Sat 12:00 a.m. - 12:05 a.m.
|
Welcome remarks
(
Intro
)
>
SlidesLive Video
|
Claire Vernade
🔗
|
Sat 12:05 a.m. - 12:40 a.m.
|
Miroslav Krstic: Offline and Online Learning for Control
(
Invited talk
)
>
SlidesLive Video
|
Miroslav Krstic
🔗
|
Sat 12:40 a.m. - 1:15 a.m.
|
Maryam Kamgarpour: Learning equilibria in multiagent systems with bandit feedback
(
Invited talk
)
>
SlidesLive Video
|
Maryam Kamgarpour
🔗
|
Sat 1:15 a.m. - 1:35 a.m.
|
Ludovic Schwartz: Optimistic Information Directed Sampling
(
contributed talk
)
>
SlidesLive Video
|
Ludovic Schwartz
🔗
|
Sat 1:35 a.m. - 2:20 a.m.
|
Poster session 1
(
Poster Session
)
>
|
🔗
|
Sat 2:20 a.m. - 2:55 a.m.
|
Sarah Dean: Learning preference dynamics from partial observations
(
Invited talk
)
>
SlidesLive Video
|
Sarah Dean
🔗
|
Sat 2:55 a.m. - 3:30 a.m.
|
Max Simchovitz: Provable Guarantees for Generative Behavior Cloning
(
Invited talk
)
>
SlidesLive Video
|
Max Simchowitz
🔗
|
Sat 3:30 a.m. - 4:15 a.m.
|
Lunch break (provided by venue)
(
Lunch break
)
>
|
🔗
|
Sat 4:15 a.m. - 5:00 a.m.
|
Poster Session 2
(
Poster Session
)
>
|
🔗
|
Sat 5:00 a.m. - 5:35 a.m.
|
Martha White: Embracing Adaptive Control: Designing Sound Online Reinforcement Learning Algorithms
(
Invited talk
)
>
SlidesLive Video
|
Martha White
🔗
|
Sat 5:35 a.m. - 5:55 a.m.
|
Guannan Qu: Model Based Diffusion for Trajectory Optimization
(
contributed talk
)
>
SlidesLive Video
|
Guannan Qu
🔗
|
Sat 5:55 a.m. - 6:30 a.m.
|
Florian Dörfler: Online Feedback Optimization
(
Invited talk
)
>
SlidesLive Video
|
Florian Dörfler
🔗
|
Sat 6:30 a.m. - 7:00 a.m.
|
Coffee Break
(
coffee break
)
>
|
🔗
|
Sat 7:00 a.m. - 7:20 a.m.
|
Cameron Allen: Better Memory Learning by Reducing Value Discrepancies
(
contributed talk
)
>
SlidesLive Video
|
Cameron Allen
🔗
|
Sat 7:20 a.m. - 7:55 a.m.
|
Elad Hazan: Spectral State Space Models
(
Invited talk
)
>
SlidesLive Video
|
Elad Hazan
🔗
|
-
|
Chained Information-Theoretic Bounds and Tight Regret Rate for Linear Bandit Problems
(
Poster
)
>
link
|
Amaury Gouverneur · Borja Rodríguez Gálvez · Tobias Oechtering · Mikael Skoglund
🔗
|
-
|
Learning to Explore with Lagrangians for Bandits under Unknown Constraints
(
Poster
)
>
link
|
Udvas Das · Debabrota Basu
🔗
|
-
|
$\alpha$-Fair Contextual Bandits
(
Poster
)
>
link
|
Siddhant Chaudhary · Abhishek Sinha
🔗
|
-
|
Pink Noise LQR: How does Colored Noise affect the Optimal Policy in RL?
