Byzantine Resilient and Fast Federated Few-Shot Learning

Ankit Pratap Singh and Namrata Vaswani

Iowa State University

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Multi-task representation learning/Few-shot Learning

First consider the centralized setting:

- Suppose that there are q source tasks.
- Each task $k \in [q]$ associated with a distribution over the input-output space $\mathcal{X}\times\mathcal{Y}$, where $\mathcal{X}\subseteq\real^n$ and $\mathcal{Y}\subseteq\real$.
- Each task observes $m < n$ samples from $\mathcal{X} \times \mathcal{Y}$.
- The aim is to learn prediction functions for all tasks simultaneously, leveraging a shared representation $\varphi : \mathcal{X} \to \mathcal{Z}$ that maps inputs to a Low-Dimensional feature space $\mathcal{Z} \subseteq \Re^r$ $(r < m)$.

KELK KØLK VELKEN EL 1990

• Few-shot learning refers to learning in data-scarce environment $(m < n)$.

Linear Model

Let the representation function class be Low-Dimensional Linear Representations i.e., $\{ \mathbf{x} \mapsto \mathbf{U}^T \mathbf{x} | \mathbf{U} \in \Re^{n \times r} \}$ 1.

$$
\mathbf{Y}_{m \times q} = [(\mathbf{y}_1)_{m \times 1}, ..., (\mathbf{y}_q)_{m \times 1}] = [(\mathbf{X}_1)_{m \times n}(\theta_1^*)_{n \times 1}, ..., (\mathbf{X}_q)_{m \times n}(\theta_q^*)_{n \times 1}]
$$

= [(\mathbf{X}_1)_{m \times n} \mathbf{U}_{n \times r}^* (\mathbf{b}_1^*)_{r \times 1}, ..., (\mathbf{X}_q)_{m \times n} \mathbf{U}_{n \times r}^* (\mathbf{b}_q^*)_{r \times 1}]

- The matrices X_k s are independent and identically distributed (i.i.d.) over k.
- We assume that each X_k is a "random Gaussian" matrix, i.e., entry of it is i.i.d. standard Gaussian.
- The goal is to find the optimal representation φ^* , represented by U^* .
- \mathbf{b}_{k}^{*} is the new true linear predictor for all tasks $k \in [q].$

¹Du et al., Few-shot learning via learning the represen[tat](#page-1-0)i[on,](#page-3-0) [p](#page-1-0)[ro](#page-2-0)[va](#page-3-0)[bly](#page-0-0) $\rightarrow + + +$

Solving this problem requires solving

$$
\min_{\substack{\tilde{\mathbf{U}} \in \mathbb{R}^{n \times r} \\ \tilde{\mathbf{B}} \in \mathbb{R}^{r \times q}}}\sum_{k=1}^{q} \left\|\mathbf{y}_{k}-\mathbf{X}_{k}\tilde{\mathbf{U}}\tilde{\mathbf{b}}_{k}\right\|^{2}
$$
(1)

In interesting parallel works $\mathsf{AltGDmin}^2$ and FedRep^3 , a fast and communication-efficient GD-based algorithm was introduced for solving the mathematical problem given in [\(1\)](#page-3-1).

²Nayer & Vaswani, Fast and sample-efficient federated low rank matrix recovery from column-wise linear and quadratic projections

³Collins et al., Exploiting Shared Representations for Personalized Federated **KORK ERREST ADAMS** Learning

AltGDmin⁴ and FedRep⁵

- Use sample splitting: new indep set of samples for each update
- Factorize $\Theta = \text{UB}$, initialize U by spectral initialization (think of it as Federated PCA),
- alternate b/w minimization over **B** and (projected) GD for **U**
- projected GD for U

$$
\textbf{U}^+ \leftarrow \text{QR}(\textbf{U} - \eta \nabla_U f(\textbf{U}, \textbf{B}))
$$

- AltGDmin and FedRep are two parallel works which are functionally equivalent.
- AltGDmin uses a better initialization than FedRep and hence also has a better sample complexity by a factor of r.

⁴Nayer & Vaswani, Fast and sample-efficient federated low rank matrix recovery from column-wise linear and quadratic projections

⁵Collins et al., Exploiting Shared Representations for Personalized Federated Learning**KORKA SERKER YOUR**

• In the federated setting, we assume that there are a total of L nodes. Each observes a different disjoint subset ($\widetilde{m} = m/L$) of rows of **Y**. At most τL nodes can be Byzantine with $\tau < 0.4$. The nodes can only communicate with the center.

