Workshop
Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators
Felix Petersen · Marco Cuturi · Mathias Niepert · Hilde Kuehne · Michael Kagan · Willie Neiswanger · Stefano Ermon
Meeting Room 310
Fri 28 Jul, noon PDT
Gradients and derivatives are integral to machine learning, as they enable gradient-based optimization. In many real applications, however, models rest on algorithmic components that implement discrete decisions, or rely on discrete intermediate representations and structures. These discrete steps are intrinsically non-differentiable and accordingly break the flow of gradients. To use gradient-based approaches to learn the parameters of such models requires turning these non-differentiable components differentiable. This can be done with careful considerations, notably, using smoothing or relaxations to propose differentiable proxies for these components. With the advent of modular deep learning frameworks, these ideas have become more popular than ever in many fields of machine learning, generating in a short time-span a multitude of "differentiable everything", impacting topics as varied as rendering, sorting and ranking, convex optimizers, shortest-paths, dynamic programming, physics simulations, NN architecture search, top-k, graph algorithms, weakly- and self-supervised learning, and many more.
Schedule
Fri 12:00 p.m. - 12:10 p.m.
|
Opening Remarks
(
Remarks
)
>
link
SlidesLive Video |
Felix Petersen 🔗 |
Fri 12:10 p.m. - 12:45 p.m.
|
Invited Talk 1: Perturbed Optimizers for Learning
(
Invited Talk
)
>
SlidesLive Video |
Quentin Berthet 🔗 |
Fri 12:45 p.m. - 1:20 p.m.
|
Invited Talk 2: Generalizing the Gumbel-Softmax with Stochastic Softmax Tricks
(
Invited Talk
)
>
SlidesLive Video |
Dami Choi 🔗 |
Fri 1:20 p.m. - 1:40 p.m.
|
Coffee Break
|
🔗 |
Fri 1:40 p.m. - 2:15 p.m.
|
Invited Talk 3: Differentiable Learning modulo Formal Verification
(
Invited Talk
)
>
SlidesLive Video |
Swarat Chaudhuri 🔗 |
Fri 2:15 p.m. - 2:30 p.m.
|
Short Poster Talks 1
(
Short Poster Talks
)
>
SlidesLive Video |
🔗 |
Fri 2:30 p.m. - 3:30 p.m.
|
Poster Session 1 ( Poster Session ) > link | 🔗 |
Fri 3:30 p.m. - 4:30 p.m.
|
Lunch Break
|
🔗 |
Fri 4:30 p.m. - 5:05 p.m.
|
Invited Talk 4: Blackbox Differentiation: the story so far
(
Invited Talk
)
>
SlidesLive Video |
Marin Vlastelica 🔗 |
Fri 5:05 p.m. - 5:40 p.m.
|
Invited Talk 5: On Differentiable Top-k Operators
(
Invited Talk
)
>
SlidesLive Video |
Mathieu Blondel 🔗 |
Fri 5:40 p.m. - 6:00 p.m.
|
Coffee Break
|
🔗 |
Fri 6:00 p.m. - 6:15 p.m.
|
Short Poster Talks 2
(
Short Poster Talks
)
>
SlidesLive Video |
🔗 |
Fri 6:15 p.m. - 6:50 p.m.
|
Invited Talk 6: Differentiable Rendering and Beyond
(
Invited Talk
)
>
SlidesLive Video |
Tzu-Mao Li 🔗 |
Fri 6:50 p.m. - 7:00 p.m.
|
Closing Remarks
(
Remarks
)
>
SlidesLive Video |
Felix Petersen 🔗 |
Fri 7:00 p.m. - 8:00 p.m.
