Workshop
ICML 2024 Workshop on Foundation Models in the Wild
Xinyu Yang · Bilge Acun · Kamalika Chaudhuri · Beidi Chen · Giulia Fanti · Junlin Han · Lianhui Qin · Shengbang Tong · Phil Torr · Hao Wang · Cathy Wu · Huaxiu Yao · James Zou
Straus 1
Fri 26 Jul, midnight PDT
In the era of AI-driven transformations, foundation models (FMs), like large-scale language and vision models, have become pivotal in various applications, from natural language processing to computer vision. These models, with their immense capabilities, reshape the future of scientific research and the broader human society, but also introduce challenges in their in-the-wild/real-world deployments. The Workshop on FMs in the wild delves into the urgent need for these models to be useful when deployed in our societies. The significance of this topic cannot be overstated, as the real-world implications of these models impact everything from daily information access to critical decision-making in fields like medicine and finance. Stakeholders, from developers to end-users, care deeply about this because the successful integration of FMs into in-the-wild frameworks necessitates a careful consideration of adaptivity, reliability and efficiency. Some of the fundamental questions that this workshop aims to address are:$$\textbf{1. Real-world Adaptation:}$$ In practical applications, how can we leverage the comprehensive knowledge in FMs to adapt them for specific domains, such as drug discovery, education, or clinical health?$$\textbf{2. Reliability and Responsibility:}$$ How can foundation models work reliably outside their training distribution? And how can we address issues like hallucination and privacy?$$\textbf{3. Safety, Ethics, and Fairness in Society:}$$ How do we ensure that the deployment of FMs preserving safety, ethics, and fairness within society, safeguarding against biases and unethical use?$$\textbf{4. Practical Limitations in Deployment:}$$ How can FMs tackle challenges in practical applications, such as system constraints, computational costs, data acquisition barriers, response time demands?
Chat is not available.
Timezone: America/Los_Angeles
Schedule
Fri 12:00 a.m. - 12:05 a.m.
|
Introduction and opening remarks
SlidesLive Video |
🔗 |
Fri 12:05 a.m. - 12:30 a.m.
|
Invited Talk 1: Dakuo Wang
SlidesLive Video |
🔗 |
Fri 12:30 a.m. - 1:00 a.m.
|
Invited Talk 2: David Alvarez-Melis
SlidesLive Video |
🔗 |
Fri 1:00 a.m. - 1:15 a.m.
|
Oral Presentation 1: Parameter-Efficient Quantized MoE Meets Vision-Language Instruction Tuning for Semiconductor Electron Micrograph Analysis
SlidesLive Video |
🔗 |
Fri 2:15 a.m. - 2:45 a.m.
|
Invited Talk 3: Boran Han
SlidesLive Video |
🔗 |
Fri 2:45 a.m. - 3:00 a.m.
|
Oral Presentation 2: RouteFinder: Towards Foundation Models for Vehicle Routing Problems
SlidesLive Video |
🔗 |
Fri 3:00 a.m. - 3:30 a.m.
|
Invited Talk 4: Hannah Kerner
SlidesLive Video |
🔗 |
Fri 4:30 a.m. - 4:45 a.m.
|
UK AI Safety Institute: Empirically Assessing AI's Risks & Advancing Systemic Safety
SlidesLive Video |
🔗 |
Fri 4:45 a.m. - 5:00 a.m.
|
Oral Presentation 3: DigiRL: Training In-The-Wild Device-Control Agents with Autonomous Reinforcement Learning
SlidesLive Video |
🔗 |
Fri 5:00 a.m. - 5:30 a.m.
|
Invited Talk 5: Steven Wu
SlidesLive Video |
🔗 |
Fri 6:30 a.m. - 7:00 a.m.
|
Invited Talk 6: Pang Wei Koh
SlidesLive Video |
🔗 |
Fri 7:00 a.m. - 7:30 a.m.
|
Invited Talk 7: Jimeng Sun
|
🔗 |
Fri 7:30 a.m. - 8:00 a.m.
