Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

13 Results

<<   <   Page 1 of 2   >   >>
Workshop
Learning Set Functions with Implicit Differentiation
Gözde Özcan · Chengzhi Shi · Stratis Ioannidis
Workshop
Combining Neural Networks and Symbolic Regression for Analytical Lyapunov Function Discovery
Jie Feng · Haohan Zou · Yuanyuan Shi
Poster
Wed 4:30 Graph As Point Set
Xiyuan Wang · Pan Li · Muhan Zhang
Poster
Thu 2:30 Exploring the Complexity of Deep Neural Networks through Functional Equivalence
Guohao Shen
Workshop
BiPer: Binary Neural Networks using a Periodic Function
Edwin Vargas · Claudia Correa · Carlos Hinojosa · Henry Arguello
Workshop
Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks
T. Konstantin Rusch · Nathan Kirk · Michael Bronstein · Christiane Lemieux · Daniela Rus
Workshop
Accelerating Electron Dynamics Simulations through Machine Learned Time Propagators
Karan Shah · Attila Cangi
Workshop
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin · Robert Bamler
Poster
Thu 4:30 Physics-Informed Neural Network Policy Iteration: Algorithms, Convergence, and Verification
Yiming Meng · Ruikun Zhou · Amartya Mukherjee · Maxwell Fitzsimmons · Christopher Song · Jun Liu
Poster
Thu 4:30 Learning from Integral Losses in Physics Informed Neural Networks
Ehsan Saleh · Saba Ghaffari · Timothy Bretl · Luke Olson · Matthew West
Workshop
Asynchrony Invariance Loss Functions for Graph Neural Networks
Pablo Monteagudo-Lago · Arielle Rosinski · Andrew Dudzik · Petar Veličković
Poster
Wed 4:30 Universal Consistency of Wide and Deep ReLU Neural Networks and Minimax Optimal Convergence Rates for Kolmogorov-Donoho Optimal Function Classes
Hyunouk Ko · Xiaoming Huo