Workshop
Structured Probabilistic Inference and Generative Modeling
Dinghuai Zhang · Yuanqi Du · Chenlin Meng · Shawn Tan · Yingzhen Li · Max Welling · Yoshua Bengio
Meeting Room 323
Fri 28 Jul, noon PDT
The workshop focuses on theory, methodology, and application of structured probabilistic inference and generative modeling, both of which are important topics in machine learning.Specifically, probabilistic inference addresses the problem of amortization,sampling, and integration of complex quantities from graphical models, while generative modeling captures the underlying probability distributions of a dataset. Apart from applications in computer vision, natural language processing, and speech recognition, probabilistic inference and generative modeling approaches have also been widely used in natural science domains, including physics, chemistry, molecular biology, and medicine. Despite the promising results, probabilistic methods face challenges when applied to highly structured data, which are ubiquitous in real-world settings, limiting the applications of such methods. This workshop aims to bring experts from diverse backgrounds and related domains together to discuss the applications and challenges of probabilistic methods. The workshop will emphasize challenges in encoding domain knowledge when learning representations, performing inference and generations. By bringing together experts from academia and industry, the workshop will provide a platform for researchers to share their latest results and ideas, fostering collaboration and discussion in the field of probabilistic methods.
Schedule
Fri 12:00 p.m. - 12:10 p.m.
|
Opening Remark
(
Opening Remark
)
>
SlidesLive Video |
Dinghuai Zhang · Yuanqi Du · Chenlin Meng · Shawn Tan · Yingzhen Li · Max Welling · Yoshua Bengio 🔗 |
Fri 12:10 p.m. - 12:50 p.m.
|
Invited Talk by Karen Ullrich
(
Invited Talk
)
>
SlidesLive Video |
Karen Ullrich 🔗 |
Fri 12:50 p.m. - 1:30 p.m.
|
Invited Talk by Tommi Jaakkola
(
Invited Talk
)
>
SlidesLive Video |
Tommi Jaakkola 🔗 |
Fri 1:30 p.m. - 1:50 p.m.
|
Coffee Break
|
🔗 |
Fri 1:50 p.m. - 2:30 p.m.
|
Invited Talk by Durk Kingma
(
Invited Talk
)
>
SlidesLive Video |
Diederik Kingma 🔗 |
Fri 2:30 p.m. - 2:40 p.m.
|
Collapsed Inference for Bayesian Deep Learning
(
Contributed Talk
)
>
SlidesLive Video |
🔗 |
Fri 2:40 p.m. - 2:50 p.m.
|
Provable benefits of score matching
(
Contributed Talk
)
>
SlidesLive Video |
Andrej Risteski 🔗 |
Fri 3:00 p.m. - 4:00 p.m.
|
Poster Session 1
(
Poster Session
)
>
|
🔗 |
Fri 4:00 p.m. - 5:00 p.m.
|
Panel Discussion
(
Panel Discussion
)
>
SlidesLive Video |
Chenlin Meng · Yang Song · Yilun Xu · Ricky T. Q. Chen · Charlotte Bunne · Arash Vahdat 🔗 |
Fri 5:00 p.m. - 5:40 p.m.
|
Invited Talk by Ruqi Zhang
(
Invited Talk
)
>
SlidesLive Video |
Ruqi Zhang 🔗 |
Fri 5:40 p.m. - 6:20 p.m.
|
Invited Talk by Stefano Ermon
(
Invited Talk
)
>
SlidesLive Video |
Stefano Ermon 🔗 |
Fri 6:20 p.m. - 6:30 p.m.
|
BayesDAG: Gradient-Based Posterior Sampling for Causal Discovery
(
Contributed Talk
)
>
SlidesLive Video |
🔗 |
Fri 6:30 p.m. - 6:40 p.m.
|
Generative Marginalization Models
(
Contributed Talk
)
>
SlidesLive Video |
🔗 |
Fri 6:40 p.m. - 6:50 p.m.
|
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
(
Contributed Talk
)
>
SlidesLive Video |
🔗 |
Fri 6:50 p.m. - 7:00 p.m.
