Sat 6:00 a.m. - 6:10 a.m.
|
Introduction
(
Introduction
)
>
SlidesLive Video
|
🔗
|
Sat 6:10 a.m. - 6:50 a.m.
|
Distribution Shifts in Healthcare—A Key Barrier to Safe Deployment of Machine Learning Algorithms in the Clinic
(
Invited Talk; In-person
)
>
SlidesLive Video
|
Jayashree Kalpathy-Cramer
🔗
|
Sat 6:50 a.m. - 7:10 a.m.
|
Extending the WILDS Benchmark for Unsupervised Adaptation
(
Invited Talk; In-person
)
>
SlidesLive Video
|
Shiori Sagawa
🔗
|
Sat 7:10 a.m. - 7:30 a.m.
|
Coffee Break
|
🔗
|
Sat 7:30 a.m. - 8:10 a.m.
|
Distribution Shift Through the Lens of Explanations
(
Invited Talk; In-person
)
>
SlidesLive Video
|
Jacob Steinhardt
🔗
|
Sat 8:10 a.m. - 8:50 a.m.
|
Can Fairness be Retained Over Distribution Shifts?
(
Invited Talk; Livestreamed
)
>
SlidesLive Video
|
Shai Ben-David
🔗
|
Sat 8:50 a.m. - 9:30 a.m.
|
Poster Session 1
(
In-person poster session
)
>
|
🔗
|
Sat 9:30 a.m. - 10:45 a.m.
|
Lunch Break
|
🔗
|
Sat 10:45 a.m. - 12:00 p.m.
|
Discussion Panel
(
Discussion Panel; In-person and on zoom
)
>
SlidesLive Video
|
Percy Liang · Léon Bottou · Jayashree Kalpathy-Cramer · Alex Smola
🔗
|
Sat 12:00 p.m. - 12:15 p.m.
|
Coffee Break
|
🔗
|
Sat 12:15 p.m. - 12:55 p.m.
|
Causal Structure Learning with Unknown Mechanism Shifts
(
Invited Talk; Livestreamed
)
>
SlidesLive Video
|
🔗
|
Sat 12:55 p.m. - 1:35 p.m.
|
Algorithmic Robust Statistics
(
Invited Talk; Livestreamed
)
>
SlidesLive Video
|
Ankur Moitra
🔗
|
Sat 1:35 p.m. - 1:55 p.m.
|
A Causal Graphical Framework for Understanding Stability to Dataset Shifts
(
Invited Talk; In-person
)
>
SlidesLive Video
|
Adarsh Subbaswamy
🔗
|
Sat 1:55 p.m. - 2:40 p.m.
|
Poster Session 2
(
In-person poster session
)
>
|
🔗
|
-
|
Simple and near-optimal algorithms for hidden stratification and multi-group learning
(
Poster
)
>
|
Christopher Tosh · Daniel Hsu
🔗
|
-
|
GAPX: Generalized Autoregressive Paraphrase-Identification X
(
Poster
)
>
|
Yifei Zhou · Renyu Li · Hayden Housen · Ser-Nam Lim
🔗
|
-
|
Generative Gradual Domain Adaptation with Optimal Transport
(
Poster
)
>
|
Yifei He · Haoxiang Wang · Han Zhao
🔗
|
-
|
Pareto Invariant Risk Minimization
(
Poster
)
>
SlidesLive Video
|
Yongqiang Chen · Kaiwen Zhou · Yatao Bian · Binghui Xie · Kaili MA · Yonggang Zhang · Han Yang · Bo Han · James Cheng
🔗
|
-
|
Out-of-Distribution Detection for Medical Applications: Guidelines for Practical Evaluation
(
Poster
)
>
SlidesLive Video
|
Karina Zadorozhny · Patrick Thoral · Paul Elbers · Giovanni Cinà
🔗
|
-
|
Distribution Shift nested in Web Scraping : Adapting MS COCO for Inclusive Data
(
Poster
)
>
SlidesLive Video
|
Theophile Bayet · Christophe Denis · Jean-Daniel Zucker · Alassane BAH
🔗
|
-
|
Estimating Test Performance for AI Medical Devices under Distribution Shift with Conformal Prediction
(
Poster
)
>
|
charlie lu · Syed Rakin Ahmed · Praveer Singh · Jayashree Kalpathy-Cramer
🔗
|
-
|
ALASCA: Rethinking Label Smoothing for Deep Learning Under Label Noise
(
Poster
)
>
SlidesLive Video
|
Jongwoo Ko · Bongsoo Yi · Se-Young Yun
🔗
|
-
|
Diversify and Disambiguate: Learning from Underspecified Data
(
Poster
)
>
SlidesLive Video
|
Yoonho Lee · Huaxiu Yao · Chelsea Finn
🔗
|
-
|
Back to the Basics: Revisiting Out-of-Distribution Detection Baselines
(
Poster
)
>
SlidesLive Video
|
Johnson Kuan · Jonas Mueller
🔗
|
-
|
Style Balancing and Test-Time Style Shifting for Domain Generalization
(
Poster
)
>
SlidesLive Video
|
