Workshop
Structured Probabilistic Inference and Generative Modeling
Dinghuai Zhang 路 Yuanqi Du 路 Guan-Horng Liu 路 Chenlin Meng 路 Ruiqi Gao 路 Max Welling 路 Yoshua Bengio
Lehar 3
Fri 26 Jul, midnight PDT
The workshop focuses on theory, methodology, and application of structured probabilistic inference and generative modeling, both of which are important topics in machine learning.Specifically, probabilistic inference addresses the problem of amortization,sampling, and integration of complex quantities from graphical models, while generative modeling captures the underlying probability distributions of a dataset. Apart from applications in computer vision, natural language processing, and speech recognition, probabilistic inference and generative modeling approaches have also been widely used in natural science domains, including physics, chemistry, molecular biology, and medicine. Beyond applications in these domains, the span of tasks of the methods have been expanding beyond probabilistic inference and generative model such as optimal control, decision making, sampling, optimization, etc.Despite the promising results, probabilistic methods face challenges when applied to highly structured data, which are ubiquitous in real-world settings, limiting the applications of such methods. This workshop aims to bring experts from diverse backgrounds and related domains together to discuss the applications and challenges of probabilistic methods. The workshop will emphasize challenges in encoding domain knowledge when learning representations, performing inference and generations. By bringing together experts from academia and industry, the workshop will provide a platform for researchers to share their latest results and ideas, fostering collaboration and discussion in the field of probabilistic methods.
Schedule
Fri 12:00 a.m. - 12:10 a.m.
|
Opening Remarks
SlidesLive Video |
馃敆 |
Fri 12:10 a.m. - 12:40 a.m.
|
Ben Poole (Google DeepMind)
(
Invited Talk
)
>
SlidesLive Video |
馃敆 |
Fri 12:40 a.m. - 1:10 a.m.
|
Yingzhen Li (Imperial College London)
(
Invited Talk
)
>
SlidesLive Video |
馃敆 |
Fri 1:10 a.m. - 2:00 a.m.
|
Contributed Talks
SlidesLive Video |
馃敆 |
Fri 2:00 a.m. - 2:30 a.m.
|
Molei Tao (Georgia Tech)
(
Invited Talk
)
>
SlidesLive Video |
馃敆 |
Fri 2:30 a.m. - 4:10 a.m.
|
Poster Session #1 & Lunch Break
|
馃敆 |
Fri 4:10 a.m. - 5:00 a.m.
|
Kirill Neklyudov (University of Montreal & Mila), Rianne van den Berg (Microsoft Research), Jos茅 Miguel Hern谩ndez-Lobato (University of Cambridge), Kyle Cranmer (University of Wisconsin-Madison), Max Welling (University of Amsterdam))
(
Panel Session
)
>
SlidesLive Video |
馃敆 |
Fri 5:00 a.m. - 5:30 a.m.
|
Ricky T. Q. Chen (FAIR, Meta)
(
Invited Talk
)
>
SlidesLive Video |
馃敆 |
Fri 5:30 a.m. - 5:50 a.m.
|
Maruan Al-Shedivat (Genesis Therapeutics)
(
Invited Talk
)
>
SlidesLive Video |
馃敆 |
Fri 5:50 a.m. - 6:10 a.m.
|
Contributed Talks
SlidesLive Video |
馃敆 |
Fri 6:10 a.m. - 7:10 a.m.
|
Poster Session #2 & Coffee Break
|
馃敆 |
Fri 7:10 a.m. - 7:40 a.m.
|
Charlotte Bunne (Genentech & EPFL)
(
Invited Talk
)
>
SlidesLive Video |
馃敆 |
Fri 7:40 a.m. - 8:00 a.m.
