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Multi-task representation learning/Few-shot Learning

First consider the centralized setting:

• Suppose that there are q source tasks.

• Each task k ∈ [q] associated with a distribution over the
input-output space X × Y, where X ⊆ ℜn and Y ⊆ ℜ.

• Each task observes m < n samples from X × Y.
• The aim is to learn prediction functions for all tasks simultaneously,

leveraging a shared representation φ : X → Z that maps inputs to a
Low-Dimensional feature space Z ⊆ ℜr (r < m).

• Few-shot learning refers to learning in data-scarce environment
(m < n).



Linear Model

Let the representation function class be Low-Dimensional Linear
Representations i.e., {x 7→ UTx|U ∈ ℜn×r} 1.

Ym×q = [(y1)m×1, ..., (yq)m×1] = [(X1)m×n(θ
∗
1)n×1, ..., (Xq)m×n(θ

∗
q)n×1]

= [(X1)m×nU
∗
n×r (b

∗
1)r×1, ..., (Xq)m×nU

∗
n×r (b

∗
q)r×1]

• The matrices Xks are independent and identically distributed (i.i.d.)
over k .

• We assume that each Xk is a “random Gaussian” matrix, i.e., entry
of it is i.i.d. standard Gaussian.

• The goal is to find the optimal representation φ∗, represented by U∗.

• b∗k is the new true linear predictor for all tasks k ∈ [q].

1Du et al., Few-shot learning via learning the representation, provably



Solving this problem requires solving

min
Ũ∈ℜn×r

B̃∈ℜr×q

q∑
k=1

∥∥∥yk − XkŨb̃k

∥∥∥2 (1)

In interesting parallel works AltGDmin2 and FedRep 3, a fast and
communication-efficient GD-based algorithm was introduced for solving the
mathematical problem given in (1).

2Nayer & Vaswani, Fast and sample-efficient federated low rank matrix recovery
from column-wise linear and quadratic projections

3Collins et al., Exploiting Shared Representations for Personalized Federated
Learning



AltGDmin 4 and FedRep 5

• Use sample splitting: new indep set of samples for each update

• Factorize Θ = UB, initialize U by spectral initialization (think of it as
Federated PCA),

• alternate b/w minimization over B and (projected) GD for U

• projected GD for U

U+ ← QR(U− η∇U f (U,B))

• AltGDmin and FedRep are two parallel works which are functionally
equivalent.

• AltGDmin uses a better initialization than FedRep and hence also has a
better sample complexity by a factor of r .

4Nayer & Vaswani, Fast and sample-efficient federated low rank matrix recovery
from column-wise linear and quadratic projections

5Collins et al., Exploiting Shared Representations for Personalized Federated
Learning



• In the federated setting, we assume that there are a total of L
nodes. Each observes a different disjoint subset (m̃ = m/L) of rows
of Y. At most τL nodes can be Byzantine with τ < 0.4. The nodes
can only communicate with the center.

Byzantine attack is a “model update poisoning” attack where

1. It knows the full state of the center and every node (data and
algorithm, including all algorithm parameters).

2. Different Byzantine adversaries can also collude.

3. They cannot modify the outputs of the other (non-Byzantine) nodes
or of the center, or delay communication.

Byzantine nodes can thus design the worst possible attacks at each
algorithm iteration.



Algorithm 1 Byz-Fed-AltGDmin-Learn: Complete algorithm

Nodes ℓ = 1, ..., L

Compute (U0)ℓ which is the matrix of top r left singular vectors of (Θ̂0)ℓ :=∑q
k=1(Xk)ℓ

⊤((yk)ℓ)trunce
⊤
k

Key Idea 1: Subspace Median on (U0)ℓ’s
Central Server: Subspace Median
Orthonormalize: Uℓ ← QR((Uℓ)0), ℓ ∈ [L]
Compute PUℓ ← UℓU

⊤
ℓ , ℓ ∈ [L]

Compute GM: Pgm ← GeometricMedian{PUℓ , ℓ ∈ [L]}
Find ℓbest = argminℓ ∥PUℓ − Pgm∥F
Output U0 = Uout = Uℓbest

for t = 1 to T do
Nodes ℓ = 1, ..., L
Set U← Ut−1

With U fixed, Least-Squares step over (bk)ℓ for all k
With B fixed, Gradient of f (U,B) w.r.t. U: ∇fℓ
Central Server
Key Idea 2: Calculate GM of ∇f ′ℓ s
∇f GM ← GeometricMedian(∇fℓ, ℓ = 1, 2, . . . L).
Compute U+ ← QR(Ut−1 − η

ρm̃
∇f GM)

return Set Ut ← U+. Push Ut to nodes.
end for



Multi-task representation learning/Few-shot Learning

Theorem
(Byz-Fed-AltGDmin-Learn: Complete guarantee) Assume
maxk ∥b∗k∥ ≤ µ

√
r/qσ1(Θ∗) for a constant µ ≥ 1. If

m

L
q ≥ Cκ4µ2(n + q)r2 log(1/ϵ)

then, w.p. at least 1− TLn−10,

SDF (U
∗,UT ) ≤ ϵ

and ∥(θk)ℓ − θ∗k∥ ≤ ϵ∥θ∗k∥ for all k ∈ [q], ℓ ∈ [L]. The communication
cost per node is order nr log( nϵ ). The computational cost at any node is

order nqr log( nϵ ) while that at the center it is n2L log3(Lr/ϵ).



