Workshop
Structured Probabilistic Inference and Generative Modeling
Dinghuai Zhang · Yuanqi Du · Guan-Horng Liu · Chenlin Meng · Ruiqi Gao · Max Welling · Yoshua Bengio
Lehar 3
Fri 26 Jul, midnight PDT
The workshop focuses on theory, methodology, and application of structured probabilistic inference and generative modeling, both of which are important topics in machine learning.Specifically, probabilistic inference addresses the problem of amortization,sampling, and integration of complex quantities from graphical models, while generative modeling captures the underlying probability distributions of a dataset. Apart from applications in computer vision, natural language processing, and speech recognition, probabilistic inference and generative modeling approaches have also been widely used in natural science domains, including physics, chemistry, molecular biology, and medicine. Beyond applications in these domains, the span of tasks of the methods have been expanding beyond probabilistic inference and generative model such as optimal control, decision making, sampling, optimization, etc.Despite the promising results, probabilistic methods face challenges when applied to highly structured data, which are ubiquitous in real-world settings, limiting the applications of such methods. This workshop aims to bring experts from diverse backgrounds and related domains together to discuss the applications and challenges of probabilistic methods. The workshop will emphasize challenges in encoding domain knowledge when learning representations, performing inference and generations. By bringing together experts from academia and industry, the workshop will provide a platform for researchers to share their latest results and ideas, fostering collaboration and discussion in the field of probabilistic methods.
Schedule
Fri 12:00 a.m. - 12:10 a.m.
|
Opening Remarks
SlidesLive Video |
🔗 |
Fri 12:10 a.m. - 12:40 a.m.
|
Ben Poole (Google DeepMind)
(
Invited Talk
)
>
SlidesLive Video |
🔗 |
Fri 12:40 a.m. - 1:10 a.m.
|
Yingzhen Li (Imperial College London)
(
Invited Talk
)
>
SlidesLive Video |
🔗 |
Fri 1:10 a.m. - 2:00 a.m.
|
Contributed Talks
SlidesLive Video |
🔗 |
Fri 2:00 a.m. - 2:30 a.m.
|
Molei Tao (Georgia Tech)
(
Invited Talk
)
>
SlidesLive Video |
🔗 |
Fri 2:30 a.m. - 4:10 a.m.
|
Poster Session #1 & Lunch Break
|
🔗 |
Fri 4:10 a.m. - 5:00 a.m.
|
Kirill Neklyudov (University of Montreal & Mila), Rianne van den Berg (Microsoft Research), José Miguel Hernández-Lobato (University of Cambridge), Kyle Cranmer (University of Wisconsin-Madison), Max Welling (University of Amsterdam))
(
Panel Session
)
>
SlidesLive Video |
🔗 |
Fri 5:00 a.m. - 5:30 a.m.
|
Ricky T. Q. Chen (FAIR, Meta)
(
Invited Talk
)
>
SlidesLive Video |
🔗 |
Fri 5:30 a.m. - 5:50 a.m.
|
Maruan Al-Shedivat (Genesis Therapeutics)
(
Invited Talk
)
>
SlidesLive Video |
🔗 |
Fri 5:50 a.m. - 6:10 a.m.
|
Contributed Talks
SlidesLive Video |
🔗 |
Fri 6:10 a.m. - 7:10 a.m.
|
Poster Session #2 & Coffee Break
|
🔗 |
Fri 7:10 a.m. - 7:40 a.m.
|
Charlotte Bunne (Genentech & EPFL)
(
Invited Talk
)
>
SlidesLive Video |
🔗 |
Fri 7:40 a.m. - 8:00 a.m.