|
Awards, Takeaways, & Closing Remarks
SlidesLive Video |
馃敆 |
-
|
Improving GFlowNets for Text-to-Image Diffusion Alignment ( Poster ) > link | Dinghuai Zhang 路 Yizhe Zhang 路 Jiatao Gu 路 Ruixiang ZHANG 路 Joshua M Susskind 路 Navdeep Jaitly 路 Shuangfei Zhai 馃敆 |
-
|
Lifted Residual Score Estimation ( Poster ) > link | Tejas Jayashankar 路 Jongha (Jon) Ryu 路 Xiangxiang Xu 路 Gregory Wornell 馃敆 |
-
|
Zero-Shot Unsupervised and Text-Based Audio Editing Using DDPM Inversion ( Poster ) > link | Hila Manor 路 Tomer Michaeli 馃敆 |
-
|
Discrete Diffusion Posterior Sampling for Protein Design ( Poster ) > link | Mert Cemri 路 Ajil Jalal 路 Kannan Ramchandran 馃敆 |
-
|
SOLMformer - Incorporating Sequence and Observation Level Metadata for Categorical Time Series Modeling ( Poster ) > link | Yamini Ananth 路 Gregory Benton 路 Jingxing Fang 路 Jerry Cheung 路 Xu Chu 路 Cong Yu 馃敆 |
-
|
Improving Consistency Models with Generator-Induced Coupling ( Poster ) > link | Thibaut Issenhuth 路 Ludovic Dos Santos 路 Jean-Yves Franceschi 路 alain rakotomamonjy 馃敆 |
-
|
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models ( Oral ) > link | Hamidreza Kamkari 路 Brendan Ross 路 Rasa Hosseinzadeh 路 Jesse Cresswell 路 Gabriel Loaiza-Ganem 馃敆 |
-
|
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks ( Poster ) > link | Tristan Cinquin 路 Robert Bamler 馃敆 |
-
|
All Roads Lead to Rome? Exploring Representational Similarities Between Latent Spaces of Generative Image Models ( Poster ) > link | Charumathi Badrinath 路 Usha Bhalla 路 Alex Oesterling 路 Suraj Srinivas 路 Himabindu Lakkaraju 馃敆 |
-
|
Bayesian Disease Progression Modeling That Captures And Accounts For Health Disparities ( Poster ) > link | Erica Chiang 路 Ashley Beecy 路 Gabriel Sayer 路 Nir Uriel 路 Deborah Estrin 路 Nikhil Garg 路 Emma Pierson 馃敆 |
-
|
Conformalized Credal Set Predictors ( Poster ) > link | Alireza Javanmardi 路 David Stutz 路 Eyke H眉llermeier 馃敆 |
-
|
Investigating Generalization Behaviours of Generative Flow Networks ( Oral ) > link | Lazar Atanackovic 路 Emmanuel Bengio 馃敆 |
-
|
Accelerating statistical inferences in astrophysics with Neural Networks and Hamiltonian Monte Carlo ( Poster ) > link | Diego Gonzalez-Hernandez 路 Molly Wolfson 路 Joseph Hennawi 馃敆 |
-
|
Teaching dark matter simulations to speak the halo language ( Poster ) > link | Shivam Pandey 路 Francois Lanusse 路 Chirag Modi 路 Benjamin Wandelt 馃敆 |
-
|
DiMViS: Diffusion-based Multi-View Synthesis ( Poster ) > link | Giuseppe Di Giacomo 路 Giulio Franzese 路 Tania Cerquitelli 路 Carla Fabiana Chiasserini 路 Pietro Michiardi 馃敆 |
-
|
Reliability Thresholds for the Bethe Free Energy Approximation ( Poster ) > link | Harald Leisenberger 路 Christian Knoll 路 Franz Pernkopf 馃敆 |
-
|
Policy Gradients for Optimal Parallel Tempering MCMC ( Poster ) > link | Daniel Zhao 路 Natesh Pillai 馃敆 |
