Poster
|
Wed 4:30
|
PAC-Bayesian Generalization Bounds for Knowledge Graph Representation Learning
Jaejun Lee · Minsung Hwang · Joyce Whang
|
|
Poster
|
Thu 2:30
|
A Neural-Guided Dynamic Symbolic Network for Exploring Mathematical Expressions from Data
Wenqiang Li · Weijun Li · Lina Yu · Min Wu · Linjun Sun · Jingyi Liu · Yanjie Li · Shu Wei · Deng Yusong · Meilan Hao
|
|
Workshop
|
Sat 1:20
|
Contributed: Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg
|
|
Workshop
|
|
A Unified Approach to Feature Learning in Bayesian Neural Networks
Noa Rubin · Zohar Ringel · Inbar Seroussi · Moritz Helias
|
|
Workshop
|
|
Fine-Tuning with Uncertainty-Aware Priors Makes Vision and Language Foundation Models More Reliable
Tim G. J. Rudner · Xiang Pan · Yucen Li · Ravid Shwartz-Ziv · Andrew Wilson
|
|
Poster
|
Wed 4:30
|
Reparameterized Importance Sampling for Robust Variational Bayesian Neural Networks
Yunfei Long · Zilin Tian · Liguo Zhang · Huosheng Xu
|
|
Poster
|
Wed 2:30
|
Partially Stochastic Infinitely Deep Bayesian Neural Networks
Sergio Calvo Ordoñez · Matthieu Meunier · Francesco Piatti · Yuantao Shi
|
|
Workshop
|
|
EVCL: Elastic Variational Continual Learning with Weight Consolidation
Hunar Batra · Ronald Clark
|
|
Workshop
|
|
Function Space Diversity for Uncertainty Prediction via Repulsive Last-Layer Ensembles
Sophie Steger · Christian Knoll · Bernhard Klein · Holger Fröning · Franz Pernkopf
|
|
Poster
|
Tue 2:30
|
Synergistic Integration of Coordinate Network and Tensorial Feature for Improving Neural Radiance Fields from Sparse Inputs
Mingyu Kim · Kim Jun-Seong · Se-Young Yun · Jin-Hwa Kim
|
|
Poster
|
Thu 2:30
|
Parameterized Physics-informed Neural Networks for Parameterized PDEs
Woojin Cho · Minju Jo · Haksoo Lim · Kookjin Lee · Dongeun Lee · Sanghyun Hong · Noseong Park
|
|
Poster
|
Tue 4:30
|
Benign Overfitting in Adversarial Training of Neural Networks
Yunjuan Wang · Kaibo Zhang · Raman Arora
|
|