Workshop
Geometry-grounded Representation Learning and Generative Modeling
Sharvaree Vadgama · Erik Bekkers · Alison Pouplin · Robin Walters · Hannah Lawrence · Sékou-Oumar Kaba · Jakub Tomczak · Tegan Emerson · Henry Kvinge · Stefanie Jegelka
Schubert 1 - 3
Sat 27 Jul, midnight PDT
By recognizing that nearly all data is rooted in our physical world, and thus inherently grounded in geometry and physics, it becomes evident that learning systems should preserve this grounding throughout the process of representation learning in order to be meaningful. For example, preserving group transformation laws and symmetries through equivariant layers is crucial in domains such as computational physics, chemistry, robotics, and medical imaging. It leads to effective and generalizable architectures and improved data efficiency. Similarly, in generative models applied to non-Euclidean data spaces, maintaining the manifold structure is essential to obtain meaningful samples. Therefore, this workshop focuses on the principle of grounding in geometry, which we define as follows: A representation, method, or theory is grounded in geometry if it can be amenable to geometric reasoning, that is, it abides by the mathematics of geometry.
Schedule
Sat 12:00 a.m. - 12:10 a.m.
|
Welcome and Opening Remarks
(
'intro'
)
>
SlidesLive Video |
Sharvaree Vadgama 🔗 |
Sat 12:10 a.m. - 12:40 a.m.
|
Keynote: The Platonic Representation Hypothesis
(
Keynote talk
)
>
SlidesLive Video |
Phillip Isola 🔗 |
Sat 12:40 a.m. - 1:00 a.m.
|
Invited: Generalization in diffusion models arises from geometry-adaptive harmonic representations
(
Invited talk
)
>
SlidesLive Video |
Zahra Kadkhodaie 🔗 |
Sat 1:00 a.m. - 1:10 a.m.
|
Break
(
'break'
)
>
|
🔗 |
Sat 1:10 a.m. - 1:20 a.m.
|
Contributed: Adaptive Sampling for Continuous Group Equivariant Neural Networks
(
Contributed talk
)
>
link
SlidesLive Video |
Berfin Inal 🔗 |
Sat 1:20 a.m. - 1:30 a.m.
|
Contributed: Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
(
Contributed talk
)
>
link
SlidesLive Video |
Yoav Gelberg 🔗 |
Sat 1:30 a.m. - 1:35 a.m.
|
Contributed: Probabilistic World Modeling with Asymmetric Distance Measure
(
Contributed talk
)
>
link
SlidesLive Video |
Meng Song 🔗 |
Sat 1:35 a.m. - 1:40 a.m.
|
Contributed: Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space
(
Contributed talk
)
>
link
SlidesLive Video |
Mohamed Amine Ketata 🔗 |
Sat 1:40 a.m. - 1:45 a.m.
|
Contributed: Bundle Neural Networks for message diffusion on graphs
(
Contributed talk
)
>
link
SlidesLive Video |
Jacob Bamberger 🔗 |
Sat 1:55 a.m. - 2:15 a.m.
|
Competition track announcement
(
Presentation
)
>
SlidesLive Video |
Guillermo Bernardez · Lev Telyatnikov 🔗 |
Sat 2:15 a.m. - 2:35 a.m.
|
Invited: Simulation Free Generative Models for Protein Structures, Single-Cell RNA, DNA sequences and Beyond!
(
Invited talk
)
>
SlidesLive Video |
Joey Bose 🔗 |
Sat 2:35 a.m. - 3:25 a.m.
|
Poster Session 1
(
Poster session
)
>
|
🔗 |
Sat 3:25 a.m. - 5:00 a.m.
|
Lunch Break
|
🔗 |
Sat 5:00 a.m. - 5:35 a.m.
|
Panel
(
Panel discussion
)
>
SlidesLive Video |
Joey Bose · Rianne van den Berg · Max Welling · Phillip Isola · Zahra Kadkhodaie 🔗 |
Sat 5:35 a.m. - 5:50 a.m.
|
Break
|
🔗 |
Sat 5:50 a.m. - 6:10 a.m.
|
Invited: Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures
(
Invited talk
)
>
SlidesLive Video |
Nina Miolane 🔗 |
Sat 6:10 a.m. - 6:40 a.m.
|
Keynote: Automatic Symmetry Discovery from Data
(
Keynote talk
)
>
SlidesLive Video |
Rose Yu 🔗 |
Sat 6:40 a.m. - 7:00 a.m.
