Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

44 Results

<<   <   Page 3 of 4   >   >>
Workshop
Empirically Validating Conformal Prediction on Modern Vision Architectures Under Distribution Shift and Long-tailed Data
Kevin Kasa · Graham Taylor
Workshop
Towards Understanding Feature Learning in Out-of-Distribution Generalization
Yongqiang Chen · Wei Huang · Kaiwen Zhou · Yatao Bian · Bo Han · James Cheng
Poster
Tue 17:00 Hybrid Energy Based Model in the Feature Space for Out-of-Distribution Detection
Marc Lafon · Elias Ramzi · Clément Rambour · Nicolas THOME
Poster
Tue 17:00 Feed Two Birds with One Scone: Exploiting Wild Data for Both Out-of-Distribution Generalization and Detection
Haoyue Bai · Gregory Canal · Xuefeng Du · Jeongyeol Kwon · Robert Nowak · Sharon Li
Workshop
Morse Neural Networks for Uncertainty Quantification
Benoit Dherin · Huiyi Hu · JIE REN · Michael Dusenberry · Balaji Lakshminarayanan
Poster
Thu 13:30 Model Ratatouille: Recycling Diverse Models for Out-of-Distribution Generalization
Alexandre Rame · Kartik Ahuja · Jianyu Zhang · Matthieu Cord · Leon Bottou · David Lopez-Paz
Poster
Wed 17:00 Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability
Jianing Zhu · Hengzhuang Li · Jiangchao Yao · Tongliang Liu · Jianliang Xu · Bo Han
Workshop
A Cosine Similarity-based Method for Out-of-Distribution Detection
Ngoc Hieu Nguyen · Nguyen Hung-Quang · The-Anh Ta · Thanh Nguyen-Tang · Khoa Doan · Hoang Thanh-Tung
Workshop
Proximal Compositional Optimization for Distributionally Robust Learning
Workshop
Nonlinear Wasserstein Distributionally Robust Optimal Control
Zhengang Zhong · Jia-Jie Zhu
Poster
Thu 16:30 Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity
Dixian Zhu · Yiming Ying · Tianbao Yang
Workshop
Sat 13:45 Jia-Jie Zhu: Duality from Gradient Flow Force-Balance to Distributionally Robust Learning