Jungwuk Park · Dong-Jun Han · Soyeong Kim · Jaekyun Moon
🔗
|
-
|
Models Out of Line: A Fourier Lens on Distribution Shift Robustness
(
Poster
)
>
SlidesLive Video
|
Sara Fridovich-Keil · Brian Bartoldson · James Diffenderfer · Bhavya Kailkhura · Peer-Timo Bremer
🔗
|
-
|
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
(
Poster
)
>
|
Martin Gonzalez · Loic Cantat
🔗
|
-
|
The Power and Limitation of Pretraining-Finetuning for Linear Regression under Covariate Shift
(
Poster
)
>
|
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade
🔗
|
-
|
A Bias-Variance Analysis of Weight Averaging for OOD Generalization
(
Poster
)
>
SlidesLive Video
|
Alexandre Ramé · Matthieu Kirchmeyer · Thibaud J Rahier · Alain Rakotomamonjy · Patrick Gallinari · Matthieu Cord
🔗
|
-
|
Monotonic Risk Relationships under Distribution Shifts for Regularized Risk Minimization
(
Poster
)
>
|
Daniel LeJeune · Jiayu Liu · Reinhard Heckel
🔗
|
-
|
What You See is What You Get: Distributional Generalization for Algorithm Design in Deep Learning
(
Poster
)
>
|
Bogdan Kulynych · Yao-Yuan Yang · Yaodong Yu · Jarosław Błasiok · Preetum Nakkiran
🔗
|
-
|
Time Series Prediction under Distribution Shift using Differentiable Forgetting
(
Poster
)
>
|
Stefanos Bennett · Jase Clarkson
🔗
|
-
|
On the nonlinear correlation of ML performance across data subpopulations
(
Poster
)
>
SlidesLive Video
|
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou
🔗
|
-
|
Data Augmentation vs. Equivariant Networks: A Theoretical Study of Generalizability on Dynamics Forecasting
(
Poster
)
>
|
Rui Wang · Robin Walters · Rose Yu
🔗
|
-
|
Maximum Mean Discrepancy Distributionally Robust Nonlinear Chance-Constrained Optimization with Finite-Sample Guarantee
(
Poster
)
>
|
Yassine Nemmour · Heiner Kremer · Bernhard Schölkopf · Jia-Jie Zhu
🔗
|
-
|
DAFT: Distilling Adversarially Fine-tuned teachers for OOD Robustness
(
Poster
)
>
SlidesLive Video
|
Anshul Nasery · Sravanti Addepalli · Praneeth Netrapalli · Prateek Jain
🔗
|
-
|
Evaluation of Generative Unsupervised Domain Adaptation in the Absence of Target Labels
(
Poster
)
>
SlidesLive Video
|
Zeju Qiu · Grigorios Chrysos · Stratis Tzoumas
🔗
|
-
|
GraphTTA: Test Time Adaptation on Graph Neural Networks
(
Poster
)
>
|
Guanzi Chen · Jiying Zhang · Xi Xiao · Yang Li
🔗
|
-
|
Adversarial Cheap Talk
(
Poster
)
>
|
Christopher Lu · Timon Willi · Alistair Letcher · Jakob Foerster
🔗
|
-
|
Fairness and robustness in anti-causal prediction
(
Poster
)
>
|
Maggie Makar · Alexander D'Amour
🔗
|
-
|
Plex: Towards Reliability using Pretrained Large Model Extensions
(
Poster
)
>
|
24 presenters
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani
🔗
|
-
|
Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables
(
Poster
)
>
|
Mengdi Xu · Peide Huang · Visak Kumar · Jielin Qiu · Chao Fang · Kuan-Hui Lee · Xuewei Qi · Henry Lam · Bo Li · Ding Zhao
🔗
|
-
|
Task Modeling: A Multitask Approach for Improving Robustness to Group Shifts
(
Poster
)
>
|
Dongyue Li · Huy Nguyen · Hongyang Zhang
🔗
|
-
|
A Meta-Analysis of Distributionally Robust Models
(
Poster
)
>
|
Benjamin Feuer · Ameya Joshi · Chinmay Hegde
🔗
|
-
|
On Feature Learning in the Presence of Spurious Correlations
(
Poster
)
>
|
Pavel Izmailov · Polina Kirichenko · Nate Gruver · Andrew Wilson
🔗
|
-
|
Deep ensemble diversity and robustness on classification tasks
(
Poster
)
>
|
Zelda Mariet
🔗
|
-
|
Asymmetry Learning for Counterfactual-invariant Classification in OOD Tasks