|
Coffee Break
|
🔗 |
Sat 7:00 a.m. - 7:05 a.m.
|
Closing Remarks
(
Presentation
)
>
SlidesLive Video |
Sharvaree Vadgama · Erik Bekkers 🔗 |
Sat 7:05 a.m. - 7:55 a.m.
|
Poster Session 2
(
Poster session
)
>
|
🔗 |
Sat 7:55 a.m. - 8:00 a.m.
|
Wrap up
(
'remove posters'
)
>
|
🔗 |
-
|
RIO-CPD: A Riemannian Geometric Method for Correlation-aware Online Change Point Detection ( Poster ) > link | Chengyuan Deng · Zhengzhang Chen · Xujiang Zhao · Haoyu Wang · Junxiang Wang · Haifeng Chen · Jie Gao 🔗 |
-
|
On the Matter of Embeddings Dispersion on Hyperspheres ( Poster ) > link | Evgeniia Tokarchuk · Hua Chang Bakker · Vlad Niculae 🔗 |
-
|
Consistency models with learned idempotent boundary conditions ( Poster ) > link | Gianluigi Silvestri · Luca Ambrogioni 🔗 |
-
|
Approximate natural gradient in Gaussian processes with non-log-concave likelihoods ( Poster ) > link | Marcelo Hartmann 🔗 |
-
|
Strongly Isomorphic Neural Optimal Transport Across Incomparable Spaces ( Poster ) > link | Athina Sotiropoulou · David Alvarez-Melis 🔗 |
-
|
Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design ( Poster ) > link | Shengchao Liu · Divin Yan · weitao du · Weiyang Liu · Hongyu Guo · Christian Borgs · Jennifer Chayes · Anima Anandkumar 🔗 |
-
|
InfoNCE: Identifying the Gap Between Theory and Practice ( Poster ) > link | Evgenia Rusak · Patrik Reizinger · Attila Juhos · Oliver Bringmann · Roland S. Zimmermann · Wieland Brendel 🔗 |
-
|
A Geometric Framework for Understanding Memorization in Generative Models ( Poster ) > link | Brendan Ross · Hamidreza Kamkari · Zhaoyan Liu · Tongzi Wu · George Stein · Gabriel Loaiza-Ganem · Jesse Cresswell 🔗 |
-
|
Stitching Manifolds: Leveraging Interaction to Compose Object Representations into Scenes. ( Poster ) > link | Hamza Keurti · Bernhard Schölkopf · Pau Vilimelis Aceituno · Benjamin F. Grewe 🔗 |
-
|
SE(3)-Hyena Operator for Scalable Equivariant Learning ( Poster ) > link | Artem Moskalev · Mangal Prakash · Rui Liao · Tommaso Mansi 🔗 |
-
|
Transferability for Graph Convolutional Networks ( Poster ) > link | Christian Koke · Abhishek Saroha · Yuesong Shen · Marvin Eisenberger · Michael Bronstein · Daniel Cremers 🔗 |
-
|
Energy-based Hopfield Boosting for Out-of-Distribution Detection ( Poster ) > link | Claus Hofmann · Simon Schmid · Bernhard Lehner · Daniel Klotz · Sepp Hochreiter 🔗 |
-
|
Latent functional maps ( Poster ) > link | Marco Fumero · Marco Pegoraro · Valentino Maiorca · Francesco Locatello · Emanuele Rodola 🔗 |
-
|
Geometry-informed Neural Networks ( Poster ) > link | Arturs Berzins · Andreas Radler · Sebastian Sanokowski · Sepp Hochreiter · Johannes Brandstetter 🔗 |
-
|
Bias-inducing geometries: exactly solvable data model with fairness implications ( Poster ) > link | Stefano Mannelli · Federica Gerace · Negar Rostamzadeh · Luca Saglietti 🔗 |
-
|
On Fairly Comparing Group Equivariant Networks ( Poster ) > link | Lucas Roos · Steve Kroon 🔗 |
-
|
Dirac--Bianconi Graph Neural Networks - Enabling long-range graph predictions ( Poster ) > link | Christian Nauck · Rohan Gorantla · Michael Lindner · Konstantin Schürholt · Antonia Mey · Frank Hellmann 🔗 |
-
|
GLAudio Listens to the Sound of the Graph ( Poster ) > link | Aurelio Sulser · Johann Wenckstern · Clara Kümpel 🔗 |
-
|
Commute-Time-Optimised Graphs for GNNs ( Poster ) > link | Igor Sterner · Shiye Su · Petar Veličković 🔗 |
