Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

25 Results

<<   <   Page 2 of 3   >   >>
Workshop
Gaussian Process-Based Representation Learning via Timeseries Symmetries
Petar Bevanda · Max Beier · Armin Lederer · Alexandre Capone · Stefan Sosnowski · Sandra Hirche
Workshop
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin · Robert Bamler
Poster
Wed 4:30 Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes
Yingyi Chen · Qinghua Tao · Francesco Tonin · Johan Suykens
Workshop
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth · Christian Knoll · Franz Pernkopf · Robert Peharz
Poster
Wed 2:30 Amortized Variational Deep Kernel Learning
Alan Matias · César Lincoln Mattos · Joao Paulo Gomes · Diego Mesquita
Workshop
Heterogeneous Federated Zeroth-Order Optimization using Gradient Surrogates
Yao Shu · Xiaoqiang Lin · Zhongxiang Dai · Bryan Kian Hsiang Low
Poster
Tue 2:30 Multi-Region Markovian Gaussian Process: An Efficient Method to Discover Directional Communications Across Multiple Brain Regions
Weihan Li · Chengrui Li · Yule Wang · Anqi Wu
Poster
Wed 2:30 Preventing Model Collapse in Gaussian Process Latent Variable Models
Ying Li · Zhidi Lin · Feng Yin · Michael Minyi Zhang
Workshop
Approximate natural gradient in Gaussian processes with non-log-concave likelihoods
Marcelo Hartmann
Workshop
Learning high-dimensional mixed models via amortized variational inference
Priscilla Ong · Manuel Haussmann · Harri Lähdesmäki
Poster
Wed 2:30 Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic
Nicolas Alder · Ralf Herbrich
Poster
Tue 4:30 Bringing Motion Taxonomies to Continuous Domains via GPLVM on Hyperbolic manifolds
Noémie Jaquier · Leonel Rozo · Miguel González-Duque · Slava Borovitskiy · Tamim Asfour