-
|
Bidirectional Consistency Models ( Poster ) > link | Liangchen Li 路 Jiajun He 馃敆 |
-
|
Learnability of Parameter-Bounded Bayes Nets ( Poster ) > link | Arnab Bhattacharyya 路 Davin Choo 路 Sutanu Gayen 路 Dimitrios Myrisiotis 馃敆 |
-
|
Transformer Neural Autoregressive Flows ( Poster ) > link | Massimiliano Patacchiola 路 Aliaksandra Shysheya 路 Katja Hofmann 路 Richard E Turner 馃敆 |
-
|
Continual Deep Learning on the Edge via Stochastic Local Competition among Subnetworks ( Poster ) > link | Theodoros Christophides 路 Kyriakos Tolias 路 Sotirios Chatzis 馃敆 |
-
|
Rule-Enhanced Graph Learning ( Poster ) > link | Ali 路 Abdolreza Mirzaei 路 Majjid Farhadi 路 Parmis Naddaf 路 Kiarash Zahirnia 路 Mohammad Salameh 路 Kevin Cannons 路 Richard Mar 路 Mingyi Wu 路 Oliver Schulte 馃敆 |
-
|
Assessing the Viability of Generative Modeling in Simulated Astronomical Observations ( Poster ) > link | Patrick Janulewicz 路 Laurence Perreault-Levasseur 路 Tracy Webb 馃敆 |
-
|
Stein Variational Newton Neural Network Ensembles ( Poster ) > link | Klemens Fl枚ge 路 Muhammad Abdul Moeed 路 Vincent Fortuin 馃敆 |
-
|
Diffusion Domain Expansion: Learning to Coordinate Pre-Trained Diffusion Models ( Poster ) > link | Egor Lifar 路 Semyon Savkin 路 Timur Garipov 路 Shangyuan Tong 路 Tommi Jaakkola 馃敆 |
-
|
Doob's Lagrangian: A Sample-Efficient Variational Approach to Transition Path Sampling ( Poster ) > link | Yuanqi Du 路 Michael Plainer 路 Rob Brekelmans 路 Chenru Duan 路 Frank Noe 路 Carla Gomes 路 Alan Aspuru-Guzik 路 Kirill Neklyudov 馃敆 |
-
|
Collective Variable Free Transition Path Sampling with Generative Flow Network ( Poster ) > link | Kiyoung Seong 路 Seonghyun Park 路 SEONGHWAN KIM 路 Woo Youn Kim 路 Sungsoo Ahn 馃敆 |
-
|
QGFN: Controllable Greediness with Action Values ( Poster ) > link | Elaine Lau 路 Stephen Lu 路 Ling Pan 路 Doina Precup 路 Emmanuel Bengio 馃敆 |
-
|
Energy-Free Guidance of Geometric Diffusion Models for 3D Molecule Inverse Design ( Poster ) > link | Sanjay Nagaraj 路 Aksh Garg 路 Jiaqi Han 路 Minkai Xu 路 Stefano Ermon 馃敆 |
-
|
Modelling Latent Dynamical Systems with Recognition-Parametrised Models ( Poster ) > link | Samo Hromadka 路 Maneesh Sahani 馃敆 |
-
|
Informed Meta-Learning ( Poster ) > link | Katarzyna Kobalczyk 路 M van der Schaar 馃敆 |
-
|
Neurosymbolic Markov Models ( Oral ) > link | Lennert De Smet 路 Gabriele Venturato 路 Luc De Raedt 路 Giuseppe Marra 馃敆 |
-
|
In-Context Learning with Topological Information for LLM-Based Knowledge Graph Completion ( Poster ) > link | Udari Sehwag 路 Kassiani Papasotiriou 路 Jared Vann 路 Sumitra Ganesh 馃敆 |
-
|
Glauber Generative Model: Discrete Diffusion Models via Binary Classification ( Poster ) > link | Harshit Varma 路 Dheeraj Nagaraj 路 Karthikeyan Shanmugam 馃敆 |
-
|
ProxyTune: Hyperparameter tuning through iteratively refined proxies ( Poster ) > link | Agrin Hilmkil 路 Wenbo Gong 路 Nick Pawlowski 路 Cheng Zhang 馃敆 |
