Workshop
|
|
Automated Data Curation for Robust Language Model Fine-Tuning
Jiuhai Chen · Jonas Mueller
|
|
Poster
|
Tue 4:30
|
Riemannian Preconditioned LoRA for Fine-Tuning Foundation Models
Fangzhao Zhang · Mert Pilanci
|
|
Workshop
|
|
Seeded LoRA: Collaborative Fine-Tuning Through Seed Initialization of Adapters
Alejandro Rodriguez Salamanca · Ahmet Üstün · Nicki Skafte Detlefsen · Tim Dettmers
|
|
Poster
|
Tue 2:30
|
Connect Later: Improving Fine-tuning for Robustness with Targeted Augmentations
Helen Qu · Sang Michael Xie
|
|
Poster
|
Wed 2:30
|
Random Masking Finds Winning Tickets for Parameter Efficient Fine-tuning
Jing Xu · Jingzhao Zhang
|
|
Oral
|
Thu 7:45
|
Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models
Christian Schlarmann · Naman Singh · Francesco Croce · Matthias Hein
|
|
Poster
|
Thu 2:30
|
Connecting the Dots: Collaborative Fine-tuning for Black-Box Vision-Language Models
Zhengbo Wang · Jian Liang · Ran He · Zilei Wang · Tieniu Tan
|
|
Workshop
|
|
Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models
Christian Schlarmann · Naman Singh · Francesco Croce · Matthias Hein
|
|
Workshop
|
|
CADO: Cost-Aware Diffusion Solvers for Combinatorial Optimization through RL fine-tuning
Deunsol Yoon · Hyungseok Song · Kanghoon Lee · Woohyung Lim
|
|
Workshop
|
|
AdaNF: Quantization Group Adaptive NormalFloat for Low Bit Fine-tuning of LLMs
Yeojoon Youn · Sehoon Kim · Suhong Moon · Sang Keun Choe · Ce Zhang
|
|
Poster
|
Thu 4:30
|
Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language Models
Christian Schlarmann · Naman Singh · Francesco Croce · Matthias Hein
|
|
Poster
|
Tue 4:30
|
Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation
Yuchen Yang · Yingdong Shi · Cheems Wang · Xiantong Zhen · Yuxuan Shi · Jun Xu
|
|