Byzantine Resilient and Fast Federated Few-Shot Learning

Ankit Pratap Singh and Namrata Vaswani

Iowa State University

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Multi-task representation learning/Few-shot Learning

First consider the centralized setting:

- Suppose that there are *q* source tasks.
- Each task k ∈ [q] associated with a distribution over the input-output space X × Y, where X ⊆ ℜⁿ and Y ⊆ ℜ.
- Each task observes m < n samples from $\mathcal{X} \times \mathcal{Y}$.
- The aim is to learn prediction functions for all tasks simultaneously, leveraging a shared representation φ : X → Z that maps inputs to a Low-Dimensional feature space Z ⊆ ℜ^r (r < m).

 Few-shot learning refers to learning in data-scarce environment (m < n).

Linear Model

Let the representation function class be Low-Dimensional Linear Representations i.e., $\{\mathbf{x} \mapsto \mathbf{U}^T \mathbf{x} | \mathbf{U} \in \Re^{n \times r}\}^{-1}$.

$$\begin{aligned} \mathbf{Y}_{m \times q} &= [(\mathbf{y}_1)_{m \times 1}, ..., (\mathbf{y}_q)_{m \times 1}] = [(\mathbf{X}_1)_{m \times n} (\theta_1^*)_{n \times 1}, ..., (\mathbf{X}_q)_{m \times n} (\theta_q^*)_{n \times 1}] \\ &= [(\mathbf{X}_1)_{m \times n} \mathbf{U}_{n \times r}^* (\mathbf{b}_1^*)_{r \times 1}, ..., (\mathbf{X}_q)_{m \times n} \mathbf{U}_{n \times r}^* (\mathbf{b}_q^*)_{r \times 1}] \end{aligned}$$

- The matrices X_ks are independent and identically distributed (i.i.d.) over k.
- We assume that each **X**_k is a "random Gaussian" matrix, i.e., entry of it is i.i.d. standard Gaussian.
- The goal is to find the optimal representation φ^{*}, represented by U^{*}.
- \mathbf{b}_k^* is the new true linear predictor for all tasks $k \in [q]$.

¹Du et al., Few-shot learning via learning the representation, provably $\rightarrow \langle \Xi \rangle = 0 \land \langle \bullet \rangle$

Solving this problem requires solving

$$\min_{\substack{\tilde{\mathbf{U}}\in\mathfrak{R}^{n\times r}\\\tilde{\mathbf{B}}\in\mathfrak{R}^{r\times q}}}\sum_{k=1}^{q}\left\|\mathbf{y}_{k}-\mathbf{X}_{k}\tilde{\mathbf{U}}\tilde{\mathbf{b}}_{k}\right\|^{2}$$
(1)

In interesting parallel works AltGDmin² and FedRep ³, a fast and communication-efficient GD-based algorithm was introduced for solving the mathematical problem given in (1).

 $^{^2 \}rm Nayer$ & Vaswani, Fast and sample-efficient federated low rank matrix recovery from column-wise linear and quadratic projections

AltGDmin⁴ and FedRep⁵

- Use sample splitting: new indep set of samples for each update
- Factorize $\Theta = UB$, initialize U by spectral initialization (think of it as Federated PCA),
- alternate b/w minimization over **B** and (projected) GD for **U**
- projected GD for U

$$\mathbf{U}^+ \leftarrow \operatorname{QR}(\mathbf{U} - \eta \nabla_U f(\mathbf{U}, \mathbf{B}))$$

- AltGDmin and FedRep are two parallel works which are functionally equivalent.
- AltGDmin uses a better initialization than FedRep and hence also has a better sample complexity by a factor of r.

⁴Nayer & Vaswani, Fast and sample-efficient federated low rank matrix recovery from column-wise linear and quadratic projections

In the federated setting, we assume that there are a total of L nodes. Each observes a different disjoint subset (m̃ = m/L) of rows of Y. At most τL nodes can be Byzantine with τ < 0.4. The nodes can only communicate with the center.

Byzantine attack is a "model update poisoning" attack where

- 1. It knows the full state of the center and every node (data and algorithm, including all algorithm parameters).
- 2. Different Byzantine adversaries can also collude.
- 3. They cannot modify the outputs of the other (non-Byzantine) nodes or of the center, or delay communication.

Byzantine nodes can thus design the worst possible attacks at each algorithm iteration.