-
|
Fast yet Safe: Early-Exiting with Risk Control ( Poster ) > link | Metod Jazbec 路 Alexander Timans 路 Tin Had啪i Veljkovi膰 路 Johann Sakmann 路 Dan Zhang 路 Christian Andersson Naesseth 路 Eric Nalisnick 馃敆 |
-
|
Reliable Multivariate Deep Regression using Moment-Matching Prior Networks ( Poster ) > link | Qingyi Pan 路 Ruqi Zhang 馃敆 |
-
|
EigenVI: score-based variational inference with orthogonal function expansions ( Poster ) > link | Diana Cai 路 Chirag Modi 路 Charles Margossian 路 Robert Gower 路 David Blei 路 Lawrence Saul 馃敆 |
-
|
GLAD: Improving Latent Graph Generative Modeling with Simple Quantization ( Poster ) > link | Van Khoa NGUYEN 路 Yoann Boget 路 Frantzeska Lavda 路 Alexandros Kalousis 馃敆 |
-
|
Gradient-based Discrete Sampling with Automatic Cyclical Scheduling ( Poster ) > link | Patrick Pynadath 路 Riddhiman Bhattacharya 路 Arun Narayanan Hariharan 路 Ruqi Zhang 馃敆 |
-
|
Test-Time Adaptation with State-Space Models ( Poster ) > link | Mona Schirmer 路 Dan Zhang 路 Eric Nalisnick 馃敆 |
-
|
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning ( Poster ) > link | Adam Yang 路 Laurence Aitchison 路 Henry Moss 馃敆 |
-
|
Cross-modality Matching and Prediction of Perturbation Responses with Labeled Gromov-Wasserstein Optimal Transport ( Poster ) > link | Jayoung Ryu 路 Romain Lopez 路 Charlotte Bunne 路 Luca Pinello 路 Aviv Regev 馃敆 |
-
|
RNA-FrameFlow for de novo 3D RNA Backbone Design ( Oral ) > link | Rishabh Anand 路 Chaitanya Joshi 路 Alex Morehead 路 Arian Jamasb 路 Charles Harris 路 Simon Mathis 路 Kieran Didi 路 Bryan Hooi 路 Pietro Li贸 馃敆 |
-
|
Variance reduction of diffusion model's gradients with Taylor approximation-based control variate ( Poster ) > link | Paul Jeha 路 Will Grathwohl 路 Michael Andersen 路 Carl Henrik Ek 路 Jes Frellsen 馃敆 |
-
|
von Mises Quasi-Processes for Bayesian Circular Regression ( Poster ) > link | Yarden Cohen 路 Alexandre Wu Navarro 路 Jes Frellsen 路 Richard E Turner 路 Raziel Riemer 路 Ari Pakman 馃敆 |
-
|
Hurdle Conjugate Priors for Scalable Tucker Decomposition ( Poster ) > link | John Hood 路 Aaron Schein 馃敆 |
-
|
Equivariant Flow Matching for Molecular Conformer Generation ( Poster ) > link | Majdi Hassan 路 Nikhil Shenoy 路 Jungyoon Lee 路 Hannes St盲rk 路 Stephan Thaler 路 Dominique Beaini 馃敆 |
-
|
Many-to-many Image Generation with Auto-regressive Diffusion Models ( Poster ) > link | Ying Shen 路 Yizhe Zhang 路 Shuangfei Zhai 路 Lifu Huang 路 Joshua M Susskind 路 Jiatao Gu 馃敆 |
-
|
Aligned Diffusion Models for Retrosynthesis ( Poster ) > link | Najwa Laabid 路 Severi Rissanen 路 Markus Heinonen 路 Arno Solin 路 Vikas Garg 馃敆 |
-
|
Scaling the Vocabulary of Non-autoregressive Models for Efficient Generative Retrieval ( Poster ) > link | Ravisri Valluri 路 Akash Kumar Mohankumar 路 Kushal Dave 路 Amit Singh 路 Jian Jiao 路 Manik Varma 路 Gaurav Sinha 馃敆 |