|
Closing Remark
(
Closing Remark
)
>
|
🔗 |
Fri 7:00 p.m. - 8:00 p.m.
|
Poster Session 2
(
Poster Session
)
>
|
🔗 |
-
|
Anomaly Detection in Networks via Score-Based Generative Models ( Poster ) > link | Dmitrii Gavrilev · Evgeny Burnaev 🔗 |
-
|
Practical and Asymptotically Exact Conditional Sampling in Diffusion Models ( Poster ) > link | Brian Trippe · Luhuan Wu · Christian Naesseth · David Blei · John Cunningham 🔗 |
-
|
Generative semi-supervised learning with a neural seq2seq noisy channel ( Poster ) > link | Soroosh Mariooryad · Matt Shannon · Siyuan Ma · Tom Bagby · David Kao · Daisy Stanton · Eric Battenberg · RJ Skerry-Ryan 🔗 |
-
|
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation ( Poster ) > link | Chris Emezue · Alexandre Drouin · Tristan Deleu · Stefan Bauer · Yoshua Bengio 🔗 |
-
|
Conditional Graph Generation with Graph Principal Flow Network ( Poster ) > link | Tianze Luo · Zhanfeng Mo · Sinno Jialin Pan 🔗 |
-
|
Deep Generative Clustering with Multimodal Variational Autoencoders ( Poster ) > link | Emanuele Palumbo · Sonia Laguna · Daphné Chopard · Julia Vogt 🔗 |
-
|
Graph Neural Network Powered Bayesian Optimization for Large Molecular Spaces ( Poster ) > link | Miles Wang-Henderson · Bartu Soyuer · Parnian Kassraie · Andreas Krause · Ilija Bogunovic 🔗 |
-
|
The Pairwise Prony Algorithm: Efficient Inference of Stochastic Block Models with Prescribed Subgraph Densities ( Poster ) > link | Lee M Gunderson · Gecia Bravo-Hermsdorff · Peter Orbanz 🔗 |
-
|
Plug-and-Play Controllable Graph Generation with Diffusion Models ( Poster ) > link | Kartik Sharma · Srijan Kumar · Rakshit Trivedi 🔗 |
-
|
The Local Inconsistency Resolution Algorithm ( Poster ) > link | Oliver Richardson 🔗 |
-
|
Towards Modular Learning of Deep Causal Generative Models ( Poster ) > link | Md Musfiqur Rahman · Murat Kocaoglu 🔗 |
-
|
Pretrained Language Models to Solve Graph Tasks in Natural Language ( Poster ) > link | Frederik Wenkel · Guy Wolf · Boris Knyazev 🔗 |
-
|
Non-Normal Diffusion Models ( Poster ) > link | Henry Li 🔗 |
-
|
A Generative Model for Text Control in Minecraft ( Poster ) > link | Shalev Lifshitz · Keiran Paster · Harris Chan · Jimmy Ba · Sheila McIlraith 🔗 |
-
|
Visual Chain-of-Thought Diffusion Models ( Poster ) > link | William Harvey · Frank Wood 🔗 |
-
|
Collapsed Inference for Bayesian Deep Learning ( Oral ) > link | Zhe Zeng · Guy Van den Broeck 🔗 |
-
|
Your Diffusion Model is Secretly a Zero-Shot Classifier ( Poster ) > link | Alexander Li · Mihir Prabhudesai · Shivam Duggal · Ellis Brown · Deepak Pathak 🔗 |
-
|
Test-time Adaptation with Diffusion Models ( Poster ) > link | Mihir Prabhudesai · Tsung-Wei Ke · Alexander Li · Deepak Pathak · Katerina Fragkiadaki 🔗 |
-
|
Beyond Confidence: Reliable Models Should Also Consider Atypicality ( Poster ) > link | Mert Yuksekgonul · Linjun Zhang · James Zou · Carlos Guestrin 🔗 |
-
|
Implications of kernel mismatch for OOD data ( Poster ) > link | Beau Coker · Finale Doshi-Velez 🔗 |
-
|