|
Awards, Takeaways, & Closing Remarks
SlidesLive Video |
🔗 |
-
|
Improving GFlowNets for Text-to-Image Diffusion Alignment ( Poster ) > link | Dinghuai Zhang · Yizhe Zhang · Jiatao Gu · Ruixiang ZHANG · Joshua M Susskind · Navdeep Jaitly · Shuangfei Zhai 🔗 |
-
|
Lifted Residual Score Estimation ( Poster ) > link | Tejas Jayashankar · Jongha (Jon) Ryu · Xiangxiang Xu · Gregory Wornell 🔗 |
-
|
Zero-Shot Unsupervised and Text-Based Audio Editing Using DDPM Inversion ( Poster ) > link | Hila Manor · Tomer Michaeli 🔗 |
-
|
Discrete Diffusion Posterior Sampling for Protein Design ( Poster ) > link | Mert Cemri · Ajil Jalal · Kannan Ramchandran 🔗 |
-
|
SOLMformer - Incorporating Sequence and Observation Level Metadata for Categorical Time Series Modeling ( Poster ) > link | Yamini Ananth · Gregory Benton · Jingxing Fang · Jerry Cheung · Xu Chu · Cong Yu 🔗 |
-
|
Improving Consistency Models with Generator-Induced Coupling ( Poster ) > link | Thibaut Issenhuth · Ludovic Dos Santos · Jean-Yves Franceschi · alain rakotomamonjy 🔗 |
-
|
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models ( Oral ) > link | Hamidreza Kamkari · Brendan Ross · Rasa Hosseinzadeh · Jesse Cresswell · Gabriel Loaiza-Ganem 🔗 |
-
|
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks ( Poster ) > link | Tristan Cinquin · Robert Bamler 🔗 |
-
|
All Roads Lead to Rome? Exploring Representational Similarities Between Latent Spaces of Generative Image Models ( Poster ) > link | Charumathi Badrinath · Usha Bhalla · Alex Oesterling · Suraj Srinivas · Himabindu Lakkaraju 🔗 |
-
|
Bayesian Disease Progression Modeling That Captures And Accounts For Health Disparities ( Poster ) > link | Erica Chiang · Ashley Beecy · Gabriel Sayer · Nir Uriel · Deborah Estrin · Nikhil Garg · Emma Pierson 🔗 |
-
|
Conformalized Credal Set Predictors ( Poster ) > link | Alireza Javanmardi · David Stutz · Eyke Hüllermeier 🔗 |
-
|
Investigating Generalization Behaviours of Generative Flow Networks ( Oral ) > link | Lazar Atanackovic · Emmanuel Bengio 🔗 |
-
|
Accelerating statistical inferences in astrophysics with Neural Networks and Hamiltonian Monte Carlo ( Poster ) > link | Diego Gonzalez-Hernandez · Molly Wolfson · Joseph Hennawi 🔗 |
-
|
Teaching dark matter simulations to speak the halo language ( Poster ) > link | Shivam Pandey · Francois Lanusse · Chirag Modi · Benjamin Wandelt 🔗 |
-
|
DiMViS: Diffusion-based Multi-View Synthesis ( Poster ) > link | Giuseppe Di Giacomo · Giulio Franzese · Tania Cerquitelli · Carla Fabiana Chiasserini · Pietro Michiardi 🔗 |
-
|
Reliability Thresholds for the Bethe Free Energy Approximation ( Poster ) > link | Harald Leisenberger · Christian Knoll · Franz Pernkopf 🔗 |
-
|
Policy Gradients for Optimal Parallel Tempering MCMC ( Poster ) > link | Daniel Zhao · Natesh Pillai 🔗 |
-
|
Bidirectional Consistency Models ( Poster ) > link | Liangchen Li · Jiajun He 🔗 |
-
|
Learnability of Parameter-Bounded Bayes Nets ( Poster ) > link | Arnab Bhattacharyya · Davin Choo · Sutanu Gayen · Dimitrios Myrisiotis 🔗 |
-
|
Transformer Neural Autoregressive Flows ( Poster ) > link | Massimiliano Patacchiola · Aliaksandra Shysheya · Katja Hofmann · Richard E Turner 🔗 |
-
|
