Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

40 Results

<<   <   Page 1 of 4   >   >>
Workshop
Fri 17:25 Ce Zhang: Optimizing Communications and Data for Distributed and Decentralized Learning
Workshop
Proximal Compositional Optimization for Distributionally Robust Learning
Poster
Thu 13:30 On Distribution Dependent Sub-Logarithmic Query Time of Learned Indexing
Sepanta Zeighami · Cyrus Shahabi
Poster
Thu 13:30 Learning useful representations for shifting tasks and distributions
Jianyu Zhang · Leon Bottou
Workshop
Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift
Saurabh Garg · Amrith Setlur · Zachary Lipton · Sivaraman Balakrishnan · Virginia Smith · Aditi Raghunathan
Poster
Thu 13:30 DIFF2: Differential Private Optimization via Gradient Differences for Nonconvex Distributed Learning
Tomoya Murata · Taiji Suzuki
Poster
Thu 13:30 Out-of-Distribution Generalization of Federated Learning via Implicit Invariant Relationships
Yaming Guo · Kai Guo · Xiaofeng Cao · Tieru Wu · Yi Chang
Workshop
Towards Understanding Feature Learning in Out-of-Distribution Generalization
Yongqiang Chen · Wei Huang · Kaiwen Zhou · Yatao Bian · Bo Han · James Cheng
Poster
Tue 14:00 Learning Distributions over Quantum Measurement Outcomes
Weiyuan Gong · Scott Aaronson
Workshop
Robust Deep Learning via Layerwise Tilted Exponentials
Poster
Thu 16:30 Learning Functional Distributions with Private Labels
Changlong Wu · Yifan Wang · Ananth Grama · Wojciech Szpankowski
Poster
Thu 13:30 Statistical Learning under Heterogenous Distribution Shift
Max Simchowitz · Anurag Ajay · Pulkit Agrawal · Akshay Krishnamurthy