Scaling Graphically Structured Diffusion Models ( Poster ) > link | Christian Weilbach · William Harvey · Hamed Shirzad · Frank Wood 🔗 |
-
|
Diffusion map particle systems for generative modeling ( Poster ) > link | Fengyi Li · Youssef Marzouk 🔗 |
-
|
C-Disentanglement: Discovering Causally-Independent Generative Factors under an Inductive Bias of Confounder ( Poster ) > link | Xiaoyu Liu · Jiaxin Yuan · Bang An · Yuancheng Xu · Yifan Yang · Furong Huang 🔗 |
-
|
An Empirical Study of the Effectiveness of Using a Replay Buffer on Mode Discovery in GFlowNets ( Poster ) > link | Nikhil Murali Vemgal · Elaine Lau · Doina Precup 🔗 |
-
|
Nonparametric posterior normalizing flows ( Poster ) > link | Sinead A Williamson · Evan Ott 🔗 |
-
|
Decision Stacks: Flexible Reinforcement Learning via Modular Generative Models ( Poster ) > link | Siyan Zhao · Aditya Grover 🔗 |
-
|
Diffusion Probabilistic Models Generalize when They Fail to Memorize ( Poster ) > link | TaeHo Yoon · Joo Young Choi · Sehyun Kwon · Ernest Ryu 🔗 |
-
|
Solving Inverse Physics Problems with Score Matching ( Poster ) > link | Benjamin Holzschuh · Simona Vegetti · Nils Thuerey 🔗 |
-
|
Attention as Implicit Structural Inference ( Poster ) > link | Ryan Singh · Christopher Buckley 🔗 |
-
|
Prediction under Latent Subgroup Shifts with High-dimensional Observations ( Poster ) > link | William Walker · Arthur Gretton · Maneesh Sahani 🔗 |
-
|
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network ( Oral ) > link | Tristan Deleu · Mizu Nishikawa-Toomey · Jithendaraa Subramanian · Nikolay Malkin · Laurent Charlin · Yoshua Bengio 🔗 |
-
|
Diffusion Based Causal Representation Learning ( Poster ) > link | Amir Mohammad Karimi Mamaghan · Francesco Quinzan · Andrea Dittadi · Stefan Bauer 🔗 |
-
|
Provable benefits of score matching ( Oral ) > link | Chirag Pabbaraju · Dhruv Rohatgi · Anish Sevekari · Holden Lee · Ankur Moitra · Andrej Risteski 🔗 |
-
|
An Autoregressive Text-to-Graph Framework for Joint Entity and Relation Extraction ( Poster ) > link | Urchade Zaratiana · Nadi Tomeh · Pierre Holat · Thierry Charnois 🔗 |
-
|
Nested Diffusion Processes for Anytime Image Generation ( Poster ) > link | Noam Elata · Bahjat Kawar · Tomer Michaeli · Michael Elad 🔗 |
-
|
Training Diffusion Models with Reinforcement Learning ( Poster ) > link | Kevin Black · Michael Janner · Yilun Du · Ilya Kostrikov · Sergey Levine 🔗 |
-
|
Generating Turn-Based Player Behavior via Experience from Demonstrations ( Poster ) > link | Kuang-Da Wang · Wei-Yao Wang · Ping-Chun Hsieh · Wen-Chih Peng 🔗 |
-
|
Automatic Rao-Blackwellization for Sequential Monte Carlo with Belief Propagation ( Poster ) > link | Waïss Azizian · Guillaume Baudart · Marc Lelarge 🔗 |
-
|
Collaborative Score Distillation for Consistent Visual Synthesis ( Poster ) > link | Subin Kim · Kyungmin Lee · June Suk Choi · Jongheon Jeong · Kihyuk Sohn · Jinwoo Shin 🔗 |
-
|
Exploring Exchangeable Dataset Amortization for Bayesian Posterior Inference ( Poster ) > link | Sarthak Mittal · Niels Bracher · Guillaume Lajoie · Priyank Jaini · Marcus Brubaker 🔗 |