(
Poster
)
>
link
|
Jakob Hollenstein · Marko Zaric · Samuele Tosatto · Justus Piater
🔗
|
-
|
Uniform Last-Iterate Guarantee for Bandits and Reinforcement Learning
(
Poster
)
>
link
|
Junyan Liu · Yunfan Li · Ruosong Wang · Lin Yang
🔗
|
-
|
The Value of Reward Lookahead in Reinforcement Learning
(
Poster
)
>
link
|
Nadav Merlis · Dorian Baudry · Vianney Perchet
🔗
|
-
|
DARE: The Deep Adaptive Regulator for Control of Uncertain Continuous-Time Systems
(
Poster
)
>
link
|
Harrison Waldon · Fayçal Drissi · Yannick Limmer · Uljad Berdica · Jakob Foerster · Alvaro Cartea
🔗
|
-
|
Bridging Distributionally Robust Learning and Offline RL: An Approach to Mitigate Distribution Shift and Partial Data Coverage
(
Poster
)
>
link
|
Kishan Panaganti · Zaiyan Xu · Dileep Kalathil · Mohammad Ghavamzadeh
🔗
|
-
|
Truly No-Regret Learning in Constrained MDPs
(
Poster
)
>
link
|
Adrian Müller · Pragnya Alatur · Volkan Cevher · Giorgia Ramponi · Niao He
🔗
|
-
|
CPeSFA: Empowering SFs for Policy Learning and Transfer in Continuous Action Spaces
(
Poster
)
>
link
|
Yining Li · Tianpei Yang · Wei Guo · Jianye Hao · Yan Zheng
🔗
|
-
|
Non-ergodicity in reinforcement learning: robustness via ergodicity transformations
(
Poster
)
>
link
|
Dominik Baumann · Erfaun Noorani · James Price · Ole Peters · Colm Connaughton · Thomas Schön
🔗
|
-
|
Safe online nonstochastic control from data
(
Poster
)
>
link
|
Sebastian Kerz · Armin Lederer · Marion Leibold · Dirk Wollherr
🔗
|
-
|
Tight Bounds for Online Convex Optimization with Adversarial Constraints
(
Poster
)
>
link
|
Abhishek Sinha · Rahul Vaze
🔗
|
-
|
A Pontryagin Perspective on Reinforcement Learning
(
Poster
)
>
link
|
Onno Eberhard · Claire Vernade · Michael Muehlebach
🔗
|
-
|
Power Mean Estimation in Stochastic Monte-Carlo Tree Search
(
Poster
)
>
link
|
DAM Tuan · Odalric-Ambrym Maillard · Emilie Kaufmann
🔗
|
-
|
Sum-Max Submodular Bandits
(
Poster
)
>
link
|
Stephen Pasteris · Alberto Rumi · Fabio Vitale · Nicolò Cesa-Bianchi
🔗
|
-
|
Model Based Diffusion for Trajectory Optimization
(
Poster
)
>
link
|
Chaoyi Pan · Zeji Yi · Guanya Shi · Guannan Qu
🔗
|
-
|
Finite Sample Identification: From Frequency to Time Domain
(
Poster
)
>
link
|
Anastasios Tsiamis · Mohamed Abdalmoaty · Roy Smith · John Lygeros
🔗
|
-
|
Recurrent Natural Policy Gradient for POMDPs
(
Poster
)
>
link
|
Semih Cayci · Atilla Eryilmaz
🔗
|
-
|
Improved Algorithms for Contextual Dynamic Pricing
(
Poster
)
>
link
|
Matilde Tullii · Solenne Gaucher · Nadav Merlis · Vianney Perchet
🔗
|
-
|
Randomized Confidence Bounds for Stochastic Partial Monitoring
(
Poster
)
>
link
|
Maxime Heuillet · Ola Ahmad · Audrey Durand
🔗
|
-
|
Causal Bandits: The Pareto Optimal Frontier of Adaptivity, a Reduction to Linear Bandits, and Limitations around Unknown Marginals
(
Poster
)
>
link
|
Ziyi Liu · Idan Attias · Daniel Roy
🔗
|
-
|
On Robust Reinforcement Learning with Lipschitz-Bounded Policy Networks
(
Poster
)
>
link
|
Nicholas Barbara · Ruigang Wang · Ian Manchester
🔗
|
-
|
A Best-of-both-worlds Algorithm for Bandits with Delayed Feedback with Robustness to Excessive Delays
(
Poster
)
>
link
|
Saeed Masoudian · Julian Zimmert · Yevgeny Seldin
🔗
|
-
|
SMX: Sequential Monte Carlo Planning for Expert Iteration
(
Poster
)
>
link
|
Edan Toledo · Matthew Macfarlane · Donal Byrne · Siddarth Singh · Paul Duckworth · Alexandre Laterre
🔗
|
-
|
Optimality of Stationary Policies in Risk-averse Total-reward MDPs with EVaR
(
Poster
)
>
link
|
Xihong Su · Marek Petrik · Julien Grand-Clément
🔗
|
-
|
Robust Best-of-Both-Worlds Gap Estimators Based on Importance-Weighted Sampling
(
Poster
)
>
link
|
Sarah Clusiau · Saeed Masoudian · Yevgeny Seldin
🔗
|
-
|
Preference Elicitation for Offline Reinforcement Learning
(
Poster
)
>
link
|
Alizée Pace · Bernhard Schölkopf · Gunnar Ratsch · Giorgia Ramponi
🔗
|
-
|
A Variational Formulation of Reinforcement Learning in Infinite-Horizon Markov Decision Processes
(
Poster
)
>
link
|
Tim G. J. Rudner
🔗
|
-
|
Essentially Sharp Estimates on the Entropy Regularization Error in Discounted Markov Decision Processes
(
Poster
)
>
link
|
Johannes Müller · Semih Cayci
🔗
|
-
|
Event-Based Federated Q-Learning
(
Poster
)
>
link
|
Guner Dilsad ER · Michael Muehlebach
🔗
|
-
|
Learning Nash Equilibria in Zero-Sum Markov Games: A Single-Timescale Algorithm Under Weak Reachability
(
Poster
)
>
link
|
Reda Ouhamma · Maryam Kamgarpour
🔗
|
-
|
Identifiable latent bandits: Combining observational data and exploration for personalized healthcare
(
Poster
)
>
link
|
Ahmet Balcioglu · Emil Carlsson · Fredrik Johansson
🔗
|
-
|
Finite-time convergence to an $\epsilon$-efficient Nash equilibrium in potential games
(
Poster
)
>
link
|
Anna M. Maddux · Reda Ouhamma · Maryam Kamgarpour
🔗
|
-
|
Learning When to Trust the Expert for Guided Exploration in RL
(
Poster
)
>
link
|
Felix Schulz · Jasper Hoffmann · Yuan Zhang · Joschka Boedecker
🔗
|
-
|
Online Performance Optimization of Nonlinear Systems: A Gray-Box Approach
(
Poster
)
>
link
|
Zhiyu He · Michael Muehlebach · Saverio Bolognani · Florian Dörfler
🔗
|
-
|
Safe Reinforcement Learning with Contrastive Risk Prediction
(
Poster
)
>
link
|
Hanping Zhang · Yuhong Guo
🔗
|
-
|
Partial Structure Discovery is Sufficient for No-regret Learning in Causal Bandits
(
Poster
)
>
link
|
Muhammad Qasim Elahi · Mahsa Ghasemi · Murat Kocaoglu
🔗
|
-
|
Variance-Dependent Regret Bounds for Nonstationary Linear Bandits
(
Poster
)
>
link
|
Zhiyong Wang · Jize Xie · Yi Chen · John C.S. Lui · Dongruo Zhou
🔗
|
-
|
Adaptive Experimental Design for Policy Learning: Contextual Best Arm Identification
(
Poster
)
>
link
|
Masahiro Kato · Kyohei Okumura · Takuya Ishihara · Toru Kitagawa
🔗
|
-
|
Exploring Integrality Grip for Mixed-integer Programming by MCTS Planning
(
Poster
)
>
link
|
Defeng Liu
🔗
|
-
|
Learning HJB Viscosity Solutions with PINNs for Continuous-Time Reinforcement Learning
(
Poster
)
>
link
|
Alena Shilova · Thomas Delliaux · Philippe Preux · Bruno Raffin
🔗
|
-
|
The Minimax Regret of Sequential Probability Assignment, Contextual Shtarkov Sums, and Contextual Normalized Maximum Likelihood
(
Poster
)
>
link
|
Ziyi Liu · Idan Attias · Daniel Roy
🔗
|
-
|
Towards Empowerment Gain through Causal Structure Learning in Model-Based RL
(
Poster
)
>
link
|
Hongye Cao · Fan Feng · Meng Fang · Shaokang Dong · Jing Huo · Yang Gao
🔗
|
-
|
Online Optimization of Closed-Loop Control Systems
(
Poster
)
>
link
|
Hao Ma · Melanie Zeilinger · Michael Muehlebach
🔗
|
-
|
Multiple-policy Evaluation via Density Estimation
(
Poster
)
>
link
|
Yilei Chen · Aldo Pacchiano · Ioannis Paschalidis
🔗
|
-
|
Mitigating Partial Observability in Decision Processes via the Lambda Discrepancy
(
Poster
)
>
link
|
Cameron Allen · Aaron Kirtland · Ruo Yu Tao · Sam Lobel · Daniel Scott · Nicholas Petrocelli · Omer Gottesman · Ron Parr · Michael L. Littman · George Konidaris
🔗
|
-
|
Combining Neural Networks and Symbolic Regression for Analytical Lyapunov Function Discovery
(
Poster
)
>
link
|
Jie Feng · Haohan Zou · Yuanyuan Shi
🔗
|
-
|
A Simple and Adaptive Learning Rate for FTRL in Online Learning with Minimax Regret of $\Theta(T^{2/3})$ and its Application to Best-of-Both-Worlds
(
Poster
)
>
link
|
Taira Tsuchiya · Shinji Ito
🔗
|
-
|
Bridging Distributional and Risk-Sensitive Reinforcement Learning: Balancing Statistical, Computational, and Risk Considerations
(
Poster
)
>
link
|
Hao Liang
🔗
|
-
|
Recommender System Design via Online Feedback Optimization
(
Poster
)
>
link
|
Sanjay Chandrasekaran · Giulia De Pasquale · Giuseppe Belgioioso · Florian Dörfler
🔗
|
-
|
Neural Dueling Bandits
(
Poster
)
>
link
|
Arun Verma · Zhongxiang Dai · Xiaoqiang Lin · Patrick Jaillet · Bryan Kian Hsiang Low
🔗
|
-
|
Distributional Monte-Carlo Planning with Thompson Sampling in Stochastic Environments
(
Poster
)
>
link
|
DAM Tuan · Brahim Driss · Odalric-Ambrym Maillard
🔗
|
-
|
Certifying robustness to adaptive data poisoning
(
Poster
)
>
link
|
Avinandan Bose · Madeleine Udell · Laurent Lessard · Maryam Fazel · Krishnamurthy Dvijotham
🔗
|
-
|
Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution
(
Poster
)
>
link
|
Tim Seyde · Peter Werner · Wilko Schwarting · Markus Wulfmeier · Daniela Rus
🔗
|
-
|
Bandits with Preference Feedback: A Stackelberg Game Perspective
(
Poster
)
>
link
|
Barna Pasztor · Parnian Kassraie · Andreas Krause
🔗
|
-
|
A Hierarchical Approach for Strategic Motion Planning in Autonomous Racing
(
Poster
)
>
link
|
Rudolf Reiter · Jasper Hoffmann · Joschka Boedecker · Moritz Diehl
🔗
|
-
|
A safe exploration approach to constrained Markov decision processes
(
Poster
)
>
link
|
Tingting Ni · Maryam Kamgarpour
🔗
|
-
|
A Policy Optimization Approach to the Solution of Unregularized Mean Field Games
(
Poster
)
>
link
|
Sihan Zeng · Sujay Bhatt · Alec Koppel · Sumitra Ganesh
🔗
|
-
|
When is Mean-Field Reinforcement Learning Tractable and Relevant?
(
Poster
)
>
link
|
Batuhan Yardim · Artur Goldman · Niao He
🔗
|
-
|
Hybrid Recurrent Models Support Emergent Descriptions for Hierarchical Planning and Control
(
Poster
)
>
link
|
Poppy Collis · Ryan Singh · Paul Kinghorn · Christopher Buckley
🔗
|
-
|
Non-Linear $H_\infty$ Robustness Guarantees for Neural Network Policies
(
Poster
)
>
link
|
Daniel Urieli
🔗
|
-
|
On PI Controllers for Updating Lagrange Multipliers in Constrained Optimization
(
Poster
)
>
link
|
Motahareh Sohrabi · Juan Ramirez · Tianyue Zhang · Simon Lacoste-Julien · Jose Gallego-Posada
🔗
|
-
|
Reinforcement Learning with Lookahead Information
(
Poster
)
>
link
|
Nadav Merlis
🔗
|
-
|
Defending Against Unknown Corrupted Agents: Reinforcement Learning of Adversarially Robust Nash Equilibria
(
Poster
)
>
link
|
Andi Nika · Jonathan Nöther · Adish Singla · Goran Radanovic
🔗
|
-
|
NEORL: Efficient Exploration for Nonepisodic RL
(
Poster
)
>
link
|
Bhavya · Lenart Treven · Florian Dörfler · Stelian Coros · Andreas Krause
🔗
|
-
|
Reinforcement Learning with Quasi-Hyperbolic Discounting
(
Poster
)
>
link
|
Eshwar S R · Nibedita Roy · Gugan Chandrashekhar Mallika Thoppe
🔗
|
-
|
Reinforcement Learning of Adaptive Acquisition Policies for Inverse Problems
(
Poster
)
>
link
|
Gianluigi Silvestri · Fabio Valerio Massoli · Tribhuvanesh Orekondy · Afshin Abdi · Arash Behboodi
🔗
|
-
|
Optimistic Information Directed Sampling
(
Poster
)
>
link
|
Gergely Neu · Matteo Papini · Ludovic Schwartz
🔗
|
-
|
Bandits with Abstention under Expert Advice
(
Poster
)
>
link
|
Stephen Pasteris · Alberto Rumi · Maximilian Thiessen · Shota Saito · Atsushi Miyauchi · Fabio Vitale · Mark Herbster
🔗
|
-
|
DeePC-Hunt: Data-enabled Predictive Control Hyperparameter Tuning via Differentiable Optimization
(
Poster
)
>
link
|
Michael Cummins · Alberto Padoan · Keith Moffat · John Lygeros · Florian Dörfler
🔗
|
-
|
Compatible Gradient Approximations for Actor-Critic Algorithms
(
Poster
)
>
link
|
Baturay Saglam · Dionysios Kalogerias
🔗
|