Byzantine attack is a "model update poisoning" attack where

- 1. It knows the full state of the center and every node (data and algorithm, including all algorithm parameters).
- 2. Different Byzantine adversaries can also collude.
- 3. They cannot modify the outputs of the other (non-Byzantine) nodes or of the center, or delay communication.

KORKARYKERKER POLO

Byzantine nodes can thus design the worst possible attacks at each algorithm iteration.

Algorithm 1 Byz-Fed-AltGDmin-Learn: Complete algorithm

Nodes $\ell = 1, ..., L$ Compute $(\mathbf{U}_0)_\ell$ which is the matrix of top r left singular vectors of $(\hat{\mathbf{\Theta}}_0)_\ell := \sum_{k=1}^q (\mathbf{X}_k)_\ell^\top ((\mathbf{y}_k)_\ell)_{\text{trunc}} \mathbf{e}_k^\top$ $_{k=1}^{q}(\mathsf{X}_{k})_{\ell}$ ^T $((\mathsf{y}_{k})_{\ell})_{\mathrm{trunc}}$ e $_{k}^{\top}$ Key Idea 1: Subspace Median on $(U_0)_\ell$'s Central Server: Subspace Median Orthonormalize: $\mathbf{U}_{\ell} \leftarrow QR((U_{\ell})_0)$, $\ell \in [L]$ Compute $\mathcal{P}_{\mathsf{U}_\ell} \leftarrow \mathsf{U}_\ell \mathsf{U}_\ell^\top$, $\ell \in [L]$ Compute GM: $\mathcal{P}_{\mathsf{gm}} \leftarrow \text{GeometricMedian}\{\mathcal{P}_{\mathsf{U}_{\ell}}, \ell \in [\mathsf{L}]\}$ Find $\ell_{best} = \arg \min_{\ell} ||\mathcal{P}_{\mathsf{U}_{\ell}} - \mathcal{P}_{\mathsf{gm}}||_{\mathsf{F}}$ Output $U_0 = U_{out} = U_{\ell_{b}}$ for $t = 1$ to T do Nodes $\ell = 1, ..., L$ $\overline{\mathsf{Set}}$ $\mathsf{U} \leftarrow \mathsf{U}_{t-1}$ With **U** fixed, Least-Squares step over $(\mathbf{b}_k)_\ell$ for all k With **B** fixed, Gradient of $f(\mathbf{U}, \mathbf{B})$ w.r.t. \mathbf{U} : ∇f_{ℓ} Central Server Key Idea 2: Calculate GM of $\nabla f'_\ell$ s $\nabla f^{GM} \leftarrow$ GeometricMedian($\nabla f_{\ell}, \ell = 1, 2, \ldots L$). Compute $\mathbf{U}^+ \leftarrow QR(\mathbf{U}_{t-1} - \frac{\eta}{\rho \widetilde{m}} \nabla f^{GM})$ return Set $\mathbf{U}_t \leftarrow \mathbf{U}^+$. Push \mathbf{U}_t to nodes. end for

Multi-task representation learning/Few-shot Learning

Theorem

(Byz-Fed-AltGDmin-Learn: Complete guarantee) Assume $\max_k \|\mathbf{b}_k^*\| \leq \mu \sqrt{r/q} \sigma_1(\mathbf{\Theta}^*)$ for a constant $\mu \geq 1$. If

$$
\frac{m}{L}q \geq C\kappa^4\mu^2(n+q)r^2\log(1/\epsilon)
$$

then, w.p. at least $1 - TLn^{-10}$,

$$
\text{SD}_F(\textbf{U}^*, \textbf{U}_\mathcal{T}) \leq \epsilon
$$

and $\|(\theta_k)_\ell - \theta_k^*\| \leq \epsilon \|\theta_k^*\|$ for all $k \in [q], \ell \in [L]$. The communication cost per node is order nr $\log(\frac{n}{\epsilon})$. The computational cost at any node is order nqr $\log(\frac{n}{\epsilon})$ while that at the center it is $n^2 L \log^3(Lr/\epsilon)$.

KORKAR KERKER SAGA

In solving this problem, we also introduce a novel secure solution to the federated subspace learning meta-problem that occurs in many different applications.