Continual Deep Learning on the Edge via Stochastic Local Competition among Subnetworks ( Poster ) > link | Theodoros Christophides · Kyriakos Tolias · Sotirios Chatzis 🔗 |
-
|
Rule-Enhanced Graph Learning ( Poster ) > link | Ali · Abdolreza Mirzaei · Majjid Farhadi · Parmis Naddaf · Kiarash Zahirnia · Mohammad Salameh · Kevin Cannons · Richard Mar · Mingyi Wu · Oliver Schulte 🔗 |
-
|
Assessing the Viability of Generative Modeling in Simulated Astronomical Observations ( Poster ) > link | Patrick Janulewicz · Laurence Perreault-Levasseur · Tracy Webb 🔗 |
-
|
Stein Variational Newton Neural Network Ensembles ( Poster ) > link | Klemens Flöge · Muhammad Abdul Moeed · Vincent Fortuin 🔗 |
-
|
Diffusion Domain Expansion: Learning to Coordinate Pre-Trained Diffusion Models ( Poster ) > link | Egor Lifar · Semyon Savkin · Timur Garipov · Shangyuan Tong · Tommi Jaakkola 🔗 |
-
|
Doob's Lagrangian: A Sample-Efficient Variational Approach to Transition Path Sampling ( Poster ) > link | Yuanqi Du · Michael Plainer · Rob Brekelmans · Chenru Duan · Frank Noe · Carla Gomes · Alan Aspuru-Guzik · Kirill Neklyudov 🔗 |
-
|
Collective Variable Free Transition Path Sampling with Generative Flow Network ( Poster ) > link | Kiyoung Seong · Seonghyun Park · SEONGHWAN KIM · Woo Youn Kim · Sungsoo Ahn 🔗 |
-
|
QGFN: Controllable Greediness with Action Values ( Poster ) > link | Elaine Lau · Stephen Lu · Ling Pan · Doina Precup · Emmanuel Bengio 🔗 |
-
|
Energy-Free Guidance of Geometric Diffusion Models for 3D Molecule Inverse Design ( Poster ) > link | Sanjay Nagaraj · Aksh Garg · Jiaqi Han · Minkai Xu · Stefano Ermon 🔗 |
-
|
Modelling Latent Dynamical Systems with Recognition-Parametrised Models ( Poster ) > link | Samo Hromadka · Maneesh Sahani 🔗 |
-
|
Informed Meta-Learning ( Poster ) > link | Katarzyna Kobalczyk · M van der Schaar 🔗 |
-
|
Neurosymbolic Markov Models ( Oral ) > link | Lennert De Smet · Gabriele Venturato · Luc De Raedt · Giuseppe Marra 🔗 |
-
|
In-Context Learning with Topological Information for LLM-Based Knowledge Graph Completion ( Poster ) > link | Udari Sehwag · Kassiani Papasotiriou · Jared Vann · Sumitra Ganesh 🔗 |
-
|
Glauber Generative Model: Discrete Diffusion Models via Binary Classification ( Poster ) > link | Harshit Varma · Dheeraj Nagaraj · Karthikeyan Shanmugam 🔗 |
-
|
ProxyTune: Hyperparameter tuning through iteratively refined proxies ( Poster ) > link | Agrin Hilmkil · Wenbo Gong · Nick Pawlowski · Cheng Zhang 🔗 |
-
|
Fast yet Safe: Early-Exiting with Risk Control ( Poster ) > link | Metod Jazbec · Alexander Timans · Tin Hadži Veljković · Johann Sakmann · Dan Zhang · Christian Andersson Naesseth · Eric Nalisnick 🔗 |
-
|
Reliable Multivariate Deep Regression using Moment-Matching Prior Networks ( Poster ) > link | Qingyi Pan · Ruqi Zhang 🔗 |
-
|
EigenVI: score-based variational inference with orthogonal function expansions ( Poster ) > link | Diana Cai · Chirag Modi · Charles Margossian · Robert Gower · David Blei · Lawrence Saul 🔗 |
-
|
GLAD: Improving Latent Graph Generative Modeling with Simple Quantization ( Poster ) > link | Van Khoa NGUYEN · Yoann Boget · Frantzeska Lavda · Alexandros Kalousis 🔗 |
-
|
Gradient-based Discrete Sampling with Automatic Cyclical Scheduling ( Poster ) > link | Patrick Pynadath · Riddhiman Bhattacharya · Arun Narayanan Hariharan · Ruqi Zhang 🔗 |
