Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

35 Results

<<   <   Page 3 of 3   >>   >
Poster
Wed 4:30 Delving into Differentially Private Transformer
Youlong Ding · Xueyang Wu · Yining meng · Yonggang Luo · Hao Wang · Pan Weike
Poster
Wed 4:30 Beyond the Calibration Point: Mechanism Comparison in Differential Privacy
Georgios Kaissis · Stefan Kolek · Borja de Balle Pigem · Jamie Hayes · Daniel Rueckert
Poster
Tue 2:30 Split-and-Denoise: Protect large language model inference with local differential privacy
Peihua Mai · Ran Yan · Zhe Huang · Youjia Yang · Yan (James) Pang
Workshop
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang · Ashwinee Panda · Milad Nasr · Saeed Mahloujifar · Prateek Mittal
Workshop
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles · Arun Ganesh · Ryan McKenna · Hugh B McMahan · Nicole Mitchell · Krishna Pillutla · J K Rush
Poster
Tue 2:30 Differentially Private Synthetic Data via Foundation Model APIs 2: Text
Chulin Xie · Zinan Lin · Arturs Backurs · Sivakanth Gopi · Da Yu · Huseyin Inan · Harsha Nori · Haotian Jiang · Huishuai Zhang · Yin Tat Lee · Bo Li · Sergey Yekhanin
Poster
Thu 4:30 Bounding the Excess Risk for Linear Models Trained on Marginal-Preserving, Differentially-Private, Synthetic Data
Yvonne Zhou · Mingyu Liang · Ivan Brugere · Danial Dervovic · Antigoni Polychroniadou · Min Wu · Dana Dachman-Soled
Workshop
Open LLMs are Necessary for Private Adaptations and Outperform their Closed Alternatives
Vincent Hanke · Tom Blanchard · Franziska Boenisch · Iyiola Emmanuel Olatunji · Michael Backes · Adam Dziedzic
Workshop
Explaining the Model, Protecting Your Data: Revealing and Mitigating the Data Privacy Risks of Post-Hoc Model Explanations via Membership Inference
Catherine Huang · Martin Pawelczyk · Himabindu Lakkaraju
Workshop
Open LLMs are Necessary for Private Adaptations and Outperform their Closed Alternatives
Vincent Hanke · Tom Blanchard · Franziska Boenisch · Iyiola Emmanuel Olatunji · Michael Backes · Adam Dziedzic
Workshop
Efficient Differentially Private Fine-Tuning of Diffusion Models
Jing Liu · Andrew Lowy · Toshiaki Koike-Akino · Kieran Parsons · Ye Wang