-
|
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders ( Poster ) > link | Christian Toth 路 Christian Knoll 路 Franz Pernkopf 路 Robert Peharz 馃敆 |
-
|
Regression-Stratified Sampling for Optimized Algorithm Selection in Time-Constrained Tabular AutoML ( Poster ) > link | Mehdi Bahrami 路 So Hasegawa 路 Lei Liu 路 Wei-Peng Chen 馃敆 |
-
|
Structured Generations: Using Hierarchical Clusters to guide Diffusion Models ( Poster ) > link | Jorge da Silva Gon莽alves 路 Laura Manduchi 路 Moritz Vandenhirtz 路 Julia Vogt 馃敆 |
-
|
Non-Parameteric Conformal Distributionally Robust Optimization ( Poster ) > link | Yash Patel 路 Guyang Cao 路 Ambuj Tewari 馃敆 |
-
|
The GAN is dead; long live the GAN! A Modern Baseline GAN ( Poster ) > link | Yiwen Huang 路 Aaron Gokaslan 路 Volodymyr Kuleshov 路 James Tompkin 馃敆 |
-
|
Regularized Distribution Matching Distillation for One-step Unpaired Image-to-Image Translation ( Poster ) > link | Denis Rakitin 路 Ivan Shchekotov 路 Dmitry Vetrov 馃敆 |
-
|
Generative Autoencoding of Dropout Patterns ( Poster ) > link | Shunta Maeda 馃敆 |
-
|
Recursive Introspection: Teaching LLM Agents How to Self-Improve ( Poster ) > link | Yuxiao Qu 路 Tianjun Zhang 路 Naman Garg 路 Aviral Kumar 馃敆 |
-
|
Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices ( Poster ) > link | Nathaniel Cohen 路 Vladimir Kulikov 路 Matan Kleiner 路 Inbar Huberman-Spiegelglas 路 Tomer Michaeli 馃敆 |
-
|
Transformers with Stochastic Competition for Tabular Data Modelling ( Poster ) > link | Andreas Voskou 路 Charalambos Christoforou 路 Sotirios Chatzis 馃敆 |
-
|
Learning Graph Neural Networks from Biased Outcome Data ( Poster ) > link | Sidhika Balachandar 路 Shuvom Sadhuka 路 Bonnie Berger 路 Emma Pierson 路 Nikhil Garg 馃敆 |
-
|
Pretrained deep models outperform GBDTs in Learning-To-Rank under label scarcity ( Poster ) > link | Charlie Hou 路 Kiran Thekumparampil 路 Michael Shavlovsky 路 Giulia Fanti 路 Sujay Sanghavi 馃敆 |
-
|
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors ( Poster ) > link | Wasu Top Piriyakulkij 路 Yingheng Wang 路 Volodymyr Kuleshov 馃敆 |
-
|
CADO: Cost-Aware Diffusion Solvers for Combinatorial Optimization through RL fine-tuning ( Poster ) > link | Deunsol Yoon 路 Hyungseok Song 路 Kanghoon Lee 路 Woohyung Lim 馃敆 |
-
|
On the Expressive Power of Tree-Structured Probabilistic Circuits ( Poster ) > link | Lang Yin 路 Han Zhao 馃敆 |
-
|
Variational Inference with Censored Gaussian Process Regressors ( Poster ) > link | Andrea Karlova 路 Rishabh Kabra 路 Daniel Augusto de Souza 路 Brooks Paige 馃敆 |
-
|
Amortized Probabilistic Detection of Communities in Graphs ( Poster ) > link | Yueqi Wang 路 Yoonho Lee 路 Pallab Basu 路 Juho Lee 路 Yee-Whye Teh 路 Department of Statistics Liam Paninski 路 Ari Pakman 馃敆 |
-
|
