Workshop
|
|
Learning Set Functions with Implicit Differentiation
Gözde Özcan · Chengzhi Shi · Stratis Ioannidis
|
|
Workshop
|
|
Combining Neural Networks and Symbolic Regression for Analytical Lyapunov Function Discovery
Jie Feng · Haohan Zou · Yuanyuan Shi
|
|
Poster
|
Wed 4:30
|
Graph As Point Set
Xiyuan Wang · Pan Li · Muhan Zhang
|
|
Poster
|
Thu 2:30
|
Exploring the Complexity of Deep Neural Networks through Functional Equivalence
Guohao Shen
|
|
Workshop
|
|
BiPer: Binary Neural Networks using a Periodic Function
Edwin Vargas · Claudia Correa · Carlos Hinojosa · Henry Arguello
|
|
Workshop
|
|
Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks
T. Konstantin Rusch · Nathan Kirk · Michael Bronstein · Christiane Lemieux · Daniela Rus
|
|
Workshop
|
|
Accelerating Electron Dynamics Simulations through Machine Learned Time Propagators
Karan Shah · Attila Cangi
|
|
Workshop
|
|
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin · Robert Bamler
|
|
Poster
|
Thu 4:30
|
Physics-Informed Neural Network Policy Iteration: Algorithms, Convergence, and Verification
Yiming Meng · Ruikun Zhou · Amartya Mukherjee · Maxwell Fitzsimmons · Christopher Song · Jun Liu
|
|
Poster
|
Thu 4:30
|
Learning from Integral Losses in Physics Informed Neural Networks
Ehsan Saleh · Saba Ghaffari · Timothy Bretl · Luke Olson · Matthew West
|
|
Workshop
|
|
Asynchrony Invariance Loss Functions for Graph Neural Networks
Pablo Monteagudo-Lago · Arielle Rosinski · Andrew Dudzik · Petar Veličković
|
|
Poster
|
Wed 4:30
|
Universal Consistency of Wide and Deep ReLU Neural Networks and Minimax Optimal Convergence Rates for Kolmogorov-Donoho Optimal Function Classes
Hyunouk Ko · Xiaoming Huo
|
|