Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Structured Probabilistic Inference and Generative Modeling

MissDiff: Training Diffusion Models on Tabular Data with Missing Values

Yidong Ouyang · Liyan Xie · Chongxuan Li · Guang Cheng

Keywords: [ Missing data ] [ Diffusion Model ] [ tabular data ] [ generative model ]


Abstract:

Diffusion models have shown remarkable performance in modeling data distributions and synthesizing data. The vanilla diffusion model typically requires complete or fully observed training data, while incomplete data is a common issue in various real-world applications, particularly in tabular data. This work presents a unified and principled diffusion-based framework for learning from data with missing values under various missing mechanisms. We first observe that the widely adopted "impute-then-generate" pipeline may lead to a biased learning objective. Then we propose to mask the regression loss of Denoising Score Matching in the training phase. We show that the proposed method is consistent in learning the score of data distributions, and the training objective serves as an upper bound for the negative likelihood in certain cases. The proposed framework is evaluated on multiple tabular datasets using realistic and efficacious metrics. It is demonstrated to outperform several baseline methods by a large margin.

Chat is not available.