Estimate principal subspace span (U^*) of an unknown $n \times n$ symmetric matrix Φ^* in a federated setting, while being resilient to Byzantine **Attacks**

$$
\mathbf{D}_{n\times q}=[(\mathbf{D}_1)_{n\times q_1},...,(\mathbf{D}_{\ell})_{n\times q_{\ell}},...,(\mathbf{D}_L)_{n\times q_L}]
$$

- 1. U^{*} is an $n \times r$ matrix denoting the top r eigenvectors of Φ^*
- 2. **Federated Setting:** Each node $\ell \in [L]$ observes a data matrix \mathbf{D}_{ℓ} , that allows it
	- $\bullet\,$ To estimate ${\bf\Phi}^*$ as ${\bf\Phi}_\ell = {\bf D}_\ell {\bf D}_\ell^\top/q_\ell$
	- To estimate U^* as U_ℓ , which are the top r eigenvectors of $\mathsf{\Phi}_\ell$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Algorithm: Subspace Median

KORKARYKERKER POLO

Algorithm 2 Subspace Median

Input Subspace estimates $\hat{\mathbf{U}}_{\ell}, \, \ell \in [L].$ Parameters T_{cm}

- 1: Orthonormalize: $\bm{\mathsf{U}}_\ell \leftarrow \mathsf{Q}\mathsf{R}(\hat{\bm{\mathsf{U}}}_\ell)$, $\ell \in [L]$
- 2: Compute $\mathcal{P}_{\mathsf{U}_{\ell}} \leftarrow \mathsf{U}_{\ell} \mathsf{U}_{\ell}^{\top}$, $\ell \in [L]$
- 3: Compute GM: $\mathcal{P}_{\mathsf{gm}} \leftarrow \mathsf{GM}\{\mathcal{P}_{\mathsf{U}_\ell}, \ell \in [\mathsf{L}]\}$
- 4: Find $\ell_{best} = \arg \min_{\ell} ||\mathcal{P}_{U_{\ell}} \mathcal{P}_{em}||_{F}$
- 5: Output $U_{out} = U_{\ell_{best}}$

Subspace-Median

Lemma

Suppose GM can be computed exactly and at least 60% \mathbf{U}_ℓ 's satisfy

 $\mathsf{SD}_{\mathsf{F}}(\mathsf{U}^*,\mathsf{U}_{\ell}) \leq \delta$

then,

$$
\text{SD}_F(\textbf{U}^*, \textbf{U}_{\text{out}}) \leq 23\delta
$$

• Including probability argument, If

 $Pr(\text{SD}_F(\textbf{U}^*, \textbf{U}_\ell) \leq \delta) \geq 1 - p$

then,

$$
\begin{aligned} \mathsf{Pr}\left(\mathsf{SD}_{\mathsf{F}}(\mathbf{U}^*, \mathbf{U}_{out}) \le 23\delta\right) &\ge 1 - \exp(-L\psi(0.4-\tau, \rho)) \\ \psi(a, b) &:= (1-a)\log\frac{1-a}{1-b} + a\log\frac{a}{b} \end{aligned}
$$

• If GM is approximated using using a linear time algorithm⁶ then, $Pr(SD_F(U^*, U_{out}) \le 23\delta) \ge 1 - c_0 - exp(-L\psi(0.4 - \tau, \rho))$

6Cohen et al., Geometric median in nearly linear time \longleftrightarrow of \oplus \longleftrightarrow \oplus \longleftrightarrow \oplus \longrightarrow \oplus \leadsto \otimes

Resilient Federated PCA via Subspace Median of Means

In order to implement the "mean" step, we combine samples from $\rho = \frac{L}{\tilde{L}}$ $(\tilde{L} < L)$ nodes by implementing \tilde{L} different federated power methods.

Corollary

Assume that the set of Byzantine nodes remains fixed for all iterations and the size of this set is at most τL with $\tau < 0.4\tilde{L}/L$. If

$$
\frac{q}{L} = \widetilde{q} \geq CK^4 \frac{\sigma_1^{*2}}{\Delta^2} \frac{nr}{\epsilon^2} \cdot \frac{\widetilde{L}}{L}
$$

then, then, w.p. at least $1-c_0-\exp(-L\psi(0.4-\tau,2\exp(-n)+n^{-10})),$

$$
\text{SD}_F(\textbf{U}_{\text{out}},\textbf{U}^*)\leq \epsilon
$$

KORKAR KERKER SAGA

Comparisons for solving the resilient federated PCA problem

- SVD-Resilient Covariance Estimation (SVD-ResCovEst): SVD on GM of Covariance matrices⁷
- Resilient Power Method (ResPowMeth): GM based modification of the power method⁸
- Baseline Power Method for a no-attack setting (PowMeth)

⁷Minsker, Geometric median and robust estimation in Banach spaces

8Hardt and Price, The noisy power method: A meta a[lgo](#page-11-0)r[ith](#page-13-0)[m](#page-11-0) [w](#page-12-0)[it](#page-13-0)[h a](#page-0-0)[ppl](#page-13-0)[ica](#page-0-0)[tio](#page-13-0)[ns](#page-0-0) \equiv QQ

Thank You!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @