iyer 🔗 |
-
|
Diffusion Models for Probabilistic Deconvolution of Galaxy Images
(
Poster
)
>
|
Zhiwei Xue · Yuhang Li · Yash Patel · Jeffrey Regier 🔗 |
-
|
Closing the stellar labels gap: An unsupervised, generative model for Gaia BP/RP spectra
(
Poster
)
>
|
Alex Laroche · Joshua Speagle 🔗 |
-
|
Graph Representation of the Magnetic Field Topology in High-Fidelity Plasma Simulations for Machine Learning Applications
(
Poster
)
>
|
Ioanna Bouri · Fanni Franssila · Markku J. Alho · Giulia Cozzani · Ivan Zaitsev · Minna Palmroth · Teemu Roos 🔗 |
-
|
SimBIG: Field-level Simulation-based Inference of Large-scale Structure
(
Poster
)
>
|
11 presentersPablo Lemos · Liam Parker · ChangHoon Hahn · Bruno Régaldo-Saint Blancard · Elena Massara · Shirley Ho · David Spergel · Chirag Modi · Azadeh Moradinezhad Dizgah · Michael Eickenberg · Jiamin Hou |
-
|
Domain Adaptation via Minimax Entropy for Real/Bogus Classification of Astronomical Alerts
(
Poster
)
>
|
Guillermo Cabrera-Vives · César Bolívar · Francisco Förster · Alejandra Muñoz-Arancibia · Manuel Pérez-Carrasco · esteban reyes · Larry Denneau 🔗 |
-
|
SimBIG: Galaxy Clustering beyond the Power Spectrum
(
Poster
)
>
|
11 presentersChangHoon Hahn · Pablo Lemos · Bruno Régaldo-Saint Blancard · Liam Parker · Michael Eickenberg · Shirley Ho · Jiamin Hou · Elena Massara · Chirag Modi · Azadeh Moradinezhad Dizgah · David Spergel |
-
|
FLORAH: A generative model for halo assembly histories
(
Poster
)
>
|
Tri Nguyen · Chirag Modi · Rachel Somerville · L. Y. Aaron Yung 🔗 |
-
|
A Multi-input Convolutional Neural Network to Automate and Expedite Bright Transient Identification for the Zwicky Transient Facility ( Poster ) > link | Nabeel Rehemtulla · Adam Miller · Michael Coughlin · Theophile Jegou Du Laz 🔗 |
-
|
A Novel Application of Conditional Normalizing Flows: Stellar Age Inference with Gyrochronology
(
Poster
)
>
|
Phil Van-Lane · Joshua Speagle 🔗 |
-
|
A Hierarchy of Normalizing Flows for Modelling the Galaxy-Halo Relationship
(
Poster
)
>
|
11 presentersChris Lovell · Sultan Hassan · Francisco Villaescusa-Navarro · Shy Genel · Chang Hoon Hahn · Daniel Angles-Alcazar · James Kwon · Natalí Soler Matubaro de Santi · Kartheik Iyer · Giulio Fabbian · Greg Bryan |
-
|
Toward a Spectral Foundation Model: An Attention-Based Approach with Domain-Inspired Fine-Tuning and Wavelength Parameterization
(
Poster
)
>
|
Tomasz Różański · Yuan-Sen Ting · Maja Jablonska 🔗 |
-
|
Using Multiple Vector Channels Improves $E(n)$-Equivariant Graph Neural Networks
(
Poster
)
>
|
Daniel Levy · Sékou-Oumar Kaba · Carmelo Gonzales · Santiago Miret · Siamak Ravanbakhsh 🔗 |
-
|
Multiscale Flow for Robust and Optimal Cosmological Analysis
(
Poster
)
>
|
Biwei Dai · Uros Seljak 🔗 |
-
|
Towards Unbiased Gravitational-Wave Parameter Estimation using Score-Based Likelihood Characterization
(
Poster
)
>
|
Ronan Legin · Kaze Wong · Maximiliano Isi · Alexandre Adam · Laurence Perreault-Levasseur · Yashar Hezaveh 🔗 |
-
|
nbi: the Astronomer's Package for Neural Posterior Estimation
(
Poster
)
>
|
Keming Zhang · Josh Bloom 🔗 |
-
|
Real-Time Stellar Spectra Fitting with Amortized Neural Posterior Estimation
(
Poster
)
>
|
Keming Zhang · Tharindu Jayasinghe · Josh Bloom 🔗 |