Quantifying Aleatoric and Epistemic Uncertainty: A Credal Approach ( Poster ) > link | Paul Hofman 路 Yusuf Sale 路 Eyke H眉llermeier 馃敆 |
-
|
Predictive Uncertainties Based on Proper Scoring Rules ( Poster ) > link | Nikita Kotelevskii 路 Maxim Panov 馃敆 |
-
|
Color Style Transfer with Modulated Flows ( Poster ) > link | Maria Larchenko 路 Alexander Lobashev 路 Dmitry Guskov 路 Vladimir Palyulin 馃敆 |
-
|
Conditional Common Entropy for Instrumental Variable Testing and Partial Identification ( Poster ) > link | Ziwei Jiang 路 Murat Kocaoglu 馃敆 |
-
|
Improving GFlowNets with Monte Carlo Tree Search ( Poster ) > link | Nikita Morozov 路 Daniil Tiapkin 路 Sergey Samsonov 路 Alexey Naumov 路 Dmitry Vetrov 馃敆 |
-
|
Identifying latent state transition in non-linear dynamical systems ( Poster ) > link | 脟a臒lar H谋zl谋 路 Cagatay Yildiz 路 Matthias Bethge 路 ST John 路 Pekka Marttinen 馃敆 |
-
|
Cell Morphology-Guided Small Molecule Generation with GFlowNets ( Poster ) > link | Stephen Lu 路 Ziqing Lu 路 Ehsan Hajiramezanali 路 Tommaso Biancalani 路 Yoshua Bengio 路 Gabriele Scalia 路 Micha艂 Koziarski 馃敆 |
-
|
Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand ( Poster ) > link | Md Musfiqur Rahman 路 Matt Jordan 路 Murat Kocaoglu 馃敆 |
-
|
EBBS: An Ensemble with Bi-Level Beam Search for Zero-Shot Machine Translation ( Poster ) > link | Yuqiao Wen 路 Behzad Shayegh 路 Chenyang Huang 路 Yanshuai Cao 路 Lili Mou 馃敆 |
-
|
Simple and Effective Masked Diffusion Language Models ( Poster ) > link | Subham Sekhar Sahoo 路 Marianne Arriola 路 Aaron Gokaslan 路 Edgar Marroquin 路 Alexander Rush 路 Yair Schiff 路 Justin Chiu 路 Volodymyr Kuleshov 馃敆 |
-
|
Inferring Physiological Properties of Motor Neurons using Neural Posterior Estimation ( Poster ) > link | Pranav Mamidanna 路 Dario Farina 馃敆 |
-
|
Conditional Flow Matching for Time Series Modelling ( Poster ) > link | Ella Tamir 路 Najwa Laabid 路 Markus Heinonen 路 Vikas Garg 路 Arno Solin 馃敆 |
-
|
Accelerating NCE Convergence with Adaptive Normalizing Constant Computation ( Poster ) > link | Anish Sevekari 路 Rishal Aggarwal 路 Maria Chikina 路 David Koes 馃敆 |
-
|
Generative Design of Decision Tree Policies for Reinforcement Learning ( Poster ) > link | Jacob Pettit 路 Chak Shing Lee 路 Jiachen Yang 路 Alex Ho 路 Daniel Faissol 路 Brenden Petersen 路 Mikel Landajuela 馃敆 |
-
|
DiffusionBlend: Learning 3D Image Prior through Position-aware Diffusion Score Blending for 3D Computed Tomography Reconstruction ( Poster ) > link | Bowen Song 路 Jason Hu 路 Zhaoxu Luo 路 Jeffrey Fessler 路 Liyue Shen 馃敆 |
-
|
Learning Latent Graph Structures and their Uncertainty ( Poster ) > link | Alessandro Manenti 路 Daniele Zambon 路 Cesare Alippi 馃敆 |
-
|
Function Space Diversity for Uncertainty Prediction via Repulsive Last-Layer Ensembles ( Poster ) > link | Sophie Steger 路 Christian Knoll 路 Bernhard Klein 路 Holger Fr枚ning 路 Franz Pernkopf 馃敆 |
