Workshop
The Second Workshop on Spurious Correlations, Invariance and Stability
Yoav Wald 路 Claudia Shi 路 Aahlad Puli 路 Amir Feder 路 Limor Gultchin 路 Mark Goldstein 路 Maggie Makar 路 Victor Veitch 路 Uri Shalit
Meeting Room 316 AB
Sat 29 Jul, 11:50 a.m. PDT
As machine learning models are introduced into every aspect of our lives, and potential benefits become abundant, so do possible catastrophic failures. One of the most common failure scenarios when deploying machine learning models in the wild, which could possibly lead to dire consequences in extreme cases, is the reliance of models on apparently unnatural or irrelevant features.
The issue comes up in a variety of applications: from the reliance of detection models for X-rays on scanner types and marks made by technicians in the hospital, through visual question answering models being sensitive to linguistic variations in the questions, the list of examples for such undesirable behaviors keeps growing.In examples like these, the undesirable behavior stems from the model exploiting a spurious correlation.
Following last year's workshop on Spurious Correlations, Invariance and Stability (SCIS), it is apparent that work on spurious correlations is a long-term effort that spans communities such as fairness, causality-inspired ML, and domains such as NLP, healthcare and many others. Hence we hope that this year's workshop, the second edition of SCIS, will help facilitate this long term effort across communities. The workshop will feature talks by top experts doing methodological work on dealing with spurious correlations, and an extended poster session to allow extensive discussion on work submitted to the workshop.
Schedule
Sat 11:50 a.m. - 12:00 p.m.
|
Opening Remarks
(
Opening Remarks
)
>
SlidesLive Video |
馃敆 |
Sat 12:00 p.m. - 12:45 p.m.
|
Distribution Shifts in Generalist and Causal Models
(
Talk
)
>
SlidesLive Video |
Francesco Locatello 馃敆 |
Sat 12:45 p.m. - 1:15 p.m.
|
Paper Spotlights
(
Spotlight
)
>
SlidesLive Video |
Andrew Ilyas 路 Aliz茅e Pace 路 Ji Won Park 路 Adam Breitholtz 路 Nari Johnson 馃敆 |
Sat 1:15 p.m. - 1:30 p.m.
|
Break
|
馃敆 |
Sat 1:30 p.m. - 2:15 p.m.
|
On learning domain general predictors
(
Talk
)
>
SlidesLive Video |
Sanmi Koyejo 馃敆 |
Sat 2:15 p.m. - 3:00 p.m.
|
Using Causality to Improve Safety Throughout the AI Lifecycle
(
Talk
)
>
SlidesLive Video |
Suchi Saria 路 Adarsh Subbaswamy 馃敆 |
Sat 3:00 p.m. - 4:00 p.m.
|
Lunch Break
|
馃敆 |
Sat 4:00 p.m. - 4:45 p.m.
|
A data-centric view on reliable generalization: From ImageNet to LAION-5B
(
Talk
)
>
SlidesLive Video |
Ludwig Schmidt 馃敆 |
Sat 4:45 p.m. - 5:30 p.m.
|
Causal vs Causality-inspired representation learning
(
Talk
)
>
SlidesLive Video |
Sara Magliacane 馃敆 |
Sat 5:30 p.m. - 6:30 p.m.
|
Poster Session 1 (in-person only)
(
Poster Session
)
>
|
馃敆 |
Sat 6:30 p.m. - 7:15 p.m.
|
SCIS 2023 Panel, The Future of Generalization: Scale, Safety and Beyond
(
Panel Discussion
)
>
SlidesLive Video |
Maggie Makar 路 Samuel Bowman 路 Zachary Lipton 路 Adam Gleave 馃敆 |
Sat 7:15 p.m. - 8:00 p.m.
