Workshop
|
Sat 1:20
|
Contributed: Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg
|
|
Poster
|
Wed 2:30
|
VITS : Variational Inference Thompson Sampling for contextual bandits
Pierre Clavier · Tom Huix · Alain Oliviero Durmus
|
|
Workshop
|
|
Learning Optimal Filters Using Variational Inference
Enoch Luk · Eviatar Bach · Ricardo Baptista · Andrew Stuart
|
|
Workshop
|
Fri 4:00
|
Learning Optimal Filters Using Variational Inference
Enoch Luk · Eviatar Bach · Ricardo Baptista · Andrew Stuart
|
|
Poster
|
Tue 2:30
|
Logistic Variational Bayes Revisited
Michael Komodromos · Marina Evangelou · Sarah Filippi
|
|
Poster
|
Thu 2:30
|
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu · Jacob Gardner
|
|
Workshop
|
|
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij · Yingheng Wang · Volodymyr Kuleshov
|
|
Workshop
|
|
Variational Inference with Censored Gaussian Process Regressors
Andrea Karlova · Rishabh Kabra · Daniel Augusto de Souza · Brooks Paige
|
|
Poster
|
Wed 4:30
|
Reparameterized Importance Sampling for Robust Variational Bayesian Neural Networks
Yunfei Long · Zilin Tian · Liguo Zhang · Huosheng Xu
|
|
Workshop
|
|
Reliability Thresholds for the Bethe Free Energy Approximation
Harald Leisenberger · Christian Knoll · Franz Pernkopf
|
|
Poster
|
Thu 4:30
|
Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians
Tom Huix · Anna Korba · Alain Oliviero Durmus · Eric Moulines
|
|
Oral
|
Wed 1:45
|
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
JIAN XU · Delu Zeng · John Paisley
|
|