-
|
Incorporating Stability Into Flow Matching ( Poster ) > link | Christopher Iliffe Sprague 路 Arne Elofsson 路 Hossein Azizpour 馃敆 |
-
|
Tuning-Free Alignment of Diffusion Models with Direct Noise Optimization ( Poster ) > link | Zhiwei Tang 路 Jiangweizhi Peng 路 Jiasheng Tang 路 Mingyi Hong 路 Fan Wang 路 Tsung-Hui Chang 馃敆 |
-
|
E-ProTran: Efficient Probabilistic Transformers for Forecasting ( Poster ) > link | Batuhan Koyuncu 路 Tim N Bauerschmidt 路 Isabel Valera 馃敆 |
-
|
Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling ( Poster ) > link | Jiatao Gu 路 Ying Shen 路 Shuangfei Zhai 路 Yizhe Zhang 路 Navdeep Jaitly 路 Joshua M Susskind 馃敆 |
-
|
SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models ( Poster ) > link | Bowen Song 路 Zhaoxu Luo 路 Liyue Shen 馃敆 |
-
|
Demystifying amortized causal discovery with transformers ( Poster ) > link | Francesco Montagna 路 Max Cairney-Leeming 路 Dhanya Sridhar 路 Francesco Locatello 馃敆 |
-
|
Diffusion-based Episodes Augmentation for Offline Multi-Agent Reinforcement Learning ( Poster ) > link | Jihwan Oh 路 Sungnyun Kim 路 Gahee Kim 路 SeongHwan Kim 路 Se-Young Yun 馃敆 |
-
|
Analyzing GFlowNets: Stability, Expressiveness, and Assessment ( Poster ) > link | Tiago Silva 路 Eliezer da Silva 路 Rodrigo Alves 路 Luiz Carvalho 路 Amauri Souza 路 Samuel Kaski 路 Vikas Garg 路 Diego Mesquita 馃敆 |
-
|
Towards Dynamic Feature Acquisition on Medical Time Series by Maximizing Conditional Mutual Information ( Poster ) > link | Fedor Sergeev 路 Paola Malsot 路 Gunnar Ratsch 路 Vincent Fortuin 馃敆 |
-
|
Accelerating Best-of-N via Speculative Rejection ( Poster ) > link | Ruiqi Zhang 路 Momin Haider 路 Ming Yin 路 Jiahao Qiu 路 Mengdi Wang 路 Peter Bartlett 路 Andrea Zanette 馃敆 |
-
|
Reverse Transition Kernel: A Flexible Framework to Accelerate Diffusion Inference ( Oral ) > link | Xunpeng Huang 路 Difan Zou 路 Hanze Dong 路 Yi Zhang 路 Yian Ma 路 Tong Zhang 馃敆 |
-
|
Generative Fractional Diffusion Models ( Poster ) > link |
14 presentersGabriel Nobis 路 Maximilian Springenberg 路 Marco Aversa 路 Michael Detzel 路 Rembert Daems 路 Roderick Murray-Smith 路 Shinichi Nakajima 路 Sebastian Lapuschkin 路 Stefano Ermon 路 Tolga Birdal 路 Manfred Opper 路 Christoph Knochenhauer 路 Luis Oala 路 Wojciech Samek |
-
|
Improving Flow Matching for Posterior Inference with Physics-based Controls ( Poster ) > link | Benjamin Holzschuh 路 Nils Thuerey 馃敆 |
-
|
Stochastic Concept Bottleneck Models ( Poster ) > link | Moritz Vandenhirtz 路 Sonia Laguna 路 Ri膷ards Marcinkevi膷s 路 Julia Vogt 馃敆 |
-
|
Exact Soft Analytical Side-Channel Attacks using Tractable Circuits ( Poster ) > link | Thomas Wedenig 路 Rishub Nagpal 路 Ga毛tan Cassiers 路 Stefan Mangard 路 Robert Peharz 馃敆 |
-
|
Amortized Active Causal Induction with Deep Reinforcement Learning ( Poster ) > link | Yashas Annadani 路 Panagiotis Tigas 路 Stefan Bauer 路 Adam Foster 馃敆 |