|
Causal Conversation + Poster Session 2
(
Poster Session
)
>
|
馃敆 |
-
|
Fairness-Preserving Regularizer: Balancing Core and Spurious Features ( Poster ) > link | Jiawei Feng 路 Ancong Wu 路 YuHan Yao 路 Wei-Shi Zheng 馃敆 |
-
|
Identifying and Disentangling Spurious Features in Pretrained Image Representations ( Poster ) > link | Rafayel Darbinyan 路 Hrayr Harutyunyan 路 Aram Markosyan 路 Hrant Khachatrian 馃敆 |
-
|
Pruning for Better Domain Generalizability ( Poster ) > link | Xinglong Sun 馃敆 |
-
|
Temporal Consistency based Test Time Adaptation: Towards Fair and Personalized AI ( Poster ) > link | Mohammadmahdi Honarmand 路 Onur Cezmi Mutlu 路 Saimourya Surabhi 路 Dennis Wall 馃敆 |
-
|
Regularizing Model Gradients with Concepts to Improve Robustness to Spurious Correlations ( Poster ) > link | Yiwei Yang 路 Anthony Liu 路 Robert Wolfe 路 Aylin Caliskan 路 Bill Howe 馃敆 |
-
|
Regularizing Adversarial Imitation Learning Using Causal Invariance ( Poster ) > link | Ivan Ovinnikov 路 Joachim Buhmann 馃敆 |
-
|
Spuriosity Didn鈥檛 Kill the Classifier: Using Invariant Predictions to Harness Spurious Features ( Poster ) > link | Cian Eastwood 路 Shashank Singh 路 Andrei Nicolicioiu 路 Marin Vlastelica 路 Julius von K眉gelgen 路 Bernhard Sch枚lkopf 馃敆 |
-
|
Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift ( Poster ) > link | Saurabh Garg 路 Amrith Setlur 路 Zachary Lipton 路 Sivaraman Balakrishnan 路 Virginia Smith 路 Aditi Raghunathan 馃敆 |
-
|
Spurious Correlations and Where to Find Them ( Poster ) > link | Gautam Sreekumar 路 Vishnu Boddeti 馃敆 |
-
|
Why is SAM Robust to Label Noise? ( Poster ) > link | Christina Baek 路 Zico Kolter 路 Aditi Raghunathan 馃敆 |
-
|
Confident feature ranking ( Poster ) > link | Bitya Neuhof 路 Yuval Benjamini 馃敆 |
-
|
Calibrated Propensities for Causal Effect Estimation ( Poster ) > link | Shachi Deshpande 路 Volodymyr Kuleshov 馃敆 |
-
|
Understanding the Detrimental Class-level Effects of Data Augmentation ( Poster ) > link | Polina Kirichenko 路 Mark Ibrahim 路 Randall Balestriero 路 Diane Bouchacourt 路 Ramakrishna Vedantam 路 Hamed Firooz 路 Andrew Wilson 馃敆 |
-
|
Transportable Representations for Out-of-distribution Generalization ( Poster ) > link | Amirkasra Jalaldoust 路 Elias Bareinboim 馃敆 |
-
|
Feature Selection in the Presence of Monotone Batch Effects ( Poster ) > link | Peng Dai 路 Sina Baharlouei 路 Meisam Razaviyayn 路 Sze-Chuan Suen 馃敆 |
-
|
Exploring new ways: Enforcing representational dissimilarity to learn new features and reduce error consistency ( Poster ) > link | Tassilo Wald 路 Constantin Ulrich 路 Fabian Isensee 路 David Zimmerer 路 Gregor Koehler 路 Michael Baumgartner 路 Klaus Maier-Hein 馃敆 |
-
|
Where Does My Model Underperform?: A Human Evaluation of Slice Discovery Algorithms ( Oral ) > link | Nari Johnson 路 脕ngel Alexander Cabrera 路 Gregory Plumb 路 Ameet Talwalkar 馃敆 |
-
|
Complementing a Policy with a Different Observation Space ( Poster ) > link | Gokul Swamy 路 Sanjiban Choudhury 路 J. Bagnell 路 Steven Wu 馃敆 |
-
|