-
|
An Equivariant Flow Matching Framework for Learning Molecular Crystallization ( Poster ) > link | Shengchao Liu · Divin Yan · Hongyu Guo · Anima Anandkumar 🔗 |
-
|
Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries ( Poster ) > link | Alonso Urbano · David Romero 🔗 |
-
|
(Deep) Generative Geodesics ( Poster ) > link | Beomsu Kim · Michael Puthawala · Jong Chul YE · EMANUELE SANSONE 🔗 |
-
|
Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space ( Poster ) > link | Mohamed Amine Ketata · Nicholas Gao · Johanna Sommer · Tom Wollschläger · Stephan Günnemann 🔗 |
-
|
Aligned Diffusion Models for Retrosynthesis ( Poster ) > link | Severi Rissanen · Najwa Laabid · Markus Heinonen · Arno Solin · Vikas Garg 🔗 |
-
|
Adaptive Sampling for Continuous Group Equivariant Neural Networks ( Poster ) > link | Berfin Inal · Gabriele Cesa 🔗 |
-
|
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold ( Poster ) > link | Lazar Atanackovic · Xi (Nicole) Zhang · Brandon Amos · Mathieu Blanchette · Leo J Lee · Yoshua Bengio · Alexander Tong · Kirill Neklyudov 🔗 |
-
|
Asynchrony Invariance Loss Functions for Graph Neural Networks ( Poster ) > link | Pablo Monteagudo-Lago · Arielle Rosinski · Andrew Dudzik · Petar Veličković 🔗 |
-
|
Relaxed Equivariant Graph Neural Networks ( Poster ) > link | Elyssa Hofgard · Rui Wang · Robin Walters · Tess Smidt 🔗 |
-
|
Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning ( Poster ) > link | Ally Yalei Du · Eric Huang · Dravyansh Sharma 🔗 |
-
|
Geometric Wireless Simulation with Equivariant Transformers ( Poster ) > link | Thomas Hehn · Markus Peschl · Tribhuvanesh Orekondy · Arash Behboodi · Johann Brehmer 🔗 |
-
|
SE3ET: SE(3)-Equivariant Transformer for Low-Overlap Point Cloud Registration ( Poster ) > link | Chien Erh Lin · Minghan Zhu · Maani Ghaffari 🔗 |
-
|
Bundle Neural Networks for message diffusion on graphs ( Poster ) > link | Jacob Bamberger · Federico Barbero · Xiaowen Dong · Michael Bronstein 🔗 |
-
|
A Theoretical Formulation of Many-body Message Passing Neural Networks ( Poster ) > link | Jiatong Han 🔗 |
-
|
On The Local Geometry of Deep Generative Manifolds ( Poster ) > link | Ahmed Imtiaz Humayun · Ibtihel Amara · Candice Schumann · Golnoosh Farnadi · Negar Rostamzadeh · Mohammad Havaei 🔗 |
-
|
The Geometry of Diffusion Models: Tubular Neighbourhoods and Singularities ( Poster ) > link | Kotaro Sakamoto · Ryosuke Sakamoto · Masato Tanabe · Masatomo Akagawa · Yusuke Hayashi · Manato Yaguchi · Masahiro Suzuki · Yutaka Matsuo 🔗 |
-
|
Geometry Aware Deep Learning for Integrated Closed-shell and Open-shell Systems ( Poster ) > link | Beom Seok Kang · Vignesh Bhethanabotla · Mohammadamin Tavakoli · William Goddard · Anima Anandkumar 🔗 |
-
|
Topological and Dynamical Representations for Radio Frequency Signal Classification ( Poster ) > link | Tegan Emerson · Tim Doster · Colin Olson · Audun Myers 🔗 |
-
|
Lorentzian Residual Neural Networks ( Poster ) > link | Neil He · Yang · ZHITAO YING 🔗 |
-
|
Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks ( Poster ) > link | Yoav Gelberg · Tycho van der Ouderaa · Mark van der Wilk · Yarin Gal 🔗 |
-
|
All Roads Lead to Rome? Exploring Representational Similarities Between Latent Spaces of Generative Image Models ( Poster ) > link | Charumathi Badrinath · Usha Bhalla · Alex Oesterling · Suraj Srinivas · Himabindu Lakkaraju 🔗 |