-
|
Test-Time Adaptation with State-Space Models ( Poster ) > link | Mona Schirmer · Dan Zhang · Eric Nalisnick 🔗 |
-
|
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning ( Poster ) > link | Adam Yang · Laurence Aitchison · Henry Moss 🔗 |
-
|
Cross-modality Matching and Prediction of Perturbation Responses with Labeled Gromov-Wasserstein Optimal Transport ( Poster ) > link | Jayoung Ryu · Romain Lopez · Charlotte Bunne · Luca Pinello · Aviv Regev 🔗 |
-
|
RNA-FrameFlow for de novo 3D RNA Backbone Design ( Oral ) > link | Rishabh Anand · Chaitanya Joshi · Alex Morehead · Arian Jamasb · Charles Harris · Simon Mathis · Kieran Didi · Bryan Hooi · Pietro Lió 🔗 |
-
|
Variance reduction of diffusion model's gradients with Taylor approximation-based control variate ( Poster ) > link | Paul Jeha · Will Grathwohl · Michael Andersen · Carl Henrik Ek · Jes Frellsen 🔗 |
-
|
von Mises Quasi-Processes for Bayesian Circular Regression ( Poster ) > link | Yarden Cohen · Alexandre Wu Navarro · Jes Frellsen · Richard E Turner · Raziel Riemer · Ari Pakman 🔗 |
-
|
Hurdle Conjugate Priors for Scalable Tucker Decomposition ( Poster ) > link | John Hood · Aaron Schein 🔗 |
-
|
Equivariant Flow Matching for Molecular Conformer Generation ( Poster ) > link | Majdi Hassan · Nikhil Shenoy · Jungyoon Lee · Hannes Stärk · Stephan Thaler · Dominique Beaini 🔗 |
-
|
Many-to-many Image Generation with Auto-regressive Diffusion Models ( Poster ) > link | Ying Shen · Yizhe Zhang · Shuangfei Zhai · Lifu Huang · Joshua M Susskind · Jiatao Gu 🔗 |
-
|
Aligned Diffusion Models for Retrosynthesis ( Poster ) > link | Najwa Laabid · Severi Rissanen · Markus Heinonen · Arno Solin · Vikas Garg 🔗 |
-
|
Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval ( Poster ) > link | Ravisri Valluri · Akash Kumar Mohankumar · Kushal Dave · Amit Singh · Jian Jiao · Manik Varma · Gaurav Sinha 🔗 |
-
|
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders ( Poster ) > link | Christian Toth · Christian Knoll · Franz Pernkopf · Robert Peharz 🔗 |
-
|
Regression-Stratified Sampling for Optimized Algorithm Selection in Time-Constrained Tabular AutoML ( Poster ) > link | Mehdi Bahrami · So Hasegawa · Lei Liu · Wei-Peng Chen 🔗 |
-
|
Structured Generations: Using Hierarchical Clusters to guide Diffusion Models ( Poster ) > link | Jorge da Silva Gonçalves · Laura Manduchi · Moritz Vandenhirtz · Julia Vogt 🔗 |
-
|
Non-Parameteric Conformal Distributionally Robust Optimization ( Poster ) > link | Yash Patel · Guyang Cao · Ambuj Tewari 🔗 |
-
|
The GAN is dead; long live the GAN! A Modern Baseline GAN ( Poster ) > link | Yiwen Huang · Aaron Gokaslan · Volodymyr Kuleshov · James Tompkin 🔗 |
-
|
Regularized Distribution Matching Distillation for One-step Unpaired Image-to-Image Translation ( Poster ) > link | Denis Rakitin · Ivan Shchekotov · Dmitry Vetrov 🔗 |
-
|
Generative Autoencoding of Dropout Patterns ( Poster ) > link | Shunta Maeda 🔗 |
-
|
Recursive Introspection: Teaching LLM Agents How to Self-Improve ( Poster ) > link | Yuxiao Qu · Tianjun Zhang · Naman Garg · Aviral Kumar 🔗 |
-
|
Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices ( Poster ) > link | Nathaniel Cohen · Vladimir Kulikov · Matan Kleiner · Inbar Huberman-Spiegelglas · Tomer Michaeli 🔗 |
-
|
Transformers with Stochastic Competition for Tabular Data Modelling ( Poster ) > link | Andreas Voskou · Charalambos Christoforou · Sotirios Chatzis 🔗 |
-
|
Learning Graph Neural Networks from Biased Outcome Data ( Poster ) > link | Sidhika Balachandar · Shuvom Sadhuka · Bonnie Berger · Emma Pierson · Nikhil Garg 🔗 |
-
|
Pretrained deep models outperform GBDTs in Learning-To-Rank under label scarcity ( Poster ) > link | Charlie Hou · Kiran Thekumparampil · Michael Shavlovsky · Giulia Fanti · Sujay Sanghavi 🔗 |
-
|
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors ( Poster ) > link | Wasu Top Piriyakulkij · Yingheng Wang · Volodymyr Kuleshov 🔗 |
-
|
CADO: Cost-Aware Diffusion Solvers for Combinatorial Optimization through RL fine-tuning ( Poster ) > link | Deunsol Yoon · Hyungseok Song · Kanghoon Lee · Woohyung Lim 🔗 |
-
|
On the Expressive Power of Tree-Structured Probabilistic Circuits ( Poster ) > link | Lang Yin · Han Zhao 🔗 |
-
|
Variational Inference with Censored Gaussian Process Regressors ( Poster ) > link | Andrea Karlova · Rishabh Kabra · Daniel Augusto de Souza · Brooks Paige 🔗 |
-
|
Amortized Probabilistic Detection of Communities in Graphs ( Poster ) > link | Yueqi Wang · Yoonho Lee · Pallab Basu · Juho Lee · Yee-Whye Teh · Department of Statistics Liam Paninski · Ari Pakman 🔗 |
-
|
Quantifying Aleatoric and Epistemic Uncertainty: A Credal Approach ( Poster ) > link | Paul Hofman · Yusuf Sale · Eyke Hüllermeier 🔗 |
-
|
Predictive Uncertainties Based on Proper Scoring Rules ( Poster ) > link | Nikita Kotelevskii · Maxim Panov 🔗 |
-
|
Color Style Transfer with Modulated Flows ( Poster ) > link | Maria Larchenko · Alexander Lobashev · Dmitry Guskov · Vladimir Palyulin 🔗 |
-
|
Conditional Common Entropy for Instrumental Variable Testing and Partial Identification ( Poster ) > link | Ziwei Jiang · Murat Kocaoglu 🔗 |
-
|
Improving GFlowNets with Monte Carlo Tree Search ( Poster ) > link | Nikita Morozov · Daniil Tiapkin · Sergey Samsonov · Alexey Naumov · Dmitry Vetrov 🔗 |
-
|
Identifying latent state transition in non-linear dynamical systems ( Poster ) > link | Çağlar Hızlı · Cagatay Yildiz · Matthias Bethge · ST John · Pekka Marttinen 🔗 |
-
|
Cell Morphology-Guided Small Molecule Generation with GFlowNets ( Poster ) > link | Stephen Lu · Ziqing Lu · Ehsan Hajiramezanali · Tommaso Biancalani · Yoshua Bengio · Gabriele Scalia · Michał Koziarski 🔗 |
-
|
Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand ( Poster ) > link | Md Musfiqur Rahman · Matt Jordan · Murat Kocaoglu 🔗 |
-
|
EBBS: An Ensemble with Bi-Level Beam Search for Zero-Shot Machine Translation ( Poster ) > link | Yuqiao Wen · Behzad Shayegh · Chenyang Huang · Yanshuai Cao · Lili Mou 🔗 |
-
|
Simple and Effective Masked Diffusion Language Models ( Poster ) > link | Subham Sekhar Sahoo · Marianne Arriola · Aaron Gokaslan · Edgar Marroquin · Alexander Rush · Yair Schiff · Justin Chiu · Volodymyr Kuleshov 🔗 |
-
|
Inferring Physiological Properties of Motor Neurons using Neural Posterior Estimation ( Poster ) > link | Pranav Mamidanna · Dario Farina 🔗 |
-
|
Conditional Flow Matching for Time Series Modelling ( Poster ) > link | Ella Tamir · Najwa Laabid · Markus Heinonen · Vikas Garg · Arno Solin 🔗 |
-
|
Accelerating NCE Convergence with Adaptive Normalizing Constant Computation ( Poster ) > link | Anish Sevekari · Rishal Aggarwal · Maria Chikina · David Koes 🔗 |
-
|
Generative Design of Decision Tree Policies for Reinforcement Learning ( Poster ) > link | Jacob Pettit · Chak Shing Lee · Jiachen Yang · Alex Ho · Daniel Faissol · Brenden Petersen · Mikel Landajuela 🔗 |
-
|
DiffusionBlend: Learning 3D Image Prior through Position-aware Diffusion Score Blending for 3D Computed Tomography Reconstruction ( Poster ) > link | Bowen Song · Jason Hu · Zhaoxu Luo · Jeffrey Fessler · Liyue Shen 🔗 |
-
|
Learning Latent Graph Structures and their Uncertainty ( Poster ) > link | Alessandro Manenti · Daniele Zambon · Cesare Alippi 🔗 |
-
|
Function Space Diversity for Uncertainty Prediction via Repulsive Last-Layer Ensembles ( Poster ) > link | Sophie Steger · Christian Knoll · Bernhard Klein · Holger Fröning · Franz Pernkopf 🔗 |
-
|
Incorporating Stability Into Flow Matching ( Poster ) > link | Christopher Iliffe Sprague · Arne Elofsson · Hossein Azizpour 🔗 |
-
|
Tuning-Free Alignment of Diffusion Models with Direct Noise Optimization ( Poster ) > link | Zhiwei Tang · Jiangweizhi Peng · Jiasheng Tang · Mingyi Hong · Fan Wang · Tsung-Hui Chang 🔗 |
-
|
E-ProTran: Efficient Probabilistic Transformers for Forecasting ( Poster ) > link | Batuhan Koyuncu · Tim N Bauerschmidt · Isabel Valera 🔗 |
-
|
Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling ( Poster ) > link | Jiatao Gu · Ying Shen · Shuangfei Zhai · Yizhe Zhang · Navdeep Jaitly · Joshua M Susskind 🔗 |
-
|
SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models ( Poster ) > link | Bowen Song · Zhaoxu Luo · Liyue Shen 🔗 |
-
|
Demystifying amortized causal discovery with transformers ( Poster ) > link | Francesco Montagna · Max Cairney-Leeming · Dhanya Sridhar · Francesco Locatello 🔗 |
-
|
Diffusion-based Episodes Augmentation for Offline Multi-Agent Reinforcement Learning ( Poster ) > link | Jihwan Oh · Sungnyun Kim · Gahee Kim · SeongHwan Kim · Se-Young Yun 🔗 |
-
|
Analyzing GFlowNets: Stability, Expressiveness, and Assessment ( Poster ) > link | Tiago Silva · Eliezer da Silva · Rodrigo Alves · Luiz Carvalho · Amauri Souza · Samuel Kaski · Vikas Garg · Diego Mesquita 🔗 |
-
|
Towards Dynamic Feature Acquisition on Medical Time Series by Maximizing Conditional Mutual Information ( Poster ) > link | Fedor Sergeev · Paola Malsot · Gunnar Ratsch · Vincent Fortuin 🔗 |
-
|
Accelerating Best-of-N via Speculative Rejection ( Poster ) > link | Ruiqi Zhang · Momin Haider · Ming Yin · Jiahao Qiu · Mengdi Wang · Peter Bartlett · Andrea Zanette 🔗 |
-
|
Reverse Transition Kernel: A Flexible Framework to Accelerate Diffusion Inference ( Oral ) > link | Xunpeng Huang · Difan Zou · Hanze Dong · Yi Zhang · Yian Ma · Tong Zhang 🔗 |
-
|
Generative Fractional Diffusion Models ( Poster ) > link |
14 presentersGabriel Nobis · Maximilian Springenberg · Marco Aversa · Michael Detzel · Rembert Daems · Roderick Murray-Smith · Shinichi Nakajima · Sebastian Lapuschkin · Stefano Ermon · Tolga Birdal · Manfred Opper · Christoph Knochenhauer · Luis Oala · Wojciech Samek |
-
|
Improving Flow Matching for Posterior Inference with Physics-based Controls ( Poster ) > link | Benjamin Holzschuh · Nils Thuerey 🔗 |