Last-Layer Fairness Fine-tuning is Simple and Effective for Neural Networks ( Poster ) > link | Yuzhen Mao 路 Zhun Deng 路 Huaxiu Yao 路 Ting Ye 路 Kenji Kawaguchi 路 James Zou 馃敆 |
-
|
Separating multimodal modeling from multidimensional modeling for multimodal learning ( Poster ) > link | Divyam Madaan 路 Taro Makino 路 Sumit Chopra 路 Kyunghyun Cho 馃敆 |
-
|
Do as your neighbors: Invariant learning through non-parametric neighbourhood matching ( Poster ) > link | Andrei Nicolicioiu 路 Jerry Huang 路 Dhanya Sridhar 路 Aaron Courville 馃敆 |
-
|
Leveraging sparse and shared feature activations for disentangled representation learning ( Poster ) > link | Marco Fumero 路 Florian Wenzel 路 Luca Zancato 路 Alessandro Achille 路 Emanuele Rodola 路 Stefano Soatto 路 Bernhard Sch枚lkopf 路 Francesco Locatello 馃敆 |
-
|
Implications of Gaussian process kernel mismatch for out-of-distribution data ( Poster ) > link | Beau Coker 路 Finale Doshi-Velez 馃敆 |
-
|
Which Features are Learned by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression ( Poster ) > link | Yihao Xue 路 Siddharth Joshi 路 Eric Gan 路 Pin-Yu Chen 路 Baharan Mirzasoleiman 馃敆 |
-
|
Cross-Risk Minimization: Inferring Groups Information for Improved Generalization ( Poster ) > link | Mohammad Pezeshki 路 Diane Bouchacourt 路 Mark Ibrahim 路 Nicolas Ballas 路 Pascal Vincent 路 David Lopez-Paz 馃敆 |
-
|
Robustness through Loss Consistency Regularization ( Poster ) > link | Tianjian Huang 路 Shaunak Halbe 路 Chinnadhurai Sankar 路 Pooyan Amini 路 Satwik Kottur 路 Alborz Geramifard 路 Meisam Razaviyayn 路 Ahmad Beirami 馃敆 |
-
|
Learning Diverse Features in Vision Transformers for Improved Generalization ( Poster ) > link | Armand Nicolicioiu 路 Andrei Nicolicioiu 路 Bogdan Alexe 路 Damien Teney 馃敆 |
-
|
Saving a Split for Last-layer Retraining can Improve Group Robustness without Group Annotations ( Poster ) > link | Tyler LaBonte 路 Vidya Muthukumar 路 Abhishek Kumar 馃敆 |
-
|
Sharpness-Aware Minimization Enhances Feature Diversity ( Poster ) > link | Jacob Mitchell Springer 路 Vaishnavh Nagarajan 路 Aditi Raghunathan 馃敆 |
-
|
ERM++: An Improved Baseline for Domain Generalization ( Poster ) > link | Piotr Teterwak 路 Kuniaki Saito 路 Theodoros Tsiligkaridis 路 Kate Saenko 路 Bryan Plummer 馃敆 |
-
|
Front-door Adjustment Beyond Markov Equivalence with Limited Graph Knowledge ( Poster ) > link | Abhin Shah 路 Karthikeyan Shanmugam 路 Murat Kocaoglu 馃敆 |
-
|
Group Fairness with Uncertainty in Sensitive Attributes ( Poster ) > link | Abhin Shah 路 Maohao Shen 路 Jongha Ryu 路 Subhro Das 路 Prasanna Sattigeri 路 Yuheng Bu 路 Gregory Wornell 馃敆 |
-
|
Data Models for Dataset Drift Controls in Machine Learning With Optical Images ( Poster ) > link |
13 presentersLuis Oala 路 Marco Aversa 路 Gabriel Nobis 路 Kurt Willis 路 Yoan Neuenschwander 路 Mich猫le Buck 路 Christian Matek 路 Jerome Extermann 路 Enrico Pomarico 路 Wojciech Samek 路 Roderick Murray-Smith 路 Christoph Clausen 路 Bruno Sanguinetti |
-
|
Arbitrary Decisions are a Hidden Cost of Differentially Private Training ( Poster ) > link | Bogdan Kulynych 路 Hsiang Hsu 路 Carmela Troncoso 路 Flavio Calmon 馃敆 |
