Workshop
The Second Workshop on Spurious Correlations, Invariance and Stability
Yoav Wald · Claudia Shi · Aahlad Puli · Amir Feder · Limor Gultchin · Mark Goldstein · Maggie Makar · Victor Veitch · Uri Shalit
Meeting Room 316 AB
Sat 29 Jul, 11:50 a.m. PDT
As machine learning models are introduced into every aspect of our lives, and potential benefits become abundant, so do possible catastrophic failures. One of the most common failure scenarios when deploying machine learning models in the wild, which could possibly lead to dire consequences in extreme cases, is the reliance of models on apparently unnatural or irrelevant features.
The issue comes up in a variety of applications: from the reliance of detection models for X-rays on scanner types and marks made by technicians in the hospital, through visual question answering models being sensitive to linguistic variations in the questions, the list of examples for such undesirable behaviors keeps growing.In examples like these, the undesirable behavior stems from the model exploiting a spurious correlation.
Following last year's workshop on Spurious Correlations, Invariance and Stability (SCIS), it is apparent that work on spurious correlations is a long-term effort that spans communities such as fairness, causality-inspired ML, and domains such as NLP, healthcare and many others. Hence we hope that this year's workshop, the second edition of SCIS, will help facilitate this long term effort across communities. The workshop will feature talks by top experts doing methodological work on dealing with spurious correlations, and an extended poster session to allow extensive discussion on work submitted to the workshop.
Schedule
Sat 11:50 a.m. - 12:00 p.m.
|
Opening Remarks
(
Opening Remarks
)
>
SlidesLive Video |
🔗 |
Sat 12:00 p.m. - 12:45 p.m.
|
Distribution Shifts in Generalist and Causal Models
(
Talk
)
>
SlidesLive Video |
Francesco Locatello 🔗 |
Sat 12:45 p.m. - 1:15 p.m.
|
Paper Spotlights
(
Spotlight
)
>
SlidesLive Video |
Andrew Ilyas · Alizée Pace · Ji Won Park · Adam Breitholtz · Nari Johnson 🔗 |
Sat 1:15 p.m. - 1:30 p.m.
|
Break
|
🔗 |
Sat 1:30 p.m. - 2:15 p.m.
|
On learning domain general predictors
(
Talk
)
>
SlidesLive Video |
Sanmi Koyejo 🔗 |
Sat 2:15 p.m. - 3:00 p.m.
|
Using Causality to Improve Safety Throughout the AI Lifecycle
(
Talk
)
>
SlidesLive Video |
Suchi Saria · Adarsh Subbaswamy 🔗 |
Sat 3:00 p.m. - 4:00 p.m.
|
Lunch Break
|
🔗 |
Sat 4:00 p.m. - 4:45 p.m.
|
A data-centric view on reliable generalization: From ImageNet to LAION-5B
(
Talk
)
>
SlidesLive Video |
Ludwig Schmidt 🔗 |
Sat 4:45 p.m. - 5:30 p.m.
|
Causal vs Causality-inspired representation learning
(
Talk
)
>
SlidesLive Video |
Sara Magliacane 🔗 |
Sat 5:30 p.m. - 6:30 p.m.
|
Poster Session 1 (in-person only)
(
Poster Session
)
>
|
🔗 |
Sat 6:30 p.m. - 7:15 p.m.
|
SCIS 2023 Panel, The Future of Generalization: Scale, Safety and Beyond
(
Panel Discussion
)
>
SlidesLive Video |
Maggie Makar · Samuel Bowman · Zachary Lipton · Adam Gleave 🔗 |
Sat 7:15 p.m. - 8:00 p.m.
|
Causal Conversation + Poster Session 2
(
Poster Session
)
>
|
🔗 |
-
|
Fairness-Preserving Regularizer: Balancing Core and Spurious Features ( Poster ) > link | Jiawei Feng · Ancong Wu · YuHan Yao · Wei-Shi Zheng 🔗 |
-
|
Identifying and Disentangling Spurious Features in Pretrained Image Representations ( Poster ) > link | Rafayel Darbinyan · Hrayr Harutyunyan · Aram Markosyan · Hrant Khachatrian 🔗 |
-
|
Pruning for Better Domain Generalizability ( Poster ) > link | Xinglong Sun 🔗 |
-
|
Temporal Consistency based Test Time Adaptation: Towards Fair and Personalized AI ( Poster ) > link | Mohammadmahdi Honarmand · Onur Cezmi Mutlu · Saimourya Surabhi · Dennis Wall 🔗 |
-
|
Regularizing Model Gradients with Concepts to Improve Robustness to Spurious Correlations ( Poster ) > link | Yiwei Yang · Anthony Liu · Robert Wolfe · Aylin Caliskan · Bill Howe 🔗 |
-
|
Regularizing Adversarial Imitation Learning Using Causal Invariance ( Poster ) > link | Ivan Ovinnikov · Joachim Buhmann 🔗 |
-
|
Spuriosity Didn’t Kill the Classifier: Using Invariant Predictions to Harness Spurious Features ( Poster ) > link | Cian Eastwood · Shashank Singh · Andrei Nicolicioiu · Marin Vlastelica · Julius von Kügelgen · Bernhard Schölkopf 🔗 |
-
|
Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift ( Poster ) > link | Saurabh Garg · Amrith Setlur · Zachary Lipton · Sivaraman Balakrishnan · Virginia Smith · Aditi Raghunathan 🔗 |
-
|
Spurious Correlations and Where to Find Them ( Poster ) > link | Gautam Sreekumar · Vishnu Boddeti 🔗 |
-
|
Why is SAM Robust to Label Noise? ( Poster ) > link | Christina Baek · Zico Kolter · Aditi Raghunathan 🔗 |
-
|
Confident feature ranking ( Poster ) > link | Bitya Neuhof · Yuval Benjamini 🔗 |
-
|
Calibrated Propensities for Causal Effect Estimation ( Poster ) > link | Shachi Deshpande · Volodymyr Kuleshov 🔗 |
-
|
Understanding the Detrimental Class-level Effects of Data Augmentation ( Poster ) > link | Polina Kirichenko · Mark Ibrahim · Randall Balestriero · Diane Bouchacourt · Ramakrishna Vedantam · Hamed Firooz · Andrew Wilson 🔗 |
-
|
Transportable Representations for Out-of-distribution Generalization ( Poster ) > link | Amirkasra Jalaldoust · Elias Bareinboim 🔗 |
-
|
Feature Selection in the Presence of Monotone Batch Effects ( Poster ) > link | Peng Dai · Sina Baharlouei · Meisam Razaviyayn · Sze-Chuan Suen 🔗 |
-
|
Exploring new ways: Enforcing representational dissimilarity to learn new features and reduce error consistency ( Poster ) > link | Tassilo Wald · Constantin Ulrich · Fabian Isensee · David Zimmerer · Gregor Koehler · Michael Baumgartner · Klaus Maier-Hein 🔗 |
-
|
Where Does My Model Underperform?: A Human Evaluation of Slice Discovery Algorithms ( Oral ) > link | Nari Johnson · Ángel Alexander Cabrera · Gregory Plumb · Ameet Talwalkar 🔗 |
-
|
Complementing a Policy with a Different Observation Space ( Poster ) > link | Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu 🔗 |
-
|
Last-Layer Fairness Fine-tuning is Simple and Effective for Neural Networks ( Poster ) > link | Yuzhen Mao · Zhun Deng · Huaxiu Yao · Ting Ye · Kenji Kawaguchi · James Zou 🔗 |
-
|
Separating multimodal modeling from multidimensional modeling for multimodal learning ( Poster ) > link | Divyam Madaan · Taro Makino · Sumit Chopra · Kyunghyun Cho 🔗 |
-
|
Do as your neighbors: Invariant learning through non-parametric neighbourhood matching ( Poster ) > link | Andrei Nicolicioiu · Jerry Huang · Dhanya Sridhar · Aaron Courville 🔗 |
-
|
Leveraging sparse and shared feature activations for disentangled representation learning ( Poster ) > link | Marco Fumero · Florian Wenzel · Luca Zancato · Alessandro Achille · Emanuele Rodola · Stefano Soatto · Bernhard Schölkopf · Francesco Locatello 🔗 |
-
|
Implications of Gaussian process kernel mismatch for out-of-distribution data ( Poster ) > link | Beau Coker · Finale Doshi-Velez 🔗 |
-
|
Which Features are Learned by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression ( Poster ) > link | Yihao Xue · Siddharth Joshi · Eric Gan · Pin-Yu Chen · Baharan Mirzasoleiman 🔗 |
-
|
Cross-Risk Minimization: Inferring Groups Information for Improved Generalization ( Poster ) > link | Mohammad Pezeshki · Diane Bouchacourt · Mark Ibrahim · Nicolas Ballas · Pascal Vincent · David Lopez-Paz 🔗 |
-
|
Robustness through Loss Consistency Regularization ( Poster ) > link | Tianjian Huang · Shaunak Halbe · Chinnadhurai Sankar · Pooyan Amini · Satwik Kottur · Alborz Geramifard · Meisam Razaviyayn · Ahmad Beirami 🔗 |
-
|
Learning Diverse Features in Vision Transformers for Improved Generalization ( Poster ) > link | Armand Nicolicioiu · Andrei Nicolicioiu · Bogdan Alexe · Damien Teney 🔗 |
-
|
Saving a Split for Last-layer Retraining can Improve Group Robustness without Group Annotations ( Poster ) > link | Tyler LaBonte · Vidya Muthukumar · Abhishek Kumar 🔗 |
-
|
Sharpness-Aware Minimization Enhances Feature Diversity ( Poster ) > link | Jacob Mitchell Springer · Vaishnavh Nagarajan · Aditi Raghunathan 🔗 |
-
|
ERM++: An Improved Baseline for Domain Generalization ( Poster ) > link | Piotr Teterwak · Kuniaki Saito · Theodoros Tsiligkaridis · Kate Saenko · Bryan Plummer 🔗 |
-
|
Front-door Adjustment Beyond Markov Equivalence with Limited Graph Knowledge ( Poster ) > link | Abhin Shah · Karthikeyan Shanmugam · Murat Kocaoglu 🔗 |
-
|
Group Fairness with Uncertainty in Sensitive Attributes ( Poster ) > link | Abhin Shah · Maohao Shen · Jongha Ryu · Subhro Das · Prasanna Sattigeri · Yuheng Bu · Gregory Wornell 🔗 |
-
|
Data Models for Dataset Drift Controls in Machine Learning With Optical Images ( Poster ) > link |
13 presentersLuis Oala · Marco Aversa · Gabriel Nobis · Kurt Willis · Yoan Neuenschwander · Michèle Buck · Christian Matek · Jerome Extermann · Enrico Pomarico · Wojciech Samek · Roderick Murray-Smith · Christoph Clausen · Bruno Sanguinetti |
-
|
Arbitrary Decisions are a Hidden Cost of Differentially Private Training ( Poster ) > link | Bogdan Kulynych · Hsiang Hsu · Carmela Troncoso · Flavio Calmon 🔗 |
-
|
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift ( Poster ) > link | Benjamin Eyre · Elliot Creager · David Madras · Vardan Papyan · Richard Zemel 🔗 |
-
|
Prediction without Preclusion: Recourse Verification with Reachable Sets ( Poster ) > link | Avni Kothari · Bogdan Kulynych · Lily Weng · Berk Ustun 🔗 |
-
|
Removing Multiple Biases through the Lens of Multi-task Learning ( Poster ) > link | Nayeong Kim · Juwon Kang · Sungsoo Ahn · Jungseul Ok · Suha Kwak 🔗 |
-
|
Antibody DomainBed: Towards robust predictions using invariant representations of biological sequences carrying complex distribution shifts ( Oral ) > link | Natasa Tagasovska · Ji Won Park · Stephen Ra · Kyunghyun Cho 🔗 |
-
|
Learning Independent Causal Mechanisms ( Poster ) > link | Sarah Mameche · David Kaltenpoth · Jilles Vreeken 🔗 |
-
|
Towards Fair Knowledge Distillation using Student Feedback ( Poster ) > link | Abhinav Java · Surgan Jandial · Chirag Agarwal 🔗 |
-
|
Provable domain adaptation using privileged information ( Oral ) > link | Adam Breitholtz · Anton Matsson · Fredrik Johansson 🔗 |
-
|
A Cosine Similarity-based Method for Out-of-Distribution Detection ( Poster ) > link | Ngoc Hieu Nguyen · Nguyen Hung-Quang · The-Anh Ta · Thanh Nguyen-Tang · Khoa Doan · Hoang Thanh-Tung 🔗 |
-
|
Reviving Shift Equivariance in Vision Transformers ( Poster ) > link | Peijian Ding · Davit Soselia · Thomas Armstrong · Jiahao Su · Furong Huang 🔗 |
-
|