-
|
Function Space Bayesian Pseudocoreset for Bayesian Neural Networks ( Poster ) > link | Balhae Kim · Hyungi Lee · Juho Lee 🔗 |
-
|
Beyond Intuition, a Framework for Applying GPs to Real-World Data ( Poster ) > link | Kenza Tazi · Jihao Andreas Lin · ST John · Hong Ge · Richard E Turner · Ross Viljoen · Alex Gardner 🔗 |
-
|
Identifying Under-Reported Events in Networks with Spatial Latent Variable Models ( Poster ) > link | Gabriel Agostini · Emma Pierson · Nikhil Garg 🔗 |
-
|
Generative Marginalization Models ( Oral ) > link | Sulin Liu · Peter Ramadge · Ryan P. Adams 🔗 |
-
|
Early Exiting for Accelerated Inference in Diffusion Models ( Poster ) > link | Taehong Moon · Moonseok Choi · EungGu Yun · Jongmin Yoon · Gayoung Lee · Juho Lee 🔗 |
-
|
MissDiff: Training Diffusion Models on Tabular Data with Missing Values ( Poster ) > link | Yidong Ouyang · Liyan Xie · Chongxuan Li · Guang Cheng 🔗 |
-
|
Empirically Validating Conformal Prediction on Modern Vision Architectures Under Distribution Shift and Long-tailed Data ( Poster ) > link | Kevin Kasa · Graham Taylor 🔗 |
-
|
CM-GAN: Stabilizing GAN Training with Consistency Models ( Poster ) > link | Haoye Lu · Yiwei Lu · Dihong Jiang · Spencer Szabados · Sun Sun · Yaoliang Yu 🔗 |
-
|
Flow Matching for Scalable Simulation-Based Inference ( Poster ) > link | Jonas Wildberger · Maximilian Dax · Simon Buchholz · Stephen R. Green · Jakob Macke · Bernhard Schölkopf 🔗 |
-
|
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing ( Poster ) > link | Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar 🔗 |
-
|
Identifiability of Discretized Latent Coordinate Systems via Density Landmarks Detection ( Poster ) > link | Vitória Barin-Pacela · Kartik Ahuja · Simon Lacoste-Julien · Pascal Vincent 🔗 |
-
|
Causal Discovery with Language Models as Imperfect Experts ( Poster ) > link | Stephanie Long · Alex Piche · Valentina Zantedeschi · Tibor Schuster · Alexandre Drouin 🔗 |
-
|
HiGen: Hierarchical Graph Generative Networks ( Poster ) > link | Mahdi Karami 🔗 |
-
|
Fast and Functional structured data generator ( Poster ) > link | Alessandra Carbone · Aurélien Decelle · Lorenzo Rosset · Beatriz Seoane 🔗 |
-
|
Structured Neural Networks for Density Estimation ( Poster ) > link | Asic Chen · Ruian Shi · Xiang Gao · Ricardo Baptista · Rahul G. Krishnan 🔗 |
-
|
Diffusion Generative Inverse Design ( Poster ) > link | Marin Vlastelica · Tatiana Lopez-Guevara · Kelsey Allen · Peter Battaglia · Arnaud Doucet · Kimberly Stachenfeld 🔗 |
-
|
Tree Variational Autoencoders ( Poster ) > link | Laura Manduchi · Moritz Vandenhirtz · Alain Ryser · Julia Vogt 🔗 |
-
|
Morse Neural Networks for Uncertainty Quantification ( Poster ) > link | Benoit Dherin · Huiyi Hu · JIE REN · Michael Dusenberry · Balaji Lakshminarayanan 🔗 |
-
|
STable Permutation-based Framework for Table Generation in Sequence-to-Sequence Models ( Poster ) > link | Michał Pietruszka · Michał Turski · Łukasz Borchmann · Tomasz Dwojak · Gabriela Pałka · Karolina Szyndler · Dawid Jurkiewicz · Łukasz Garncarek 🔗 |