-
|
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift ( Poster ) > link | Benjamin Eyre 路 Elliot Creager 路 David Madras 路 Vardan Papyan 路 Richard Zemel 馃敆 |
-
|
Prediction without Preclusion: Recourse Verification with Reachable Sets ( Poster ) > link | Avni Kothari 路 Bogdan Kulynych 路 Lily Weng 路 Berk Ustun 馃敆 |
-
|
Removing Multiple Biases through the Lens of Multi-task Learning ( Poster ) > link | Nayeong Kim 路 Juwon Kang 路 Sungsoo Ahn 路 Jungseul Ok 路 Suha Kwak 馃敆 |
-
|
Antibody DomainBed: Towards robust predictions using invariant representations of biological sequences carrying complex distribution shifts ( Oral ) > link | Natasa Tagasovska 路 Ji Won Park 路 Stephen Ra 路 Kyunghyun Cho 馃敆 |
-
|
Learning Independent Causal Mechanisms ( Poster ) > link | Sarah Mameche 路 David Kaltenpoth 路 Jilles Vreeken 馃敆 |
-
|
Towards Fair Knowledge Distillation using Student Feedback ( Poster ) > link | Abhinav Java 路 Surgan Jandial 路 Chirag Agarwal 馃敆 |
-
|
Provable domain adaptation using privileged information ( Oral ) > link | Adam Breitholtz 路 Anton Matsson 路 Fredrik Johansson 馃敆 |
-
|
A Cosine Similarity-based Method for Out-of-Distribution Detection ( Poster ) > link | Ngoc Hieu Nguyen 路 Nguyen Hung-Quang 路 The-Anh Ta 路 Thanh Nguyen-Tang 路 Khoa Doan 路 Hoang Thanh-Tung 馃敆 |
-
|
Reviving Shift Equivariance in Vision Transformers ( Poster ) > link | Peijian Ding 路 Davit Soselia 路 Thomas Armstrong 路 Jiahao Su 路 Furong Huang 馃敆 |
-
|
Identifiability Guarantees for Causal Disentanglement from Soft Interventions ( Poster ) > link | Jiaqi Zhang 路 Chandler Squires 路 Kristjan Greenewald 路 Akash Srivastava 路 Karthikeyan Shanmugam 路 Caroline Uhler 馃敆 |
-
|
Towards A Scalable Solution for Compositional Multi-Group Fair Classification ( Poster ) > link | James Atwood 路 Tina Tian 路 Ben Packer 路 Meghana Deodhar 路 Jilin Chen 路 Alex Beutel 路 Flavien Prost 路 Ahmad Beirami 馃敆 |
-
|
Towards Modular Learning of Deep Causal Generative Models ( Poster ) > link | Md Musfiqur Rahman 路 Murat Kocaoglu 馃敆 |
-
|
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding ( Oral ) > link | Aliz茅e Pace 路 Hugo Y猫che 路 Bernhard Sch枚lkopf 路 Gunnar Ratsch 路 Guy Tennenholtz 馃敆 |
-
|
C-Disentanglement: Discovering Causally-Independent Generative Factors under an Inductive Bias of Confounder ( Poster ) > link | Xiaoyu Liu 路 Jiaxin Yuan 路 Bang An 路 Yuancheng Xu 路 Yifan Yang 路 Furong Huang 馃敆 |
-
|
Mitigating Spurious Correlations in Multi-modal Models during Fine-tuning ( Poster ) > link | Yu Yang 路 Besmira Nushi 路 Hamid Palangi 路 Baharan Mirzasoleiman 馃敆 |
-
|
Adversarial Data Augmentations for Out-of-Distribution Generalization ( Poster ) > link | Simon Zhang 路 Ryan DeMilt 路 Kun Jin 路 Cathy Honghui Xia 馃敆 |
-
|
Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models ( Poster ) > link | Tianyu Chen 路 Kevin Bello 路 Bryon Aragam 路 Pradeep Ravikumar 馃敆 |
-
|
Mitigating Simplicity Bias in Deep Learning for Improved OOD Generalization and Robustness ( Poster ) > link | Bhavya Vasudeva 路 Kameron Shahabi 路 Vatsal Sharan 馃敆 |