Identifiability Guarantees for Causal Disentanglement from Soft Interventions ( Poster ) > link | Jiaqi Zhang · Chandler Squires · Kristjan Greenewald · Akash Srivastava · Karthikeyan Shanmugam · Caroline Uhler 🔗 |
-
|
Towards A Scalable Solution for Compositional Multi-Group Fair Classification ( Poster ) > link | James Atwood · Tina Tian · Ben Packer · Meghana Deodhar · Jilin Chen · Alex Beutel · Flavien Prost · Ahmad Beirami 🔗 |
-
|
Towards Modular Learning of Deep Causal Generative Models ( Poster ) > link | Md Musfiqur Rahman · Murat Kocaoglu 🔗 |
-
|
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding ( Oral ) > link | Alizée Pace · Hugo Yèche · Bernhard Schölkopf · Gunnar Ratsch · Guy Tennenholtz 🔗 |
-
|
C-Disentanglement: Discovering Causally-Independent Generative Factors under an Inductive Bias of Confounder ( Poster ) > link | Xiaoyu Liu · Jiaxin Yuan · Bang An · Yuancheng Xu · Yifan Yang · Furong Huang 🔗 |
-
|
Mitigating Spurious Correlations in Multi-modal Models during Fine-tuning ( Poster ) > link | Yu Yang · Besmira Nushi · Hamid Palangi · Baharan Mirzasoleiman 🔗 |
-
|
Adversarial Data Augmentations for Out-of-Distribution Generalization ( Poster ) > link | Simon Zhang · Ryan DeMilt · Kun Jin · Cathy Honghui Xia 🔗 |
-
|
Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models ( Poster ) > link | Tianyu Chen · Kevin Bello · Bryon Aragam · Pradeep Ravikumar 🔗 |
-
|
Mitigating Simplicity Bias in Deep Learning for Improved OOD Generalization and Robustness ( Poster ) > link | Bhavya Vasudeva · Kameron Shahabi · Vatsal Sharan 🔗 |
-
|
Look Beneath the Surface: Exploiting Fundamental Symmetry for Sample-Efficient Offline Reinforcement Learning ( Poster ) > link | PENG CHENG · Xianyuan Zhan · Zhihao Wu · Wenjia Zhang · Youfang Lin · Shou cheng Song · Han Wang 🔗 |
-
|
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing ( Poster ) > link | Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar 🔗 |
-
|
Identifiability of Discretized Latent Coordinate Systems via Density Landmarks Detection ( Poster ) > link | Vitória Barin-Pacela · Kartik Ahuja · Simon Lacoste-Julien · Pascal Vincent 🔗 |
-
|
Neuro-Causal Factor Analysis ( Poster ) > link | Alex Markham · Mingyu Liu · Bryon Aragam · Liam Solus 🔗 |
-
|
Deep Neural Networks Extrapolate Cautiously (Most of the Time) ( Poster ) > link | Katie Kang · Amrith Setlur · Claire Tomlin · Sergey Levine 🔗 |
-
|
Approximate Causal Effect Identification under Weak Confounding ( Poster ) > link | Ziwei Jiang · Lai Wei · Murat Kocaoglu 🔗 |
-
|
Large Dimensional Change Point Detection with FWER Control as Automatic Stopping ( Poster ) > link | Jiacheng Zou · Yang Fan · Markus Pelger 🔗 |
-
|
Robust Learning with Progressive Data Expansion Against Spurious Correlation ( Poster ) > link | Yihe Deng · Yu Yang · Baharan Mirzasoleiman · Quanquan Gu 🔗 |
-
|
Towards Understanding Feature Learning in Out-of-Distribution Generalization ( Poster ) > link | Yongqiang Chen · Wei Huang · Kaiwen Zhou · Yatao Bian · Bo Han · James Cheng 🔗 |
-
|
Spuriosity Rankings for Free: A Simple Framework for Last Layer Retraining Based on Object Detection ( Poster ) > link | Mohammad Azizmalayeri · reza abbasi · Amir Hosein Haji Mohammad rezaie · Reihaneh Zohrabi · Mahdi Amiri · Mohammad Manzuri · Mohammad H Rohban 🔗 |
-
|
Uncertainty-Guided Online Test-Time Adaptation via Meta-Learning ( Poster ) > link | kyubyung chae · Taesup Kim 🔗 |
-
|
Stabilizing GNN for Fairness via Lipschitz Bounds ( Poster ) > link | Yaning Jia · Chunhui Zhang 🔗 |
-
|
SAFE: Stable Feature Extraction without Environment Labels ( Poster ) > link | Aayush Mishra · Anqi Liu 🔗 |
-
|
Leveraging Task Structures for Improved Identifiability in Neural Network Representations ( Poster ) > link | Wenlin Chen · Julien Horwood · Juyeon Heo · Jose Miguel Hernandez-Lobato 🔗 |
-
|
Contextual Vision Transformers for Robust Representation Learning ( Poster ) > link | Yujia Bao · Theofanis Karaletsos 🔗 |
-
|
Learning Counterfactually Invariant Predictors ( Poster ) > link | Francesco Quinzan · Cecilia Casolo · Krikamol Muandet · Yucen Luo · Niki Kilbertus 🔗 |
-
|
Concept Algebra for Score-based Conditional Model ( Poster ) > link | Zihao Wang · Lin Gui · Jeffrey Negrea · Victor Veitch 🔗 |
-
|
Tackling Shortcut Learning in Deep Neural Networks: An Iterative Approach with Interpretable Models ( Poster ) > link | Shantanu Ghosh · Ke Yu · Forough Arabshahi · Kayhan Batmanghelich 🔗 |
-
|
Invariant Causal Set Covering Machines ( Poster ) > link | Thibaud Godon · Baptiste Bauvin · Pascal Germain · Jacques Corbeil · Alexandre Drouin 🔗 |
-
|
Replicable Reinforcement Learning ( Poster ) > link | ERIC EATON · Marcel Hussing · Michael Kearns · Jessica Sorrell 🔗 |
-
|
(Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy ( Poster ) > link | Elan Rosenfeld · Saurabh Garg 🔗 |
-
|
Seeing is not Believing: Robust Reinforcement Learning against Spurious Correlation ( Poster ) > link | Wenhao Ding · Laixi Shi · Yuejie Chi · Ding Zhao 🔗 |
-
|
Shortcut Detection with Variational Autoencoders ( Poster ) > link | Nicolas Müller · Simon Roschmann · Shahbaz Khan · Philip Sperl · Konstantin Böttinger 🔗 |
-
|
Results on Counterfactual Invariance ( Poster ) > link | Jake Fawkes · Robin Evans 🔗 |
-
|
The Role of Linguistic Priors in Measuring Compositional Generalization of Vision-language Models ( Poster ) > link | Chenwei Wu · Li Li · Stefano Ermon · Patrick Haffner · Rong Ge · Zaiwei Zhang 🔗 |
-
|
Bridging the Domain Gap by Clustering-based Image-Text Graph Matching ( Poster ) > link | Nokyung Park · Daewon Chae · Jeong Yong Shim · Sangpil Kim · Eun-Sol Kim · Jinkyu Kim 🔗 |
-
|
Group Robustness via Adaptive Class-Specific Scaling ( Poster ) > link | Seonguk Seo · Bohyung Han 🔗 |
-
|
ModelDiff: A Framework for Comparing Learning Algorithms ( Oral ) > link | Harshay Shah · Sung Min (Sam) Park · Andrew Ilyas · Aleksander Madry 🔗 |
-
|
Improve Identity-Robustness for Face Models ( Poster ) > link | Qi Qi · Shervin Ardeshir 🔗 |
-
|
Impact of Noise on Calibration and Generalisation of Neural Networks ( Poster ) > link | Martin Ferianc · Ondrej Bohdal · Timothy Hospedales · Miguel Rodrigues 🔗 |
-
|
Bias-to-Text: Debiasing Unknown Visual Biases by Language Interpretation ( Poster ) > link | Younghyun Kim · Sangwoo Mo · Minkyu Kim · Kyungmin Lee · Jaeho Lee · Jinwoo Shin 🔗 |
-
|
Studying Generalization on Memory-Based Methods in Continual Learning ( Poster ) > link | Felipe del Rio · Julio Hurtado · Cristian Calderon · Alvaro Soto · Vincenzo Lomonaco 🔗 |
-
|
Causal Dynamics Learning with Quantized Local Independence Discovery ( Poster ) > link | Inwoo Hwang · Yunhyeok Kwak · Suhyung Choi · Byoung-Tak Zhang · Sanghack Lee 🔗 |
-
|
Shortcut Learning Through the Lens of Training Dynamics ( Poster ) > link | Nihal Murali · Aahlad Puli · Ke Yu · Rajesh Ranganath · Kayhan Batmanghelich 🔗 |
-
|
Optimization or Architecture: What Matters in Non-Linear Filtering? ( Poster ) > link | Ido Greenberg · Netanel Yannay · Shie Mannor 🔗 |
-
|
Breaking the Spurious Causality of Conditional Generation via Fairness Intervention with Corrective Sampling ( Poster ) > link | Jun Hyun Nam · Sangwoo Mo · Jaeho Lee · Jinwoo Shin 🔗 |
-
|
Causal-structure Driven Augmentations for Text OOD Generalization ( Poster ) > link | Amir Feder · Yoav Wald · Claudia Shi · Suchi Saria · David Blei 🔗 |
-
|
Weighted Risk Invariance for Density-Aware Domain Generalization ( Poster ) > link | Gina Wong · Joshua Gleason · Rama Chellappa · Yoav Wald · Anqi Liu 🔗 |