-
|
Leveraging Topological Guidance for Improved Knowledge Distillation ( Poster ) > link | Eunsom Jeon · Rahul Khurana · Aishani Pathak · Pavan Turaga 🔗 |
-
|
Geometric algebra transformers for large 3D meshes via cross-attention ( Poster ) > link | Julian Suk · Pim de Haan · Baris Imre · Jelmer Wolterink 🔗 |
-
|
A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry ( Poster ) > link | Martin Lindström · Borja Rodríguez Gálvez · Ragnar Thobaben · Mikael Skoglund 🔗 |
-
|
CoordConformer: Heterogenous EEG datasets decoding using Transformers ( Poster ) > link | Sharat Patil · Robin Tibor Schirrmeister · Frank Hutter · Tonio Ball 🔗 |
-
|
Unsupervised Ground Metric Learning with Tree Wasserstein Distance ( Poster ) > link | Kira Düsterwald · Makoto Yamada 🔗 |
-
|
Revisiting Random Walks for Learning on Graphs ( Poster ) > link | Jinwoo Kim · Olga Zaghen · Ayhan Suleymanzade · Youngmin Ryou · Seunghoon Hong 🔗 |
-
|
Alignment of MPNNs and Graph Transformers ( Poster ) > link | Bao Nguyen · Anjana Yodaiken · Petar Veličković 🔗 |
-
|
Sheaf Diffusion Goes Nonlinear: Enhancing GNNs with Adaptive Sheaf Laplacians ( Poster ) > link | Olga Zaghen · Antonio Longa · Steve Azzolin · Lev Telyatnikov · Andrea Passerini · Pietro Lió 🔗 |
-
|
SINR: Equivariant Neural Vector Fields ( Poster ) > link | David Ruhe · Patrick Forré 🔗 |
-
|
Temporal Graph Rewiring with Expander Graphs ( Poster ) > link | Katarina Petrović · Shenyang (Andy) Huang · Farimah Poursafaei · Petar Veličković 🔗 |
-
|
Towards General Geometries for Embedding Knowledge Graphs ( Poster ) > link | Samuel Matthiesen · Tino Paulsen · Sebastian Mair 🔗 |
-
|
Invertible Temper Modeling using Normalizing Flows and the Effects of Structure Preserving Loss ( Poster ) > link | Tegan Emerson · Henry Kvinge · Keerti Kappagantula · Sylvia Howland 🔗 |
-
|
Graph Convolutional Networks for Learning Laplace-Beltrami Operators ( Poster ) > link | Yingying Wu · Roger Fu · Richard Peng · Qifeng Chen 🔗 |
-
|
Path Complex Neural Network for Molecular Property Prediction ( Poster ) > link | Longlong Li · Xiang LIU · Guanghui Wang · Yu Guang Wang · Kelin Xia 🔗 |
-
|
Multivector Neurons: Better and Faster O(n)-Equivariant Clifford GNNs ( Poster ) > link | Cong Liu · David Ruhe · Patrick Forré 🔗 |
-
|
Geometry-Aware Autoencoders for Metric Learning and Generative Modeling on Data Manifolds ( Poster ) > link | Xingzhi Sun · Danqi Liao · Kincaid Macdonald · Yanlei Zhang · Guillaume Huguet · Guy Wolf · Ian Adelstein · Tim G. J. Rudner · Smita Krishnaswamy 🔗 |
-
|
Geometry Fidelity for Spherical Images ( Poster ) > link | Anders Christensen · Nooshin Mojab · Khushman Patel · Karan Ahuja · Zeynep Akata · Ole Winther · Mar Gonzalez-Franco · Andrea Colaco 🔗 |
-
|
A Simple and Expressive Graph Neural Network Based Method for Structural Link Representation ( Poster ) > link | Veronica Lachi · Francesco Ferrini · Antonio Longa · Bruno Lepri · Andrea Passerini 🔗 |
-
|
3D Shape Completion with Test-Time Training ( Poster ) > link | Michael Schopf-Kuester · Zorah Lähner · Michael Moeller 🔗 |
-
|
Learning Diffeomorphic Lyapunov Functions from Data ( Poster ) > link | Samuel Tesfazgi · Leonhard Sprandl · Sandra Hirche 🔗 |
-
|
Probabilistic World Modeling with Asymmetric Distance Measure ( Poster ) > link | Meng Song 🔗 |