|
Invited Talk 8: Sheng Wang
SlidesLive Video |
🔗 |
-
|
Vision-Language Models Provide Promptable Representations for Reinforcement Learning ( Poster ) > link | William Chen · Oier Mees · Aviral Kumar · Sergey Levine 🔗 |
-
|
When Do Language Models Need to Be Large? ( Poster ) > link | Zhixun Chen · Yali Du · David Mguni 🔗 |
-
|
Inference Performance Optimization for Large Language Models on CPUs ( Poster ) > link | Pujiang He · Shan Zhou · Wenhuan Huang · Changqing Li · Duyi Wang · Bin Guo · Chen Meng · Sheng Gui · Weifei Yu · Yi Xie 🔗 |
-
|
Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data ( Poster ) > link |
14 presentersMatthias Gerstgrasser · Rylan Schaeffer · Apratim Dey · Rafael Rafailov · Tomasz Korbak · Henry Sleight · Rajashree Agrawal · John Hughes · Dhruv Pai · Andrey Gromov · Dan Roberts · Diyi Yang · David Donoho · Sanmi Koyejo |
-
|
PLUTO: Pathology-Universal Transformer ( Poster ) > link |
33 presentersDinkar Juyal · Harshith Padigela · Chintan Shah · Daniel Shenker · Natalia Harguindeguy · Yi Liu · Blake Martin · Yibo Zhang · Michael Nercessian · Miles Markey · Isaac Finberg · Kelsey Luu · Daniel Borders · Syed Ashar Javed · Emma Krause · Raymond Biju · Aashish Sood · Allen Ma · Jackson Nyman · John Shamshoian · Guillaume Chhor · Darpan Sanghavi · Marc Thibault · Limin Yu · Fedaa Najdawi · Jennifer Hipp · Darren Fahy · Benjamin Glass · Eric Walk · John Abel · Harsha pokkalla · Andrew Beck · Sean Grullon |
-
|
Unsupervised Feature Extraction from a Foundation Model Zoo for Cell Similarity Search in Oncological Microscopy Across Devices ( Poster ) > link |
15 presentersGabriel Kalweit · Anusha Klett · Mehdi Naouar · Jens Rahnfeld · Yannick Vogt · Diana Ramirez · Rebecca Berger · Jesus Afonso · Tanja Hartmann · Marie Follo · Michael Luebbert · Roland Mertelsmann · Evelyn Ullrich · Joschka Boedecker · Maria Kalweit |
-
|
The Effect of Data Corruption on Multimodal Long Form Responses ( Poster ) > link | Daniel Kaplan · Alexis Roger · Mohamed Osman · Irina Rish 🔗 |
-
|
Pretrained Hybrids with MAD Skills ( Poster ) > link | Nicholas Roberts · Samuel Guo · Zhiqi Gao · Satya Sai Srinath Namburi GNVV · Sonia Cromp · Chengjun Wu · Chengyu Duan · Frederic Sala 🔗 |
-
|
Model Breadcrumbs: Scalable Upcycling of Finetuned Foundation Models via Sparse Task Vectors Merging ( Poster ) > link | MohammadReza Davari · Eugene Belilovsky 🔗 |
-
|
Strong Copyright Protection for Language Models via Adaptive Model Fusion ( Poster ) > link | Javier Abad · Konstantin Donhauser · Francesco Pinto · Fanny Yang 🔗 |
-
|
FoMu-SSL: Foundation Model-Guided Multi-Sensor Self-Supervised Learning for Remote Sensing ( Poster ) > link | Da Bin Seo · Haeji Jung · Jinkyu Kim 🔗 |
-
|
A Critical Look At Tokenwise Reward-Guided Text Generation ( Poster ) > link | Ahmad Rashid · Ruotian Wu · Julia Grosse · Agustinus Kristiadi · Pascal Poupart 🔗 |
-
|
GROD: Enhancing Generalization of Transformer with Out-of-Distribution Detection ( Poster ) > link | Yijin Zhou · Yu Guang Wang 🔗 |
-
|
It Takes Two: On the Seamlessness between Reward and Policy Model in RLHF ( Poster ) > link | TaiMing Lu · Lingfeng Shen · Xinyu Yang · Weiting Tan · Beidi Chen · Huaxiu Yao 🔗 |
-
|
Open LLMs are Necessary for Private Adaptations and Outperform their Closed Alternatives ( Poster ) > link | Vincent Hanke · Tom Blanchard · Franziska Boenisch · Iyiola Emmanuel Olatunji · Michael Backes · Adam Dziedzic 🔗 |
-
|
Waterfall: Framework for Robust and Scalable Text Watermarking ( Poster ) > link | Gregory Kang Ruey Lau · Xinyuan Niu · Hieu Dao · Jiangwei Chen · Chuan-Sheng Foo · Bryan Kian Hsiang Low 🔗 |
-
|
OTTER: Effortless Label Distribution Adaptation of Zero-shot Models ( Poster ) > link | Changho Shin · Jitian Zhao · Sonia Cromp · Harit Vishwakarma · Frederic Sala 🔗 |
-
|
Towards Safe Large Language Models for Medicine ( Poster ) > link | Tessa Han · Aounon Kumar · Chirag Agarwal · Himabindu Lakkaraju 🔗 |
-
|
POST: A Framework for Privacy of Soft-prompt Transfer ( Poster ) > link | Xun Wang · Jing Xu · Franziska Boenisch · Michael Backes · Adam Dziedzic 🔗 |
-
|
Two-Level Test-Time Adaptation in Multimodal Learning ( Poster ) > link | Jixiang Lei · Franz Pernkopf 🔗 |
-
|
Jogging the Memory of Unlearned Models Through Targeted Relearning Attacks ( Poster ) > link | Shengyuan Hu · Yiwei Fu · Steven Wu · Virginia Smith 🔗 |
-
|
End-To-End Causal Effect Estimation from Unstructured Natural Language Data ( Poster ) > link | Nikita Dhawan · Leonardo Cotta · Karen Ullrich · Rahul G. Krishnan · Chris Maddison 🔗 |
-
|
On the Privacy Risks of Post-Hoc Explanations of Foundation Models ( Poster ) > link | Catherine Huang · Martin Pawelczyk · Himabindu Lakkaraju 🔗 |
-
|
An Empirical Study into Clustering of Unseen Datasets with Self-Supervised Foundation Models ( Poster ) > link | Scott C. Lowe · Joakim Haurum · Sageev Oore · Thomas Moeslund · Graham Taylor 🔗 |
-
|
Estimating Probability Densities of Tabular Data using a Transformer Model combined with Denoising Diffusion ( Poster ) > link | Henry Leung · Jo Bovy · Joshua Speagle 🔗 |
-
|
RouteFinder: Towards Foundation Models for Vehicle Routing Problems ( Oral ) > link | Federico Berto · Chuanbo HUA · Nayeli Gast Zepeda · André Hottung · Niels Wouda · Leon Lan · Kevin Tierney · Jinkyoo Park 🔗 |
-
|
TriLM vs FloatLM: Ternary LLMs are more Performant than Quantized FP16 LLMs ( Poster ) > link | Ayush Kaushal · Tejas Vaidhya · Tejas Pandey · Aaryan Bhagat · Irina Rish 🔗 |
-
|
Adaptive Concept Bottleneck for Foundation Models ( Poster ) > link | Jihye Choi · Jayaram Raghuram · Sharon Li · Suman Banerjee · Somesh Jha 🔗 |
-
|
Recursive Introspection: Teaching LLM Agents How to Self-Improve ( Poster ) > link | Yuxiao Qu · Tianjun Zhang · Naman Garg · Aviral Kumar 🔗 |
-
|
Domain-Aware Fine-Tuning of Foundation Models ( Poster ) > link | Ugur Kaplan · Yumeng Li · Margret Keuper · Anna Khoreva · Dan Zhang 🔗 |
-
|
Adversarially Robust CLIP Models Induce Better (Robust) Perceptual Metrics ( Poster ) > link | Francesco Croce · Christian Schlarmann · Naman Singh · Matthias Hein 🔗 |
-
|
Self-Control of LLM Behaviors by Compressing Suffix Gradient into Prefix Controller ( Poster ) > link | Min Cai · Yuchen Zhang · Shichang Zhang · Fan Yin · Difan Zou · Yisong Yue · ziniu hu 🔗 |