|
Poster Session 2 ( Poster Session ) > link | 🔗 |
-
|
End-to-end Differentiable Clustering with Associative Memories ( Poster ) > link | Bishwajit Saha · Dmitry Krotov · Mohammed Zaki · Parikshit Ram 🔗 |
-
|
Optimizing probability of barrier crossing with differentiable simulators ( Poster ) > link | Martin Šípka · Johannes Dietschreit · Michal Pavelka · Lukáš Grajciar · Rafael Gomez-Bombarelli 🔗 |
-
|
From Perception to Programs: Regularize, Overparameterize, and Amortize ( Poster ) > link | Hao Tang · Kevin Ellis 🔗 |
-
|
Efficient Surrogate Gradients for Training Spiking Neural Networks ( Poster ) > link | Hao Lin · Shikuang Deng · Shi Gu 🔗 |
-
|
Differentiable Tree Operations Promote Compositional Generalization ( Poster ) > link | Paul Soulos · Edward Hu · Kate McCurdy · Yunmo Chen · Roland Fernandez · Paul Smolensky · Jianfeng Gao 🔗 |
-
|
Plateau-Reduced Differentiable Path Tracing ( Poster ) > link | Michael Fischer · Tobias Ritschel 🔗 |
-
|
Differentiable Clustering and Partial Fenchel-Young Losses ( Poster ) > link | Lawrence Stewart · Francis Bach · Felipe Llinares-Lopez · Quentin Berthet 🔗 |
-
|
GeoPhy: Differentiable Phylogenetic Inference via Geometric Gradients of Tree Topologies ( Poster ) > link | Takahiro Mimori · Michiaki Hamada 🔗 |
-
|
Differentiable sorting for censored time-to-event data ( Poster ) > link | Andre Vauvelle · Benjamin Wild · Roland Eils · Spiros Denaxas 🔗 |
-
|
Latent Random Steps as Relaxations of Max-Cut, Min-Cut, and More ( Poster ) > link | Sudhanshu Chanpuriya · Cameron Musco 🔗 |
-
|
Distributions for Compositionally Differentiating Parametric Discontinuities ( Poster ) > link | Jesse Michel · Kevin Mu · Xuanda Yang · Sai Praveen Bangaru · Elias Rojas Collins · Gilbert Bernstein · Jonathan Ragan-Kelley · Michael Carbin · Tzu-Mao Li 🔗 |
-
|
Stochastic Gradient Bayesian Optimal Experimental Designs for Simulation Based Inference ( Poster ) > link | Vincent Zaballa · Elliot Hui 🔗 |
-
|
PDP: Parameter-free Differentiable Pruning is All You Need ( Poster ) > link | Minsik Cho · Saurabh Adya · Devang Naik 🔗 |
-
|
EH-DNAS: End-to-End Hardware-aware Differentiable Neural Architecture Search ( Poster ) > link | Qian Jiang · Xiaofan Zhang · Deming Chen · Minh Do · Raymond A. Yeh 🔗 |
-
|
Differentiable Forward Projector for X-ray Computed Tomography ( Poster ) > link | Hyojin Kim · Kyle Champley 🔗 |
-
|
Differentiable Search of Evolutionary Trees from Leaves ( Poster ) > link | Ramith Hettiarachchi · Sergey Ovchinnikov 🔗 |
-
|
Koopman Constrained Policy Optimization: A Koopman operator theoretic method for differentiable optimal control in robotics ( Poster ) > link | Matthew Retchin · Brandon Amos · Steven Brunton · Shuran Song 🔗 |
-
|
Sample-efficient learning of auditory object representations using differentiable impulse response synthesis ( Poster ) > link | Vinayak Agarwal · James Traer · Josh Mcdermott 🔗 |
-
|
TaskMet: Task-Driven Metric Learning for Model Learning ( Poster ) > link | Dishank Bansal · Ricky T. Q. Chen · Mustafa Mukadam · Brandon Amos 🔗 |
-
|
Lagrangian Proximal Gradient Descent for Learning Convex Optimization Models ( Poster ) > link | Anselm Paulus · Vit Musil · Georg Martius 🔗 |
-
|
Some challenges of calibrating differentiable agent-based models ( Poster ) > link | Arnau Quera Bofarull · Joel Dyer · Anisoara Calinescu · Michael Wooldridge 🔗 |
-
|
Differentiable MaxSAT Message Passing ( Poster ) > link | Francesco Alesiani · Cristóbal Corvalán Morbiducci · Markus Zopf 🔗 |
-
|
SIMPLE: A Gradient Estimator for $k$-subset Sampling ( Poster ) > link | Kareem Ahmed · Zhe Zeng · Mathias Niepert · Guy Van den Broeck 🔗 |
-
|
Interpretable Neural-Symbolic Concept Reasoning ( Poster ) > link | Pietro Barbiero · Gabriele Ciravegna · Francesco Giannini · Mateo Espinosa Zarlenga · Lucie Charlotte Magister · Alberto Tonda · Pietro Lió · Frederic Precioso · Mateja Jamnik · Giuseppe Marra 🔗 |
-