-
|
Augmenting Control over Exploration Space in Molecular Dynamics Simulators to Streamline De Novo Analysis through Generative Control Policies ( Poster ) > link | Paloma Gonzalez-Rojas · Gregory Rutledge 🔗 |
-
|
Neuro-Causal Factor Analysis ( Poster ) > link | Alex Markham · Mingyu Liu · Bryon Aragam · Liam Solus 🔗 |
-
|
Autoregressive Diffusion Models with non-Uniform Generation Order ( Poster ) > link | Filip Ekström Kelvinius · Fredrik Lindsten 🔗 |
-
|
Variational Point Encoding Deformation for Dental Modeling ( Poster ) > link | Johan Ye · Thomas Ørkild · Peter Søndergard · Søren Hauberg 🔗 |
-
|
BayesDAG: Gradient-Based Posterior Sampling for Causal Discovery ( Oral ) > link | Yashas Annadani · Nick Pawlowski · Joel Jennings · Stefan Bauer · Cheng Zhang · Wenbo Gong 🔗 |
-
|
On the Equivalence of Consistency-Type Models: Consistency Models, Consistent Diffusion Models, and Fokker-Planck Regularization ( Poster ) > link | Chieh-Hsin Lai · Yuhta Takida · Toshimitsu Uesaka · Naoki Murata · Yuki Mitsufuji · Stefano Ermon 🔗 |
-
|
Uncovering Latent Structure Using Random Partition Models ( Poster ) > link | Thomas Sutter · Alain Ryser · Joram Liebeskind · Julia Vogt 🔗 |
-
|
Improving Training of Likelihood-based Generative Models with Gaussian Homotopy ( Poster ) > link | Ba-Hien Tran · Giulio Franzese · Pietro Michiardi · Maurizio Filippone 🔗 |
-
|
Fit Like You Sample: Sample-Efficient Generalized Score Matching from Fast Mixing Markov Chains ( Poster ) > link | Yilong Qin · Andrej Risteski 🔗 |
-
|
Lexinvariant Language Models ( Poster ) > link | Qian Huang · Eric Zelikman · Sarah Chen · Yuhuai Wu · Greg Valiant · Percy Liang 🔗 |
-
|
BatchGFN: Generative Flow Networks for Batch Active Learning ( Poster ) > link | Shreshth Malik · Salem Lahlou · Andrew Jesson · Moksh Jain · Nikolay Malkin · Tristan Deleu · Yoshua Bengio · Yarin Gal 🔗 |
-
|
Balanced Training of Energy-Based Models with Adaptive Flow Sampling ( Poster ) > link | Louis Grenioux · Eric Moulines · Marylou Gabrié 🔗 |
-
|
PRODIGY: Enabling In-context Learning Over Graphs ( Poster ) > link | Qian Huang · Hongyu Ren · Peng Chen · Gregor Kržmanc · Daniel Zeng · Percy Liang · Jure Leskovec 🔗 |
-
|
Dimensionality Reduction as Probabilistic Inference ( Poster ) > link | Aditya Ravuri · Francisco Vargas · Vidhi Ramesh · Neil Lawrence 🔗 |
-
|
DiffMol: 3D Structured Molecule Generation with Discrete Denoising Diffusion Probabilistic Models ( Poster ) > link | Weitong Zhang · Xiaoyun Wang · Justin Smith · Joe Eaton · Brad Rees · Quanquan Gu 🔗 |
-
|
Diffusion Probabilistic Models for Structured Node Classification ( Poster ) > link | Hyosoon Jang · Seonghyun Park · Sangwoo Mo · Sungsoo Ahn 🔗 |
-
|
Large Dimensional Change Point Detection with FWER Control as Automatic Stopping ( Poster ) > link | Jiacheng Zou · Yang Fan · Markus Pelger 🔗 |
-
|
Score-based Enhanced Sampling for Protein Molecular Dynamics ( Poster ) > link | Jiarui Lu · Bozitao Zhong · Jian Tang 🔗 |
