Workshop
|
|
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin · Robert Bamler
|
|
Poster
|
Tue 2:30
|
Tuning-free Estimation and Inference of Cumulative Distribution Function under Local Differential Privacy
Yi Liu · Qirui Hu · Linglong Kong
|
|
Poster
|
Wed 4:30
|
State-Free Inference of State-Space Models: The *Transfer Function* Approach
Rom N. Parnichkun · Stefano Massaroli · Alessandro Moro · Jimmy Smith · Ramin Hasani · Mathias Lechner · Qi An · Christopher Re · Hajime Asama · Stefano Ermon · Taiji Suzuki · Michael Poli · Atsushi Yamashita
|
|
Workshop
|
|
EigenVI: score-based variational inference with orthogonal function expansions
Diana Cai · Chirag Modi · Charles Margossian · Robert Gower · David Blei · Lawrence Saul
|
|
Workshop
|
|
Function Space Diversity for Uncertainty Prediction via Repulsive Last-Layer Ensembles
Sophie Steger · Christian Knoll · Bernhard Klein · Holger Fröning · Franz Pernkopf
|
|
Workshop
|
|
State Space Models are Comparable to Transformers in Estimating Functions with Dynamic Smoothness
Naoki Nishikawa · Taiji Suzuki
|
|
Poster
|
Tue 2:30
|
Learning the Target Network in Function Space
Kavosh Asadi · Yao Liu · Shoham Sabach · Ming Yin · Rasool Fakoor
|
|
Poster
|
Thu 4:30
|
Position: Optimization in SciML Should Employ the Function Space Geometry
Johannes Müller · Marius Zeinhofer
|
|
Workshop
|
|
Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg · Tycho van der Ouderaa · Mark van der Wilk · Yarin Gal
|
|
Poster
|
Tue 2:30
|
A New Computationally Efficient Algorithm to solve Feature Selection for Functional Data Classification in High-dimensional Spaces
Tobia Boschi · FRANCESCA BONIN · Rodrigo Ordonez-Hurtado · Alessandra Pascale · Jonathan Epperlein
|
|