-
|
Look Beneath the Surface: Exploiting Fundamental Symmetry for Sample-Efficient Offline Reinforcement Learning ( Poster ) > link | PENG CHENG 路 Xianyuan Zhan 路 Zhihao Wu 路 Wenjia Zhang 路 Youfang Lin 路 Shou cheng Song 路 Han Wang 馃敆 |
-
|
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing ( Poster ) > link | Simon Buchholz 路 Goutham Rajendran 路 Elan Rosenfeld 路 Bryon Aragam 路 Bernhard Sch枚lkopf 路 Pradeep Ravikumar 馃敆 |
-
|
Identifiability of Discretized Latent Coordinate Systems via Density Landmarks Detection ( Poster ) > link | Vit贸ria Barin-Pacela 路 Kartik Ahuja 路 Simon Lacoste-Julien 路 Pascal Vincent 馃敆 |
-
|
Neuro-Causal Factor Analysis ( Poster ) > link | Alex Markham 路 Mingyu Liu 路 Bryon Aragam 路 Liam Solus 馃敆 |
-
|
Deep Neural Networks Extrapolate Cautiously (Most of the Time) ( Poster ) > link | Katie Kang 路 Amrith Setlur 路 Claire Tomlin 路 Sergey Levine 馃敆 |
-
|
Approximate Causal Effect Identification under Weak Confounding ( Poster ) > link | Ziwei Jiang 路 Lai Wei 路 Murat Kocaoglu 馃敆 |
-
|
Large Dimensional Change Point Detection with FWER Control as Automatic Stopping ( Poster ) > link | Jiacheng Zou 路 Yang Fan 路 Markus Pelger 馃敆 |
-
|
Robust Learning with Progressive Data Expansion Against Spurious Correlation ( Poster ) > link | Yihe Deng 路 Yu Yang 路 Baharan Mirzasoleiman 路 Quanquan Gu 馃敆 |
-
|
Towards Understanding Feature Learning in Out-of-Distribution Generalization ( Poster ) > link | Yongqiang Chen 路 Wei Huang 路 Kaiwen Zhou 路 Yatao Bian 路 Bo Han 路 James Cheng 馃敆 |
-
|
Spuriosity Rankings for Free: A Simple Framework for Last Layer Retraining Based on Object Detection ( Poster ) > link | Mohammad Azizmalayeri 路 reza abbasi 路 Amir Hosein Haji Mohammad rezaie 路 Reihaneh Zohrabi 路 Mahdi Amiri 路 Mohammad Manzuri 路 Mohammad H Rohban 馃敆 |
-
|
Uncertainty-Guided Online Test-Time Adaptation via Meta-Learning ( Poster ) > link | kyubyung chae 路 Taesup Kim 馃敆 |
-
|
Stabilizing GNN for Fairness via Lipschitz Bounds ( Poster ) > link | Yaning Jia 路 Chunhui Zhang 馃敆 |
-
|
SAFE: Stable Feature Extraction without Environment Labels ( Poster ) > link | Aayush Mishra 路 Anqi Liu 馃敆 |
-
|
Leveraging Task Structures for Improved Identifiability in Neural Network Representations ( Poster ) > link | Wenlin Chen 路 Julien Horwood 路 Juyeon Heo 路 Jose Miguel Hernandez-Lobato 馃敆 |
-
|
Contextual Vision Transformers for Robust Representation Learning ( Poster ) > link | Yujia Bao 路 Theofanis Karaletsos 馃敆 |
-
|
Learning Counterfactually Invariant Predictors ( Poster ) > link | Francesco Quinzan 路 Cecilia Casolo 路 Krikamol Muandet 路 Yucen Luo 路 Niki Kilbertus 馃敆 |
-
|
Concept Algebra for Score-based Conditional Model ( Poster ) > link | Zihao Wang 路 Lin Gui 路 Jeffrey Negrea 路 Victor Veitch 馃敆 |
-
|
Tackling Shortcut Learning in Deep Neural Networks: An Iterative Approach with Interpretable Models ( Poster ) > link | Shantanu Ghosh 路 Ke Yu 路 Forough Arabshahi 路 Kayhan Batmanghelich 馃敆 |
-
|
