Skip to yearly menu bar Skip to main content


Poster

A Differentiable Partially Observable Generalized Linear Model with Forward-Backward Message Passing

Chengrui Li · Weihan Li · Yule Wang · Anqi Wu


Abstract:

The partially observable generalized linear model (POGLM) is a powerful tool for understanding neural connectivities under the assumption of existing hidden neurons. With spike trains only recorded from visible neurons, existing works use variational inference to learn POGLM meanwhile presenting the difficulty of learning this latent variable model. There are two main issues: (1) the sampled Poisson hidden spike count hinders the use of the pathwise gradient estimator in VI; and (2) the existing design of the variational model is neither expressive nor time-efficient, which further affects the performance. For (1), we propose a new differentiable POGLM, which enables the pathwise gradient estimator, better than the score function gradient estimator used in existing works. For (2), we propose the forward-backward message-passing sampling scheme for the variational model. Comprehensive experiments show that our differentiable POGLMs with our forward-backward message passing produce a better performance on one synthetic and two real-world datasets. Furthermore, our new method yields more interpretable parameters, underscoring its significance in neuroscience.

Live content is unavailable. Log in and register to view live content