Workshop
|
|
Controlling the Inductive Bias of Wide Neural Networks by Modifying the Kernel's Spectrum
Amnon Geifman · Daniel Barzilai · Ronen Basri · Meirav Galun
|
|
Workshop
|
|
Gradient Scaling on Deep Spiking Neural Networks with Spike-Dependent Local Information
Seongsik Park · Jeonghee Jo · Jongkil Park · Yeonjoo Jeong · Jaewook Kim · Suyoun Lee · Joon Young Kwak · Inho Kim · Jong-keuk Park · Kyeong Lee · Hwang Weon · Hyun Jae Jang
|
|
Workshop
|
|
HiGen: Hierarchical Graph Generative Networks
Mahdi Karami
|
|
Workshop
|
|
A Representer Theorem for Vector-Valued Neural Networks: Insights on Weight Decay Training and Widths of Deep Neural Networks
Joseph Shenouda · Rahul Parhi · Kangwook Lee · Robert Nowak
|
|
Workshop
|
|
A Simple and Yet Fairly Effective Defense for Graph Neural Networks
Sofiane ENNADIR · Yassine Abbahaddou · Michalis Vazirgiannis · Henrik Boström
|
|
Workshop
|
|
A Simple and Yet Fairly Effective Defense for Graph Neural Networks
|
|
Workshop
|
Fri 14:10
|
Neural Networks Are Graphs! Graph Neural Networks for Equivariant Processing of Neural Networks
David Zhang · Miltiadis (Miltos) Kofinas · Yan Zhang · Yunlu Chen · Gertjan Burghouts · Cees Snoek
|
|
Poster
|
Tue 17:00
|
Deep linear networks can benignly overfit when shallow ones do
Niladri S. Chatterji · Phil Long
|
|
Poster
|
Thu 16:30
|
Overcoming Simplicity Bias in Deep Networks using a Feature Sieve
Rishabh Tiwari · Pradeep Shenoy
|
|
Poster
|
Thu 16:30
|
Quantitative Universal Approximation Bounds for Deep Belief Networks
Julian Sieber · Johann Gehringer
|
|
Workshop
|
|
Deep Neuro-Symbolic Weight Learning in Neural Probabilistic Soft Logic
Connor Pryor · Charles Dickens · Lise Getoor
|
|
Oral
|
Thu 18:56
|
Direct Parameterization of Lipschitz-Bounded Deep Networks
Ruigang Wang · Ian Manchester
|
|