Invariant Causal Set Covering Machines ( Poster ) > link | Thibaud Godon 路 Baptiste Bauvin 路 Pascal Germain 路 Jacques Corbeil 路 Alexandre Drouin 馃敆 |
-
|
Replicable Reinforcement Learning ( Poster ) > link | ERIC EATON 路 Marcel Hussing 路 Michael Kearns 路 Jessica Sorrell 馃敆 |
-
|
(Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy ( Poster ) > link | Elan Rosenfeld 路 Saurabh Garg 馃敆 |
-
|
Seeing is not Believing: Robust Reinforcement Learning against Spurious Correlation ( Poster ) > link | Wenhao Ding 路 Laixi Shi 路 Yuejie Chi 路 Ding Zhao 馃敆 |
-
|
Shortcut Detection with Variational Autoencoders ( Poster ) > link | Nicolas M眉ller 路 Simon Roschmann 路 Shahbaz Khan 路 Philip Sperl 路 Konstantin B枚ttinger 馃敆 |
-
|
Results on Counterfactual Invariance ( Poster ) > link | Jake Fawkes 路 Robin Evans 馃敆 |
-
|
The Role of Linguistic Priors in Measuring Compositional Generalization of Vision-language Models ( Poster ) > link | Chenwei Wu 路 Li Li 路 Stefano Ermon 路 Patrick Haffner 路 Rong Ge 路 Zaiwei Zhang 馃敆 |
-
|
Bridging the Domain Gap by Clustering-based Image-Text Graph Matching ( Poster ) > link | Nokyung Park 路 Daewon Chae 路 Jeong Yong Shim 路 Sangpil Kim 路 Eun-Sol Kim 路 Jinkyu Kim 馃敆 |
-
|
Group Robustness via Adaptive Class-Specific Scaling ( Poster ) > link | Seonguk Seo 路 Bohyung Han 馃敆 |
-
|
ModelDiff: A Framework for Comparing Learning Algorithms ( Oral ) > link | Harshay Shah 路 Sung Min (Sam) Park 路 Andrew Ilyas 路 Aleksander Madry 馃敆 |
-
|
Improve Identity-Robustness for Face Models ( Poster ) > link | Qi Qi 路 Shervin Ardeshir 馃敆 |
-
|
Impact of Noise on Calibration and Generalisation of Neural Networks ( Poster ) > link | Martin Ferianc 路 Ondrej Bohdal 路 Timothy Hospedales 路 Miguel Rodrigues 馃敆 |
-
|
Bias-to-Text: Debiasing Unknown Visual Biases by Language Interpretation ( Poster ) > link | Younghyun Kim 路 Sangwoo Mo 路 Minkyu Kim 路 Kyungmin Lee 路 Jaeho Lee 路 Jinwoo Shin 馃敆 |
-
|
Studying Generalization on Memory-Based Methods in Continual Learning ( Poster ) > link | Felipe del Rio 路 Julio Hurtado 路 Cristian Calderon 路 Alvaro Soto 路 Vincenzo Lomonaco 馃敆 |
-
|
Causal Dynamics Learning with Quantized Local Independence Discovery ( Poster ) > link | Inwoo Hwang 路 Yunhyeok Kwak 路 Suhyung Choi 路 Byoung-Tak Zhang 路 Sanghack Lee 馃敆 |
-
|
Shortcut Learning Through the Lens of Training Dynamics ( Poster ) > link | Nihal Murali 路 Aahlad Puli 路 Ke Yu 路 Rajesh Ranganath 路 Kayhan Batmanghelich 馃敆 |
-
|
Optimization or Architecture: What Matters in Non-Linear Filtering? ( Poster ) > link | Ido Greenberg 路 Netanel Yannay 路 Shie Mannor 馃敆 |
-
|
Breaking the Spurious Causality of Conditional Generation via Fairness Intervention with Corrective Sampling ( Poster ) > link | Jun Hyun Nam 路 Sangwoo Mo 路 Jaeho Lee 路 Jinwoo Shin 馃敆 |
-
|
Causal-structure Driven Augmentations for Text OOD Generalization ( Poster ) > link | Amir Feder 路 Yoav Wald 路 Claudia Shi 路 Suchi Saria 路 David Blei 馃敆 |
-
|
Weighted Risk Invariance for Density-Aware Domain Generalization ( Poster ) > link | Gina Wong 路 Joshua Gleason 路 Rama Chellappa 路 Yoav Wald 路 Anqi Liu 馃敆 |