|
Dilated Convolution with Learnable Spacings: beyond bilinear interpolation ( Poster ) > link | Ismail Khalfaoui Hassani · Thomas Pellegrini · Timothée Masquelier 🔗 |
-
|
Score Function Gradient Estimation to Widen the Applicability of Decision-Focused Learning ( Poster ) > link | Mattia Silvestri · Senne Berden · Jayanta Mandi · Ali Mahmutoğulları · Maxime Mulamba Ke Tchomba · Allegra De Filippo · Tias Guns · Michele Lombardi 🔗 |
-
|
Probabilistic Task-Adaptive Graph Rewiring ( Poster ) > link | Chendi Qian · Andrei Manolache · Kareem Ahmed · Zhe Zeng · Guy Van den Broeck · Mathias Niepert · Christopher Morris 🔗 |
-
|
Differentiable Sampling of Categorical Distributions Using the CatLog-Derivative Trick ( Poster ) > link | Lennert De Smet · EMANUELE SANSONE · Pedro Zuidberg Dos Martires 🔗 |
-
|
SelMix: Selective Mixup Fine Tuning for Optimizing Non-Decomposable Metrics ( Poster ) > link | shrinivas ramasubramanian · Harsh Rangwani · Sho Takemori · Kunal Samanta · Yuhei Umeda · Venkatesh Babu Radhakrishnan 🔗 |
-
|
Dynamic Control of Queuing Networks via Differentiable Discrete-Event Simulation ( Poster ) > link | Ethan Che · Hongseok Namkoong · Jing Dong 🔗 |
-
|
A Unified Approach to Count-Based Weakly-Supervised Learning ( Poster ) > link | Vinay Shukla · Zhe Zeng · Kareem Ahmed · Guy Van den Broeck 🔗 |
-
|
Data Models for Dataset Drift Controls in Machine Learning With Optical Images ( Poster ) > link |
13 presentersLuis Oala · Marco Aversa · Gabriel Nobis · Kurt Willis · Yoan Neuenschwander · Michèle Buck · Christian Matek · Jerome Extermann · Enrico Pomarico · Wojciech Samek · Roderick Murray-Smith · Christoph Clausen · Bruno Sanguinetti |
-
|
A Gradient Flow Modification to Improve Learning from Differentiable Quantum Simulators ( Poster ) > link | Patrick Schnell · Nils Thuerey 🔗 |
-
|
Differentiating Metropolis-Hastings to Optimize Intractable Densities ( Poster ) > link | Gaurav Arya · Ruben Seyer · Frank Schäfer · Kartik Chandra · Alexander Lew · Mathieu Huot · Vikash Mansinghka · Jonathan Ragan-Kelley · Christopher Rackauckas · Moritz Schauer 🔗 |
-
|
A Short Review of Automatic Differentiation Pitfalls in Scientific Computing ( Poster ) > link | Jan Hueckelheim · Harshitha Menon · William Moses · Bruce Christianson · Paul Hovland · Laurent Hascoet 🔗 |
-
|
Lossless hardening with $\partial\mathbb{B}$ nets ( Poster ) > link | Ian Wright 🔗 |
-
|
Learning Observation Models with Incremental Non-Differentiable Graph Optimizers in the Loop for Robotics State Estimation ( Poster ) > link | Mohamad Qadri · Michael Kaess 🔗 |
-
|
Differentiable Set Partitioning ( Poster ) > link | Thomas Sutter · Alain Ryser · Joram Liebeskind · Julia Vogt 🔗 |
-
|
Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information ( Poster ) > link | Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian 🔗 |
-
|
Investigating Axis-Aligned Differentiable Trees through Neural Tangent Kernels ( Poster ) > link | Ryuichi Kanoh · Mahito Sugiyama 🔗 |
-
|
PMaF: Deep Declarative Layers for Principal Matrix Features ( Poster ) > link | Zhiwei Xu · Hao Wang · Yanbin Liu · Stephen Gould 🔗 |
-
|
JAX FDM: A differentiable solver for inverse form-finding ( Poster ) > link | Rafael Pastrana · Deniz Oktay · Ryan P. Adams · Sigrid Adriaenssens 🔗 |
-
|
Fine-Tuning Language Models with Just Forward Passes ( Poster ) > link | Sadhika Malladi · Tianyu Gao · Eshaan Nichani · Jason Lee · Danqi Chen · Sanjeev Arora 🔗 |
-
|
Differentiable Causal Discovery with Smooth Acyclic Orientations ( Poster ) > link | Riccardo Massidda · Francesco Landolfi · Martina Cinquini · Davide Bacciu 🔗 |
-
|
DNArch: Learning Convolutional Neural Architectures by Backpropagation ( Poster ) > link | David Romero · Neil Zeghidour 🔗 |
-
|
Towards Understanding Gradient Approximation in Equality Constrained Deep Declarative Networks ( Poster ) > link | Stephen Gould · Ming Xu · Zhiwei Xu · Yanbin Liu 🔗 |