-
|
Instruction Tuning With Loss Over Instructions ( Poster ) > link | zhengxiang shi · Adam Yang · Bin Wu · Laurence Aitchison · Emine Yilmaz · Aldo Lipani 🔗 |
-
|
LoRD: Low-Rank Decomposition of Monolingual Code LLMs for One-Shot Compression ( Poster ) > link | Ayush Kaushal · Tejas Vaidhya · Irina Rish 🔗 |
-
|
On the Discrepancy and Connection between Memorization and Generation in Diffusion Models ( Poster ) > link | Hanyu Wang · Yujin Han · Difan Zou 🔗 |
-
|
Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs ( Poster ) > link | Jiatong Han · Jannik Kossen · Muhammed Razzak · Lisa Schut · Shreshth Malik · Yarin Gal 🔗 |
-
|
Test-Time Prototype Evolution for Generalizable Vision-Language Models ( Poster ) > link | Ce Zhang · Simon Stepputtis · Katia Sycara · Yaqi Xie 🔗 |
-
|
Bilingual Adaptation of Monolingual Foundation Models ( Poster ) > link |
21 presentersGurpreet Gosal · Yishi Xu · Gokulakrishnan Ramakrishnan · Rituraj Joshi · Avraham Sheinin · Zhiming Chen · Biswajit Mishra · Sunil Sahu · Neha Sengupta · Natalia Vassilieva · Joel Hestness · Samujjwal Ghosh · Bokang Jia · Onkar Pandit · Satheesh Katipomu · Samta Kamboj · Rahul Pal · Parvez Mullah · Soundar Doraiswamy · Karim Chami · Preslav Nakov |
-
|
$\mathbb{X}$-Sample Contrastive Loss: Improving Contrastive Learning with Sample Similarity Graphs ( Poster ) > link | Vlad Sobal · Mark Ibrahim · Randall Balestriero · Vivien Cabannnes · Diane Bouchacourt · Pietro Astolfi · Kyunghyun Cho · Yann LeCun 🔗 |
-
|
CARES: A Comprehensive Benchmark of Trustworthiness in Medical Vision Language Models ( Poster ) > link |
24 presentersPeng Xia · Ze Chen · Juanxi Tian · Gong Yangrui · Ruibo Hou · Yue Xu · Zhenbang Wu · Zhiyuan Fan · Yiyang Zhou · Kangyu Zhu · Wenhao Zheng · Zhaoyang Wang · Xiao Wang · Xuchao Zhang · Chetan Bansal · Marc Niethammer · Junzhou Huang · Hongtu Zhu · Yun Li · Jimeng Sun · Zongyuan Ge · Gang Li · James Zou · Huaxiu Yao |
-
|
SEE-2-SOUND: Zero-Shot Spatial Environment-to-Spatial Sound ( Poster ) > link | Rishit Dagli · Shivesh Prakash · Robert Wu · Houman Khosravani 🔗 |
-
|
LLM Task Interference: Impact of Task-Switch in Conversational History ( Poster ) > link | Akash Gupta · Ivaxi Sheth · Vyas Raina · Mark Gales · Mario Fritz 🔗 |
-
|
Projected Language Models: A Large Model Pre-Segmented Into Smaller Ones ( Poster ) > link | David Grangier · Angelos Katharopoulos · Pierre Ablin · Awni Hannun 🔗 |
-
|
Private Fine-tuning of Large Language Models with Zeroth-order Optimization ( Poster ) > link | Xinyu Tang · Ashwinee Panda · Milad Nasr · Saeed Mahloujifar · Prateek Mittal 🔗 |
-
|
BUILD: Buffer-free Incremental Learning with OOD Detection for the Wild ( Poster ) > link | Srishti Gupta · Daniele Angioni · Lea Schönherr · Ambra Demontis · Battista Biggio 🔗 |
-
|
Improving GFlowNets for Text-to-Image Diffusion Alignment ( Poster ) > link | Dinghuai Zhang · Yizhe Zhang · Jiatao Gu · Ruixiang ZHANG · Joshua M Susskind · Navdeep Jaitly · Shuangfei Zhai 🔗 |
-
|
Zero-Shot Generalization of GNNs over Distinct Attribute Domains ( Poster ) > link | Yangyi Shen · Beatrice Bevilacqua · Joshua Robinson · Charilaos Kanatsoulis · Jure Leskovec · Bruno Ribeiro 🔗 |
-
|
Improving Graph-Language Alignment with Hierarchical Graph Tokenization ( Poster ) > link | Yongqiang Chen · QUANMING YAO · Juzheng Zhang · James Cheng · Yatao Bian 🔗 |
-
|
Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking ( Poster ) > link | Vasileios Tsouvalas · Yuki Asano · Aaqib Saeed 🔗 |
-
|
Benchmarking Robust Self-Supervised Learning Across Diverse Downstream Tasks ( Poster ) > link | Antoni Kowalczuk · Jan DubiÅ„ski · Atiyeh Ashari · yi sui · George Stein · Jiapeng Wu · Jesse Cresswell · Franziska Boenisch · Adam Dziedzic 🔗 |
-
|
Black-Box Detection of Language Model Watermarks ( Poster ) > link | Thibaud Gloaguen · Nikola Jovanović · Robin Staab · Martin Vechev 🔗 |
-
|
ExPLoRA: Parameter-Efficient Extended Pre-Training to Adapt Vision Transformers under Domain Shifts ( Poster ) > link | Samar Khanna · Medhanie Irgau · David Lobell · Stefano Ermon 🔗 |
-
|
AdaptiveBackdoor: Backdoored Language Model Agents that Detect Human Overseers ( Poster ) > link | Heng Wang · Ruiqi Zhong · Jiaxin Wen · Jacob Steinhardt 🔗 |
-
|
Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games ( Poster ) > link | Arjun V SS · Prasanna Parthasarathi · Janarthanan Rajendran · Sarath Chandar 🔗 |
-
|
Understanding the Role of Functional Diversity in Weight-Ensembling with Ingredient Selection and Multidimensional Scaling ( Poster ) > link | Alex Rojas · David Alvarez-Melis 🔗 |
-
|
ContextCite: Attributing Model Generation to Context ( Poster ) > link | Benjamin Cohen-Wang · Harshay Shah · Kristian Georgiev · Aleksander Madry 🔗 |
-
|
DistilDIRE: A Small, Fast, Cheap and Lightweight Diffusion Synthesized Deepfake Detection ( Poster ) > link | Yewon Lim · Changyeon Lee · Ah Young Kim · Oren Etzioni 🔗 |
-
|
An Auditing Test to Detect Behavioral Shift in Language Models ( Poster ) > link | Leo Richter · Nitin Agrawal · Xuanli He · Pasquale Minervini · Matt Kusner 🔗 |
-
|
Quantum 3D Visual Grounding: A Step Towards Quantum-inspired AI-Visualization ( Poster ) > link | Adib Bazgir · Rama Madugula · Yuwen Zhang 🔗 |
-
|
Adapting LLM Agents with Universal Feedback in Communication ( Poster ) > link | Kuan Wang · Yadong Lu · Michael Santacroce · Yeyun Gong · Chao Zhang · Yelong Shen 🔗 |
-
|
Code Agents are State of The Art Software Testers ( Poster ) > link | Niels Mündler · Mark Müller · Jingxuan He · Martin Vechev 🔗 |
-
|
Out-Of-Context Prompting Boosts Fairness and Robustness in Large Language Model Predictions ( Poster ) > link | Leonardo Cotta · Chris Maddison 🔗 |
-
|
Evaluation of RAG Metrics for Question Answering in the Telecom Domain ( Poster ) > link | Sujoy Roychowdhury · Sumit Soman · Ranjani H G · Neeraj Gunda · Vansh Chhabra · Sai Krishna Bala 🔗 |
-
|
Extracting Training Data from Document-Based VQA Models ( Poster ) > link | Francesco Pinto · Nathalie Rauschmayr · Florian Tramer · Phil Torr · Federico Tombari 🔗 |
-
|
Privacy Auditing of Large Language Models ( Poster ) > link | Ashwinee Panda · Xinyu Tang · Milad Nasr · Christopher A. Choquette Choo · Prateek Mittal 🔗 |
-
|
USCILab3D: A Large-scale, Long-term, Semantically Annotated Outdoor Dataset ( Poster ) > link | Kiran Lekkala · Henghui Bao · Peixu Cai · Wei Lim · Chen Liu · Laurent Itti 🔗 |
-
|
Merging Improves Self-Critique Against Jailbreak Attacks ( Poster ) > link | Victor Gallego 🔗 |
-
|
CharED: Character-wise Ensemble Decoding for Large Language Models ( Poster ) > link | Kevin Gu · Eva Tuecke · Dmitriy Katz · Raya Horesh · David Alvarez-Melis · Mikhail Yurochkin 🔗 |
-
|
MJ-Bench: Is Your Multimodal Reward Model Really a Good Judge? ( Poster ) > link |
19 presentersZhaorun Chen · Yichao Du · Zichen Wen · Yiyang Zhou · Chenhang Cui · Zhenzhen Weng · Haoqin Tu · Chaoqi Wang · Zhengwei Tong · Leria HUANG · Canyu Chen · Qinghao Ye · Zhihong Zhu · Yuqing Zhang · Jiawei Zhou · Zhuokai Zhao · Rafael Rafailov · Chelsea Finn · Huaxiu Yao |
-
|
Extrapolative Protein Design through Triplet-based Preference Learning ( Poster ) > link | Mostafa Karimi · Sharmi Banerjee · Tommi Jaakkola · Bella Dubrov · Shang Shang · Ron Benson 🔗 |
-
|
LIFTED: Multimodal Mixture-of-Experts for Clinical Trial Outcome Prediction ( Poster ) > link | Wenhao Zheng · Dongshen Peng · Hongxia Xu · Yun Li · Hongtu Zhu · Tianfan Fu · Huaxiu Yao 🔗 |
-
|
RNR: Teaching Large Language Models to Follow Roles and Rules ( Poster ) > link |
12 presentersKuan Wang · Alexander Bukharin · Haoming Jiang · Qingyu Yin · Zhengyang Wang · Tuo Zhao · Jingbo Shang · Chao Zhang · Bing Yin · Xian Li · Jianshu Chen · Shiyang Li |
-
|
Unveiling CLIP Dynamics: Linear Mode Connectivity and Generalization ( Poster ) > link | Alireza Abdollahpourrostam · Amartya Sanyal · Seyed-Mohsen Moosavi-Dezfooli 🔗 |
-
|
TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model ( Poster ) > link | Defu Cao · Wen Ye · Yan Liu 🔗 |
-
|
Rapid Switching and Multi-Adapter Fusion via Sparse High Rank Adapters ( Poster ) > link |
12 presentersKartikeya Bhardwaj · Nilesh Prasad Pandey · Sweta Priyadarshi · Viswanath Ganapathy · Rafael Esteves · Shreya Kadambi · Shubhankar Borse · Paul Whatmough · Risheek Garrepalli · Marinus van Baalen · Harris Teague · Markus Nagel |
-
|
Split, Unlearn, Merge: Leveraging Data Attributes for More Effective Unlearning in LLMs ( Poster ) > link | Swanand Kadhe · Farhan Ahmed · Dennis Wei · Nathalie Baracaldo · Inkit Padhi 🔗 |
-
|
Efficient Evolutionary Search over Chemical Space with Large Language Models ( Poster ) > link |
14 presentersHaorui Wang · Marta Skreta · Yuanqi Du · Wenhao Gao · Lingkai Kong · Cher-Tian Ser · Felix Strieth-Kalthoff · Chenru Duan · Yuchen Zhuang · Yue Yu · Yanqiao Zhu · Alan Aspuru-Guzik · Kirill Neklyudov · Chao Zhang |
-
|
Evaluating Self-Supervised Foundation Models in Holographic Imaging ( Poster ) > link | Silas Dietler · Yanick Zeder · Elias Graf · Kilian Koch · Andreas Schwendimann · Tommaso Bendinelli 🔗 |
-
|
In Search of Forgotten Domain Generalization ( Poster ) > link | Prasanna Mayilvahanan · Roland S. Zimmermann · Thaddäus Wiedemer · Evgenia Rusak · Attila Juhos · Matthias Bethge · Wieland Brendel 🔗 |
