Workshop
|
|
Collapsed Inference for Bayesian Deep Learning
Zhe Zeng · Guy Van den Broeck
|
|
Poster
|
Wed 14:00
|
PAC-Bayesian Generalization Bounds for Adversarial Generative Models
Sokhna Diarra Mbacke · Florence Clerc · Pascal Germain
|
|
Workshop
|
Fri 18:40
|
PAC-Bayesian Error Bound, via R\'enyi Divergence, for a Class of Linear Time-Invariant State-Space Models
Deividas Eringis · john leth · Rafal Wisniewski · Zheng-Hua Tan · Mihaly Petreczky
|
|
Workshop
|
|
PAC-Bayesian Error Bound, via R\'enyi Divergence, for a Class of Linear Time-Invariant State-Space Models
Deividas Eringis · john leth · Rafal Wisniewski · Zheng-Hua Tan · Mihaly Petreczky
|
|
Workshop
|
|
Model-based Policy Optimization under Approximate Bayesian Inference
Chaoqi Wang · Yuxin Chen · Kevin Murphy
|
|
Workshop
|
|
Modeling Human Few-Shot Learning using Bayesian Inference over Natural Language
Kevin Ellis
|
|
Workshop
|
|
Bayesian Uncertainty Quantification in High-dimensional Stellar Magnetic Field Models
Jennifer Andersson · Oleg Kochukhov · Zheng Zhao · Jens Sjölund
|
|
Poster
|
Thu 16:30
|
Model-Free Robust Average-Reward Reinforcement Learning
Yue Wang · Alvaro Velasquez · George Atia · Ashley Prater-Bennette · Shaofeng Zou
|
|
Workshop
|
|
Memory Maps to Understand Models
Dharmesh Tailor · Paul Chang · Siddharth Swaroop · Eric Nalisnick · Arno Solin · Khan Emtiyaz
|
|
Workshop
|
|
Black Box Adversarial Prompting for Foundation Models
|
|
Workshop
|
|
INFINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations
Louis Serrano · Léon Migus · Yuan Yin · Jocelyn Mazari · Jean-Noël Vittaut · patrick gallinari
|
|
Poster
|
Wed 14:00
|
Bayesian Reparameterization of Reward-Conditioned Reinforcement Learning with Energy-based Models
Wenhao Ding · Tong Che · Ding Zhao · Marco Pavone
|
|