(
Poster
)
>
|
Chandra Mouli Sekar · Bruno Ribeiro
🔗
|
-
|
Robust Estimation of Laplacian Constrained Gaussian Graphical Models with Trimmed Non-convex Regularization
(
Poster
)
>
SlidesLive Video
|
Mariana Vargas Vieyra
🔗
|
-
|
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets
(
Poster
)
>
|
Nikolaj Thams · Michael Oberst · David Sontag
🔗
|
-
|
Improved Medical Out-of-Distribution Detectors For Modality and Semantic Shifts
(
Poster
)
>
|
Vivek Narayanaswamy · Yamen Mubarka · Rushil Anirudh · Deepta Rajan · Andreas Spanias · Jayaraman J. Thiagarajan
🔗
|
-
|
AugLoss: A Robust, Reliable Methodology for Real-World Corruptions
(
Poster
)
>
SlidesLive Video
|
Kyle Otstot · John Kevin Cava · Tyler Sypherd · Lalitha Sankar
🔗
|
-
|
Context Shift from Test Benchmarks to Real-World Production Performance
(
Poster
)
>
|
Matthew Groh
🔗
|
-
|
Exploring the Design of Adaptation Protocols for Improved Generalization and Machine Learning Safety
(
Poster
)
>
SlidesLive Video
|
Puja Trivedi · Danai Koutra · Jayaraman J. Thiagarajan
🔗
|
-
|
CODiT: Conformal Out-of-Distribution Detection in Time-Series Data
(
Poster
)
>
SlidesLive Video
|
Ramneet Kaur · Kaustubh Sridhar · Sangdon Park · Susmit Jha · Anirban Roy · Oleg Sokolsky · Insup Lee
🔗
|
-
|
Diagnosing Model Performance Under Distribution Shift
(
Poster
)
>
|
Tianhui Cai · Hongseok Namkoong · Steve Yadlowsky
🔗
|
-
|
Distributionally Adaptive Meta Reinforcement Learning
(
Poster
)
>
SlidesLive Video
|
Anurag Ajay · Dibya Ghosh · Sergey Levine · Pulkit Agrawal · Abhishek Gupta
🔗
|
-
|
2 CENTs on continual adaptation: replay & parameter buffers stabilize entropy minimization
(
Poster
)
>
SlidesLive Video
|
Ori Press · Steffen Schneider · Matthias Kuemmerer · Matthias Bethge
🔗
|
-
|
Towards Practicable Sequential Shift Detectors
(
Poster
)
>
|
Oliver Cobb · Arnaud Van Looveren
🔗
|
-
|
Towards OOD Detection in Graph Classification from Uncertainty Estimation Perspective
(
Poster
)
>
SlidesLive Video
|
Gleb Bazhenov · Sergey Ivanov · Maxim Panov · Alexey Zaytsev · Evgeny Burnaev
🔗
|
-
|
What can we do with just the model? A simple knowledge extraction framework
(
Poster
)
>
SlidesLive Video
|
Sujoy Paul · Ansh Khurana · Gaurav Aggarwal
🔗
|
-
|
Are We Viewing the Problem of Robust Generalisation through the Appropriate Lens?
(
Poster
)
>
|
Mohamed Omran · Bernt Schiele
🔗
|
-
|
Adapting to Shifts in Latent Confounders via Observed Concepts and Proxies
(
Poster
)
>
|
Matt Kusner · Ibrahim Alabdulmohsin · Stephen Pfohl · Olawale Salaudeen · Arthur Gretton · Sanmi Koyejo · Jessica Schrouff · Alexander D'Amour
🔗
|
-
|
Positive Unlabeled Contrastive Representation Learning
(
Poster
)
>
|
Anish Acharya · Sujay Sanghavi · Li Jing · Bhargav Bhushanam · Michael Rabbat · Dhruv Choudhary · Inderjit Dhillon
🔗
|
-
|
Towards Domain Adversarial Methods to Mitigate Texture Bias
(
Poster
)
>
SlidesLive Video
|
Dhruva Kashyap · Sumukh K Aithal · Rakshith C · Natarajan Subramanyam
🔗
|
-
|
Dynamics of Dataset Bias and Robustness
(
Poster
)
>
SlidesLive Video
|
Prabhu Pradhan · Ruchit Rawal
🔗
|
-
|
Bridging Distribution Shift in Imitation Learning via Taylor Expansions
(
Poster
)
>
|
Daniel Pfrommer · Thomas T. Zhang · Nikolai Matni · Stephen Tu
🔗
|
-
|
Agreement-on-the-Line: Predicting the Performance of Neural Networks under Distribution Shift
(
Poster
)
>
|
Christina Baek · Yiding Jiang · aditi raghunathan · Zico Kolter
🔗
|