Algorithm 1 Byz-Fed-AltGDmin-Learn: Complete algorithm

Nodes $\ell = 1, ..., L$ Compute $(\mathbf{U}_0)_{\ell}$ which is the matrix of top r left singular vectors of $(\hat{\mathbf{\Theta}}_0)_{\ell} :=$ $\sum_{k=1}^{q} (\mathbf{X}_k)_{\ell}^{\top} ((\mathbf{y}_k)_{\ell})_{\text{trunc}} \mathbf{e}_k^{\top}$ Key Idea 1: Subspace Median on $(U_0)_{\ell}$'s Central Server: Subspace Median Orthonormalize: $\mathbf{U}_{\ell} \leftarrow QR((U_{\ell})_0), \ \ell \in [L]$ Compute $\mathcal{P}_{\mathbf{U}_{\ell}} \leftarrow \mathbf{U}_{\ell} \mathbf{U}_{\ell}^{\top}, \ \ell \in [L]$ Compute GM: $\mathcal{P}_{gm} \leftarrow \text{GeometricMedian}\{\mathcal{P}_{U_{\ell}}, \ell \in [L]\}$ Find $\ell_{best} = \arg \min_{\ell} \|\mathcal{P}_{\mathbf{U}_{\ell}} - \mathcal{P}_{gm}\|_{F}$ Output $\mathbf{U}_0 = \mathbf{U}_{out} = \mathbf{U}_{\ell_{hort}}$ for t = 1 to T do Nodes $\ell = 1, \dots, L$ Set $\mathbf{U} \leftarrow \mathbf{U}_{t-1}$ With **U** fixed, Least-Squares step over $(\mathbf{b}_k)_{\ell}$ for all k With **B** fixed, Gradient of $f(\mathbf{U}, \mathbf{B})$ w.r.t. **U**: ∇f_{ℓ} **Central Server Key Idea 2:** Calculate GM of $\nabla f'_{\ell}$ s $\overline{\nabla f^{GM}} \leftarrow \text{GeometricMedian}(\nabla f_{\ell}, \ell = 1, 2, \dots L).$ Compute $\mathbf{U}^+ \leftarrow QR(\mathbf{U}_{t-1} - \frac{\eta}{2\pi}\nabla f^{GM})$ **return** Set $\mathbf{U}_t \leftarrow \mathbf{U}^+$. Push \mathbf{U}_t to nodes. end for

Multi-task representation learning/Few-shot Learning

Theorem

(Byz-Fed-AltGDmin-Learn: Complete guarantee) Assume $\max_{k} \|\mathbf{b}_{k}^{*}\| \leq \mu \sqrt{r/q} \sigma_{1}(\mathbf{\Theta}^{*})$ for a constant $\mu \geq 1$. If

$$rac{m}{L} q \geq C \kappa^4 \mu^2 (n+q) r^2 \log(1/\epsilon)$$

then, w.p. at least $1 - TLn^{-10}$,

$$\mathsf{SD}_F(\mathsf{U}^*,\mathsf{U}_T) \leq \epsilon$$

and $\|(\theta_k)_{\ell} - \theta_k^*\| \le \epsilon \|\theta_k^*\|$ for all $k \in [q]$, $\ell \in [L]$. The communication cost per node is order nr $\log(\frac{n}{\epsilon})$. The computational cost at any node is order nqr $\log(\frac{n}{\epsilon})$ while that at the center it is $n^2 L \log^3(Lr/\epsilon)$.

In solving this problem, we also introduce a novel secure solution to the federated subspace learning meta-problem that occurs in many different applications.

Estimate principal subspace $span(\mathbf{U}^*)$ of an unknown $n \times n$ symmetric matrix $\mathbf{\Phi}^*$ in a federated setting, while being resilient to **Byzantine Attacks**.

$$\mathbf{D}_{n\times q} = [(\mathbf{D}_1)_{n\times q_1}, ..., (\mathbf{D}_\ell)_{n\times q_\ell}, ..., (\mathbf{D}_L)_{n\times q_L}]$$

- 1. \mathbf{U}^* is an $n \times r$ matrix denoting the top r eigenvectors of $\mathbf{\Phi}^*$
- 2. Federated Setting: Each node $\ell \in [L]$ observes a data matrix D_{ℓ} , that allows it
 - To estimate $\mathbf{\Phi}^*$ as $\mathbf{\Phi}_\ell = \mathbf{D}_\ell \mathbf{D}_\ell^\top / q_\ell$
 - To estimate \mathbf{U}^* as \mathbf{U}_ℓ , which are the top r eigenvectors of $\mathbf{\Phi}_\ell$

Algorithm: Subspace Median

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Algorithm 2 Subspace Median

Input Subspace estimates $\hat{\mathbf{U}}_{\ell}$, $\ell \in [L]$. Parameters \mathcal{T}_{gm}