-
|
scTree: Discovering Cellular Hierarchies in the Presence of Batch Effects in scRNA-seq Data ( Poster ) > link | Moritz Vandenhirtz 路 Florian Barkmann 路 Laura Manduchi 路 Valentina Boeva 路 Julia Vogt 馃敆 |
-
|
Learning high-dimensional mixed models via amortized variational inference ( Poster ) > link | Priscilla Ong 路 Manuel Haussmann 路 Harri L盲hdesm盲ki 馃敆 |
-
|
Stabilizing the Training of Consistency Models with Score Guidance ( Poster ) > link | Jeongjun Lee 路 Jonggeon Park 路 Jongmin Yoon 路 Juho Lee 馃敆 |
-
|
Diffusion Models with Group Equivariance ( Poster ) > link | Haoye Lu 路 Spencer Szabados 路 Yaoliang Yu 馃敆 |
-
|
Disentangled Representation Learning through Geometry Preservation with the Gromov-Monge Gap ( Poster ) > link | Th茅o Uscidda 路 Luca Eyring 路 Karsten Roth 路 Fabian Theis 路 Zeynep Akata 路 Marco Cuturi 馃敆 |
-
|
EVCL: Elastic Variational Continual Learning with Weight Consolidation ( Poster ) > link | Hunar Batra 路 Ronald Clark 馃敆 |
-
|
Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks ( Poster ) > link | B谩lint Mucs谩nyi 路 Michael Kirchhof 路 Seong Joon Oh 馃敆 |
-
|
Upper Error Bounds for Score-Based Inverse Problem Solving in Imaging ( Poster ) > link | Irina Dobrianski 路 Dominik Narnhofer 路 Thomas Pock 馃敆 |
-
|
Conformal Prediction for Time Series with Transformer ( Poster ) > link | Junghwan Lee 路 Chen Xu 路 Yao Xie 馃敆 |
-
|
Fine-Tuning with Uncertainty-Aware Priors Makes Vision and Language Foundation Models More Reliable ( Poster ) > link | Tim G. J. Rudner 路 Xiang Pan 路 Yucen Li 路 Ravid Shwartz-Ziv 路 Andrew Wilson 馃敆 |
-
|
Bayesian Reward Models for LLM Alignment ( Poster ) > link | Adam Yang 路 Maxime Robeyns 路 Thomas Coste 路 zhengxiang shi 路 Jun Wang 路 Haitham Bou Ammar 路 Laurence Aitchison 馃敆 |
-
|
Transferable Reinforcement Learning via Generalized Occupancy Models ( Poster ) > link | Chuning Zhu 路 Xinqi Wang 路 Tyler Han 路 Simon Du 路 Abhishek Gupta 馃敆 |
-
|
On Conditional Sampling with Joint Flow Matching ( Poster ) > link | Amy Xiang Wang 馃敆 |
-
|
Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling ( Oral ) > link | Yair Schiff 路 Chia Hsiang Kao 路 Aaron Gokaslan 路 Tri Dao 路 Albert Gu 路 Volodymyr Kuleshov 馃敆 |
-
|
A Practical Diffusion Path for Sampling ( Poster ) > link | L'Emir Omar Chehab 路 Anna Korba 馃敆 |
-
|
Neural Ratio Estimators Meet Distributional Shift and Mode Misspecification: A Cautionary Tale from Strong Gravitational Lensing ( Poster ) > link | Andreas Filipp 路 Yashar Hezaveh 路 Laurence Perreault-Levasseur 馃敆 |
-
|
From Graph Diffusion to Graph Classification ( Poster ) > link | Jia Jun Cheng Xian 路 Seyed Mohammad Sadegh Mahdavi 路 Renjie Liao 路 Oliver Schulte 馃敆 |
-
|
Generative Classifiers Avoid Shortcut Solutions ( Oral ) > link | Alexander Li 路 Ananya Kumar 路 Deepak Pathak 馃敆 |