Workshop
|
|
Gaussian Process-Based Representation Learning via Timeseries Symmetries
Petar Bevanda · Max Beier · Armin Lederer · Alexandre Capone · Stefan Sosnowski · Sandra Hirche
|
|
Workshop
|
|
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin · Robert Bamler
|
|
Poster
|
Wed 4:30
|
Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes
Yingyi Chen · Qinghua Tao · Francesco Tonin · Johan Suykens
|
|
Workshop
|
|
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth · Christian Knoll · Franz Pernkopf · Robert Peharz
|
|
Poster
|
Wed 2:30
|
Amortized Variational Deep Kernel Learning
Alan Matias · César Lincoln Mattos · Joao Paulo Gomes · Diego Mesquita
|
|
Workshop
|
|
Heterogeneous Federated Zeroth-Order Optimization using Gradient Surrogates
Yao Shu · Xiaoqiang Lin · Zhongxiang Dai · Bryan Kian Hsiang Low
|
|
Poster
|
Tue 2:30
|
Multi-Region Markovian Gaussian Process: An Efficient Method to Discover Directional Communications Across Multiple Brain Regions
Weihan Li · Chengrui Li · Yule Wang · Anqi Wu
|
|
Poster
|
Wed 2:30
|
Preventing Model Collapse in Gaussian Process Latent Variable Models
Ying Li · Zhidi Lin · Feng Yin · Michael Minyi Zhang
|
|
Workshop
|
|
Approximate natural gradient in Gaussian processes with non-log-concave likelihoods
Marcelo Hartmann
|
|
Workshop
|
|
Learning high-dimensional mixed models via amortized variational inference
Priscilla Ong · Manuel Haussmann · Harri Lähdesmäki
|
|
Poster
|
Wed 2:30
|
Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic
Nicolas Alder · Ralf Herbrich
|
|
Poster
|
Tue 4:30
|
Bringing Motion Taxonomies to Continuous Domains via GPLVM on Hyperbolic manifolds
Noémie Jaquier · Leonel Rozo · Miguel González-Duque · Slava Borovitskiy · Tamim Asfour
|
|