Oral
|
Wed 1:45
|
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
JIAN XU · Delu Zeng · John Paisley
|
|
Poster
|
Wed 2:30
|
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
JIAN XU · Delu Zeng · John Paisley
|
|
Poster
|
Wed 2:30
|
Total Variation Floodgate for Variable Importance Inference in Classification
Wenshuo Wang · Lucas Janson · Lihua Lei · Aaditya Ramdas
|
|
Poster
|
Tue 4:30
|
A Differentiable Partially Observable Generalized Linear Model with Forward-Backward Message Passing
Chengrui Li · Weihan Li · Yule Wang · Anqi Wu
|
|
Poster
|
Thu 2:30
|
Differentiable Annealed Importance Sampling Minimizes The Jensen-Shannon Divergence Between Initial and Target Distribution
Johannes Zenn · Robert Bamler
|
|
Poster
|
Tue 4:30
|
Kernel Semi-Implicit Variational Inference
Ziheng Cheng · Longlin Yu · Tianyu Xie · Shiyue Zhang · Cheng Zhang
|
|
Poster
|
Thu 2:30
|
Online Variational Sequential Monte Carlo
Alessandro Mastrototaro · Jimmy Olsson
|
|
Workshop
|
|
Stein Variational Newton Neural Network Ensembles
Klemens Flöge · Muhammad Abdul Moeed · Vincent Fortuin
|
|
Workshop
|
|
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin · Robert Bamler
|
|
Workshop
|
|
Learning high-dimensional mixed models via amortized variational inference
Priscilla Ong · Manuel Haussmann · Harri Lähdesmäki
|
|
Poster
|
Tue 4:30
|
Efficient Mixture Learning in Black-Box Variational Inference
Alexandra Hotti · Oskar Kviman · Ricky Molén · Víctor Elvira · Jens Lagergren
|
|
Workshop
|
|
EigenVI: score-based variational inference with orthogonal function expansions
Diana Cai · Chirag Modi · Charles Margossian · Robert Gower · David Blei · Lawrence Saul
|
|