Abstract:
This work introduces a Byzantine resilient solution for learning low-dimensional linear representation. Our main contribution is the development of a provably Byzantine-resilient AltGDmin algorithm for solving this problem in a federated setting. We argue that our solution is sample-efficient, fast, and communicationefficient. In solving this problem, we also introduce a novel secure solution to the federated subspace learning meta-problem that occurs in many different applications.
Chat is not available.