-
|
Stochastic Concept Bottleneck Models ( Poster ) > link | Moritz Vandenhirtz · Sonia Laguna · Ričards Marcinkevičs · Julia Vogt 🔗 |
-
|
Exact Soft Analytical Side-Channel Attacks using Tractable Circuits ( Poster ) > link | Thomas Wedenig · Rishub Nagpal · Gaëtan Cassiers · Stefan Mangard · Robert Peharz 🔗 |
-
|
Amortized Active Causal Induction with Deep Reinforcement Learning ( Poster ) > link | Yashas Annadani · Panagiotis Tigas · Stefan Bauer · Adam Foster 🔗 |
-
|
scTree: Discovering Cellular Hierarchies in the Presence of Batch Effects in scRNA-seq Data ( Poster ) > link | Moritz Vandenhirtz · Florian Barkmann · Laura Manduchi · Valentina Boeva · Julia Vogt 🔗 |
-
|
Learning high-dimensional mixed models via amortized variational inference ( Poster ) > link | Priscilla Ong · Manuel Haussmann · Harri Lähdesmäki 🔗 |
-
|
Stabilizing the Training of Consistency Models with Score Guidance ( Poster ) > link | Jeongjun Lee · Jonggeon Park · Jongmin Yoon · Juho Lee 🔗 |
-
|
Diffusion Models with Group Equivariance ( Poster ) > link | Haoye Lu · Spencer Szabados · Yaoliang Yu 🔗 |
-
|
Disentangled Representation Learning through Geometry Preservation with the Gromov-Monge Gap ( Poster ) > link | Théo Uscidda · Luca Eyring · Karsten Roth · Fabian Theis · Zeynep Akata · Marco Cuturi 🔗 |
-
|
EVCL: Elastic Variational Continual Learning with Weight Consolidation ( Poster ) > link | Hunar Batra · Ronald Clark 🔗 |
-
|
Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks ( Poster ) > link | Bálint Mucsányi · Michael Kirchhof · Seong Joon Oh 🔗 |
-
|
Upper Error Bounds for Score-Based Inverse Problem Solving in Imaging ( Poster ) > link | Irina Dobrianski · Dominik Narnhofer · Thomas Pock 🔗 |
-
|
Conformal Prediction for Time Series with Transformer ( Poster ) > link | Junghwan Lee · Chen Xu · Yao Xie 🔗 |
-
|
Fine-Tuning with Uncertainty-Aware Priors Makes Vision and Language Foundation Models More Reliable ( Poster ) > link | Tim G. J. Rudner · Xiang Pan · Yucen Li · Ravid Shwartz-Ziv · Andrew Wilson 🔗 |
-
|
Bayesian Reward Models for LLM Alignment ( Poster ) > link | Adam Yang · Maxime Robeyns · Thomas Coste · zhengxiang shi · Jun Wang · Haitham Bou Ammar · Laurence Aitchison 🔗 |
-
|
Transferable Reinforcement Learning via Generalized Occupancy Models ( Poster ) > link | Chuning Zhu · Xinqi Wang · Tyler Han · Simon Du · Abhishek Gupta 🔗 |
-
|
On Conditional Sampling with Joint Flow Matching ( Poster ) > link | Amy Xiang Wang 🔗 |
-
|
Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling ( Oral ) > link | Yair Schiff · Chia Hsiang Kao · Aaron Gokaslan · Tri Dao · Albert Gu · Volodymyr Kuleshov 🔗 |
-
|
A Practical Diffusion Path for Sampling ( Poster ) > link | L'Emir Omar Chehab · Anna Korba 🔗 |
-
|
Neural Ratio Estimators Meet Distributional Shift and Mode Misspecification: A Cautionary Tale from Strong Gravitational Lensing ( Poster ) > link | Andreas Filipp · Yashar Hezaveh · Laurence Perreault-Levasseur 🔗 |
-
|
From Graph Diffusion to Graph Classification ( Poster ) > link | Jia Jun Cheng Xian · Seyed Mohammad Sadegh Mahdavi · Renjie Liao · Oliver Schulte 🔗 |
-
|
Generative Classifiers Avoid Shortcut Solutions ( Oral ) > link | Alexander Li · Ananya Kumar · Deepak Pathak 🔗 |