- 1: Orthonormalize: $\mathbf{U}_{\ell} \leftarrow QR(\hat{\mathbf{U}}_{\ell}), \ \ell \in [L]$
- 2: Compute $\mathcal{P}_{\mathbf{U}_{\ell}} \leftarrow \mathbf{U}_{\ell} \mathbf{U}_{\ell}^{\top}$, $\ell \in [L]$
- 3: Compute GM: $\mathcal{P}_{gm} \leftarrow GM\{\mathcal{P}_{U_{\ell}}, \ell \in [L]\}$
- 4: Find $\ell_{best} = \arg \min_{\ell} \|\mathcal{P}_{\mathbf{U}_{\ell}} \mathcal{P}_{gm}\|_{F}$
- 5: Output $\mathbf{U}_{out} = \mathbf{U}_{\ell_{best}}$

Subspace-Median

Lemma

Suppose GM can be computed exactly and at least 60% $\boldsymbol{\mathsf{U}}_\ell$'s satisfy

 $\mathsf{SD}_F(\mathsf{U}^*,\mathsf{U}_\ell) \leq \delta$

then,

$$\mathsf{SD}_F(\mathsf{U}^*,\mathsf{U}_{out})\leq 23\delta$$

Including probability argument, If

$$\mathsf{Pr}\left(\mathsf{SD}_{\mathcal{F}}(\mathsf{U}^*,\mathsf{U}_\ell)\leq\delta
ight)\geq 1-p$$

then,

$$\Pr\left(\mathsf{SD}_F(\mathsf{U}^*,\mathsf{U}_{out}) \le 23\delta\right) \ge 1 - \exp(-L\psi(0.4 - \tau,p))$$
$$\psi(a,b) := (1-a)\log\frac{1-a}{1-b} + a\log\frac{a}{b}$$

• If GM is approximated using using a linear time algorithm⁶ then, $\Pr(\mathsf{SD}_F(\mathsf{U}^*,\mathsf{U}_{out}) \leq 23\delta) \geq 1 - \mathbf{c_0} - \exp(-L\psi(0.4 - \tau, p))$

⁶Cohen et al., Geometric median in nearly linear time $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Resilient Federated PCA via Subspace Median of Means

In order to implement the "mean" step, we combine samples from $\rho = \frac{L}{\tilde{L}}$ ($\tilde{L} < L$) nodes by implementing \tilde{L} different federated power methods.

Corollary

Assume that the set of Byzantine nodes remains fixed for all iterations and the size of this set is at most τL with $\tau < 0.4\tilde{L}/L$. If

$$rac{q}{L} = \widetilde{q} \geq C \mathcal{K}^4 rac{{\sigma_1^*}^2}{\Delta^2} rac{nr}{\epsilon^2} \cdot rac{\widetilde{L}}{L}$$

then, then, w.p. at least $1 - c_0 - \exp(-L\psi(0.4 - \tau, 2\exp(-n) + n^{-10}))$,

$$\mathsf{SD}_F(\mathsf{U}_{out},\mathsf{U}^*) \leq \epsilon$$

Comparisons for solving the resilient federated PCA problem

$Methods \rightarrow$	SVD-ResCovEst	ResPowMeth	SubsMed (Proposed)	PowMeth, no attack
Sample Comp for PCA	$\frac{n^2 L}{\epsilon^2}$	$\max\left(n^2r^2, \frac{n}{c^2}\right) \cdot L$	nrL	$\frac{nr}{c^2}$
(lower bound on q)				
Communic Cost	n ²	$nr \frac{\sigma_r^*}{\Delta} \log(\frac{n}{\epsilon})$	nr	$nr \frac{\sigma_{\ell}^*}{\Delta} \log(\frac{n}{\epsilon})$
Compute Cost - node	n^2q_ℓ	$nq_{\ell}r\frac{\sigma_{\ell}^{*}}{\Lambda}\log(\frac{n}{\ell})$	$nq_{\ell}r \frac{\sigma_{\ell}^*}{\Lambda} \log(\frac{n}{\epsilon})$	$nq_{\ell}r\frac{\sigma_{\ell}^{*}}{\Lambda}\log(\frac{n}{\ell})$
Compute Cost - center	$n^2 L \log^3 \left(\frac{Ln}{\epsilon}\right)$	$nrL\frac{\sigma_{\ell}^{*}}{\Lambda}\log(\frac{n}{\epsilon})\log^{3}(\frac{Ln}{\epsilon})$	$n^2 L \log^3 \left(\frac{Ln}{\epsilon}\right)$	$nrL\frac{\sigma_{\ell}^{*}}{\Lambda}\log(\frac{n}{\ell})$

- SVD-Resilient Covariance Estimation (SVD-ResCovEst): SVD on GM of Covariance matrices⁷
- Resilient Power Method (ResPowMeth): GM based modification of the power method⁸
- Baseline Power Method for a no-attack setting (PowMeth)

⁷Minsker, Geometric median and robust estimation in Banach spaces ⁸Hardt and Price, The noisy power method: A meta algorithm with applications

Thank You!