In solving this problem, we also introduce a novel secure solution to the
federated subspace learning meta-problem that occurs in many different
applications.
Estimate principal subspace span(U∗) of an unknown n × n symmetric
matrix Φ∗ in a federated setting, while being resilient to Byzantine
Attacks.

Dn×q = [(D1)n×q1 , ..., (Dℓ)n×qℓ , ..., (DL)n×qL ]

1. U∗ is an n × r matrix denoting the top r eigenvectors of Φ∗

2. Federated Setting: Each node ℓ ∈ [L] observes a data matrix Dℓ,
that allows it
• To estimate Φ∗ as Φℓ = DℓD

⊤
ℓ /qℓ

• To estimate U∗ as Uℓ, which are the top r eigenvectors of Φℓ



Algorithm: Subspace Median

Algorithm 2 Subspace Median

Input Subspace estimates Ûℓ, ℓ ∈ [L].
Parameters Tgm

1: Orthonormalize: Uℓ ← QR(Ûℓ), ℓ ∈ [L]

2: Compute PUℓ
← UℓU⊤

ℓ , ℓ ∈ [L]

3: Compute GM: Pgm ← GM{PUℓ
, ℓ ∈ [L]}

4: Find ℓbest = argminℓ ∥PUℓ
− Pgm∥F

5: Output Uout = Uℓbest



Subspace-Median
Lemma
Suppose GM can be computed exactly and at least 60% Uℓ’s satisfy

SDF (U
∗,Uℓ) ≤ δ

then,
SDF (U

∗,Uout) ≤ 23δ

• Including probability argument, If

Pr (SDF (U
∗,Uℓ) ≤ δ) ≥ 1− p

then,

Pr (SDF (U
∗,Uout) ≤ 23δ) ≥ 1− exp(−Lψ(0.4− τ, p))

ψ(a, b) := (1− a) log
1− a

1− b
+ a log

a

b
• If GM is approximated using using a linear time algorithm6 then,

Pr (SDF (U
∗,Uout) ≤ 23δ) ≥ 1− c0 − exp(−Lψ(0.4− τ, p))

6Cohen et al., Geometric median in nearly linear time



Resilient Federated PCA via Subspace Median of Means

In order to implement the “mean” step, we combine samples from ρ = L
L̃

(L̃ < L) nodes by implementing L̃ different federated power methods.

Corollary
Assume that the set of Byzantine nodes remains fixed for all iterations
and the size of this set is at most τL with τ < 0.4L̃/L. If

q

L
= q̃ ≥ CK 4σ

∗
1
2

∆2

nr

ϵ2
· L̃
L

then, then, w.p. at least 1− c0 − exp(−Lψ(0.4− τ, 2 exp(−n) + n−10)),

SDF (Uout ,U
∗) ≤ ϵ



Comparisons for solving the resilient federated PCA
problem

Methods→ SVD-ResCovEst ResPowMeth SubsMed (Proposed) PowMeth, no attack

Sample Comp for PCA n2L
ϵ2 max

(
n2r2, n

ϵ2

)
· L nrL

ϵ2
nr
ϵ2

(lower bound on q)

Communic Cost n2 nr
σ∗
r

∆ log( nϵ ) nr nr
σ∗
r

∆ log( nϵ )

Compute Cost - node n2qℓ nqℓr
σ∗
r

∆ log( nϵ ) nqℓr
σ∗
r

∆ log( nϵ ) nqℓr
σ∗
r

∆ log( nϵ )

Compute Cost - center n2L log3
(
Ln
ϵ

)
nrL

σ∗
r

∆ log( nϵ ) log
3
(
Ln
ϵ

)
n2L log3

(
Ln
ϵ

)
nrL

σ∗
r

∆ log( nϵ )

• SVD-Resilient Covariance Estimation (SVD-ResCovEst): SVD on GM of Covariance matrices7

• Resilient Power Method (ResPowMeth): GM based modification of the power method8

• Baseline Power Method for a no-attack setting (PowMeth)

7Minsker, Geometric median and robust estimation in Banach spaces
8Hardt and Price, The noisy power method: A meta algorithm with applications
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