Workshop
|
Fri 8:00
|
Regularized Best-of-N Sampling to Mitigate Reward Hacking for Language Model Alignment
Yuu Jinnai · Tetsuro Morimura · Kaito Ariu · Kenshi Abe
|
|
Workshop
|
|
Collective Variable Free Transition Path Sampling with Generative Flow Network
Kiyoung Seong · Seonghyun Park · SEONGHWAN KIM · Woo Youn Kim · Sungsoo Ahn
|
|
Workshop
|
|
Distributional Monte-Carlo Planning with Thompson Sampling in Stochastic Environments
DAM Tuan · Brahim Driss · Odalric-Ambrym Maillard
|
|
Workshop
|
|
Revisiting Score Function Estimators for k-Subset Sampling
Klas Wijk · Ricardo Vinuesa · Hossein Azizpour
|
|
Workshop
|
Sat 1:10
|
Contributed: Adaptive Sampling for Continuous Group Equivariant Neural Networks
Berfin Inal
|
|
Poster
|
Tue 2:30
|
Effects of Exponential Gaussian Distribution on (Double Sampling) Randomized Smoothing
Youwei Shu · Xi Xiao · Derui Wang · Yuxin Cao · Siji Chen · Minhui Xue · Linyi Li · Bo Li
|
|
Workshop
|
|
Discrete Diffusion Posterior Sampling for Protein Design
Mert Cemri · Ajil Jalal · Kannan Ramchandran
|
|
Poster
|
Wed 4:30
|
Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation
Kartik Sharma · Srijan Kumar · Rakshit Trivedi
|
|
Poster
|
Thu 4:30
|
Sample as you Infer: Predictive Coding with Langevin Dynamics
Umais Zahid · Qinghai Guo · Zafeirios Fountas
|
|
Poster
|
Thu 4:30
|
A Unified Framework for Learning with Nonlinear Model Classes from Arbitrary Linear Samples
Ben Adcock · Juan Cardenas · Nick Dexter
|
|
Poster
|
Thu 4:30
|
Practical Hamiltonian Monte Carlo on Riemannian Manifolds via Relativity Theory
Kai Xu · Hong Ge
|
|
Poster
|
Tue 2:30
|
Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent
Yingru Li · Jiawei Xu · Lei Han · Zhi-Quan Luo
|
|