-
|
Geometric Constraints in Probabilistic Manifolds: A Bridge from Molecular Dynamics to Structured Diffusion Processes ( Poster ) > link | Justin Diamond · Markus Lill 🔗 |
-
|
Reinforcement Learning-Driven Linker Design via Fast Attention-based Point Cloud Alignment ( Poster ) > link | Rebecca Manuela Neeser · Mehmet Akdel · Daniel Kovtun · Luca Naef 🔗 |
-
|
AbODE: Ab initio antibody design using conjoined ODEs ( Poster ) > link | Yogesh Verma · Markus Heinonen · Vikas K Garg 🔗 |
-
|
Inferring Hierarchical Structure in Multi-Room Maze Environments ( Poster ) > link | Daria de Tinguy · Toon Van de Maele · Tim Verbelen · Bart Dhoedt 🔗 |
-
|
Parallel Sampling of Diffusion Models ( Poster ) > link | Andy Shih · Suneel Belkhale · Stefano Ermon · Dorsa Sadigh · Nima Anari 🔗 |
-
|
PITS: Variational Pitch Inference Without Fundamental Frequency for End-to-End Pitch-Controllable TTS ( Poster ) > link | Junhyeok Lee · Wonbin Jung · Hyunjae Cho · Jaeyeon Kim · Jaehwan Kim 🔗 |
-
|
Regularized Data Programming with Automated Bayesian Prior Selection ( Poster ) > link | Jacqueline Maasch · Hao Zhang · Qian Yang · Fei Wang · Volodymyr Kuleshov 🔗 |
-
|
On the Identifiability of Markov Switching Models ( Poster ) > link | Carles Balsells Rodas · Yixin Wang · Yingzhen Li 🔗 |
-
|
Optimizing protein fitness using Bi-level Gibbs sampling with Graph-based Smoothing ( Poster ) > link | Andrew Kirjner · Jason Yim · Raman Samusevich · Tommi Jaakkola · Regina Barzilay · Ila R. Fiete 🔗 |
-
|
Robust and Scalable Bayesian Online Changepoint Detection ( Poster ) > link | Matias Altamirano · Francois-Xavier Briol · Jeremias Knoblauch 🔗 |
-
|
GSURE-Based Diffusion Model Training with Corrupted Data ( Poster ) > link | Bahjat Kawar · Noam Elata · Tomer Michaeli · Michael Elad 🔗 |
-
|
Hierarchical Graph Generation with $K^{2}$-trees ( Poster ) > link | Yunhui Jang · Dongwoo Kim · Sungsoo Ahn 🔗 |
-
|
Bootstrapped Training of Score-Conditioned Generator for Offline Design of Biological Sequences ( Poster ) > link | Minsu Kim · Federico Berto · Sungsoo Ahn · Jinkyoo Park 🔗 |
-
|
Thompson Sampling for Improved Exploration in GFlowNets ( Poster ) > link | Jarrid Rector-Brooks · Kanika Madan · Moksh Jain · Maksym Korablyov · Chenghao Liu · Sarath Chandar · Nikolay Malkin · Yoshua Bengio 🔗 |
-
|
GFlowNets for Causal Discovery: an Overview ( Poster ) > link | Dragos Cristian Manta · Edward Hu · Yoshua Bengio 🔗 |
-
|
Concept Algebra for Score-based Conditional Model ( Poster ) > link | Zihao Wang · Lin Gui · Jeffrey Negrea · Victor Veitch 🔗 |
-
|
Diffusion Models with Grouped Latents for Interpretable Latent Space ( Poster ) > link | Sangyun Lee · Gayoung Lee · Hyunsu Kim · Kim Junho · Youngjung Uh 🔗 |
-
|
Multilevel Control Functional ( Poster ) > link | Kaiyu Li · Zhuo Sun 🔗 |
-
|
HINT: Hierarchical Coherent Networks For Constrained Probabilistic Forecasting ( Poster ) > link | Kin Gutierrez · David Luo · Cristian Challu · Stefania La Vattiata · Max Mergenthaler Canseco · Artur Dubrawski 🔗 |