-
|
UHCone: Universal Hyperbolic Cone For Implicit Hierarchical Learning ( Poster ) > link | Yang · Jiahong Liu · Irwin King · ZHITAO YING 🔗 |
-
|
Stability Analysis of Equivariant Convolutional Representations Through The Lens of Equivariant Multi-layered CKNs ( Poster ) > link | Soutrik Roy Chowdhury 🔗 |
-
|
Gaussian Process-Based Representation Learning via Timeseries Symmetries ( Poster ) > link | Petar Bevanda · Max Beier · Armin Lederer · Alexandre Capone · Stefan Sosnowski · Sandra Hirche 🔗 |
-
|
Decoder ensembling for learned latent geometries ( Poster ) > link | Stas Syrota · Pablo Moreno-Muñoz · Søren Hauberg 🔗 |
-
|
Scalable Local Intrinsic Dimension Estimation with Diffusion Models ( Poster ) > link | Hamidreza Kamkari · Brendan Ross · Rasa Hosseinzadeh · Jesse Cresswell · Gabriel Loaiza-Ganem 🔗 |
-
|
Mixed-Curvature Decision Trees and Random Forests ( Poster ) > link | Philippe Chlenski · Quentin Chu · Itsik Pe'er 🔗 |
-
|
SCENE-Net V2: Interpretable Multiclass 3D Scene Understanding with Geometric Priors ( Poster ) > link | Diogo Lavado · Claudia Soares · Alessandra Micheletti 🔗 |
-
|
Equivariant vs. Invariant Layers: A Comparison of Backbone and Pooling for Point Cloud Classification ( Poster ) > link | Abihith Kothapalli · Ashkan Shahbazi · XINRAN LIU · Robert Sheng · Soheil Kolouri 🔗 |
-
|
Decomposed Linear Dynamical Systems (dLDS) for identifying the latent dynamics underlying high-dimensional time-series ( Poster ) > link | Noga Mudrik · Yenho Chen · Eva Yezerets · Christopher Rozell · Adam Charles 🔗 |
-
|
Metric Learning for Clifford Group Equivariant Neural Networks ( Poster ) > link | Riccardo Maria Ali · Paulina Kulytė · Haitz Sáez de Ocáriz Borde · Pietro Lió 🔗 |
-
|
What Makes a Machine Learning Task a Good Candidate for an Equivariant Network? ( Poster ) > link | Scott Mahan · Davis Brown · Tim Doster · Henry Kvinge 🔗 |
-
|
Permutation Tree Invariant Neural Architectures ( Poster ) > link | Johannes Urban · Sebastian Tschiatschek · Nils M. Kriege 🔗 |
-
|
Constructing gauge-invariant neural networks for scientific applications ( Poster ) > link | Emmanouil Theodosis · Demba Ba · Nima Dehmamy 🔗 |
-
|
Improving Equivariant Networks with Probabilistic Symmetry Breaking ( Poster ) > link | Hannah Lawrence · Vasco Portilheiro · Yan Zhang · Sékou-Oumar Kaba 🔗 |
-
|
Joint Diffusion Processes as an Inductive Bias in Sheaf Neural Networks ( Poster ) > link | Ferran Hernandez Caralt · Guillermo Bernardez · Iulia Duta · Eduard Alarcon · Pietro Lió 🔗 |
-
|
Understanding Hallucinations in Diffusion Models through Mode Interpolation ( Poster ) > link | Sumukh K Aithal · Pratyush Maini · Zachary Lipton 🔗 |
-
|
The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products ( Poster ) > link | YuQing Xie · Ameya Daigavane · Mit Kotak · Tess Smidt 🔗 |
-
|
E(n) Equivariant Message Passing Cellular Networks ( Poster ) > link | Veljko Kovač · Erik Bekkers · Pietro Lió · Floor Eijkelboom 🔗 |
-
|
The NGT200 Dataset - Geometric Multi-View Isolated Sign Recognition ( Poster ) > link | Oline Ranum · David Wessels · Gomèr Otterspeer · Erik Bekkers · Floris Roelofsen · Jari Andersen 🔗 |
-
|
Learning symmetries via weight-sharing with doubly stochastic tensors ( Poster ) > link | Putri van der Linden · Alejandro García Castellanos · Sharvaree Vadgama · Thijs Kuipers · Erik Bekkers 🔗 |