-
|
Calibrated Self-Rewarding Vision Language Models ( Poster ) > link | Yiyang Zhou · Zhiyuan Fan · Dongjie Cheng · Sihan Yang · Zhaorun Chen · Chenhang Cui · xiyao wang · Yun Li · Linjun Zhang · Huaxiu Yao 🔗 |
-
|
MoRe Fine-Tuning with 10x Fewer Parameters ( Poster ) > link | Wenxuan Tan · Nicholas Roberts · Tzu-Heng Huang · Jitian Zhao · John Cooper · Samuel Guo · Chengyu Duan · Frederic Sala 🔗 |
-
|
Leveraging Generative Foundation Models for Domain Generalization ( Poster ) > link | Sobhan Hemati · Mahdi Beitollahi · Amir Estiri · Bassel Al Omari · Xi Chen · Guojun Zhang 🔗 |
-
|
Dual Risk Minimization for Robust Fine-tuning of Zero-Shot Models ( Poster ) > link | Kaican Li · Weiyan XIE · Ricardo Silva · Nevin Zhang 🔗 |
-
|
In-Context Learning Improves Compositional Understanding of Vision-Language Models ( Poster ) > link | Matteo Nulli · Anesa Ibrahimi · Avik Pal · Hoshe Lee · Ivona Najdenkoska 🔗 |
-
|
Combining Pre-trained LoRA Modules Improves Few-shot Adaptation of Foundation Models to New Tasks ( Poster ) > link | Nader Asadi · Mahdi Beitollahi · Yasser Khalil · Yinchuan Li · Guojun Zhang · Xi Chen 🔗 |
-
|
Not Just Pretty Pictures: Toward Interventional Data Augmentation Using Text-to-Image Generators ( Poster ) > link | Jianhao Yuan · Francesco Pinto · Adam Davies · Phil Torr 🔗 |
-
|
DigiRL: Training In-The-Wild Device-Control Agents with Autonomous Reinforcement Learning ( Oral ) > link | Hao Bai · Yifei Zhou · Mert Cemri · Jiayi Pan · Alane Suhr · Sergey Levine · Aviral Kumar 🔗 |
-
|
InstructBooth: Instruction-following Personalized Text-to-Image Generation ( Poster ) > link | Daewon Chae · Nokyung Park · Jinkyu Kim · Kimin Lee 🔗 |
-
|
Finding NeMo: Localizing Neurons Responsible For Memorization in Diffusion Models ( Poster ) > link | Lukas Struppek · Dominik Hintersdorf · Kristian Kersting · Adam Dziedzic · Franziska Boenisch 🔗 |
-
|
PanSAM: Zero-Shot, Prompt-Free Pancreas Segmentation in CT Imaging ( Poster ) > link | Abolfazl Malekahmadi · Mohammad T. Teimuri Jervakani · Armin Behnamnia · Zahra Dehghanian · Amir Shamloo · Hamid R Rabiee 🔗 |
-
|
Geometric Median Matching for Robust Data Pruning ( Poster ) > link | Anish Acharya · Inderjit Dhillon · Sujay Sanghavi 🔗 |
-
|
Data Mixture Inference: What do BPE Tokenizers Reveal about their Training Data? ( Poster ) > link | Jonathan Hayase · Alisa Liu · Yejin Choi · Sewoong Oh · Noah Smith 🔗 |
-
|
Parameter-Efficient Quantized Mixture-of-Experts Meets Vision-Language Instruction Tuning for Semiconductor Electron Micrograph Analysis ( Oral ) > link | Sagar Srinivas Sakhinana · Sannidhi Geethan · Chidaksh Ravuru · Venkataramana Runkana 🔗 |
-
|
Generalization vs. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data ( Poster ) > link | Antonis Antoniades · Xinyi Wang · Yanai Elazar · Alfonso Amayuelas · Alon Albalak · Kexun Zhang · William Wang 🔗 |
-
|
VFA: Vision Frequency Analysis of Foundation Models and Human ( Poster ) > link | Javad Bayazi · Md Rifat Arefin · Jocelyn Faubert · Irina Rish 🔗 |